· O CHARACTERIZATION OF STARFISH STRIATIONS FROM ANALYSIS OF PHOTOGRAPHIC RECORDS Information...

103
^ O CHARACTERIZATION OF STARFISH STRIATIONS FROM ANALYSIS OF PHOTOGRAPHIC RECORDS Information Science, Inc. 123 West Padre Street Santa Barbara, California 93105 DNA 5065F o o 30 June 1979 Final Report for Period 1 May 1978 31 May 1979 CONTRACT No. DNA 001-77-C-0170 / APPROVED FOR PUBLIC RELEASE; | DISTRIBUTION UNLIMITED. THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B322078462 125AAXYX96015 H2590D. Prepared for Director DEFENSE NUCLEAR A6ENCY Washington, D. C. 20305 * ' l| ' ^ ^^v i D r^ K ^ lutl^ vv>) X "*' II 11 i n „i^^,^ « .

Transcript of  · O CHARACTERIZATION OF STARFISH STRIATIONS FROM ANALYSIS OF PHOTOGRAPHIC RECORDS Information...

^

O CHARACTERIZATION OF STARFISH STRIATIONS FROM ANALYSIS OF PHOTOGRAPHIC RECORDS

Information Science, Inc.

123 West Padre Street

Santa Barbara, California 93105

DNA 5065F

o o 30 June 1979

Final Report for Period 1 May 1978 — 31 May 1979

CONTRACT No. DNA 001-77-C-0170 /

APPROVED FOR PUBLIC RELEASE; | DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B322078462 125AAXYX96015 H2590D.

Prepared for

Director

DEFENSE NUCLEAR A6ENCY

Washington, D. C. 20305

■ *

■■'■l| ■' ^ ^^v

i ■

D

r^

K^ lutl^

vv>) X

■"*' • II ■ 11 ■ i — n „i^^,^

« .

Best Available

Copy

^

Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAP, AGENCY, ATTN: STTI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.

iW)

"■ ■■ -■" r-i i vmimmmtiiM

UNCLASSIFIED

EPORT DOCUMENTATION PAGE

CHARACTERIZATION OF ~!ARFISH )tTRIATIONS OF PHOTOGRAPHIC RECORDS ~ ~

F.JDudziak -/

v.,Lad /

9 . PERF O RMIN G ORG.NIZ.TION N•M E .NO •oORESS

Information Science, Inc. 123 West Padre Street Santa Barbara, Ca lifornia 93105

1 1. CONT ROL LIN G OFFI CE N•ME .NO •oORESS

Director Defense Nuclear Agency Washington, D.C. 20305

16. DIS T RIB UTION ST.TEMENT ( of thi s Report)

10 . mJM ELEMENT. PROJECT , T•SK E• 6 ORK UNIT NUMBERS

S k 12SAAXY 960-15

15. SECURITY CLASS (o f thr• t eport)

UNCLASSIFIED

15,., OECL ASSIFICATION ' DOWNGRADING SCHEDULE

Approved for public r e l e ase ; distribution unlimited .

17 D I STRIBUTION STATEMENT (o l thr ~tbs tttt t: t en tl'ted in Blor lf 20, It di llert•nt from Repo rt)

18 SU PPLEMENT.RY NOT ES

This work sponsored b y the uefense Nuclear Age ncy under RDT&E RMSS Cod 8322078462 125AAXYX96015 H2 590D .

19. KEY WORO S (Continue o n re,·er s e ttl de if nrr e $SIIt)' 1tnd Identity b)• bloc If number)

Striation Characterization STARFISH - Canton I s land Re lativ Radiance Powe r Spec tra (PSD )

Volume Emission El ectron De nsity Radius Probability Di s tribut i o n Numbe r of Striatio n s

20 ABSTRACT ( Cnn tlnuc on re ,•er se s ide II n e c c ssa t)' and idtmtl l )• b y blodc number

The r eport s ummarizes the results of an exte nsiv analysi s in the fr eque ncy domain of photogra phic r ecords that r ecorded, ove r Canton I s land , the late tim striations which result d from th STARFI SH nuc l ar d t o nation . The basi s o f this analysi s are the fr quency domain pow r spectra l d n s ities (PSDs) whic h we r e de t rmined from r e lat i v e o ptical radianc s a t various al ­titudes as a fun c tio n of time . Th analysi s indic a t es how w 11 the ime/ altitude variance o f th pow r spectra c an b r pr s nt d by a s imp l nalytic e x press i o n: (1) a loq-log linear (powe r law) fit; ( 2 ) an ntial fit in

