Controlling light with plasmonic nanostructures - Fresnel file9/22/2009 1 Controlling light with...

10
9/22/2009 1 Controlling light with plasmonic nanostructures Anatoly V Zayats Nano-optics and Near-field Spectroscopy Group Centre for Nanostructured Media, IRCEP www.nano-optics.org.uk Controlling light with plasmonic nanostructures • Controlling plasmonic resonances in nanostructures • Surface plasmon polaritonic crystals Plasmonic nanorod arrays Plasmonic nanorod arrays Controlling plasmonic resonances in metal-dielectric nanostructures - structural parameters: size, shape, arrangement - dynamic control via dielectric environment modification all-optical using nonlinear dielectrics electric-field magnetic-field mechanical Manipulating electromagnetic fields on the nanoscale Passive functionalies: - guiding, sensing, enhancing Active functionalities: - tuneability, modulating/switching, (sp)lasing Optical signal processing principles and optical devices to provide the same functionality as electronic devices: Controlling light with light: optical transistors diodes interconnects optical transistors, diodes, interconnects, to build optical chip and ultimately all-optical integrated circuit Electronic-photonic convergence Plasmonic resonances SPP and LSP resonances are extremely sensitive SP 2 / 1 d m d m SPP c k LSP = f(a, m , d ) meta = f(a,d, m , d ) d = F(I c ) – optical control d = F(E ext ) – electric control d = F(M ext ) – magnetic control d = F(f ext ) – mechanical control

Transcript of Controlling light with plasmonic nanostructures - Fresnel file9/22/2009 1 Controlling light with...

Page 1: Controlling light with plasmonic nanostructures - Fresnel file9/22/2009 1 Controlling light with plasmonic nanostructures Anatoly V Zayats Nano-optics and Near-field Spectroscopy Group

9/22/2009

1

Controlling light with plasmonic nanostructures

Anatoly V Zayats

Nano-optics and Near-field Spectroscopy Group

Centre for Nanostructured Media, IRCEP

www.nano-optics.org.uk

Controlling light with plasmonic nanostructures

• Controlling plasmonic resonances in nanostructures• Surface plasmon polaritonic crystals • Plasmonic nanorod arraysPlasmonic nanorod arrays

Controlling plasmonic resonances in metal-dielectric nanostructures

- structural parameters: size, shape, arrangement

- dynamic control via dielectric environment modification

• all-optical using nonlinear dielectrics• electric-field• magnetic-field• mechanical

Manipulating electromagnetic fields on the nanoscale

Passive functionalies:- guiding, sensing, enhancing

Active functionalities: - tuneability, modulating/switching, (sp)lasing

Optical signal processing

principles and optical devices to provide the same functionality as electronic devices:

Controlling light with light: optical transistors diodes interconnectsoptical transistors, diodes, interconnects,to build optical chip and ultimately all-optical integrated circuit

Electronic-photonic convergence

Plasmonic resonances

SPP and LSP resonances are extremely sensitive

SP2/1

dm

dmSPP c

k

LSP = f(a,m,d)

meta = f(a,d,m,d)

d = F(Ic) – optical control

d = F(Eext) – electric control

d = F(Mext) – magnetic control

d = F(fext) – mechanical control

Page 2: Controlling light with plasmonic nanostructures - Fresnel file9/22/2009 1 Controlling light with plasmonic nanostructures Anatoly V Zayats Nano-optics and Near-field Spectroscopy Group

9/22/2009

2

Waveguides

SPP crystals

Nanorod assemblies

Surface plasmon polaritonic crystals

Surface polaritonic crystals

2 2sinSP xy p x yk u p u q u

c D D

Surface plasmon

k

Light line

G

1

p

m

2/1

im

SPc

k

k

-4/D 4/D0-2/D 2/D

k

ck

imc

Periodic structure: SPP excitation

(p,q)-parameters:• SPP spectrum • SPP propagation direction

Surface polaritonic crystals

2.42

eV)

SPP Bloch mode engineering

1.38

1.72

2.07

Ene

rgy

(e

wavenumber (m-1)5.914.422.951.470 7.37

Flat SPP bands:• field enhancement• strong sensitivity to the refractive index changes

Surface polaritonic crystals

2m

(-1,0)

(-1,0)

(1,0) 1.38

1.72

2.07

2.42

2.76

3.11

3 11

Ene

rgy

(eV

) 1

0.

hit b

2m

1m

(-1,0)

(1,0)

(-1,1) (1,1)

1.38

1.72

2.07

2.42

2.76

3.11

Ene

rgy

(eV

)

(-1,0)

(1,0)

(-1,1)

(1,1)

1.38

1.72

2.07

2.42

2.76

3.11

Ene

rgy

(eV

)

7.375.904.422.951.470Wavenumber (m-1)

1.

