Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

173
Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    221
  • download

    1

Transcript of Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Page 1: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Computational Chemistry

G. H. CHENDepartment of Chemistry

University of Hong Kong

Page 2: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

In 1929, Dirac declared, “The underlying physical laws necessary for the mathematical theory of ...thewhole of chemistry are thus completely know, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.”

Beginning of Computational Chemistry

Dirac

Page 3: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Computational Chemistry

Quantum Chemistry

Molecular Mechanics

Bioinformatics

Create & Analyse Bio-information

SchrÖdinger Equation

F = M a

Page 4: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Mulliken,1966 Fukui, 1981 Hoffmann, 1981

Pople, 1998 Kohn, 1998

Nobel Prizes for Computational Chemsitry

Page 5: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Computational Chemistry Industry

Company Software

Gaussian Inc. Gaussian 94, Gaussian 98Schrödinger Inc. Jaguar Wavefunction SpartanQ-Chem Q-ChemAccelrys InsightII, Cerius2

HyperCube HyperChemCelera Genomics (Dr. Craig Venter, formal Prof., SUNY, Baffalo; 98-01)

Applications: material discovery, drug design & research

R&D in Chemical & Pharmaceutical industries in 2000: US$ 80 billionBioinformatics: Total Sales in 2001 US$ 225 million

Project Sales in 2006 US$ 1.7 billion

Page 6: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

LODESTAR v1.02--Localized Density Matrix: STAR performer

http://yangtze.hku.hk

Software Development at HKU

Page 7: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Quantum Chemistry Methods

• Ab initio molecular orbital methods

• Semiempirical molecular orbital methods

• Density functional method

Page 8: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

H E

SchrÖdinger Equation

HamiltonianH = (h2/2m

h2/2me)ii2

+ ZZeri e2/ri

ije2/rij

Wavefunction

Energy

Page 9: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Vitamin CC60

Cytochrome c

heme

OH + D2 --> HOD + D

energy

Page 10: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

C60 and Superconductor

Applications: Magnet, Magnetic train, Power transportation

What is superconductor? Electrical Current flows for ever !

Page 11: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Crystal Structure of C60 solid

Crystal Structure of K3C60

Page 12: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

K3C60 is a Superconductor (Tc = 19K)

Erwin & Pickett, Science, 1991 GH Chen, Ph.D. Thesis, Caltech (1992)

Vibration Spectrum of K3C60

Effective Attraction !

The mechanism of superconductivity in K3C60 was discovered using com-putational chemistry methodsVarma et. al., 1991; Schluter et. al., 1992; Dresselhaus et. al., 1992;Chen & Goddard, 1992

Page 13: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Carbon Nanotubes (Ijima, 1991)

Page 14: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

STM Image of Carbon Nanotubes (Wildoer et. al., 1998)

Calculated STM Image of a Carbon Nanotube (Rubio, 1999)

Page 15: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Computer Simulations (Saito, Dresselhaus, Louie et. al., 1992)

Carbon Nanotubes (n,m):Conductor, if n-m = 3I I=0,±1,±2,±3,…;orSemiconductor, if n-m 3I

Metallic Carbon Nanotubes: Conducting WiresSemiconducting Nanotubes: Transistors

Molecular-scale circuits ! 1 nm transistor!

0.13 µm transistor!

30 nm transistor!

Page 16: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Wildoer, Venema, Rinzler, Smalley, Dekker, Nature 391, 59 (1998)

Experimental Confirmations:Lieber et. al. 1993; Dravid et. al., 1993; Iijima et. al. 1993; Smalley et. al. 1998; Haddon et. al. 1998; Liu et. al. 1999

Page 17: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Science 9th November, 2001Logic gates (and circuits) with carbon nanotuce transistor

Science 7th July, 2000Carbon nanotube-Based nonvolatile RAM for molecular computing

Page 18: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.
Page 19: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Nanoelectromechanical Systems (NEMS)

K.E. Drexler, Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley, New York, 1992).

Page 20: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Large Gear Drives Small Gear

G. Hong et. al., 1999

Page 21: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Nano-oscillators

Zhao, Ma, Chen & Jiang, Phys. Rev. Lett. 2003

Nanoscopic Electromechanical Device (NEMS)

Page 22: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

0 500 1000 1500 2000

-30

-20

-10

0

10

20

30

40

Rel

ativ

e di

stan

ce (

Ang

stro

m)

Time (ps)

(5,0)@(14,0)55A @ 70A, 500K

Hibernation Awakening

Oscillation

Page 23: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Quantum mechanical investigation of the field emission from Quantum mechanical investigation of the field emission from the tips of carbon nanotubesthe tips of carbon nanotubes

Zettl, PRL 2001Zheng, Chen, Li, Deng & Xu, Phys. Rev. Lett. 2004

Page 24: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Computer-Aided Drug Design

GENOMICS

Human Genome Project

Page 25: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

ALDOSE REDUCTASE

O

HO OH

HO OH

HO

glucose

HO

HO OH

HO OH

HO

sorbitol

Aldose Reductase

NADPH NADP

Diabetes DiabeticComplications

Glucose Sorbitol

Page 26: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Design of Aldose Reductase Inhibitors

Aldose Reductase

Inhibitor

Hu, Chen & Chau, J. Mol. Graph. Mod. 24 (2006)

Page 27: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Database of Function Group Ionic Potential(eV) Electronic Affinity(eV) Volume(cm**3/mol)2-Thienyl 9.38414881 -0.026661055 61.9533-Cl-C6H4 8.749035019 -0.706309133 73.0334-C6H5-C6H4 8.407247908 -1.270557034 133.8164-Cl-C6H4 8.746870744 -0.76855741 75.6984-NO2-C6H4 9.217321674 -0.160533773 81.5724-OCH3-C6H4 8.242902306 -1.182299665 88.289C2H3 8.260300105 -1.561982616 28.975C2H5 7.780243105 -2.573416988 40.829C3H7 6.81804497 -2.444365755 45.863C4H9 6.670585636 -2.356589514 60.671C5H11 6.598274428 -2.296956191 84.137C6H5-CH2 6.902499381 -1.683414531 88.078C6H5-CH2CH2 5.575403173 -2.024168064 86.479C6H5 12.8343891 -1.226684615 49.929CF3 8.758052916 -0.370141762 31.487CH3 8.935004666 -2.507617614 29.582Cl 14.52590929 2.123404035 23.704H 13.55771463 -2.062392576 8.547SCH3 10.38525408 0.363370563 38.7083-4-Methylenedioxo 6.761934134 1.946070446 36.34Br 13.24832638 1.933493026 23.893CN 16.12363076 2.202225384 24.052F 11.71218241 -2.221199855 10.315NH2 19.92831772 -0.3938852 22.034NHAC 8.159304652 -1.024625532 64.609NO2 9.624434885 0.930074828 27.083OCF3 10.21475618 0.064048786 31.575OCH2CH2CH3 6.173209263 -0.238732972 54.174OCH2CHCH2 7.543726177 0.023658445 55.761OCH3 8.206405401 -0.98717652 25.579OH 15.02158915 -1.515044158 15.942SO2CH3 8.676981042 1.277315225 50.894COOH 7.70352688 -0.44795408 28.721CH2-COOH 9.59715824 -0.29063744 46.036CH2-C6H4-OMe 6.1379112 -1.86670608 90.357C6H4-34OH 8.37323712 -1.09197392 88.207N-2CH3 8.9735112 -2.00731648 45.5332CH2-C6H4-OH 5.72024976 -2.0214088 107.122C6H5-OH 9.89372528 -1.1650712 78.805CH2-C10H8 6.89898896 -1.66132432 121.142CH2-C6H4-OH 6.30185104 -1.8973088 87.058br-C6H4 8.711011456 -0.72427344 90.4682C6H5-CH 6.52476048 -1.38209456 145.166CH2-C6H3-34OH 6.49713888 -1.72708304 90.4693CH2-C6H4-OH 6.3709472 -2.19444704 116.4473CH2-O-pH 6.93279584 -2.16905312 97.131COO-t-Bu 11.29505024 1.3880432 73.451O-3CH2-OCH2pH 7.26343904 -0.59915888 137.142O-3CH2-OH 6.79831088 -0.59987968 55.06OCO-2CH2-COCH2Me 6.4562192 1.8424872 86.718OCO-2CH2-COO-CHMePh 6.5978496 -6.5978496 154.362OCO-3CH2-CH2Me 6.60117072 1.32051376 111.819OCO-N-Hex 6.64197888 1.33964352 140.502

