Constrained Maximisation II

47
EC115 - Methods of Economic Analysis Spring Term, Lecture 8 Constrained Maximisation II Renshaw - Chapter 16 University of Essex - Department of Economics Week 23 Domenico Tabasso (Uni versity of Essex - Depart ment of Economics) Lecture 8 - Spring Term  Week 23 1 / 41

Transcript of Constrained Maximisation II

Page 1: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 1/47

EC115 - Methods of Economic AnalysisSpring Term, Lecture 8

Constrained Maximisation II

Renshaw - Chapter 16

University of Essex - Department of Economics

Week 23

Domenico Tabasso (University of Essex - Department of Economics)

Lecture 8 - Spring Term   Week 23 1 / 41

Page 2: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 2/47

Recap - 1

In the last weeks we have tried to answer the following

question:

How can we maximize a function under a constraint?

The answer we gave so far is:1   In case of a utility function U (x , y )  the maximum is given by the

solution of the system: Slope of the IC  (≡ MRS ) =  Slope of the BC

Equation of the Budget Constraint

2   In case of a production function Y (K , L)  the maximum is given by the

solution of the system: Slope of the Isoquant(≡ MRTS ) =  Slope of the Isocost

Equation of the Isocost

Domenico Tabasso (University of Essex - Department of Economics)

Lecture 8 - Spring Term   Week 23 2 / 41

Page 3: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 3/47

Recap - 2

The only difficulty with this method consists in calculating

the MRS (or the MRTS).

Reminder:

MRS  = −dy dx 

MRTS  = −dK 

dLSo how can we obtain an expression for   dy 

dx   or   dK 

dL  that we

can then insert in our systems?

Domenico Tabasso (University of Essex - Department of Economics)

Lecture 8 - Spring Term   Week 23 3 / 41

Page 4: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 4/47

Recap - 3

The way to obtain   dy dx 

  or   dK dL

  is to use total

differentiation.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 4 / 41

Page 5: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 5/47

Recap - 3

The way to obtain   dy dx 

  or   dK dL

  is to use total

differentiation.Really???

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 4 / 41

Page 6: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 6/47

Recap - 3

The way to obtain   dy dx 

  or   dK dL

  is to use total

differentiation.Really???

Thanks to the implicit function theorem we know that:

MRS  = −∂ U /∂ x ∂ U /∂  y 

MRTS  = −∂ Y /∂ L

∂ Y /∂ K So we don’t need to totally differentiate the functions.We can simply calculate the ratio of the two partial

derivatives and we are done.Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 4 / 41

Page 7: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 7/47

Page 8: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 8/47

Solving Through Direct Substitution

Recall that the consumer’s problem is described by:

maxx ,y 

U (x , y ) = x 1/2 y 1/2 s .t .   p x x  + p y  y  = m.

It is important to realise that the budget constraint

requires:

 y  = g (x ) = −

p x 

p y 

x  +

m

p y 

must hold at all times!!!The problem is thus to obtain the highest level of utility,  u ∗ = U (x , y ), such that  x   and y   satisfy thebudget constraint.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 6 / 41

Page 9: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 9/47

Now substitute  y  = g (x ) into the utility function togive:

 U (x ) = U (x , g (x )) = x 1/2

p x 

p y x  +

  m

p y 

1/2

where  p x , p y   and  m  are positive constants.Then the consumer’s problem can be re-written as anunconstrained maximisation problem of one variable:

maxx 

 U (x ),   i.e.   maxx 

x 1/2 −p x 

p y x  +

  m

p y 

1/2

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 7 / 41

Page 10: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 10/47

The first order condition implies that the quantity of good  X  that maximises

 U (x ), namely  x ∗, is given by

solving:

d  U (x )

dx 

x =x ∗

= 0.

Note that U  is not a function of y, but only of x, so ourderivative is denoted by the symbol  d  and not ∂ .