0.

1.

0

Enhanced transmission near the band edges

white probe light

Spectral dispersion of SPP crystal

d/dkSP ~ 0

kSP XM

d/dkSP 0

kSP

Page 3: Controlling light with plasmonic nanostructures - Fresnel file9/22/2009 1 Controlling light with plasmonic nanostructures Anatoly V Zayats Nano-optics and Near-field Spectroscopy Group

9/22/2009

3

Spectral dispersion of SPP crystal

kSPP

Finite-size SPP crystal

3D-to-2D diffraction- SPP Bloch mode excitation- SPP modes crossing the boundary of SPP crystal (SPP refraction)

kBSP

PRL 99, 083901 (2007).

Spectral dispersion of SPP crystal

=1522.0 nm

10^3 deg/nm

Start movie

=1522.4 nm =1522.8 nm=1522.8 nm=1522.4 nm

Spectral dispersion of SPP crystal

D1D2

10^3 deg/nmAngular spectral dispersion:

~ 20—30 deg/nmPRL 99, 083901 (2007).

Electronically controlled SPPCy

Electrically tuneable SPP crystals

Periodically structured surfaces: SPP Bloch mode engineering

600 650 700 750 800 850 900

0.00

0.05

0.10

0.15

0.20

0.25

Tra

nsm

issi

on

(a

rb.

un

its)

Wavelength (nm)

TOFF

TON

(-1,0) Au/LC (-1,0) Au/Sub

Electrically tuneable SPP crystals

500

550

600

650

700

750

800

Wav

elen

gth

(nm

)

Nano Letters 8, 281 (2008).

19.4 19.6 19.8 20.0 20.2 20.40.1

0.2

0.3

0.4

0.5

0.6

Inte

nsi

ty (

arb

. u

nits

)

Time (sec)

0 1.67 3.33 5.0 6.67 8.33 10.0 11.67

850

900

W

Applied field (kV/cm)

E-Field Optical Signal

OFF

ON

Page 4: Controlling light with plasmonic nanostructures - Fresnel file9/22/2009 1 Controlling light with plasmonic nanostructures Anatoly V Zayats Nano-optics and Near-field Spectroscopy Group

9/22/2009

4

Electrically tuneable SPP crystals

b c

1.00 a.u.

0.00 a.u.

a 2m

(-1,0) Au/LC

(-1,0) Au/Subs (-1,0) Au/Subs

(-1,0) Au/LC

(1,0) Au/LC (1,0) Au/Subs1.38

1.72

2.07

2.42

2.76

3.11

( 1 1) b d

3.11

Ene

rgy

(eV

)

d

7.37

-1.77

1.00 a.u.

0.00 a.u.

ge

i 2m

1m

1.00 a.u.

0.00 a.u.

f

(-1,0) bands

(1,0) bands

(-1,1) bands (1,1) bands

1.38

1.72

2.07

2.42

2.76

Ene

rgy

(eV

)

k7.375.904.422.951.470

j

(-1,0) bands

(1,0) bands

(-1,1) bands

(1,1) bands

1.38

1.72

2.07

2.42

2.76

3.11

Ene

rgy

(eV

)

7.375.904.422.951.470Wavenumber (m-1) Wavenumber (m-1)

h

5.43

-2.03

l

7.35

-3.48

Wavenumber (m-1)7.375.904.422.951.470

Nano Letters 8, 281 (2008).

Magnetic-field controlled SPPCg

Magneto-plasmonic crystals

N S

New J. Phys. 10, 105012 (2008).

dAu

Iron Garnet

Magneto-plasmonic crystal

Magneto-plasmonic crystals

N S

dAu

Iron Garnet

Magneto-plasmonic crystal

SPP field (Ex;Ez)

New J. Phys. 10, 105012 (2008).

i = f(M) - ?

Magneto-plasmonic crystals

N S

dAu

Iron Garnet

Magneto-plasmonic crystal

No external magnetic field(in-plane magnetisation)

New J. Phys. 10, 105012 (2008).

Magneto-plasmonic crystals

N S

dAu

Iron Garnet

Magneto-plasmonic crystal

External magnetic field normal to the film(out-of-plane magnetisation)

New J. Phys. 10, 105012 (2008).

