Continuous random variable theory.pdf

download Continuous random variable theory.pdf

of 101

Transcript of Continuous random variable theory.pdf

  • 7/24/2019 Continuous random variable theory.pdf

    1/101

    (Continuous Random Variable )

    Continuous Densities:

  • 7/24/2019 Continuous random variable theory.pdf

    2/101

    X can assume all possible values 0x1

    Since possible values of X are non countablein 0x1, then what happens to point

    probabilities?

  • 7/24/2019 Continuous random variable theory.pdf

    3/101

    Definition:

    A random variable is continuous if it can

    assume any value in some interval

    ( or intervals ) of real numbers and the

    probability that it assume any specific value

    is 0 ( zero ).

  • 7/24/2019 Continuous random variable theory.pdf

    4/101

    CONTINUOUS PDF (Density Function)

    Definition:Let X be a continuous randomvariable. A function f(x) is called continuousdensity ( probability density function i.e pdf ) if

    1 . f ( x ) 0

    2 . ( ) 1f x d x

    3. For anyab we havec

    ad xxf )(c)xP(a.3

  • 7/24/2019 Continuous random variable theory.pdf

    5/101

    (Thus P[aXc] is area under graph of y=f(x)

    betweenx =a andx =c.)

  • 7/24/2019 Continuous random variable theory.pdf

    6/101

    Remark: It is a consequence of the definition

    that for any specified value of X, say xo , wehave P[X=xo] = 0, since

    [ ] ( ) 0

    o

    o

    x

    o

    xP X x f x d x

    Remark :f (x 0)P [X=x 0].

    In factf is analogous to the density of mass

    whereas probability is analogous to the mass

    itself.

  • 7/24/2019 Continuous random variable theory.pdf

    7/101

    Remark. If X assumes values in some finiteinterval [a,c], we simply set f(x) = 0 for all

    x[a,c].

  • 7/24/2019 Continuous random variable theory.pdf

    8/101

    Every conceivable point on the line segment

    could be the outcome of the experiment.Since X is continuous r.v, we have

    ][

    ][

    ][][

    cxaP

    cxaP

    cxaPcxaP

  • 7/24/2019 Continuous random variable theory.pdf

    9/101

    Let X be the continuous r.v. with density

    f(x). The cumulative distribution function (cdf ) for X ,denoted by F(X) , is defined by

    F(X) = P ( X x ) , all x

    =

    PROBABILITY by using cdf:F(x)

    P( aXc ) = F(c) F(a).

    x

    ds)s(f

  • 7/24/2019 Continuous random variable theory.pdf

    10/101

    Example : If pdf of a random variable X is

    otherwise0

    3x11)-(xr

    1x0)1(

    )(

    xr

    xf

    (i) Find r and graph of f(x) (ii) Find F(x)

  • 7/24/2019 Continuous random variable theory.pdf

    11/101

    3x1

    3x15

    )1(

    5

    1

    1x0)2

    (52

    )(

    2

    2

    x

    xx

    xF

  • 7/24/2019 Continuous random variable theory.pdf

    12/101

    Theorem: Let F be the continuous cdf of a

    continuous r.v with pdf f, then

    abledifferenti

    isFwhichatxallfor

    ),()( xFd x

    d

    xf

  • 7/24/2019 Continuous random variable theory.pdf

    13/101

    (5) (Continuous uniform distribution) A

    random variable X is said to be uniformlydistributed over an interval (a,c) if its

    density is given by

    cxaac

    xf

    ,1)(

    (a)Show that this is a density for a continuousrandom variable.

    Sol: acf or

    ac

    Since

    ,01

  • 7/24/2019 Continuous random variable theory.pdf

    14/101

    Secondly,

    11

    d xac

    c

    a

    (b) Sketch the graph of the uniform density.

    X=a X=c

    f(x)

    x

    1/(c-a)

  • 7/24/2019 Continuous random variable theory.pdf

    15/101

    ( ii )Shade the area in the graph of part (b)

    that represents P[Xa+c)/2].

    X=a X=c

    f(x)

    x(a+c)/2

  • 7/24/2019 Continuous random variable theory.pdf

    16/101

    (c ) Find the probability pictured in part: ii

    (e) Let (l,m) and (d,f) be subintervals of (a,c)

    of equal length. What is the relationship

    between P[lX m] and P[dX f]

    Sol: Probability is same on equal

    length of interval.