The second order condition implies that  x ∗ indeed

describes a maximum if:

d  U 2(x )

dx 2

x =x ∗

< 0.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 8 / 41

Page 11: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 11/47

Example

Consider the case in which:

p x  = 1, p y  = 1 and  m = 10. Then: U (x ) = x 1/2 [−x  + 10]1/2 so the problem is now:

maxx 

x 1/2 [−x  + 10]1/2

Using the product rule, the first order condition impliesthat  x ∗ is determined by:

d  U (x )dx    = 0⇒

12 (x ∗)−1/2 [−x ∗ + 10]1/2 −   1

2 (x ∗)1/2 [−x ∗ + 10]−1/2 = 0

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 9 / 41

Page 12: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 12/47

Page 13: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 13/47

It is important to realise that we have obtained the

individual demand functions for goods  X   and  Y ,namely:

x ∗ = 1

2

m

p x 

 y ∗ = 12

m

p y 

Of course, when we were given the values of 

p x  = 1, p y  = 1 and  m = 10, we obtained a point ineach demand function.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 11 / 41

Page 14: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 14/47

Solving through Total Differentiation

To solve this problem we can use total differentiation in

the following way:To obtain the highest level of utility such that thebudget constraint is satisfied,

first we have to look for all those indifference curves that satisfy thebudget constraint then we can look for the highest indifference curve or highest level of 

utility.

Recall that the indifference curves can describedimplicitly by:

U (x , y ) − u 0 = x 1/2 y 1/2 − u 0 = 0.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 12 / 41

Page 15: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 15/47

Page 16: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 16/47

From the budget line we get:

dy dx 

  = −p x p y 

.

Re-arranging we obtain the condition for a maximum in

the consumer’s problem:

MRS x ,y  = MU x (x , y )

MU y (x , y ) =

 p x 

p y .

The point on the budget line at which  MRS x ,y  = p x /p y then gives the highest possible utility we can achieve.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 14 / 41

Page 17: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 17/47

When the consumer chooses  x ∗ and  y ∗ such that:

MRS x ,y  =  MU x (x , y )p x 

=  MU y (x , y )p y 

then she has no incentive to change his consumption.

At this level of consumption, the rate of substitution of  y   for x  determined by her preferences is the same asthe opportunity cost  x  in terms of  y  dictated by themarket through the relative prices.

In this cases we say that  x ∗ and  y ∗ describe an   interior 

solution.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 15 / 41

Page 18: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 18/47

Tangency condition : Optimal consumption of  x   and  y 

Y

Preference

direction

EOptimal Choice

Internal solutionY*

XX*

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 16 / 41

P bl i h h T l Diff i i A h

Page 19: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 19/47

Problems with the Total Differentiation Approach

To better understand the intuition behind total

differentiation approach, suppose thatMRS x ,y  = (p x /p y ). What happens here?

First consider the case in which:

MU x (x , y )MU y (x , y )  >  p x 

p y =⇒   MU x (x , y )

p x >  MU y (x , y )

p y 

This expression describes implies that the consumer

obtains a higher marginal utility from spending onemore unit of his income in good  x   than  y .

What do you think this consumer will do? Recall thatshe is spending all of  m.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 17 / 41

Page 20: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 20/47

Similarly, consider the case in which:

MU x (x , y )

MU y (x , y ) <

 p x 

p y =⇒

  MU x (x , y )

p x <

 MU y (x , y )

p y 

This expression describes implies that the consumerobtains a higher marginal utility from spend one moreunit of her income in good  y   than  x .

What do you think this consumer will do? Recall that

she is spending all of  m.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 18 / 41

Wh if h di i f il ?

Page 21: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 21/47

What if the tangency condition fails?

To determine which good is bought we use our previousinequalities:

if   MU x 

p x 

> MU y 

p y 

=⇒   consume all in x 

if   MU x 

p x <

 MU y 

p y =⇒   consume all in y .

If the consumer only buys one of the two goods, thenthe optimal solution will lay on one of the axes. In thiscase we deal with a  corner solution.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 19 / 41

P f t b tit t d l ti

Page 22: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 22/47

Perfect substitutes and corner solutions

Y

20

n erence

Curve

12

u ge

Constraint

20   X

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 20 / 41

P f t b tit t d l ti

Page 23: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 23/47

Perfect substitutes and corner solutions

What if the goods are perfect substitutes but  MRS  =   p x p y 

?