EDITION OF 1 NOV 65 I S O BSOL E TE UNCLASS I FI ED

SE CU RITY C LASSIFI C ATI ON OF THIS PAGE ( ltlr en I ere F.nret~d)

UNCLASSIFIED SIECURITY CLASIIP'ICATION OP' TMIS ~AGIEra- Dele ... MOM)

20. ABSTRACT (Continued)

the frequency domain. It has been found that both of the single s implified expressions underestimate the power at low frequencies. However, for a single simple expression, the log-log linear fit is a better representation of the data at very low frequencies.

The report also synthesizes a value for the total number of striations, a radius probability distribution and the spatial area / volume con tained within the striations from the exponential fit; (in thi s synthesi s , the striations are assumed to have Gaussian e lectron density profiles). On this basis, a volume emission from the striated region is d t e rmined from which an estimate can be made of the on-axis striation el ctron density.

Accession l"or ---~~-1

JTIS GRAll DTIC TAB 0

0 Unannounced Justificntion--------~

c d s Av il 1 d / o r

Dist l

_,

c

D

UNCLASSJFI ED SECU RITY C LASSIFI C ATION OF THI S PAG E(WIIer. Dnt1t F.tote•ed)

11 n ■■Mi

1

PREFACE

Many individuals from various research organizations contributed

to the success of this study. To these individuals we are very grateful.

The work was aided by several archival documents provided by Mr. Ed Mar-

tin of DASIAC, GE TEMPO. These documents, as well as useful discussions

with Drs. John Zinn and David Simons of LASL, J-10 Division, provided

useful background information. We also wish to thank Dr. Walter Ches-

nut of SRI International for providing the Canton Island film and some of

the results of his geometric analysis of this film. Perhaps the most sig-

nificant influence on the contents of this report were discussions held

with Dr. Herman Hoerlin of LASL and Lt. Col. Robert Bigoni and Capt. Leon

Wittwer of DNA. Capt. Wittwer's review and comments on some of the pre-

liminary computer results were most appreciated.

■■ ■ ■-- MMMMMMIMIM

SU~.ARY

In this report we have au.aarized results of derived parameters

of aiaple analytic repreHntationa of spatial frequency spectra that

aroH frca relative radiance •aaure~~~enta of STMFISH striations as

recorded on film at canton Ialand. We have triec! to establish a tU.

and altitude dependence of the pc:II'Mr spectra. Study of the presented

data reveals that it ia not obvious that such a dependence exists in

the tt.e period and location of our analyaia. It could very well be,

that at th ... late U.a, the striation rec)ion, which h far nmoved

fraa the burst location, is substantially the .... and regions with­

in this striation vol~ of different character, which ought to be

described by different PSDs, do not exist. In any event, the data i&

presented in sufficient detail to allow review by others, as to the

existence of possible tt.e/altitude effects on the determined PSOs.

The prime purpose of these .. asurements was to establish the

power spectral density from the striation properties and detcnnine

if theH striation propertiee would restrict the PSD to a relatively

et.ple analytic fora. It is clear from the presented results how

well this can be achieved by a single power law or a single exponential

fit. It is also Shown how a better fit to the data is achieved by

a two-term exponential fit. Although tt. did not allow a review of

the data in teniS of a similar two-ten~ power law fit, it is certain

that very good representation of the STARFISH PSDs would be achieved

from such a two-term expression.

2

PPWP^ ■•■■■WMP*^

In any event, an adequate simple power law of the PSD description

of the STARFISH Canton Island striation region is allowable. Our endeavor

to fit all the data by one single power law expression forces the selec-

tion of a large L value (as shown in the presented, tabulated data) for

the outer scale size. If one eliminates the cteep PSD data at very small

k values (k > 0.02 radians/km) as being spurious (since we at present do

not understand the cause of this initial PSD shape), a single power law

expression yields an outer scale size value of L between 40 and 100 km/rad

(see Figure 4.1). The slope of the linear portion of the PSD has a value

of about 2.0.