Database for Functional Groups

2.5 3.0 3.5 4.0 4.5 5.0

2.5

3.0

3.5

4.0

4.5

5.0

NH

NMe

NH

HN

O

O

O

R1

R2

R3

R4

Sup

ervi

se V

alue

s

Exp. Values (logIC50 nm)[Three Hidden Neurons]

NH

NMe

NH

HN

O

O

OC6H5

C6H5

NO2

NH

NMe

NH

HN

O

O

OC6H5

C6H5

F

LogIC50: 0.6382,1.0 LogIC50: 0.6861,0.88

Prediction: Drug Leads

Structure-activity-relation

Page 28: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.
Page 29: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

LogIC50: 0.77,1.1

LogIC50: -1.87,4.05

LogIC50: -2.77,4.14 LogIC50: 0.68,0.88

Prediction Results using AutoDock

Hu, Chen & Chau, J. Mol. Graph. Mod. 24 (2006)

Page 30: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Computer-aided drug design

Chemical Synthesis

Screening using in vitro assay

Animal Tests

Clinical Trials

Page 31: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Bioinformatics

• Improve content & utility of bio-databases

• Develop tools for data generation, capture & annotation

• Develop tools for comprehensive functional studies

• Develop tools for representing & analyzing sequence similarity & variation

Page 32: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.
Page 33: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.
Page 34: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Computational Chemistry• Increasingly important field in chemistry

• Help to understand experimental results

• Provide guidelines to experimentists

• Application in Materials & Pharmaceutical industries

• Future: simulate nano-size materials, bulk materials; replace experimental R&D

Objective:More and more research & development to be performed on computers and Internet instead in the laboratories

Page 35: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Quantum Chemistry

G. H. ChenDepartment of Chemistry

University of Hong Kong

Page 36: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Contributors:

Hartree, Fock, Slater, Hund, Mulliken, Lennard-Jones, Heitler, London, Brillouin, Koopmans, Pople, Kohn

Application: Chemistry, Condensed Matter Physics, Molecular Biology, Materials Science, Drug Discovery

Page 37: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Emphasis Hartree-Fock methodConcepts Hands-on experience

Text Book “Quantum Chemistry”, 4th Ed. Ira N. Levine

http://yangtze.hku.hk/lecture/chem3504-3.ppt

Page 38: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Contents 1. Variation Method2. Hartree-Fock Self-Consistent Field Method3. Perturbation Theory4. Semiempirical Methods

Page 39: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

The Variation Method

Consider a system whose Hamiltonian operatorH is time independent and whose lowest-energy eigenvalue is E1. If is any normalized, well-

behaved function that satisfies the boundary conditions of the problem, then

* H dE1

The variation theorem

Page 40: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Proof:Expand in the basis set { k}

= k kk

where {k} are coefficients

Hk = Ekk

then* H dk j k

*j Ej kj

= k |k|2 Ek E 1 k |k|

2 = E1

Since is normalized, *dk |k|

2 = 1

Page 41: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

i. : trial function is used to evaluate the upper limit of ground state energy E1

ii. = ground state wave function, * H dE1

iii. optimize paramemters in by minimizing * H d * d

Page 42: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Requirements for the trial wave function: i. zero at boundary; ii. smoothness a maximum in the center. Trial wave function: = x (l - x)

Application to a particle in a box of infinite depth

0 l

Page 43: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

* H dx = -(h2/82m) (lx-x2) d2(lx-x2)/dx2 dx = h2/(42m) (x2 - lx) dx = h2l3/(242m)

* dx = x2 (l-x)2 dx = l5/30

E = 5h2/(42l2m) h2/(8ml2) = E1

Page 44: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

(1) Construct a wave function (c1,c2,,cm)

(2) Calculate the energy of :

E E(c1,c2,,cm)

(3) Choose {cj*} (i=1,2,,m) so that E is minimum

 Variational Method

Page 45: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Example: one-dimensional harmonic oscillator Potential: V(x) = (1/2) kx2 = (1/2) m2x2 = 22m2x2

Trial wave function for the ground state:

(x) = exp(-cx2)

* H dx = -(h2/82m) exp(-cx2) d2[exp(-cx2)]/dx2

dx + 22m2 x2 exp(-2cx2) dx = (h2/42m) (c/8)1/2 + 2m2 (/8c3)1/2

* dx = exp(-2cx2) dx = (/2)1/2 c-1/2

E = W = (h2/82m)c + (2/2)m2/c

Page 46: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

To minimize W,

0 = dW/dc = h2/82m - (2/2)m2c-2

c = 22m/h

W = (1/2) h

Page 47: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

   ...

E3 3

E2 2

E1 1

Extension of Variation Method

For a wave function which is orthogonal to the ground state wave function 1, i.e.

d *1 = 0

E = d *H/ d * > E2

the first excited state energy

Page 48: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

The trial wave function : d *1 = 0 k=1 ak k

 

d *1 = |a1|2 = 0

 E = d *H/ d * = k=2|ak|

2Ek / k=2|ak|2

> k=2|ak|2E2 / k=2|ak|

2 = E2

Page 49: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

e

 

 

+ +

 

1

2

c1

1 + c

2

2

W = H d d= (c1

2 H11 + 2c1 c2 H12 + c22 H22 )

/ (c12 + 2c1 c2 S + c2

2 )  

W (c12 + 2c1 c2 S + c2

2) = c12 H11 + 2c1 c2 H12 + c2

2 H22

Application to H2+

Page 50: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Partial derivative with respect to c1 (W/c1 = 0) :

 W (c1 + S c2) = c1H11 + c2H12

 

Partial derivative with respect to c2 (W/c2 = 0) :

W (S c1 + c2) = c1H12 + c2H22

 (H11 - W) c1 + (H12 - S W) c2 = 0

(H12 - S W) c1 + (H22 - W) c2 = 0

Page 51: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

To have nontrivial solution: 

H11 - W H12 - S W

H12 - S W H22 - W

 For H2

+, H11 = H22; H12 < 0.