Y

 

Budget Constraint

    X0

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 21 / 41

Perfect substitutes and corner solutions

Page 24: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 24/47

Perfect substitutes and corner solutions

How about the goods are perfect complements(U  = min{x α, y β })?

Y

Optimum

    X0

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 22 / 41

Example 1: MRS or Substitution?

Page 25: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 25/47

Example 1: MRS or Substitution?

A consumer problem is given by:

maxx ,y 

U (x , y ) = x α y β 

s .  t .  p x x  + p y  y  = m

where  x ,   y ,   m,   p x ,   p y  >   0Find the optimal consumption bundle (x ∗, y ∗) using both

the substitution method and the MRS approach.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 23 / 41

Example 1: The substitution method

Page 26: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 26/47

Example 1: The substitution method

1 Obtain y  = f   (x ) from the Budget Constraint

 y  =  m

p y −

 p x 

p y x 

2

Plug  y  = f   (x ) into the utility function  U (x , y )  andobtain a new expression for the utility function:

U (x ) = x αm

p y −

 p x 

p y x 

β 

3 Maximize  U (x )

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 24 / 41

Example 1: The substitution method

Page 27: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 27/47

Example 1: The substitution method

First Order Condition:

d  U (x )

dx   = 0

=⇒

αx α−1 mp y 

−  p x 

p y x β 

− β p x 

py  x αm

p y −  p x 

p y x β −1

= 0

Rearranging:

αx α−1 mp y 

−  p x p y 

x β 

= β p x py  x αm

p y −  p x 

p y x β −1

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 25 / 41

Example 1: The substitution method

Page 28: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 28/47

Example 1: The substitution method

The last equation can be rewritten as:

p y αx α−1

p x β x α  =

mp y −   p x 

p y x β −1

mp y  −

  p x p y  x β 

Which can be rewritten as:

p y αm

p y  −  p x 

p y  x p x β x 

  = 1

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 26 / 41

Example 1: The substitution method

Page 29: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 29/47

Example 1: The substitution method

Or:

αm − αp x x  = p x β x which implies

(α + β )p x x  = αm

So finally:x ∗ =

  αm

(α + β )p x 

Which substituted back into the budget constraint gives us:

 y ∗ =  β m

(α + β )p y 

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 27 / 41

Page 30: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 30/47

Little homework:

Check the sign of the second order conditions and verifyunder which conditions  x ∗,   y ∗ define a maximum.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 28 / 41

Page 31: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 31/47

Little homework:

Check the sign of the second order conditions and verifyunder which conditions  x ∗,   y ∗ define a maximum.

Solution:  α, β <   1

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 28 / 41

Example 1: MRS or Substitution?

Page 32: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 32/47

Example 1: MRS or Substitution?

Again the same problem

maxx ,y 

U (x , y ) = x α y β 

s .  t .  p x x  + p y  y  = m

where  x ,   y ,   m,   p x ,   p y  >   0but now we find the optimal consumption bundle (x ∗, y ∗)

using the MRS approach.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 29 / 41

Example 1: MRS or Substitution?

Page 33: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 33/47

p S Su u

First Step: Find the MRSWe know that:

MRS  = −∂ U /∂ x 

∂ U /∂  y So in our case:

MRS  = −

αx α−1 y β 

β x α y β −1   = −

α y 

β x 

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 30 / 41

Example 1: MRS or Substitution?

Page 34: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 34/47

p

Second Step: Set Up the Following System:

MRS  = −p x 

p y M  = p x X  + p y Y 

So in our case:

−α y 

β x   = −

p x 

p y M  = p x x  + p y  y 

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 31 / 41

Example 1: MRS or Substitution?

Page 35: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 35/47

p

From the first equation we obtain:

 y  = p x 

p y 

β 

αx 

which we can substitute in the second equation (the budgetconstraint) and get:

m =

 p x 

x  +

 p y 

p x 

p y 

β 

αx 

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 32 / 41

Example 1: MRS or Substitution?