    ]c

    c

  • 7/24/2019 Continuous random variable theory.pdf

    17/101

    (10) Find the general expression for the

    cumulative uniform distribution for arandom variable X over (a,c)

    cxaacax

    d sac

    xXPxFx

    a

    ,

    )(

    1][)(

  • 7/24/2019 Continuous random variable theory.pdf

    18/101

    cx

    cxaac

    ax

    ax

    xF

    ,1

    ,

    ,0

    )(

  • 7/24/2019 Continuous random variable theory.pdf

    19/101

    Section 4.2

    Def: Let X be a continuous random variable

    with pdf f. The expected value of X is defined

    as

    [ ] ( ) .E X x f x d x

    Again E(x) exists if and only if

    | | ( )x f x d x is f inite

  • 7/24/2019 Continuous random variable theory.pdf

    20/101

    For a random variable X which is a function,

    say H(x), the definition takes the form:

    [ ( )] ( ) ( ) .E H x H x f x d x

    provided

    | ( ) | ( )H x f x d x is f inite

  • 7/24/2019 Continuous random variable theory.pdf

    21/101

    Moment generating function :

    ( ) [ ]

    ( )

    w here is densi ty o f .

    tXX

    tx

    m t E e

    e f x d x

    f X

  • 7/24/2019 Continuous random variable theory.pdf

    22/101

    Variance :

    Variance is shape parameter in the

    sense that a random variable with

    small variance will have a compact

    density; one with a large variance will

    have a density that is rather spread

    out or flat.

  • 7/24/2019 Continuous random variable theory.pdf

    23/101

    MGF of uniform distribution random

    variable on (a, c) :

    ace

    t

    ac

    d x

    eeEta

    c

    a

    txtx

    tc

    e1

    )(

  • 7/24/2019 Continuous random variable theory.pdf

    24/101

    Either by using mgf or directly, mean and

    variance can be found.

    12)()(

    2)(

    2

    acXVar

    caXE

  • 7/24/2019 Continuous random variable theory.pdf

    25/101

    Section 4.3:

    Definition : The Gamma function is the functiondefined by

    1

    0

    1 1

    1

    ( ) , 0.

    1

    lim lim0

    exists for 0.

    z

    z z

    r

    z e d z

    s

    z e d z z e d zr s

  • 7/24/2019 Continuous random variable theory.pdf

    26/101

    4.3: Gamma Random variable

    Gamma Function: which is an improper

    integral allows us to define exponential

    and chi- squared random variables.

    Gamma function:

    0

    1 0,)( d zez z

  • 7/24/2019 Continuous random variable theory.pdf

    27/101

    Theorem: (Properties of Gamma function)

    1),1()1()(.2

    1)1(.1

    allf orProof:by definition of Gamma function, we have

    0 0

    zz0

    1dzedzez)1(

    by integration by parts, we have

  • 7/24/2019 Continuous random variable theory.pdf

    28/101

    )1()1(

    )1(|

    0,)(

    0

    1)1(

    0

    1

    0

    1

    d zzeze

    d zez

    zz

    z

    Hint: by repeated use of L hospital rule,

    we shall have

  • 7/24/2019 Continuous random variable theory.pdf

    29/101

    )!1()1()2()1()2()2)(1(

    )1()1()(

    ,

    )!1()(

    nnnnnn

    nnn

    Since

    nn

    Thus, Gamma function is a generalization of the

    Factorial notation

  • 7/24/2019 Continuous random variable theory.pdf

    30/101

    provedbenot to

    )21(

    0

    2/1

    d zez z

  • 7/24/2019 Continuous random variable theory.pdf

    31/101

    GAMMA RANDOM VARIABLE

    A random variable X with density function

    is said to have a Gamma Distribution with

    parameters and,for x>0,>0,>0.

    wiseother

    xexxf

    x

    ,0

    0,0,0,)(

    1

    )(

    /1

  • 7/24/2019 Continuous random variable theory.pdf

    32/101

    To check the necessary and sufficient condition

    of pdf: 0xallfor0)x(f

    0

    11

    0

    /1

    )(

    1

    ,

    )(

    1)(,

    d zez

    zxandd zd xzx

    Let

    d xexd xxfFurther

    z

    x

  • 7/24/2019 Continuous random variable theory.pdf

    33/101

    p d faisxfH ence

    ez z

    )(

    1

    )( 0

    1

    Theorem: Let X be a gamma random variable

    with parameters and. Then m.g.f for X isgiven by:

    2

    x

    )x(Var.3

    ]X[E.2

    1t,)t1()t(m.1

  • 7/24/2019 Continuous random variable theory.pdf

    34/101

    Proof:

    )1(

    )1(

    )1(

    )(1

    )(

    1

    ][)(,

    0

    )1

    (1

    /1

    0

    t

    d zd xand

    t

    zx

    xtzlet

    d xex

    d xexe

    eEtmd efby

    xt

    xtx

    tx

    x

  • 7/24/2019 Continuous random variable theory.pdf

    35/101

    1,)1()(

    )()1()(

    1

    )1()(

    1)1(

    )

    1

    (

    )(

    1

    0

    1

    1

    0

    tttm

    t

    d zezt

    t

    d ze

    t

    z

    x

    z

    z

  • 7/24/2019 Continuous random variable theory.pdf

    36/101

    0t

    1

    0tx

    /)()t1(

    /)t(m

    dt

    d]X[E.2

    2

    02

    22

    )1(

    /))((][

    tx tmd td

    XE

  • 7/24/2019 Continuous random variable theory.pdf

    37/101

    0

    2 12

    2

    00

    2

    2 2 2

    ( )2 ) [ ]

    ( ) (1 )3 ) [ ]

    ( 1)

    T h u s [ ] ( 1) ( ) .

    X

    t

    X

    tt

    d m tE Xd t

    d m t d tE X

    d t d t

    V a r X

    wiseother

    xex

    xf

    x

    ,0

    0,0,0,

    )(

    1

    )(

    /1

  • 7/24/2019 Continuous random variable theory.pdf

    38/101

    For >1 maximumValue of density is at

    x=(-1)

    Gamma(2 ,3) Gamma(2 0,0.5)

    Gamma(1,4)

  • 7/24/2019 Continuous random variable theory.pdf

    39/101

    For >1 maximum

    Value of gamma densityis at

    x=(-1)

    2

    )(.

    ][.

    1,)1()(.

    xVariii

    XEii

    tttmi x

  • 7/24/2019 Continuous random variable theory.pdf

    40/101

    Exponential distribution : exponential

    random variable is Gamma random

    variable with=1.The density is

    > 0 is the parameter of this exponentialdistribution. E[X]=, Var[X]=2 .

    otherwise0

    00, x1)(

    x

    exf

  • 7/24/2019 Continuous random variable theory.pdf

    41/101

    The c.d.f. of exponential distribution with

    Parameter is given by

    o x1

    111)(

    0

    0

    0

    xxs

    x

    s

    x s

    ee

    ed sexF

  • 7/24/2019 Continuous random variable theory.pdf

    42/101

    /1 , 0

    ( ) 0, otherwise.

    xe x

    F x

  • 7/24/2019 Continuous random variable theory.pdf

    43/101

    Moment generating function, Mean and

    Variance of exponential distribution

    Note: Put =1 in the gamma distribution

    we get the required results.

    2

    1

    )(][

    )1()(

    XVarmeanXE

    ttmX

  • 7/24/2019 Continuous random variable theory.pdf

    44/101

    Poisson Process and Exponential dist :

    For a Poisson process with parameter ,

    the

    w iting time

    W is the time in the

    given interval before the1

    st

    success.

    Theorem :W has an exponential

    distribution with parameter =1/.

  • 7/24/2019 Continuous random variable theory.pdf

    45/101

    Proof: This theorem is distribution of

    waiting time

    The distribution function F for W is given by

    ]wW[P1]wW[P)w(F

    Here, we have that the first occurrence of the

    event will take place after time w only if number

    of occurrences in the time interval [0,w] is zero

    Let X be the number of occurrences of

    the event in this time interval [0,w].

  • 7/24/2019 Continuous random variable theory.pdf

    46/101

    X is a poisson random variable with parameter

    w.

    w

    0w

    e!0

    )w(e

    ]0X[P]wW[P,Thus

    w

    ewWPwF

    1][1)(

  • 7/24/2019 Continuous random variable theory.pdf

    47/101

    Since, in the continuous case, the derivative

    of the cumulative distribution function isthe density

    1with

    varibalerandomlexponentia

    anfordensityexactlyisThis

    )()(

    wewfwF

  • 7/24/2019 Continuous random variable theory.pdf

    48/101

    GAMMA RANDOM VARIABLE

    A random variable X with density function

    is said to have a Gamma Distribution with

    parameters and,for x>0,>0,>0.

    wiseother

    xexxf

    x

    ,0

    0,0,0,)(

    1

    )(

    /1

  • 7/24/2019 Continuous random variable theory.pdf

    49/101

    Chi-square distribution : If a random variable

    X has a gamma distribution with parameters=2 and=/2 , then X is said to have achi-square ( 2 ) distribution with degrees ofFreedom and denoted by X2

    , is a positive

    Integer.