 Ground State: Eg = W1 = (H11+H12) / (1+S)

= () / 2(1+S)1/2

Excited State: Ee = W2 = (H11-H12) / (1-S)

= () / 2(1-S)1/2

= 0

bonding orbital

Anti-bonding orbital

Page 52: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Results: De = 1.76 eV, Re = 1.32 A

 Exact: De = 2.79 eV, Re = 1.06 A

 

1 eV = 23.0605 kcal / mol

Page 53: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Trial wave function: k3/2 -1/2 exp(-kr)  Eg = W1(k,R)

 at each R, choose k so that W1/k = 0

Results: De = 2.36 eV, Re = 1.06 A

 

  Resutls: De = 2.73 eV, Re = 1.06 A

1s 2pInclusion of other atomic orbitals

Further Improvements H -1/2 exp(-r)He+ 23/2 -1/2 exp(-2r)

Optimization of 1s orbitals

Page 54: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

 

 a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

 (a11a22-a12a21) x1 = b1a22-b2a12

(a11a22-a12a21) x2 = b2a11-b1a21

Linear Equations

1. two linear equations for two unknown, x1 and x2

Page 55: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Introducing determinant: 

a11 a12

= a11a22-a12a21

a21 a22

  a11 a12 b1 a12

x1 =

a21 a22 b2 a22

a11 a12 a11 b1

x2 =

a21 a22 a21 b2

Page 56: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Our case: b1 = b2 = 0, homogeneous

  1. trivial solution: x1 = x2 = 0

  2. nontrivial solution:  a11 a12

= 0 a21 a22

n linear equations for n unknown variables

a11x1 + a12x2 + ... + a1nxn= b1

a21x1 + a22x2 + ... + a2nxn= b2

............................................an1x1 + an2x2 + ... + annxn= bn

Page 57: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

a11 a12 ... a1,k-1 b1 a1,k+1 ... a1n

a21 a22 ... a2,k-1 b2 a2,k+1 ... a2n

det(aij) xk= . . ... . . . ... .

an1 an2 ... an,k-1 b2 an,k+1 ... ann

  where,

a11 a12 ... a1n

a21 a22 ... a2n

det(aij) = . . ... .

an1 an2 ... ann

Page 58: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

  a11 a12 ... a1,k-1 b1 a1,k+1 ... a1n

a21 a22 ... a2,k-1 b2 a2,k+1 ... a2n

. . ... . . . ... . an1 an2 ... an,k-1 b2 an,k+1 ... ann

xk =

det(aij)

 

inhomogeneous case: bk = 0 for at least one k

Page 59: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

(a) travial case: xk = 0, k = 1, 2, ... , n

(b) nontravial case: det(aij) = 0 

homogeneous case: bk = 0, k = 1, 2, ... , n

For a n-th order determinant, n

det(aij) = alk Clk

l=1

where, Clk is called cofactor

Page 60: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Trial wave function is a variation function which is a combination of n linear independent functions { f1 , f2 , ... fn},

 c1f1 + c2f2 + ... + cnfn

  n [( Hik - SikW ) ck ] = 0 i=1,2,...,n

k=1

Sik d fi fk

Hik d fi H fk

W dH d

Page 61: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

  (i) W1 W2 ... Wn are n roots of Eq.(1),

(ii) E1 E2 ... En En+1 ... are energies

of eigenstates; then, W1 E1, W2 E2, ..., Wn En

Linear variational theorem

Page 62: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Molecular Orbital (MO): = c11 + c22

  ( H11 - W ) c1 + ( H12 - SW ) c2 = 0

S11=1

( H21 - SW ) c1 + ( H22 - W ) c2 = 0

S22=1

Generally : i a set of atomic orbitals, basis set

LCAO-MO = c11 + c22 + ...... + cnn

linear combination of atomic orbitals

n

( Hik - SikW ) ck = 0 i = 1, 2, ......, nk=1

Hik d i* H k Sik d i

*k Skk = 1

Page 63: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Hamiltonian

H = (h2/2mh2/2me)ii

2 + ZZeri e2/ri

ije2/rij   

H ri;rri;r

The Born-Oppenheimer Approximation

Page 64: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

ri;relri;rNr

el(r )= h2/2me)ii2

ie2/ri

ije2/rij VNN = ZZer

Hel(r) elri;rel(r)elri;r

(3) HN = (h2/2m U(r)

U(r) = el(r) + VNN

HN(r) NrNr

The Born-Oppenheimer Approximation:

Page 65: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Assignment

Calculate the ground state energy and bond length of H2

using the HyperChem with the 6-31G(Hint: Born-Oppenheimer Approximation)

Page 66: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

e  + + 

e

two electrons cannot be in the same state.

Hydrogen Molecule H2

The Pauli principle

Page 67: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Since two wave functions that correspond to the same state can differ at most by a constant factor = c2 abc1ab=c2ab+c2c1ab

c1 = c2 c2c1 = 1Therefore: c1 = c2 = 1According to the Pauli principle, c1 = c2 =1

Wave function:= ab+ c1ab= ab+ c1ab

Page 68: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

 Wave function f H2 : ! [

!

The Pauli principle (different version)

the wave function of a system of electrons must be antisymmetric with respect to interchanging of any two electrons.

Slater Determinant

Page 69: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

E=2 dTe+VeN) + VNN

+ dde2/r12 | = i=1,2 fii + J12 + VNN

 To minimize Eunder the constraint d|use Lagrange’s method:  L = E dL = E d

4 dTe+VeN) +4 dde2/r12

Energy: E

Page 70: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

[ Te+VeN +de2/r12

 

f + Jf(1) = Te(1)+VeN(1) one electron

operator

J(1) =de2/r12 two electron

Coulomb operator

Average Hamiltonian

Hartree-Fock equation

Page 71: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

f(1) is the Hamiltonian of electron 1 in the absence of electron 2; J(1) is the mean Coulomb repulsion exerted on electron 1 by 2; is the energy of orbital LCAO-MO: c11 + c22

 Multiple 1 from the left and then integrate :

c1F11 + c2F12 = (c1 + S c2)

Page 72: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Multiple 2 from the left and then integrate : 

c1F12 + c2F22 = (S c1 + c2) where,

Fij = di* ( f + J ) j = Hij + di

* J j

S = d1 2

(F11 - ) c1 + (F12 - S ) c2 = 0

(F12 - S ) c1 + (F22 - ) c2 = 0

Page 73: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Secular Equation:  F11 - F12 - S F12 - S F22 -  

bonding orbital: 1 = (F11+F12) / (1+S)

= () / 2(1+S)1/2

 antibonding orbital: 2 = (F11-F12) / (1-S )

= () / 2(1-S)1/2

Page 74: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Molecular Orbital Configurations of Homo nuclear Diatomic Molecules H2, Li2, O, He2, etc

Moecule Bond order De/eV H2

+ 2.79 H2 1 4.75 He2

+ 1.08 He2 0 0.0009 Li2 1 1.07 Be2 0 0.10 C2 2 6.3 N2

+ 8.85 N2 3 9.91 O2

+ 2 6.78 O2 2 5.21

The more the Bond Order is, the stronger the chemical bond is.