Page 5: Controlling light with plasmonic nanostructures - Fresnel file9/22/2009 1 Controlling light with plasmonic nanostructures Anatoly V Zayats Nano-optics and Near-field Spectroscopy Group

9/22/2009

5

Magneto-plasmonic crystals

0.02

0.04

0.06

0.08

0.10

0.12

T

rans

mis

sion

(ar

b. u

nits

)

545 nm 660 nm

0.15

0.30

0.45

0.60

0.75

T

rans

mis

sion

(ar

b. u

nits

)

(2 0)

(1,1)IG

■ 545 nm

▲ 660 nm

500 550 600 650 700 7500.00

0.02

0.04

0.06

0.08

0.10

0.12 80 mT 75 mT 65 mT 55 mT 45 mT 40 mT M =0

Tra

nsm

issi

on (

arb.

uni

ts)

Wavelength (nm)500 600 700 800

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Tra

nsm

issi

on

(arb

.uni

t)

Wavelength (nm)

80 mT 73 mT 65 mT 55 mT 46 mT 40 mT 32 mT 27 mT M=0

20 30 40 50 60 70 800.00

Magnetic field (mT)500 550 600 650 700 750

0.00

(2,0) IG

Cross-polarised transmissionNew J. Phys. 10, 105012 (2008).

Magneto-plasmonic crystals

0.4

0.6

0.8

1.0

rans

mis

sion

(ar

b. u

nits

)

A || P

0.5

1.0

1.5

2.0

smis

sio

n x1

04 (

arb

. un

its)

A P

0 2

0.4

0.6

0.8

1.0

Tra

nsm

issi

on

(arb

. un

its)

A || P

0.5

1.0

1.5

2.0

ansm

issi

on

x10

4 (a

rb. u

nits

)

A P

In plane M Out of plane M

500 600 700 800 900-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

T (

arb

. u

nits

)

Wavelength (nm)

400 500 600 700 800 9000.0

0.2Tr

0.0

Tra

ns

500 600 700 800 900

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

T

(a

rb.u

nits

)

Wavelength (nm)

400 500 600 700 800 9000.0

0.2T

0.0

Tra

Difference on/off M Experiment on/off M

New J. Phys. 10, 105012 (2008). Dispersion of garnet is not taken into account

Acoustically tuneable SPP crystalsy y

Coherent control of SPPs

J Phys D 41, 195102 (2008).

Coherent control of SPPs

J Phys D 41, 195102 (2008).

Nonlinear SPPC(all-optical efefcts)

Page 6: Controlling light with plasmonic nanostructures - Fresnel file9/22/2009 1 Controlling light with plasmonic nanostructures Anatoly V Zayats Nano-optics and Near-field Spectroscopy Group

9/22/2009

6

Nonlinear optical effects at metal surfaces, films and metallic particles:

• intrinsic: second- and higher order optical nonlinear effects

related to the nonlinear response of electron plasma

• extrinsic: enhancement of second- and third-order

nonlinearities, Raman scattering etc in adjacent dielectric due to

the field enhancement associated with plasmonic excitations

How to design nonlinear plasmonic metamaterials using the

enhanced effective nonlinear susceptibility provided by surface

plasmons

Surface plasmon polaritons

1)0(

0

E

ET SP

Electromagnetic field enhancement:

SP

zSP LSP

2/1

im

imSP

ck

0

SPP resonance is sensitive to the dielectric constant of surroundings:

SP

Nonlinearity and SPPs

i = 0 + 4(3)|EL|2 f

2/1

)(

)()(

Lim

LimLSP E

E

cEk

Kerr-nonlinearity and controlling light with light

SP

Laser & Photon. Rev. 2, 125 (2008).

Nonlinearity and SPPs

SP

f

Surface polaritonic crystals

2.42

1.38

1.72

2.07

Ene

rgy

(eV

)

wavenumber (m-1)

5.914.422.951.470 7.37

Flat SPP bands:• field enhancement• strong sensitivity to the refractive index changes

Controlling SPP with external light:cylindrical surface plasmon effects

Arrays of the 20 nm cylindrical channels in 400 nm Au film.

PRB 66, 205414 (2002).

Page 7: Controlling light with plasmonic nanostructures - Fresnel file9/22/2009 1 Controlling light with plasmonic nanostructures Anatoly V Zayats Nano-optics and Near-field Spectroscopy Group

9/22/2009

7

Hybridised surface polaritonic crystals

D = 600 nmd = 200 nmh = 220 nm

bare SPP crystalcoated with 3BCMU polymer: 100 nm

500 600 700 8000.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

Wavelength (nm)

Tra

nsm

issi

on

(a

rb. u

nit

s)

PRL 97, 057402 (2006).

