CMF20120D

download CMF20120D

of 8

Transcript of CMF20120D

  • 8/21/2019 CMF20120D

    1/81 CMF20120D Rev.D

    CMF20120D-Silicon Carbide Power MOSFET

    Z-FETTMMOSFETN-Channel Enhancement Mode

    Features

    High Speed Switching with Low Capacitances High Blocking Voltage with Low RDS(on) Easy to Parallel and Simple to Drive Avalanche Ruggedness Resistant to Latch-Up Halogen Free, RoHS Compliant

    Benefts

    Higher System Efciency Reduced Cooling Requirements

    Increased System Switching Frequency

    Applications

    Solar Inverters High Voltage DC/DC Converters Motor Drives Switch Mode Power Supplies UPS

    Package

    TO-247-3

    Part Number Package

    CMF20120D TO-247-3

    VDS

    1200 V

    ID(MAX)

    42 A

    RDS(on)

    80m

    Maximum Ratings (TC= 25C unless otherwise specied)

    Symbol Parameter Value Unit Test Conditions Note

    ID Continuous Drain Current42

    AVGS@20V, TC = 25C Fig. 10

    24 VGS@20V, TC = 100C

    IDpulse Pulsed Drain Current 90 APulse width tPlimited by Tjmax

    TC = 25C

    EAS Single Pulse Avalanche Energy 2.2 JID= 20A, VDD= 50 V,L = 9.5 mH

    Fig. 15

    EAR Repetitive Avalanche Energy 1.5 J tARlimited by Tjmax

    IAR

    Repetitive Avalanche Current 20 AID= 20A, VDD= 50 V, L = 3 mH

    tARlimited by Tjmax

    VGS Gate Source Voltage -5/+25 V

    Ptot

    Power Dissipation 215 W TC=25C Fig. 9

    TJ, T

    stgOperating Junction and Storage Temperature

    -55 to+135

    C

    TL

    Solder Temperature 260 C 1.6mm (0.063) from case for 10s

    Md Mounting Torque1

    8.8Nm

    lbf-inM3 or 6-32 screw

  • 8/21/2019 CMF20120D

    2/82 CMF20120D Rev.D

    Electrical Characteristics (TC= 25C unless otherwise specied)

    Symbol Parameter Min. Typ. Max. Unit Test Conditions Not

    V(BR)DSS Drain-Source Breakdown Voltage 1200 V VGS =0V, ID= 100A

    VGS(th)Gate Threshold Voltage

    2.65 4V

    VDS= VGS, ID= 1mA

    Fig. 3.2 4.8 VDS= VGS, ID= 10mA

    2.0V

    VDS= VGS, ID= 1mA, TJ= 135C

    2.45 VDS= VGS, ID= 10mA, TJ= 135C

    IDSS Zero Gate Voltage Drain Current1 100

    AVDS= 1200V, VGS= 0V

    10 250 VDS= 1200V, VGS= 0V, TJ= 135C

    IGSS Gate-Source Leakage Current 0.25 A VGS= 20V, VDS= 0V

    RDS(on) Drain-Source On-State Resistance80 100

    mVGS= 20V, ID= 20A

    Fig. 395 120 VGS= 20V, ID= 20A, TJ= 135C

    gfs Transconductance7.9

    SVDS=20V, IDS=20A

    Fig. 67.4 VDS=20V, IDS=20A, TJ= 135C

    Ciss Input Capacitance 1915

    pF

    VGS= 0V

    VDS= 800V

    f = 1MHzVAC = 25mV

    Fig. 1Coss Output Capacitance 120

    Crss Reverse Transfer Capacitance 13

    Eoss Coss Stored Energy 62 J Fig. 1

    td(on)v Turn-On Delay Time 13

    ns

    VDD= 800V, VGS= 0/20V

    ID= 20A

    RG(ext)= 2.5, RL= 40

    Timing relative to VDS

    Fig. 1tfv Fall Time 24

    td(off)v Turn-Off Delay Time 40

    trv Rise Time 38

    RG Internal Gate Resistance 5 f = 1MHz, VAC=

    25mV

    Built-in SiC Body Diode Characteristics

    Symbol Parameter Typ. Max. Unit Test Conditions Note

    VSD Diode Forward Voltage3.5

    VVGS= -5V, IF=10A,TJ= 25C

    3.1 VGS= -2V, IF=10A,TJ= 25C

    trr Reverse Recovery Time 220 ns VGS= -5V, IF=20A,TJ= 25CVR= 800V,diF/dt= 100A/s

    Fig. 22Qrr Reverse Recovery Charge 142 nC

    Irrm Peak Reverse Recovery Current 2.3 A

    Thermal Characteristics

    Symbol Parameter Typ. Max. Unit Test Conditions Not

    RJC Thermal Resistance from Junction to Case 0.44 0.51

    K/W Fig. 7RCS Case to Sink, w/ Thermal Compound 0.25

    RJA Thermal Resistance From Junction to Ambient 40

    Gate Charge Characteristics

    Symbol Parameter Typ. Max. Unit Test Conditions Not

    Qgs Gate to Source Charge 23.8

    nCVDD= 800V, VGS= 0/20VID =20APer JEDEC24 pg 27

    Fig.12

    Qgd Gate to Drain Charge 43.1

    Qg Gate Charge Total 90.8

  • 8/21/2019 CMF20120D

    3/83 CMF20120D Rev.D

    0

    50

    100

    150

    200

    250

    0 10 20 30 40 50 60 70 80 90 100

    RDS(on)(m)