Page 75: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Bond Order:one-half the difference between the number of bonding and antibonding electrons

Page 76: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

 ----------------             1

  ---------------- 2

12 12 = 1/2 [122 1

Page 77: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

ddH

dd(T1+V1N+T2+V2N+V12

+VNN)

1 T1+V1N|12 T2+V2N|2 + 12 V12 1212 V12 12 +

VNN

= i i T1+V1N |i+ 12 V12 1212 V12 12 + VNN

= i=1,2 fii + J12 K12 + VNN

Page 78: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Particle One: f(1) + J2(1)

K2(1)Particle Two: f(2) + J1(2)

K1(2)

  f(j) h2/2me)j

2 Zrj

Jj(1) drj

* e2/r12j

Kj(1) j drj*

e2/r12

Average Hamiltonian

Page 79: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

f(1)+ J2(1) K2(1)1(1)11(1)f(2)+ J1(2) K1(2)2(2)22(2)

F(1) f(1)+ J2(1) K2(1) Fock operator for 1F(2) f(2)+ J1(2) K1(2) Fock operator for 2

Hartree-Fock Equation:

Fock Operator:

Page 80: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

1. At the Hartree-Fock Level there are two possible Coulomb integrals contributing the energy betweentwo electrons i and j: Coulomb integrals Jij and

exchange integral Kij;

 2. For two electrons with different spins, there is only

Coulomb integral Jij;

3. For two electrons with the same spins, both Coulomb and exchange integrals exist.

Summary

Page 81: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

4. Total Hartree-Fock energy consists of the contributions from one-electron integrals fii and

two-electron Coulomb integrals Jij and exchange

integrals Kij;

  5. At the Hartree-Fock Level there are two possible

Coulomb potentials (or operators) between two electrons i and j: Coulomb operator and exchange operator; Jj(i) is the Coulomb potential (operator)

that i feels from j, and Kj(i) is the exchange

potential (operator) that that i feels from j.

Page 82: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

6. Fock operator (or, average Hamiltonian) consists of one-electron operators f(i) and Coulomb operators Jj(i) and exchange operators Kj(i)

 

Page 83: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Nelectrons spin up and Nelectrons spin down. 

Fock matrix for an electron 1 with spin up:

 F(1) = f (1) + j [ Jj(1) Kj

(1) ] + j Jj(1)

j=1,N j=1,N

Fock matrix for an electron 1 with spin down: F(1) = f (1) + j [ Jj

(1) Kj(1) ] + j

Jj(1)

j=1,Nj=1,N 

Page 84: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

f(1) h2/2me)12 N ZNr1N

Jj(1) drj

e2/r12j

Kj(1) j

drj

*e2/r12

Energy = j fjj

+j fjj

+(1/2) i j

( Jij Kij

)

+ (1/2) i j

( Jij Kij

) + i j

Jij

+ VNN

i=1,Nj=1,N

Page 85: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

fjjfjj

jf j

JijJij

j(2)Ji

j(2)Kij

Kij

j(2)Ki

j(2)

JijJij

j(2)Ji

j(2) F(1) = f (1) + j=1,n/2 [ 2Jj(1) Kj(1) ] Energy = 2 j=1,n/2 fjj + i=1,n/2 j=1,n/2 ( 2Jij Kij ) +VNN

Close subshell case: ( N= N= n/2 )

Page 86: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

1. Many-Body Wave Function is approximated by Slater Determinant

2. Hartree-Fock EquationF i = i i

  F Fock operator

i the i-th Hartree-Fock orbital

i the energy of the i-th Hartree-Fock orbital

Hartree-Fock Method

Page 87: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

3. Roothaan Method (introduction of Basis functions)i = k cki k LCAO-MO

  {k } is a set of atomic orbitals (or basis functions)

4. Hartree-Fock-Roothaan equation j ( Fij - i Sij ) cji = 0

  Fij iF j Sij ij

5. Solve the Hartree-Fock-Roothaan equation self-consistently

Page 88: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

abcdnf(1) efghnaf(1)

ebcdnfghn= af(1) eif b=f, c=g, ..., d=h; 0, otherwise abcdnV12 |efghnabV12

efcdnghn= abV12 efif c=g, ..., d=h; 0, otherwise

The Condon-Slater Rules

Page 89: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

-------the lowest unoccupied molecular orbital -------

the highest occupied molecular orbital ------- -------

The energy required to remove an electron from aclosed-shell atom or molecules is well approximatedby minus the orbital energy of the AO or MO fromwhich the electron is removed.

HOMO

LUMO

Koopman’s Theorem

Page 90: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

# HF/6-31G(d) Route section water energy Title

0 1 Molecule Specification O -0.464 0.177 0.0 (in Cartesian coordinatesH -0.464 1.137 0.0H 0.441 -0.143 0.0

Page 91: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Slater-type orbitals (STO)  nlm = N rn-1exp(r/a0) Ylm(,)

 the orbitalexponent* is used instead of in the textbook

Gaussian type functionsgijk = N xi yj zk exp(-r2)

(primitive Gaussian function)p = u dup gu

(contracted Gaussian-type function, CGTF)u = {ijk} p = {nlm}

Basis Set i = p cip p

Page 92: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Basis set of GTFs STO-3G, 3-21G, 4-31G, 6-31G, 6-31G*, 6-31G**------------------------------------------------------------------------------------- complexity & accuracy

Minimal basis set: one STO for each atomic orbital (AO)

STO-3G: 3 GTFs for each atomic orbital3-21G: 3 GTFs for each inner shell AO 2 CGTFs (w/ 2 & 1 GTFs) for each valence AO 6-31G: 6 GTFs for each inner shell AO 2 CGTFs (w/ 3 & 1 GTFs) for each valence AO 6-31G*: adds a set of d orbitals to atoms in 2nd & 3rd rows6-31G**: adds a set of d orbitals to atoms in 2nd & 3rd rows

and a set of p functions to hydrogen Polarization Function

Page 93: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Diffuse Basis Sets:For excited states and in anions where electronic densityis more spread out, additional basis functions are needed.

Diffuse functions to 6-31G basis set as follows: 6-31G* - adds a set of diffuse s & p orbitals to atoms in 1st & 2nd rows (Li - Cl). 6-31G** - adds a set of diffuse s and p orbitals to atoms in 1st & 2nd rows (Li- Cl) and a set of diffuse s functions to H Diffuse functions + polarisation functions:6-31+G*, 6-31++G*, 6-31+G** and 6-31++G** basis sets.

