CONTINUUM SHELL ELEMENT AND POSTBUCKLING ANALYSIS

15
CONTINUUM SHELL ELEMENT AND POSTBUCKLING ANALYSIS Description of continuum shell element (principle of virtual displacements) Post-buckling analysis of composite panels and comparison with experimental results

Transcript of CONTINUUM SHELL ELEMENT AND POSTBUCKLING ANALYSIS

CONTINUUM SHELL ELEMENT AND POSTBUCKLING ANALYSIS

Description of continuum shell element(principle of virtual displacements)

Post-buckling analysis of composite panels and comparison with experimental results

CONTINUUM SHELL ELEMENT

J N Reddy

1 1,X x

2 2,X x

3 3,X x

e3ˆ e1ˆE1ˆE3

ˆ

e2ˆE2ˆ

00Ω Ω

10S

0d V

12Ω 2

rΩ2Ω1

2rΩ

0d S

10E

0

Equilibrium iterations

0S

20S20E

Continuum Shell Element 2

CONTINUUM SHELL ELEMENT

Z

0V

t+¢t0 Sij ±(t+¢t

0 "ij)0dV = t+¢tR

t+¢tR =

Z

0A

t+¢t0 tk ±uk

0dA +

Z

0V

0½ t+¢t0 fk ±uk

0dV

Z

t+¢tV

t+¢t¾ij ±t+¢teijt+¢tdV = t+¢tR

Z

t+¢tV

t+¢ttij ±(t+¢teij)t+¢tdV =

Z

0V

t+¢t0 Sij ±(t+¢t

0 "ij)0dV

Principle of virtual displacement applied to the configuration to be determined

Use energy conjugacy to write all integrals on the reference configuration

Continuum Shell Element 3J N Reddy

CONTINUUM SHELL ELEMENT

±(t+¢t0 "ij) = ±(t

0"ij) + ±(0"ij) = ±(0"ij)

0Sij = 0Cijrs 0"rs; 0Sij = 0Cijrs 0`rs

Z

0V0Cijrs 0`rs ±(0"ij)

0dV +

Z

0V

t0Sij ±(0´ij)

0dV

= t+¢tR ¡Z

0V

t0Sij ±(0`ij)

0dV

Final virtual work statement

0`ij =1

2(0ui;j + 0uj;i + t

0uk;i 0uk;j + 0uk;it0uk;j)

Decompositionst+¢t0 Sij = t

0Sij + 0Sij

t+¢t0 "ij = t

0"ij + 0"ij 0´ij =1

20uk;i 0uk;j

0"ij = 0`ij + o´ij

Continuum Shell Element 4J N Reddy

Assumed Kinematics of the Shell Element

CONTINUUM SHELL ELEMENT(continued)

Continuum Shell Element 5J N Reddy

txi =nX

k=1

Ãk(»; ´)[txki +

³

2hk

tek3i]

tui = txi ¡ 0x1 =nX

k=1

Ãk(»; ´)[tukk +

³

2hk(tek

3i ¡ 0ek3i)]

ui = t+¢tui ¡ tui =nX

k=1

Ãk(»; ´)[uki +

³

2hk(t+¢tek

3i ¡ tek3i)]

Continuum Shell Element 6

E = 3103 Ν/mm2, ν = 0.3R = 2540 mm, L = 254 mm

(b)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.00 5 10 15 20Center deflection, u3 (mm)

Load

, P(k

N)

-

-

-

L

Rx1, u1

x2, u2

x3, u3

h = 6.35 mm

Free edge

•••••

••••••••••

••••••••••

Simply supported:u1 = u2 = u3 = φ2 = 0

Symmetry line: u1 = φ1 = 0

Simply supported:u1 = u2 = u3 = φ2 = 0

0.1LSymmetry line:

u2 = φ2 = 0

P

A NUMERICAL EXAMPLE

J N Reddy

POSTBUCKLING AND FAILURE ANALYSIS - AN EXAMPLE

• Nonlinear FE analysis • Comparison with experimental results of

Starnes and Rouse• Progressive failure analysis

a

P

x

y

b

0=w0

u0 constant=w0 0=

∂x∂w0

0=∂x

∂w0

=u0 0=w0

u0

a = 50.8 cm (20 in.), b = 17.8 cm (7 in.), hk = 0.14 mm (0.0055 in.)

24-ply laminate: [45/-45/02 /45/-45/02 /45/-45/0/90]s

E1 = 131 Gpa (19,000 ksi), E2 = 13 Gpa (1,890 ksi),

G12 = 6.4 Gpa (930 ksi), ν12 = 0.38 (graphite-epoxy)

J N Reddy Continuum Shell Element 7

(a) Typical panelwith test fixture

(b) A transverse shear failure mode

Experimental Setup and Failure Region(Starnes & Rouse, NASA Langley)

J N Reddy Continuum Shell Element 8

POST-BUCKLING OF A COMPOSITE PANELUNDER IN-PLANE LOADING

20.0

in

7.0 in

Finite Element Models

• Mesh has six elements per bucklingmode half wave in each direction

• Elements used:(1) Four-node C1 -based flat shell

element (STAGS)(2) Nine-node continuum shell

element (Chao & Reddy)(3) For-node and nine-node ANS

shell elements (Park & Stanley)

• All meshes have 72 elements (91 nodes for the meshes with four-node elements and 325 nodesfor meshes with nine-node elements).

Continuum Shell Element 9J N Reddy

Comparison of the Experimental (Moire)and Analytical Out-of-Plane Deflection

Patterns

J N Reddy

ExperimentalTheoretical (FEM)

(b) Photograph of Moiréfringe pattern

(a) Contour plot of theanalytical results

Continuum Shell Element 10

Comparison of the Experimental and Analytical Solutions for End Shortening

J N Reddy Continuum Shell Element 11

Postbuckling of a Composite Panel

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0End shortening, u0/ucr

0.0

0.5

1.0

1.5

2.0

2.5

p,

c

AnalysisTest

0.0 0.5 1.0 1.5 2.0 2.5Maximum deflection, w0/h

0.0

0.5

1.0

1.5

2.0

2.5

p,

AnalysisTest

J N Reddy Continuum Shell Element 12

Postbuckling of a Composite Panel(Stress Distributions)

P

x

y

b

a 2

a 2

0.0 0.2 0.4 0.6 0.8 1.0y/b

-80-70-60-50-40-30-20-10

01020

,

xx (

)

-500

-400

-300

-200

-100

0

100(MPa)

P/Pcr = 2.1

P/Pcr = 1.5

P/Pcr = 1.0

Axi

al S

tres

s, s x

x(k

si)

J N Reddy Continuum Shell Element 13

0.0 0.2 0.4 0.6 0.8 1.0y/b

-9.0-8.0-7.0-6.0-5.0-4.0-3.0-2.0-1.00.01.0

,

xz (

)

-60

-50

-40

-30

-20

-10

0

(MPa)

P/Pcr = 1.0

P/Pcr = 1.5

P/Pcr = 2.1

from constitutive relationsfrom equilibrium relations

Shear Stress, σxz (ksi)

Postbuckling of a Composite Panel(Stress Distributions)

J N Reddy Continuum Shell Element 14

Description of continuum shell element(principle of virtual displacementsconjugate pairs, decompositions, approximation of the geometry and displacement field)

Post-buckling analysis of composite panels and comparison with experimental results

(problem description, boundary conditions, fringe patters of the displacement field, post-buckling path; failure analysis)

J N Reddy Continuum Shell Element 15

SUMMARY