Nonlinear transmission measurements

control light

0.06

0.12

0.18

0.24 control light OFF control light ON

an

smis

sio

n (a

rb.

un

its)

white probe light

600 700 8000.00 T

ra

600 700 800-0.40

-0.20

0.00

0.20

0.40

0.60

Wavelength (nm)

488 nm

Diff

eren

tial t

rans

mis

sion

(T

/T)

514 nm

D = 600 nmd = 200 nmh = 220 nm200 nm 3BCMU

Transmission bistability

0.09

0.10

0.11

0.11

0.12

0.12

0.13 Increasing intensity Decreasing intensity

Tra

nsm

issi

onDifferent signal light wavelengths:

different origin of the resonances

550 600 650 700 750 800 8500.00

0.06

0.13

0.19

0.25

Tra

nsm

issi

on

Wavelength (nm)

250 200 150 100 50 00.09

250 200 150 100 50 00.20

0.21

0.23

0.24

0.25

Tra

nsm

issi

on

Intensity (a.u)

Control light: 488 nm

1 100.07

0.08

0.09

0.10

0.11

1 100.08

0.09

0.10

Control light: 488 nm 514 nm

Transmission bistability

0.2

0.4

0.6 488 nm 514 nm

smis

sion

(

1 10

0.10

0.11

0.12

0.13

0.14

0.15

1 100.18

0.19

0.20

0.21

0.22

0.23

0.24

log[I (mW)]

1 100.09

0.10

0.11

0.12

0.13 T

rans

mis

sion

(ar

b. u

nits

)

1 100.19

0.20

0.21

0.22

0.23

0.24

log[I (mW)]

600 700 800-0.4

-0.2

0.0

Diff

ernt

ial t

rans

Wavelength (nm)

Different control light wavelengths: different spatial variations of

0.2

0.4

0.6 488 nm 514 nm

issi

on (

bistability

All-optical switching in nonlinear SPPC

600 700 800-0.4

-0.2

0.0

0

Diff

ernt

ial t

rans

m

Wavelength (nm)

no

2(0) (3)4 , ,pumpr E r r

PRL 97, 057402 (2006).

Plasmonic nanorod arraysy

Page 8: Controlling light with plasmonic nanostructures - Fresnel file9/22/2009 1 Controlling light with plasmonic nanostructures Anatoly V Zayats Nano-optics and Near-field Spectroscopy Group

9/22/2009

8

Plasmonic nanorod arrays

porous AAO template

free standing nanorodsdiameter 20—50 nmlength 20—500 nmseparation 20—50 nm

Diameter 25 nm, length 300 nm

Au rod

glass substrate

Au electrode

separation 20—50 nmperiodicity: almostarea up to 1 cm2

APL 89, 231117 (2006).

Au rod Plasmonic nanorod arrays

If something goes wrong ….

1.0

1.5

2.0

2.5

3.0

Ext

inct

ion

0 20 30 40 50

Au rod Plasmonic nanorod arrays

separation 500 nmseparation 100 nm

500 600 700Wavelength nm

500

600

700

1.0 1.5 2.0 2.5 3.0 3.5

0 20 30 40 50

Extinction

=519 nm=507 nm

=2300 nm

~600 nm (dispersive)

Isolated nanorodsin AAO (aspect ratio of 15)

Interacting nanorodsin AAO

Plasmonic nanorod arrays

Au rod in air

Polymer

n in

nm

d

Au rod in polymer (n=1.46)

SubstrateMonomer thickness d in nm

L m

ode

posi

tion

2 ( , )SPP

n polymer Au d

m

rod length 300 nm, diameter of 25 nm

PRB 76, 115411 (2007).

Spectral sensitivity:~5 nm per 10 nm of dielectric within 600-800 nm range

Plasmonic nanorod arrays

850

900

950

e (

nm)

PRB 76, 115411 (2007).

0 50 100 150 200 250 300600

650

700

750

800

L-M

ode

reso

nanc

e

Dielectric load d (nm)

d

=925 nm=914 nm=842nm= 664 nm=640 nm

0.9

1.0

1.1

1.2

1.3

units

)

analyser

control light

Plasmonic nanorod arrays

400 450 500 550 600 650 700 750 800 850 9000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ext

inct

ion

(arb

.

Wavelength (nm)

Objective Lens

CCD camera

polariser

white probe light

Spectrometer

probe light

control light

J Microscopy 229, 415 (2008).