Double-zeta (DZ) basis set: two STO for each AO

Page 94: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

6-31G for a carbon atom: (10s4p) [3s2p]

1s 2s 2pi (i=x,y,z)

6GTFs 3GTFs 1GTF 3GTFs 1GTF

1CGTF 1CGTF 1CGTF 1CGTF 1CGTF (s) (s) (s) (p) (p)

Page 95: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Minimal basis set: One STO for each inner-shell and valence-shell AO of each atom example: C2H2 (2S1P/1S) C: 1S, 2S, 2Px,2Py,2Pz

H: 1S total 12 STOs as Basis set

Double-Zeta (DZ) basis set:

two STOs for each and valence-shell AO of each atom

example: C2H2 (4S2P/2S) C: two 1S, two 2S, two 2Px, two 2Py,two 2Pz

H: two 1S (STOs) total 24 STOs as Basis set

Page 96: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Split -Valence (SV) basis set

Two STOs for each inner-shell and valence-shell AO One STO for each inner-shell AO

Double-zeta plus polarization set(DZ+P, or DZP)

Additional STO w/l quantum number larger than the lmax of the valence - shell

( 2Px, 2Py ,2Pz ) to H

Five 3d Aos to Li - Ne , Na -Ar

C2H5 O Si H3 :

(6s4p1d/4s2p1d/2s1p)

Si C,O H

Page 97: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Assignment: Calculate the structure, groundstate energy, molecular orbital energies, and vibrational modes and frequencies of a water molecule using Hartree-Fock method with 3-21G basis set. (due 30/10)

Page 98: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

1. L-Click on (click on left button of Mouse) “Startup”, and select and L-Click on “Program/Hyperchem”. 2. Select “Build’’ and turn on “Explicit Hydrogens”.3. Select “Display” and make sure that “Show Hydrogens” is on; L-Click on “Rendering” and double L-Click “Spheres”.4. Double L-Click on “Draw” tool box and double L-Click on “O”.5. Move the cursor to the workspace, and L-Click & release.6. L-Click on “Magnify/Shrink” tool box, move the cursor to the workspace; L-press and move the cursor inward to reduce the size of oxygen atom.7. Double L-Click on “Draw” tool box, and double L-Click on “H”; Move the cursor close to oxygen atom and L-Click & release. A hydrogen atom appears. Draw second hydrogen atom using the same procedure.

Ab Initio Molecular Orbital Calculation: H2O

(using HyperChem)

Page 99: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

8. L-Click on “Setup” & select “Ab Initio”; double L-Click on 3-21G; then L-Click on “Option”, select “UHF”, and set “Charge” to 0 and “Multiplicity” to 1.   9. L-Click “Compute”, and select “Geometry Optimization”, and L-Click on “OK”; repeat the step till “Conv=YES” appears in the bottom bar. Record the energy.10.L-Click “Compute” and L-Click “Orbitals”; select a energy level, record the energy of each molecular orbitals (MO), and L-Click “OK” to observe the contour plots of the orbitals.11.L-Click “Compute” and select “Vibrations”.12.Make sure that “Rendering/Sphere” is on; L-Click “Compute” and select “Vibrational Spectrum”. Note that frequencies of different vibrational modes.13.Turn on “Animate vibrations”, select one of the three modes, and L-Click “OK”. Water molecule begins to vibrate. To suspend the animation, L-Click on “Cancel”.

Page 100: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

The Hartree-Fock treatment of H2

+

e-

+

e-

Page 101: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

f1 = 1(1) 2(2)

f2 = 1(2) 2(1)

= c1 f1 + c2 f2 

H11 - W H12 - S W

H21 - S W H22 - W 

H11 = H22 = <1(1) 2(2)|H|1(1) 2(2)>

H12 = H21 = <1(1) 2(2)|H|1(2) 2(1)>

S = <1(1) 2(2)|1(2) 2(1)> [ = S2 ]

The Heitler-London ground-state wave function

{[1(1) 2(2) + 1(2) 2(1)]/2(1+S)1/2} [(1)(2)(2)(1)]/2

= 0

The Valence-Bond Treatment of H2

Page 102: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Comparison of the HF and VB Treatments

HF LCAO-MO wave function for H2

[1(1) + 2(1)] [1(2) + 2(2)]

= 1(1) 1(2) + 1(1) 2(2) + 2(1) 1(2) + 2(1) 2(2) H H H H H H H H

VB wave function for H2  1(1) 2(2) + 2(1) 1(2)  H H H H

Page 103: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

At large distance, the system becomes H ............ HMO: 50% H ............ H 50% H+............ H

VB: 100% H ............ H

The VB is computationally expensive and requireschemical intuition in implementation.

The Generalized valence-bond (GVB) method is avariational method, and thus computationally feasible.(William A. Goddard III)

Page 104: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

)1()2(

)2()1(

2

1

f

f2211 fcfc

022

12

21

11

WH

SWH

SWH

WH

22121

21212112

21212211

)1()2()2()1(

)1()2()2()1(

)2()1()2()1(

SS

HHH

HHH

The Heitler-London ground-state wave function

2/)1()2()2()1()1(2/)1()2()2()1( 2121 S

R

R

Page 105: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Assignment 8.4, 8.10, 8.12b, 8.40, 10.5, 10.6, 10.7, 10.8, 11.37, 13.37

Page 106: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Electron Correlation

Human Repulsive Correlation

Page 107: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Electron Correlation: avoiding each other

Two reasons of the instantaneous correlation:(1) Pauli Exclusion Principle (HF includes the effect)(2) Coulomb repulsion (not included in the HF)

Beyond the Hartree-FockConfiguration Interaction (CI)*Perturbation theory*Coupled Cluster MethodDensity functional theory

Page 108: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

-e -e r12

r2 r1

+2e

H = - (h2/2me)12 - 2e2/r1 - (h

2/2me)22 - 2e2/r2 + e2/r12

H10 H2

0 H’

Page 109: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

H0 = H10 + H2

0

(0)(1,2) = F1(1) F2(2)

H10 F1(1) = E1 F1(1)

H20 F2(1) = E2 F2(1)

E1 = -2e2/n12a0 n1 = 1, 2, 3, ...

E2 = -2e2/n22a0 n2 = 1, 2, 3, ...

(0)(1,2) = (1/2a0)3/2exp(-2r1/a0) (1/2a0)

3/2exp(-2r1/a0)

E(0) = 4e2/a0 

E(1) = <(0)(1,2)| H’ |(0)(1,2)> = 5e2/4a0

E E(0) + E(1) = -108.8 + 34.0 = -74.8 (eV) [compared with exp. -79.0 eV]

Ground state wave function

Page 110: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

H = H0 + H’H0n

(0) = En(0)n

(0)

n(0) is an eigenstate for unperturbed system

H’ is small compared with H0

Nondegenerate Perturbation Theory (for Non-Degenerate Energy Levels)

Page 111: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

H( = H0 + H’Hn = Ennnn

nn

kn(k)

nnn

nkn

(k)

the original Hamiltonian

Introducing a parameter

nnn

nn

(k)nn

nn

n(k)

Where, < nn

(j) > = 0, j=1,2,...,k,...