    ID (A)

    VGS = 20 V

    135oC

    25oC

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 25 50 75 100 125 150

    NormalizedRDS(on)

    TJ (oC)

    VGS = 20 V

    0

    20

    40

    60

    80

    100

    120

    0 1 2 3 4 5 6 7 8 9 10 11 12

    ID(A)

    VDS (V)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 2 4 6 8 10 12 14 16 18 20

    ID(A)

    VDS (V)

    Figure 2. Typical Output Characteristics TJ= 135C

    Typical Performance

    Figure 4. On-Resistance vs. Drain Current

    Figure 6. Typical Transfer Characteristics

    Figure 1. Typical Output Characteristics TJ= 25C

    Figure 3. Normalized On-Resistance vs. Temperature

    0

    100

    200

    300

    400

    500

    600

    700

    800

    10 12 14 16 18 20

    RDS(on)(m

    )

    VGS (V)

    ID = 20 A25oC

    135oC

    0

    10

    20

    30

    40

    50

    0 2 4 6 8 10 12 14 16 18 20

    ID(A)

    VGS (V)

    25oC

    135o

    C

    Figure 5. On-Resistance vs. Gate Voltage

  • 8/21/2019 CMF20120D

    4/84 CMF20120D Rev.D

    Typical Performance

    Figure 8. Safe Operating Area

    Figure 11. Gate Threshold Voltage vs.Temperature

    Figure 9. Power Dissipation Derating Curve

    100E-6

    1E-3

    10E-3

    100E-3

    1

    1E-6 10E-6 100E-6 1E-3 10E-3 100E-3 1

    ZthJC

    (oC/W)

    tp (s)

    0.5

    0.3

    0.1

    0.05

    0.02

    0.01

    SinglePulse

    DC:

    0.1

    1

    10

    100

    1 10 100 1000

    ID(A)

    VDS (V)

    Limited

    by RDS(on)

    DC

    tp 1 s

    tp = 10s

    tp = 100s

    tp = 1 ms

    tp = 10 ms

    0

    50

    100

    150

    200

    250

    0 25 50 75 100 125 150

    PD

    (W)

    TC (oC)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 25 50 75 100 125 15

    ID(A)

    TC (oC)

    Figure 7. Transient Thermal Impedance (Junction - Case)with Duty Cycle

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    -75 -50 -25 0 25 50 75 100 125 150

    VGS(th)(V)

    TJ (oC)

    ID = 1 mA

    ID = 10 mA

    Figure 10. Continuous Current Derating Curve

    -5

    0

    5

    10

    15

    20

    25

    0 20 40 60 80 100

    VGS

    (V)

    Gate Charge (nC)

    ID = 20 A

    VDD = 800 V

    Figure 12. Typical Gate Charge Characteristics(25C)

  • 8/21/2019 CMF20120D

    5/85 CMF20120D Rev.D

    Typical Performance

    Figure 13A and 13B. Typical Capacitances vs. Drain Voltage at VGS

    = 0V and f = 1 MHz

    Figure 16. Resistive Switching Times vs.External R

    Gat V

    DD= 400V, I

    D= 20A

    Figure 14. Typical COSS

    Stored Energy

    10

    100

    1000

    10000

    0 20 40 60 80 100 120 140 160 180 200

    Capacitance(pF)

    VDS (V)

    Ciss

    Coss

    Crss

    10

    100

    1000

    10000

    0 100 200 300 400 500 600 700 800

    Capacitance(pF)

    VDS (V)

    Ciss

    Coss

    Crss

    0

    10

    20

    30

    40

    50

    60

    70

    0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

    Eoss

    (J)

    VDS (V)

    0

    500

    1000

    1500

    2000

    2500

    0

    5

    10

    15

    20

    25

    0 0.001 0.002 0.003 0.004 0.005 0.006

    V

    ( V )

    IDS

    (A)

    Time (s)

    EAS = 2.20 J

    IDS

    VDS

    0

    20

    40

    60

    80

    100

    120

    140

    0 5 10 15 20 25

    Tim

    e(nsec)

    External Gate Resistor ()

    tD(on)v

    tfv

    trv

    tD(off)v

    VGS = 0/20V

    VDD = 400V

    RL = 20

    ID = 20 A

    TA = 25oC

    Figure 15. Typical Unclamped Inductive SwitchingWaveforms Showing Avalanche Capability