Page 9: Controlling light with plasmonic nanostructures - Fresnel file9/22/2009 1 Controlling light with plasmonic nanostructures Anatoly V Zayats Nano-optics and Near-field Spectroscopy Group

9/22/2009

9

Plasmonic nanorod arrays

-0 25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

Opt

ical

Den

sity

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0 W/cm2

11.5 W/cm2

15.2 W/cm2

23 W/cm2

Laser removed

arb

. un

its)

400 450 500 550 600 650 700 750 800 850 900

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

Op

tica

l De

nsity

Wavelength (nm)

400 450 500 550 600 650 700 750 800 850 900-0.25

Wavelength (nm)

Resonance shift

Photobleaching

600 650 700 750 800 850 900

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ext

inct

ion

(a

Wavelength (nm)

PRB 76, 115411 (2007).

Optical control:20 nm tuneability range10 nm reversible range

Air shellAu rod

AAO matrix

Air shell

Plasmonic nanorod arrays

1 5

2.0 1 (alumina) 1.25 1.75 2.75air

Shell/core diametric ratio

30 nm

AAO matrixAu electrodeGlass substrate

J Phys Chem C 111, 12522 (2007).

400 500 600 700 800 9000.5

1.0

1.5

Ext

inct

ion

Wavelength nm

air

rod length: 300 nm

rod diameter: 20 nm

2.5 2.0 s-pol J-agg coated Au wiresp-pol 40J-agg coated Au wires2 5

2.0

J-Aggregate

Molecular plasmonics

400 500 600 700 800 900

1.0

1.5

2.0

0.0

0.5

1.0

1.5

ODOD

Wavelength

p-pol 40 J-agg coated Au wires p-pol bare wires J-agg coated Au film

400 500 600 700 800 900

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

0 10 20 30 40 50 bare air-wire core-shell

ODOD

Wavelenght nm

J-Agg on 10 nm continuous Au film

Tuning exciton-plasmon coupling strength Nano Letters 7, 1297 (2007).

Molecular plasmonics

2.0

2.1

2.2

2.3

erg

y e

V

plasmon

hybrid +

100

120

140

160

ren

gth

me

V

Tuning exciton-plasmon coupling strength:towards active plasmonic metamaterials

1.7 1.8 1.9 2.0 2.1 2.2 2.31.6

1.7

1.8

1.9En

e

L-Mode energy in air eV

exciton

hybrid -

550 600 650 700 75020

40

60

80C

ou

plin

g s

tr

Wavelength nm

Vhybrid

Ambjornsson, & al PRB (2006), 73, 085412.

Nano Letters 7, 1297 (2007).

2.5 2.0 s-pol J-agg coated Au wires

J-Aggregate

Molecular plasmonics

T/T ~ 30% at 10 pJ/cm2

sub-ps switching time

400 500 600 700 800 900

1.0

1.5

2.0

0.0

0.5

1.0

1.5

ODOD

Wavelength

p gg p-pol 40J-agg coated Au wires p-pol bare wires J-agg coated Au film

Wurtz et al, in preparation

Modulating exciton-plasmon coupling strength

Electrically controlled extinction

2.5

3.0 0V/µm+0.05V/µm+0.15V/µm+0.5V/µm+0.75V/µm+1V/µm

on

APL 91, 043101 (2007).

400 500 600 700 800 900

1.0

1.5

2.0

µ+1.5V/µm

Ext

inct

io

Wavelength(nm)

0V

0.05V/µm

0.15V/µm

Electrical switching but NO tuneability

Page 10: Controlling light with plasmonic nanostructures - Fresnel file9/22/2009 1 Controlling light with plasmonic nanostructures Anatoly V Zayats Nano-optics and Near-field Spectroscopy Group

9/22/2009

10

Conclusions

Take home messages (1):

• Functional plasmonics with nanostructured metal films • Surface-plasmon polaritonic crystals: Su ace p as o po a to c c ysta s

optical properties are determined by SPP Bloch modesSPPC+functional dielectric = optical metamaterial with

controlled optical propertiesoptical control of SPP modeselectric control of SPP modes acoustic (coherent) control of SPP modesmagnetic control of SPP modes

Conclusions

Take home messages (2):

• Plasmonic nanorod arrays (interacting localised plasmons):- optical metamaterial with fully adjustable spectral propertiesopt ca eta ate a t u y adjustab e spect a p ope t es- nanofluidic tuneability- control of exciton-plasmon coupling- practical (scaleable) route to plasmonic metamaterials