Page 112: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Hn = En

n

solving for Enn

HnH’n

= Enn

nn

solving for Enn

HnH’n

= Enn

nn

nn

solving for Enn

Page 113: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

 Multiplied m

(0) from the left and integrate,<m

(0) Hn(1) > + <m

(0) H'n(0) > = <m

(0)n(1) >En

Enmn

<m(0)n

(1) > [EmEn

+ <m(0) H'n

(0) > = Enmn

For m = n,

For m n, <m(0)n

(1) > = <m(0) H'n

(0) > /

[EnEm

If we expand n(1) = cnmm

(0),

cnm = <m(0) H'n

(0) > / [EnEm

for m n;

cnn = 0.

n(1) = m <m

(0) H'n(0) > / [En

Emm

(0) Eq.(2)

The first order:

En<n

(0) H'n(0) > Eq.(1)

Page 114: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

The second order:

<m(0)Hn

(2) > + <m(0)H'n

(1) > = <m(0)n

(2)

>En<m

(0)n(1) >En

Enmn

 Set m = n, we have

En= m n |m

(0) H'n(0) >|2 / [En

Emq.(3)

Page 115: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

a. Eq.(2) shows that the effect of the perturbationon the wave function n

(0) is to mix in

contributions from the other zero-th order states m

(0) mn. Because of the factor 1/(En(0)-Em

(0)),

the most important contributions to the n(1)

come from the states nearest in energy to state n.b. To evaluate the first-order correction in energy,

we need only to evaluate a single integral H’nn;to evaluate the second-order energy correction, we must evalute the matrix elements H’ between the n-th and all other states m.

c. The summation in Eq.(2), (3) is over all the states, not the energy levels.

Discussion: (Text Book: page 522-527)

Page 116: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Moller-Plesset (MP) Perturbation Theory

The MP unperturbed Hamiltonian H0

H0 = m F(m)

where F(m) is the Fock operator for electron m.And thus, the perturbation H’  

H’ = H - H0

 Therefore, the unperturbed wave function is simply the Hartree-Fock wave function . Ab initio methods: MP2, MP4

Page 117: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Example One:Consider the one-particle, one-dimensional systemwith potential-energy function V = b for L/4 < x < 3L/4,V = 0 for 0 < x L/4 & 3L/4 x < Land V = elsewhere. Assume that the magnitude of b is small, and can be treated as a perturbation.Find the first-order energy correction for the groundand first excited states. The unperturbed wave functions of the ground and first excited states are 1 = (2/L)1/2 sin(x/L) and 2 = (2/L)1/2 sin(2x/L),

respectively.

Page 118: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Example Two:As the first step of the Moller-Plesset perturbation theory, Hartree-Fock method gives the zeroth-orderenergy. Is the above statement correct?

Example Three:Show that, for any perturbation H’, E1

(0) + E1(1) E1

where E1(0) and E1

(1) are the zero-th order energy

and the first order energy correction, and E1 is the

ground state energy of the full Hamiltonian H0 + H’.Example Four:Calculate the bond orders of Li2 and Li2

+.

Page 119: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Perturbation Theory for a Degenerate Energy Level

B /

Hydrogen Atom

n=3 3s, 3px , 3py , 3pz , 3d1-5

n=2 2s, 2px , 2py , 2pz

  n=1 1s

H = H0 + H’H0n

(0) = Ed(0)n

(0)

n=1,2,...,dH’ is small compared with H0

Page 120: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

cnm = <m(0) H'n

(0) > / [EnEm

for 1 m, n d

 WRONG ! something very different !

(1)Apply the results of nondegenerate perturbation theory

(2) What happened ?

c11(0) + c22

(0) + ... + cdd(0) is an eigenstate for H0

There are infinite number of such states that are degenerate. 

Page 121: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

When H’ is switched on, these states are no longerdegenerate, and nondegenerate eigenstates of H0 + H’ appear !

Therefore, even for zero-th order of eigenstates, there are sudden changes !

(3) Introducing a parameter H( = H0 + H’Hn = Ennthe original Hamiltoniannn

nn

kn

(k)nd

nn

kn

(k)n

kck k(0)

Page 122: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

HnH’n

= Edn

nn

solving for Enn

n

Multiplied m(0) from the left and integrate,

<m(0) Hn

(1) > + <m(0) H'n

(0) >

= <m(0)n

(1) >EdEn

<m(0)n

(0) >

<m(0)n

(1) > [EmEd

+ <m(0)

H'n(0) > = En

<m(0)n

(0) >

For 1 m d, n<m

(0) H'n(0) > Em

mn] cn

Em

<m(0) H'm

(0) >Assignment 2: 9.2, 9.4a, 9.9, 9.18, 9.24

Page 123: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Configuration Interaction (CI)

+

+ …

Page 124: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Single Electron Excitation or Singly Excited

Page 125: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Double Electrons Excitation or Doubly Excited

Page 126: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Singly Excited Configuration Interaction (CIS): Changes only the excited states

+

Page 127: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Doubly Excited CI (CID):Changes ground & excited states

+

Singly & Doubly Excited CI (CISD):Most Used CI Method

Page 128: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Full CI (FCI):Changes ground & excited states

++

+ ...

Page 129: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

= eT(0)

(0): Hartree-Fock ground state wave function: Ground state wave functionT = T1 + T2 + T3 + T4 + T5 + …Tn : n electron excitation operator

Coupled-Cluster Method

=T1

Page 130: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

CCD = eT2(0)

(0): Hartree-Fock ground state wave functionCCD: Ground state wave functionT2 : two electron excitation operator

Coupled-Cluster Doubles (CCD) Method

=T2

Page 131: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Complete Active Space SCF (CASSCF)

Active space

All possible configurations

Page 132: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Density-Functional Theory (DFT)Hohenberg-Kohn Theorem: Phys. Rev. 136, B864 (1964)

The ground state electronic density (r) determines uniquely all possible properties of an electronic system

(r) Properties P (e.g. conductance), i.e. P P[(r)]

Density-Functional Theory (DFT)E0 = h2/2me)i <i |i

2 |i > dr e2(r) /

r1 dr1 dr2 e2/r12 + Exc[(r)]

Kohn-Sham Equation Ground State: Phys. Rev. 140, A1133 (1965)

FKS i = i i

FKS h2/2me)ii2 e2 / r1jJj + Vxc

Vxc Exc[(r)] / (r)

A popular exchange-correlation functional Exc[(r)]: B3LYP

Page 133: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Time-Dependent Density-Functional Theory (TDDFT)

Runge-Gross Extension: Phys. Rev. Lett. 52, 997 (1984)

Time-dependent system (r,t) Properties P (e.g. absorption)

TDDFT equation: exact for excited states

Isolated system

Open system

Density-Functional Theory for Open System ???