  • 7/24/2019 Continuous random variable theory.pdf

    50/101

    0x,ex2)

    2

    (1)x(f 2/x

    1

    2

    2/

    E[X2 ]=, Var[X2 ]=2

    =2 and=/2 ,

  • 7/24/2019 Continuous random variable theory.pdf

    51/101

  • 7/24/2019 Continuous random variable theory.pdf

    52/101

  • 7/24/2019 Continuous random variable theory.pdf

    53/101

  • 7/24/2019 Continuous random variable theory.pdf

    54/101

    We do not have explicit formula for CDF F

    of X

    2

    . In stead values are tabulated onp. 695-696 as below (F occurs in margin here,

    and related value of r.v. inside the table):

  • 7/24/2019 Continuous random variable theory.pdf

    55/101

    If F is CDF for Chi square random variable

    Having 5 degrees of freedomF(1.61)= .1 , F(4.35)= .5

    P[X2 < t]

    F 0.100 0.2 50 0.500

    5 1.61 2 .67 4.35

    6 2 .2 0 3.45 5.35

    7 2 .83 4.2 5 6.35

  • 7/24/2019 Continuous random variable theory.pdf

    56/101

    38. Consider a chi squared random variable

    with 15 degrees of freedom.(i) What is the mean of ?

    2

    15X

    Sol: Chi square distribution is Gamma with

    =/2 &=2 , Mean ===15 and2 =2 = 30

  • 7/24/2019 Continuous random variable theory.pdf

    57/101

    otherwise0

    0,2)2/15(

    1)(

    ,2/,2var

    2/1)2/15(2/15

    2

    xexxf

    hencewithiablerand omisX

    x

    Sol:

    (ii) What is the expression for the density for

    ?2

    15X

  • 7/24/2019 Continuous random variable theory.pdf

    58/101

    ( iii) What is the expression for the moment

    Generating function for 215X

    Sol:

    2/1,)21()1()(2/15

    ttttm x

  • 7/24/2019 Continuous random variable theory.pdf

    59/101

    P[X2

    < t]

    F 0.005 0.010 0.900

    15 4.60 5.2 3 2 2 .3

    6 2 .2 0 3.45 5.35

    7 2 .83 4.2 5 6.35

    .02 5

    6.2 6

    10.0900.01

    ]3.2 2[1]3.2 2[ 215215

    XPXP

    ( iv) Find ]3.2 2[ 215

    XP

  • 7/24/2019 Continuous random variable theory.pdf

    60/101

    875.002 5.0900.0)2 6.6()3.2 2(

    ]3.2 22 6.6[ 215

    FF

    XP

    P[X2 < t]

    F 0.005 0.010 0.900

    15 4.60 5.2 3 2 2 .3

    6 2 .2 0 3.45 5.35

    7 2 .83 4.2 5 6.35

    .02 5

    6.2 6

    ]3.2 22 6.6[Find(V) 215

    XP

  • 7/24/2019 Continuous random variable theory.pdf

    61/101

    Sol. P[X2 15 >2 r]=r.

    freedomofdegree150.2 5205.0

    f or

    P[X2 15 >2 0.05]=0.05.

    P[X2 < t]

    F 0.005 0.010 0.950

    15 4.60 5.2 3 2 5..0

    .02 5

    6.2 6

    V Find 2 0.05, &2 0.01 for 15

    degree of freedom

  • 7/24/2019 Continuous random variable theory.pdf

    62/101

    ,6.30201.0

    P[X2 15 >2 r]=r.

    P[X215

    >20.01

    ]=0.01.