In summary, it appears that a reasonable fit to the stochastic rad-

iance fluctuations observed from Canton after the Starfisn test is a simple

power law PSD with a slope of 2 and outer scale of about 40 km/rad. The

reader should note that the radiance profile is the result of a line integ-

ral along the sight path through the fluctuations, and is therefore anala-

gous to the phase shift profile of a propagating electromagnetic wave. The

results presented here suggest the if the phase shift PSD had been measured

at Canton Island, it would also have had a slope of 2.

The measured optical power is presented as relative radiance since cali-

bration information is not available for the film considered. An estimate of

the optical radiance (in ergs/cm2/sec./ster.) can be obtained by multiplying

this relative radiance by 5.1 10 2. This normalization value assumes that the

peak radiance reported by Overbye11 at 9 minutes is the s.une as the peak radian-

ce presented in Figure 3.4. The factor which normalizes the area under the PSD

curve to 1 is also presented under each PSD curve. This will allow the user of

the estimated radiances use of the PSD information in other possible detailed

calculations.

———

CONTENTS

SECTION PAGE

PREFACE ___ i

SUMMARY 2

LIST of PHOTOGRAPHS 5

LIST of FIGURES 6

LIST of TABLES 9

1. INTRODUCTION 11

2. DATA BASE, DATA REDUCTION PROCEDURES ______ 13

2.1 Starfish Striation Data --_____--___---__-__ 13 2.2 Summary of Data Reduction Procedures _-__-__-__-_- 15

3. DATA PRESENTATION ----_--_-------__-----_-_ 27

3.1 PSD, Power Law Data Parameters — _______________ 44 3.2 PSD, Exponential Fit Data Parameters _____________ gy 3.3 Other Data Analysis Results -___--______-___-_ 82

3.3.1 Radiation Profile Integral _______________ R2 3.3.2 Power Spectral Integral ________________ 82 3.3.3 Frequency, Filter Function Decreased by lOdb -_--__ 82 3.3.4 Number of Striations ---___-____--____ 83 3.3.5 Most Probable Strii-tion Radius _____________ 83 3.3.6 Total Area Contained in Gaussian Striations ______ 84 3.3.7 Relative Volume Emission ________________ 84

4. CONCLUSIONS _____ 93

REFERENCES ___ _______ 97

--"-- tttt^^mmmmm

mm,mmimm^mmm^ iiiimMtmm in

LIST OF PHOTOGRAPHS

•E NUMBER TIME INTERVAL

(seconds)

3.1 300 - 360

3.2 360 - 420

3.3 420 - 480

3.4 480 - 540

3.5 540 - 600

3.6 600 - 660

3.7 660 - 720

■3 Q 720 - 780

PAGE

28

30

32

34

36

38

40

42

imm^... ,....■■ ■..,^....^.,.^ ..■ „^^.■-...■.^ ....... ^^.. -——*--***——

^^•1 MVMM

LIST OF FIGURES

FIGURE NUMBER

2.1

2.2.1

2.2.2

2.2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.1.1

TITLE PAGE

Location of camera stations during STARFISH 14

Superimposed magnetic field lines on geomagnetically 18 aligned streaks

Magnetic field projections for all sky photographs 19

Magnetic field line profiles 21

Raw radiance profiles across geomagnetic aligned 29 streaks at altitudes 1120, 1114, 1078, 1045, and 1000 km at 330 seconds

Raw radiance profiles across geomagnetic aligned 31 streaks at altitudes 1120, 1114, 1078, 1045, and 1000 km at 390 seconds

Raw radiance profiles across geomagnetic aligned 33 streaks at altitudes 1120, 1114, 1078, 1045 and 1000 km at 450 seconds

Raw radiance profiles across geomagnetic aligned 35 streaks at altitude 1120, 1114, 1078, 1045, and 1000 km at 510 seconds

Raw radiance profile across geomagnetic aligned 37 streaks at altitudes 1120, 1114, 1078, 1045, and 1000 km at 570 seconds