Further Extension: X. Zheng, F. Wang & G.H. Chen (2005)

Generalized TDDFT equation: exact for open systems

Page 134: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

180 small- or medium-size organic molecules:

1. C.L. Yaws, Chemical Properties Handbook, (McGraw-Hill, New York, 1999)2. D.R. Lide, CRC Handbook of Chemistry and Physics, 3rd ed. (CRC Press, Boca Raton, FL, 2000)3. J.B . Pedley, R.D. Naylor, S.P. Kirby, Thermochemical data of organic compunds, 2nd ed. (Chapman and Hall, New York, 1986)

Differences of heat of formation in three referencesfor same compound are less than 1 kcal/mol; and error bars are all less than 1kcal/mol

Page 135: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.
Page 136: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.
Page 137: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.
Page 138: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.
Page 139: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

B3LYP/6-311+G(d,p) B3LYP/6-311+G(3df,2p)

RMS=21.4 kcal/mol RMS=12.0 kcal/mol

RMS=3.1 kcal/mol RMS=3.3 kcal/mol

B3LYP/6-311+G(d,p)-NEURON & B3LYP/6-311+G(d,p)-NEURON: same accuracy

Hu, Wang, Wong & Chen, J. Chem. Phys. (Comm) (2003)

Page 140: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Ground State Excited State CPU Time Correlation Geometry Size Consistent (CHNH,6-31G*)HFSCF 1 0 OK

DFT ~1

CIS <10 OK

CISD 17 80-90% (20 electrons)CISDTQ very large 98-99%

MP2 1.5 85-95% (DZ+P)MP4 5.8 >90% CCD large >90%

CCSDT very large ~100%

Page 141: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Relativistic Effects

Speed of 1s electron: Zc / 137

Heavy elements have large Z, thus relativistic effects areimportant.

Dirac Equation:Relativistic Hartree-Fock w/ Dirac-Fock operator; orRelativistic Kohn-Sham calculation; orRelativistic effective core potential (ECP).

Page 142: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

(1) Neglect or incomplete treatment of electron correlation

(2) Incompleteness of the Basis set

(3) Relativistic effects

(4) Deviation from the Born-Oppenheimer approximation

Four Sources of error in ab initio Calculation

Page 143: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Semiempirical Molecular Orbital Calculation

Extended Huckel MO Method (Wolfsberg, Helmholz, Hoffman)

Independent electron approximation

Schrodinger equation for electron i 

Hval = i Heff(i)

Heff(i) = -(h2/2m) i2 + Veff(i)

Heff(i) i = i i

Page 144: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

LCAO-MO: i = r cri r

  s ( Heff

rs - i Srs ) csi = 0

  Heffrs rHeff s Srs

rs Parametrization: Heff

rr rHeff r minus the valence-state ionization potential (VISP)

Page 145: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Atomic Orbital Energy VISP--------------- e5 -e5

--------------- e4 -e4

--------------- e3 -e3

--------------- e2 -e2

--------------- e1 -e1

 Heff

rs = ½ K (Heffrr + Heff

ss) Srs K:

13

Page 146: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

CNDO, INDO, NDDO(Pople and co-workers)

Hamiltonian with effective potentialsHval = i [ -(h

2/2m) i2 + Veff(i) ] + ij>i e

2 / rij

two-electron integral:(rs|tu) = <r(1) t(2)| 1/r12 | s(1) u(2)>

 CNDO: complete neglect of differential overlap (rs|tu) = rs tu (rr|tt) rs tu rt

Page 147: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

INDO: intermediate neglect of differential overlap(rs|tu) = rs tu (rr|tt) when r, s, t & u not on same atom;

(rs|tu) 0 when r, s, t and u are on the same atom.

NDDO: neglect of diatomic differential overlap(rs|tu) = 0 if r and s (or t and u) are not on the same atom.

CNDO, INDO are parametrized so that the overallresults fit well with the results of minimal basis abinitio Hartree-Fock calculation.

CNDO/S, INDO/S are parametrized to predict optical spectra.

Page 148: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

PRDDOH = i [ -(h

2/2m) i2 + Veff(i) ] + ij>i e

2 / rij

Basis set: the minimum basis set (STO-3G) PRDDO: partial retention of diatomic differential overlap

(rs|tu) = 0 if r and s (and t and u) are different basis functions.

Page 149: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

MINDO, MNDO, AM1, PM3(Dewar and co-workers, University of Texas, Austin) MINDO: modified INDOMNDO: modified neglect of diatomic overlap AM1: Austin Model 1PM3: MNDO parametric method 3MINDO, MNDO, AM1 & PM3:  *based on INDO & NDDO *reproduce the binding energy

Page 150: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

2

1PHF core

Key: How to approximate ?

Fock Matrix

MNDO-PM3

cdabdcba

(using NDDO)

ab

ba

abb

a PPUVF,

, 2

1

ab

b

ab

b

abb

a

PF

PPUF

,

,,

2

1

32

1

Semiempirical M.O. Method

Page 151: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Where, 2/ S

aaa

a

ZIV 1*

aI : the ionization potential

One centre integrals: (given)

spsphppppG

ppppGppssGssssG

sppp

pspss

,

'',, 2

Core-electron attraction: (given)

l l

llm

B

m

A

m MM1 2

21

,

RfMM iji j

ll

B

ml

A

ml

l l

l

1 2

2121

2

1

2

11

2

2, 2

12

1 21

2

B

l

A

lijij RRf

l

lD

,, , bb UU

:characteristic of monopole, dipole, quadrupole

:charge separations

Page 152: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Molecular Mechanics (MM) Method

F = MaF : Force Field

Page 153: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Molecular Mechanics Force Field

• Bond Stretching Term

• Bond Angle Term

• Torsional Term

• Non-Bonding Terms: Electrostatic Interaction & van der Waals Interaction

C2H3Cl

Page 154: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Bond Stretching PotentialEb = 1/2 kb (l)2

where, kb : stretch force constantl : difference between equilibrium & actual bond length

Two-body interaction

Page 155: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Bond Angle Deformation PotentialEa = 1/2 ka ()2

where, ka : angle force constant

: difference between equilibrium & actual bond angle

Three-body interaction

Page 156: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Periodic Torsional Barrier PotentialEt = (V/2) (1+ cosn )where, V : rotational barrier

: torsion angle n : rotational degeneracy

Four-body interaction

Page 157: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Non-bonding interaction

van der Waals interactionfor pairs of non-bonded atoms

Coulomb potential

for all pairs of charged atoms

Page 158: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

MM Force Field Types

• MM2 Small molecules

• AMBER Polymers

• CHAMM Polymers

• BIO Polymers

• OPLS Solvent Effects

Page 159: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

######################################################## ## ## ## TINKER Atom Class Numbers to CHARMM22 Atom Names ## ## ## ## 1 HA 11 CA 21 CY 31 NR3 ## ## 2 HP 12 CC 22 CPT 32 NY ## ## 3 H 13 CT1 23 CT 33 NC2 ## ## 4 HB 14 CT2 24 NH1 34 O ## ## 5 HC 15 CT3 25 NH2 35 OH1 ## ## 6 HR1 16 CP1 26 NH3 36 OC ## ## 7 HR2 17 CP2 27 N 37 S ## ## 8 HR3 18 CP3 28 NP 38 SM ## ## 9 HS 19 CH1 29 NR1 ## ## 10 C 20 CH2 30 NR2 ## ## ## ########################################################

CHAMM FORCE FIELD FILE

Page 160: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

atom 1 1 HA "Nonpolar Hydrogen" 1 1.0081atom 2 2 HP "Aromatic Hydrogen" 1 1.0081atom 3 3 H "Peptide Amide HN" 1 1.0081atom 4 4 HB "Peptide HCA" 1 1.0081atom 5 4 HB "N-Terminal HCA" 1 1.0081atom 6 5 HC "N-Terminal Hydrogen" 1 1.0081atom 7 5 HC "N-Terminal PRO HN" 1 1.0081atom 8 3 H "Hydroxyl Hydrogen" 1 1.0081atom 9 3 H "TRP Indole HE1" 1 1.0081atom 10 3 H "HIS+ Ring NH" 1 1.0081atom 11 3 H "HISDE Ring NH" 1 1.0081atom 12 6 HR1 "HIS+ HD2/HISDE HE1" 1 1.0081

