Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative...

37
Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione Cockburn, Barry Kohn, David Belton, David Fink, Andrew Gleadow and Michael Summerfield The University of Melbourne Australian Nuclear Science & Technology Organisation The University of Edinburgh

Transcript of Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative...

Page 1: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Combining low temperature apatite thermochronology and

cosmogenic isotope analysis in quantitative landscape

evolution studies

Roderick Brown, Hermione Cockburn, Barry Kohn, David Belton, David Fink, Andrew Gleadow

and Michael Summerfield

The University of MelbourneAustralian Nuclear Science & Technology OrganisationThe University of Edinburgh

Page 2: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.
Page 3: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Conceptual landscapeevolution models

Page 4: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.
Page 5: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Numerical landscape evolution models

van der Beek et al. (2002)

Page 6: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Numerical landscape evolution models

Page 7: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Numerical landscape evolution models

Page 8: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Southern Africa

Page 9: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Drakensberg Escarpment

Page 10: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Landsat ETM+ 321RGB Image

Page 11: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Drakensberg Escarpment, Sani Pass

Page 12: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Sani Top Photograph by Alastair Fleming

Page 13: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Apatite Fission Track Age

Page 14: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Estimated Palaeogeothermal Gradients

Page 15: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.
Page 16: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Atlantic Margin, Namibia

Page 17: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Gamsberg Escarpment, ASTER VNIR Image

Page 18: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.
Page 19: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.
Page 20: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.
Page 21: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Gamsberg Plateau, ASTER VNIR Image

Page 22: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Gamsberg EscarpmentPhotograph by Hermione Cockburn

Page 23: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Gamsberg EscarpmentPhotograph by Hermione Cockburn

Page 24: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Gamsberg Plateau Transect

Page 25: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Gamsberg Escarpment Transect

Page 26: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

South Eastern Australia

Page 27: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

South Eastern Australia, 300m DEM

Page 28: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Brown Mountain Transect

50 km

Page 29: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Denudation since 110 Ma

Page 30: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Denudation since 65 Ma

Page 31: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Apatite U-Th/He Ages

Page 32: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Paired Apatite FT & He Ages

Page 33: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Apatite FT & U-Th/He Ages

Page 34: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Age of continental rifting

Page 35: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

ANTARES Detector Array, ANSTO, Australia

Page 36: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.
Page 37: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione.

Conclusions

Measured denudation rates and chronologies for the Gamsberg, Drakensberg and Brown Mountain escarpments are incompatible with a steady, parallel retreat model

Combined thermochronologic and cosmogenic datasets are capable of quantifying passive margin escarpment retreat rates

A viable alternative model involves the establishment of an escarpment at a major inland drainage divide with moderate to low subsequent retreat rates