    0

    20

    40

    60

    80

    100

    120

    140

    0 5 10 15 20 25

    Time(nsec)

    External Gate Resistor ()

    tD(on)v

    tfv

    trv

    tD(off)vVGS = 0/20V

    VDD = 800V

    RL = 40

    ID = 20 A

    TA = 25oC

    Figure 17. Resistive Switching Times vs.External R

    Gat V

    DD= 800V, I

    D= 20A

  • 8/21/2019 CMF20120D

    6/86 CMF20120D Rev.D

    Typical Performance

    Figure 20. Clamped Inductive Switching Waveform TestCircuit

    0

    100

    200

    300

    400

    500

    600

    700

    0 5 10 15 20

    SwitchingEnergy(J)

    Peak Drain Current (A)

    ETOT,SW

    EOFF

    EON

    VGS = 0/20V

    RG = 7.5 Tot

    VDD = 800V

    L = 856H

    FWD: C4D10120

    TA = 25oC

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1,000

    0 25 50 75 100 125 150

    SwitchingEnergy(J)

    TJ (oC)

    ETOT,SW

    EON

    EOFFVGS = 0/20V

    RG = 11.8 Tot

    VDD = 800V

    L = 856H

    FWD: C4D10120

    ID = 20 A

    Figure 21. Switching Test Waveforms for Transition times

    Figure 18. Clamped Inductive Switching Energy vs.Drain Current (Fig. 20)

    Figure 19. Clamped Inductive Switching Energy vs.Junction Temperature (Fig 20)

    800V

    +

    - 42.3f

    856H

    CMF20120D

    C4D10120D10A, 1200VSiC Schottky

    90%

    10%

    VDS

    VGS

    ton toff

    tfvtd(on)v td(off)v trv

  • 8/21/2019 CMF20120D

    7/87 CMF20120D Rev.D

    10% Irr

    Vcc

    trr

    Irr

    Ic

    Vpk

    tx

    10% Vcc

    Qrr=trr

    id dttx

    Diode ReverseRecovery Energy

    Diode RecoveryWaveforms

    Erec=t2

    id dt

    t1

    t1 t2

    Test Circuit Diagrams and Waveforms

    Fig 22. Body Diode Recovery Test

    800V42.3f

    856H

    CMF20120D

    CMF20120D

    +

    -

    Fig 23. Body Diode Recovery Waveform

    FOR OFFICIAL USE ONLY Not Cleared for Open Release

    EA= 1/2L x I

    D2

    Fig 24. Unclamped Inductive Switching Test Circuit Fig 25. Unclamped Inductive Switching waveformfor Avalanche Energy

    ESD Test Total Devices Sampled Resulting Classifcation

    ESD-HBM All Devices Passed 1000V 2 (>2000V)

    ESD-MM All Devices Passed 400V C (>400V)

    ESD-CDM All Devices Passed 1000V IV (>1000V)

    ESD Ratings

  • 8/21/2019 CMF20120D

    8/88

    This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human bodynor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limitedto equipment used in the operation of nuclear facilities, life-support machines, cardiac debrillators or similar emergency medicalequipment, aircraft navigation or communication or control systems, air trafc control systems, or weapons systems.

    Copyright 2012 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and theCree logo are registered trademarks and Z-REC and Z-FET are trademarks of Cree, Inc.

    8 CMF20120D Rev.D

    Cree, Inc4600 Silicon Drive

    Durham, NC 27703USA Tel: +1.919.313.5300

    Fax: +1.919.313.545www.cree.com/powe

    Package Dimensions

    Package TO-247-3

    Recommended Solder Pad Layout

    TO-247-3

    (1)

    (2)

    (3)

    POSInches Millimeters

    Min Max Min Max

    A .190 .205 4.83 5.21

    A1 .090 .100 2.29 2.54

    A2 .075 .085 1.91 2.16

    b .042 .052 1.07 1.33

    b1 .075 .095 1.91 2.41

    b2 .075 .085 1.91 2.16

    b3 .113 .133 2.87 3.38

    b4 .113 .123 2.87 3.13

    c .022 .027 0.55 0.68

    D .819 .831 20.80 21.10

    D1 .640 .695 16.25 17.65

    D2 .037 .049 0.95 1.25

    E .620 .635 15.75 16.13

    E1 .516 .557 13.10 14.15

    E2 .145 .201 3.68 5.10

    E3 .039 .075 1.00 1.90

    E4 .487 .529 12.38 13.43

    e .214 BSC 5.44 BSC

    N 3 3

    L .780 .800 19.81 20.32

    L1 .161 .173 4.10 4.40

    P .138 .144 3.51 3.65

    Q .216 .236 5.49 6.00

    S .238 .248 6.04 6.30

    Part Number Package Marking

    CMF20120D TO-247-3 CMF20120