Page 161: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

################################ ## ## ## Van der Waals Parameters ## ## ## ################################

vdw 1 1.3200 -0.0220vdw 2 1.3582 -0.0300vdw 3 0.2245 -0.0460vdw 4 1.3200 -0.0220vdw 5 0.2245 -0.0460vdw 6 0.9000 -0.0460vdw 7 0.7000 -0.0460vdw 8 1.4680 -0.0078vdw 9 0.4500 -0.1000vdw 10 2.0000 -0.1100

/Ao /(kcal/mol)

Page 162: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

################################## ## ## ## Bond Stretching Parameters ## ## ## ##################################

bond 1 10 330.00 1.1000bond 1 11 340.00 1.0830bond 1 12 317.13 1.1000bond 1 13 309.00 1.1110bond 1 14 309.00 1.1110bond 1 15 322.00 1.1110bond 1 17 309.00 1.1110bond 1 18 309.00 1.1110bond 1 21 330.00 1.0800

/(kcal/mol/Ao2) /Ao

Page 163: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

################################ ## ## ## Angle Bending Parameters ## ## ## ################################

angle 3 10 34 50.00 121.70angle 13 10 24 80.00 116.50angle 13 10 27 20.00 112.50angle 13 10 34 80.00 121.00angle 14 10 24 80.00 116.50angle 14 10 27 20.00 112.50angle 14 10 34 80.00 121.00angle 15 10 24 80.00 116.50angle 15 10 27 20.00 112.50angle 15 10 34 80.00 121.00angle 16 10 24 80.00 116.50angle 16 10 27 20.00 112.50

/(kcal/mol/rad2) /deg

Page 164: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

############################ ## ## ## Torsional Parameters ## ## ## ############################torsion 1 11 11 1 2.500 180.0 2torsion 1 11 11 11 3.500 180.0 2torsion 1 11 11 22 3.500 180.0 2torsion 2 11 11 2 2.400 180.0 2torsion 2 11 11 11 4.200 180.0 2torsion 2 11 11 14 4.200 180.0 2torsion 2 11 11 15 4.200 180.0 2torsion 2 11 11 22 3.000 180.0 2torsion 2 11 11 35 4.200 180.0 2torsion 2 11 11 36 4.200 180.0 2torsion 11 11 11 11 3.100 180.0 2torsion 11 11 11 14 3.100 180.0 2torsion 11 11 11 15 3.100 180.0 2torsion 11 11 11 22 3.100 180.0 2torsion 11 11 11 35 3.100 180.0 2torsion 11 11 11 36 3.100 180.0 2

/(kcal/mol) /deg

Page 165: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Algorithms for Molecular Dynamics

x(t+t) = x(t) + (dx/dt) t

Fourth-order Runge-Kutta method:

x(t+t) = x(t) + (1/6) (s1+2s2+2s3+s4) t +O(t5) s1 = dx/dt s2 = dx/dt [w/ t=t+t/2, x = x(t)+s1t/2] s3 = dx/dt [w/ t=t+t/2, x = x(t)+s2t/2] s4 = dx/dt [w/ t=t+t, x = x(t)+s3 t]

Very accurate but slow!

Page 166: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Algorithms for Molecular Dynamics

Verlet Algorithm:

x(t+t) = x(t) + (dx/dt) t + (1/2) d2x/dt2 t2 + ... x(t -t) = x(t) - (dx/dt) t + (1/2) d2x/dt2 t2 - ...

x(t+t) = 2x(t) - x(t -t) + d2x/dt2 t2 + O(t4)

Efficient & Commonly Used!

Page 167: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Calculated Properties

• Structure, Geometry

• Energy & Stability

• Vibration Frequency & Mode

• Real Time Dynamics

Page 168: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

SummaryHamiltonianH = (h2/2m

h2/2me)ii2 +

ZZeri e2/riije2/rij

Consider a system whose Hamiltonian operator H is time independent and whose lowest-energy eigenvalue is E1. If is any well-behaved function that satisfies the boundary conditions of the problem, then * H d * dE1

The variation theorem

(1) Construct a wave function (c1,c2,,cm)

(2) Calculate the energy of : E E(c1,c2,,cm)

(3) Choose {cj*} (i=1,2,,m) so that E is minimum

 Variational Method

Page 169: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Extension of Variation Method

For a wave function which is orthogonal to the ground state wave function 1, i.e.

d *1 = 0

E = d *H/ d * > E2

the first excited state energy

The Pauli principle

two electrons cannot be in the same state

the wave function of a system of electrons must be antisymmetric with respect to interchanging of any two electrons.

Slater determinantf H2 : ! [!

Page 170: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

f(1)+ J2(1) K2(1)1(1)11(1)f(2)+ J1(2) K1(2)2(2)22(2)F(1) f(1)+ J2(1) K2(1) Fock operator for 1F(2) f(2)+ J1(2) K1(2) Fock operator for 2

Hartree-Fock Equation:

Fock Operator:

LCAO-MO: c11 + c22

Molecule Bond order De/eV H2

+ 1/2 2.79 H2 1 4.75 He2

+ 1/2 1.08 He2 0 0.0009 Li2 1 1.07 Be2 0 0.10 C2 2 6.3 N2

+ 1/2 8.85 N2 3 9.91 O2 2 5.21

Express Hartree-Fock energy in terms of fi, Jij & Kij

Page 171: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Basis set of GTFs STO-3G, 3-21G, 4-31G, 6-31G, 6-31G*, 6-31G**------------------------------------------------------------------------------------- complexity & accuracy

# HF/6-31G(d) Route section water energy Title

0 1 Molecule Specification O -0.464 0.177 0.0 (in Cartesian coordinatesH -0.464 1.137 0.0H 0.441 -0.143 0.0

Gaussian 98 Input file

Comparison of the HF and VB Treatments

Electron Correlation

Page 172: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Beyond the Hartree-Fock

Configuration Interaction (CI)*

Perturbation theory*

Coupled Cluster Method

Density functional theory

En<n

(0) H'n(0) >

Moller-Plesset (MP) Perturbation Theory

The MP unperturbed Hamiltonian H0

H0 = m F(m)

where F(m) is the Fock operator for electron m.And thus, the perturbation H’  

H’ = H - H0

 

Page 173: Computational Chemistry G. H. CHEN Department of Chemistry University of Hong Kong.

Ground State Excited State CPU Time Correlation Geometry Size Consistent (CH3NH2,6-31G*)HFSCF 1 0 OK

DFT ~1

CIS <10 OK

CISD 17 80-90% (20 electrons)CISDTQ very large 98-99%

MP2 1.5 85-95% (DZ+P)MP4 5.8 >90% CCD large >90%

CCSDT very large ~100%