    P[X2 < t]

    F 0.005 0.010 0.990

    15 4.60 5.2 3 30.6

    .02 5

    6.2 6

  • 7/24/2019 Continuous random variable theory.pdf

    63/101

    4.4 The Normal Distribution

    A random variable X with density f(x)

    is said to have normal distribution with

    parameters and > 0, where f(x) isgiven by:

    .0);,(,,2

    1)(

    2

    2

    2

    xexf

    x

    )(0)()( fi

  • 7/24/2019 Continuous random variable theory.pdf

    64/101

    - 1f(x)dx(ii)

    ),(-x0)()( xfi

    -

    2

    1

    -

    2

    1

    2

    -

    2

    1

    2

    2

    2

    2

    2

    1

    2

    1

    let

    12

    1

    proveto

    d zed xe

    d zd xzx

    d xe

    zx

    x

  • 7/24/2019 Continuous random variable theory.pdf

    65/101

    0

    2

    1

    -

    2

    1 22

    2

    12

    2

    1d zed ze

    zz

    0

    )(2

    1

    0

    0

    2

    1

    0

    2

    1

    0

    2

    1

    0

    2

    1

    22

    22

    22

    d x d ye

    d yed xeII

    Id zed ze

    yx

    yx

    zz

  • 7/24/2019 Continuous random variable theory.pdf

    66/101

    2

    0

    2/

    0

    0

    )(2

    12/

    0

    2

    dd we

    rd rde

    w

    r

    0

    )(2

    1

    0

    22

    d x d ye

    yx

  • 7/24/2019 Continuous random variable theory.pdf

    67/101

    2I..

    ei

    12

    2

    2

    12

    2

    1

    0

    2

    1

    -

    2

    1 22

    d zed ze

    zz

  • 7/24/2019 Continuous random variable theory.pdf

    68/101

    Standard Normal Distribution

    If =0 =1 then normal randomvariable is called standard normal

    variable symbol for normal r.v is Z.

  • 7/24/2019 Continuous random variable theory.pdf

    69/101

    The probability density function isgiven by

    ).,(,2

    1)(

    2

    2

    zezf

    z

    d ze

    d zzfzZPzF

    z z

    z

    Z

    2

    2

    2

    1

    )()()(

  • 7/24/2019 Continuous random variable theory.pdf

    70/101

    Standard Normal distribution

    Theorem: Let X be normal with meanand standard deviation. The variable

    is standard normal. Z has mean 0 and

    standard deviation 1.

    XW

    X

  • 7/24/2019 Continuous random variable theory.pdf

    71/101

    )()()( aX

    PaWPaFW

    ,2

    1)(

    2

    2

    2 d seaXP

    a s

    d zzzs ds,s,

  • 7/24/2019 Continuous random variable theory.pdf

    72/101

    ,2

    1)()(

    2

    2

    2 d seaXPaF

    a s

    W

    d zzz

    s

    ds,s,

    ,2

    1)()( 2/

    2

    d zeaXPaF

    a

    z

    W

    =FZ(a)

  • 7/24/2019 Continuous random variable theory.pdf

    73/101

    Moment Generating Function

    Let Z be normally distributed withparameters=0 and=1 , then the momentgenerating function for Z is given by

    ,

    2/2)( tZ etm

  • 7/24/2019 Continuous random variable theory.pdf

    74/101

    Rajiv

    -

    2

    1

    -

    2

    1

    2

    2

    2

    1

    2

    1

    )()(

    d xe

    d zeeeEtm

    ztz

    ztztz

    Z

    22

    22

    2

    2

    1

    22

    2222

    tzt

    tttzzztz

  • 7/24/2019 Continuous random variable theory.pdf

    75/101

    d wd z

    d zeetm

    tz

    tZ

    wt)-(zlet

    21)(

    -

    22/

    2

    2

    -

    22/

    2

    2

    21)( d weetm

    w

    tZ

  • 7/24/2019 Continuous random variable theory.pdf

    76/101

    Moment Generating Function

    Let X be normally distributed withparameters and, then themoment generating function for X isgiven by

    , E(X2) =

    2

    22

    )(tt

    X etm

  • 7/24/2019 Continuous random variable theory.pdf

    77/101

    )()()( )( zttxX eEeEtm

    )( ztt eeE )( ztt eEe

    2/

    22

    tt ee

  • 7/24/2019 Continuous random variable theory.pdf

    78/101

    Mean and Standard deviation for

    Normal distribution

    Theorem : Let X be a normal randomvariable with parameters and. Then is the mean of X and is its standard

    deviation.