Page 36: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 36/47

p

Simplifying we obtain:

x ∗ =  αm

(α + β )p x 

(of course!) and substituting back into  y  =   p x 

p y 

β 

α

x  we get:

 y ∗ =  β m

(α + β )p y 

(of course!)

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 33 / 41

Example 1: MRS or Substitution?

Page 37: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 37/47

Simplifying we obtain:

x ∗ =  αm

(α + β )p x 

(of course!) and substituting back into  y  =   p x 

p y 

β 

α

x  we get:

 y ∗ =  β m

(α + β )p y 

(of course!)

Which method do you find easier?

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 33 / 41

Distinguishing maxima and minima

Page 38: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 38/47

Unfortunately the tangency condition for an interior

solution does not tell us if we are really maximising orminimising the objective function.

Consider the following problem:

maxx ,y 

H (x , y ) = x 2 + y 2 st .   x  + y  = 10

The tangency condition implies  x ∗ and  y ∗ must satisfy:

∂ H 

∂ x  /

∂ H 

∂  y   =

 2x ∗

2 y ∗ =

 x ∗

 y ∗ = 1

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 34 / 41

Page 39: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 39/47

Thus the solution to the first order conditions is givenby x ∗ = y ∗ = 5 with  H (x ∗, y ∗) = H (5, 5) = 50.

But (x  = 10, y  = 0)  also satisfies the constraint andH (10, 0) = 100 > H (5, 5)!!!

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 35 / 41

Page 40: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 40/47

Thus the solution to the first order conditions is givenby x ∗ = y ∗ = 5 with  H (x ∗, y ∗) = H (5, 5) = 50.

But (x  = 10, y  = 0)  also satisfies the constraint andH (10, 0) = 100 > H (5, 5)!!!

One way to go around this problem is by analysing thelevel curves of the function.

To guarantee that in the consumer problem we areindeed finding a maximum, we assume that theconsumer prefers average consumption of  x   and y 

instead extreme consumption of  x   and y .

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 35 / 41

Hence in our standard maximization problem the

Page 41: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 41/47

indifference curves are convex towards the origin.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 36 / 41

Hence in our standard maximization problem the

Page 42: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 42/47

indifference curves are convex towards the origin.

In the case of 

u  = H (x , y ) = x 2 + y 2

if we fix a level of utility  u 0, we have that the associate

indifference curve is given by the implicit function:

H (x , y ) − u 0 = x 2 + y 2 − u 0 = 0

Applying total differentiation we obtain thatdu 0 = 2xdx  + 2 ydy  = 0

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 36 / 41

Therefore we find that:

Page 43: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 43/47

dy 

dx 

  = −x 

 y 

  < 0

d 2 y 

dx 2  = −

1

 y   < 0 for values of  y  > 0

But recall from the first term material (Lecture 8, slides38-45) that if a function  y  = f   (x )  shows a negative

second derivative (

d 2y 

dx 2 ) then the function is  concave!!!

H (x , y ) has downward sloping and concave indifferencecurves.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 37 / 41

Level Curves

Page 44: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 44/47

Y

Level Curves of 

Z=X^2+Y^2

P5

p mum

X0   5

X+Y=10

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 38 / 41

Level curvesS d di h h ili f i l k lik i i l f

Page 45: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 45/47

So understanding how the utility function looks like is crucial forcorrectly identifying the optimal consumption bundle. Take twodifferent utility functions:   u (x , y ) = x 2 + y 2 andu (x , y ) = −(x 2 + y 2). In both cases the indifference curves can berepresented as:

Y

X0

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 39 / 41

Level curves

Page 46: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 46/47

BUT:

=‐   + U=X^2+Y^2

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 40 / 41

Level curves

Page 47: Constrained Maximisation II

8/10/2019 Constrained Maximisation II

http://slidepdf.com/reader/full/constrained-maximisation-ii 47/47

In the case of  u (x , y ) = −(x 2 + y 2) the two goods  x   and y 

actually represent  bads . The more we consume of them,the lower our utility. So the only optimal solution is:

x ∗ = 0, y ∗ = 0

and this solution is totally independent from the constraint.

Domenico Tabasso (University of Essex - Department of Economics)Lecture 8 - Spring Term   Week 23 41 / 41