  • 7/24/2019 Continuous random variable theory.pdf

    79/101

    aF

    cF ZZc)XP(a

    ),N(isX(i)If

    d zed zzfzZPzFz zz

    Z

    22

    2

    1)()()(

    )(1)(F)(Z

    zFziiZ

    3.5zif1)(F

    -3.5zif0)(F)(

    Z

    Z

    z

    ziii

  • 7/24/2019 Continuous random variable theory.pdf

    80/101

  • 7/24/2019 Continuous random variable theory.pdf

    81/101

  • 7/24/2019 Continuous random variable theory.pdf

    82/101

    Correction for continuity for a discrete random

    variable approximated with continuous random

    variable: Half Unit correction

    i. P(aX b)=P(a-0.5 Xb+0.5)

    ii. P(Xb)= P(Xb)= P(Xb+0.5)

    = P(Xb+0.5)

    iii. P(X a)= P(a-0.5 X)=P( X a-.5)

    iv. P(X= a)=P (a- 0.5

  • 7/24/2019 Continuous random variable theory.pdf

    83/101

    Normal Approximation to the

    Poisson Distribution

    Let X be Poisson with parameters.

    Then for large values ofs, X isapproximately normal with mean

    ,.......3,2,1,0,!

    )(

    xx

    sexf

    xs

  • 7/24/2019 Continuous random variable theory.pdf

    84/101

  • 7/24/2019 Continuous random variable theory.pdf

    85/101

    Chebyshevs Inequality

    We are interested to find a lower bound

    on probability that X is inside a interval

    symmetric about mean or upper bound

    on probability that X is outside a interval

    symmetric about mean .

  • 7/24/2019 Continuous random variable theory.pdf

    86/101

    Chebyshevs Inequality

    Let X be a random variable with variance

    2 and mean , then for any positivenumberm ,

    P[ |X-|m ]1/m 2

    Chebyshevs Inequality for upper

    bound

  • 7/24/2019 Continuous random variable theory.pdf

    87/101

    P f f Ch b h I lit

  • 7/24/2019 Continuous random variable theory.pdf

    88/101

    Proof of Chebyshev Inequality

    for upper bound for continous X

    IIIIIId xxfx

    d xxfxd xxfx

    let

    c

    c

    c

    c

    )()(

    )()()()(

    mc

    2

    222

    22

  • 7/24/2019 Continuous random variable theory.pdf

    89/101

    )0(

    )()()()(

    222

    IIas

    d xxfxd xxfx c

    c

    )xcrc-x-if)((

    )()(

    2

    2

    ocxas

    d xxfcd xxfcc

    c

  • 7/24/2019 Continuous random variable theory.pdf

    90/101

    )()(2 cXcPcXcP

    )()(2 cXcPcXcP

    2

    1)(

    )(

    mmXP

    mXcP

  • 7/24/2019 Continuous random variable theory.pdf

    91/101

    Log-Normal Distribution

    The positive random variable Y is

    said to have a log normal

    distribution, if logeY is normally

    distributed. i.e. logeYN(,)=X

    Point : & are not mean & standarddeviations of Log normal randomvariable.

  • 7/24/2019 Continuous random variable theory.pdf

    92/101

  • 7/24/2019 Continuous random variable theory.pdf

    93/101

    Problem 45/ p 146

    Let X be normal with mean andvariance2. Let G denote thecumulative distribution for Y = eX

    and let F denote the cumulativedistribution for X.

    Show that (i) G(y) = F(lny),

    y>0

    (ii) Find density of Y

  • 7/24/2019 Continuous random variable theory.pdf

    94/101

    G(y) = P(Yy) = P(eX y) = P(X lny)

    Now X ~ N(,). Therefore,y>0

    0y,(lny)F

    ,2

    1

    )ln()(

    X

    ln

    2 2

    2

    d xeyXPyG

    y x

    .0);,(, x

    1

    ln2

    y x

  • 7/24/2019 Continuous random variable theory.pdf

    95/101

    0y0

    0y,(lny)F

    ,2

    1)ln()(

    X

    2 2

    d xeyXPyG

    y

    0y0

    0,1

    dy

    dF

    dy

    dG X

    yy

    2

  • 7/24/2019 Continuous random variable theory.pdf

    96/101

    otherwise0

    0y,1

    2

    1 22

    2ln

    y

    eyd y

    d G

    ,2

    1

    )(ln

    ln

    2 2

    2

    d xeyF

    y x

    Hence the density for Y is given by

  • 7/24/2019 Continuous random variable theory.pdf

    97/101

    Hence, the density for Y is given by

    .other wise0

    0,);,(,

    2

    1)(

    2

    2

    2

    ln

    ye

    y

    yg

    y

  • 7/24/2019 Continuous random variable theory.pdf

    98/101

    Example

    From a usual pack of 52 cards, cards are

    drawn randomly with replacement till the

    red card appears. If X denotes the number

    of card drawn, using Chebyshevsinequality, find a lower bound for P[ | X-2|