Raw radiance profiles across geomagnetic aligned 39 streaks at altitude 1120, 1114, 1078, 1045, and 1000 km at 630 seconds

Raw radiance profiles across geomagnetic aligned 41 streaks at altitudes 1120, 1114, 1078, 1045, and 1000 km at 690 seconds

Raw radiance profiles across geomagnetic aligned 4 3 streaks at altitudes 1120, 1114, 1078, 1045, and 1000 km at 750 seconds

Power spectrum and simple power law fit overlflyr- 47 at 330, 390, 450, and 510 seconds at 1120 km

■"""■"" turn tm | MM,.

LIST OF FIGURES CONTINUED

FIGURE NUMBER

3, 1 2

3 1 3

3, 1 4

3, 5

3. 6

3. 7

3, 8

3. 9

3. 10

3. 11

3,1.12

3.2.1

3.2.2

3.2.3

3.2.4

TITLE PAGE

Power spectrum and simple power law fit overlays 48 at 570, 630, 690, and 750 seconds at 1120 km

Power spectrum and simple power law fit overlay 49 at 330, 390, 450, and 510 seconds at 1114 km

Power spectrum and simp'...- power law fit overlay 50 at 570, 630, 690, and ?.'0 seconds at 1114 km

Power spectrum and simple power law fit overlay 51 at 330, 390, 450, and 510 seconds at 1078 km

Power spectrum and simple power law fit overlay 52 at 570, 630, 690, and 750 seconds at 1078 km

Power spectrum and simple power law fit overlay 53 at 330, 390, 450, and 510 seconds at 1045 km

Power spectrum and simple power law fit overlay 54 at 570, 630, 690, and 750 seconds at 1045 km

Power spectrum and simple power law fit overlay 55 at 330, 390, 450, and 510 seconds at 1000 km

Power spectrum and simple power law fit overlay 56 at 570, 630, 690, and 750 seconds at 1000 km

Power law fit parameters V and outer scale size, 61 L (averaged over altitude) vs time for striation volume center on the 400, 600, and 800 km magnetic field line at burst point

Power law fit parameters, slope and numerator (Eq. 66 2.2) vs time for striation volume center on the 400, 600, and 800 km magnetic field lino at burst point.

Power spectrum and two-term exponential fit over- 68 lay at 330, 390, 450, and 510 seconds at 1120 km

Power spectrum and two-term exponential fit over- 69 lay at 570, 630, 690, and 750 seconds at 1120 km

Power spectrum and two-term, exponential fit over- 70 lay at 330, 390, 450, and 510 seconds at 1114 km

Power spectrum and two-term exponential fit over- 71 lay at 570, 630, 690, and 750 seconds at 1114 km

nll.flll. - - ""^ „^M—M i iiiiiiMln

LIST OF FIGURES CONTINUED

FIGURE NUMBER TITLE

3 .2 5

3 .2 6

3 2 7

3 2 8

3 2 9

3. 2 10

3. 2. 11

3.3,1

3.3.2

4.1

4.2

PAGE

72 Power spectrum and two-term exponential fit over- lay at 330, 390, 450, and 510 seconds at 1078 km

Power spectrum and two-term exponential fit over- lay at 570, 630, 690, and 750 seconds at 1078 km

Power spectrum and two-term exponential fit over- lay at 330, 390, 450, and 510 seconds at 1045 km

Power spectrum and two-term exponential fit over- lay at 570, 630, 690, and 750 seconds at 1045 km

Power spectrum and two-term exponential fit over- lay at 330, 390, 450, and 510 seconds at 1000 km

Power spectrum and two-term exponential fit over- lay at 570, 630, 690, and 750 seconds at 1000 km

Exponential fit parameters, intercept II, slope, 12, slope (averaged over altitude) vs time for striation volume center on the 400, 600, ans 800 km magnetic field line at burst point.

Area under the power spectra and radiance profile, relative volume emission, and filter function -10 db crossover (averaged over altitude) vs time for striation volume center on the 400, 600, and 800 km magnetic field line at burst point.

Number of striations, most probable striation radius 92 and area of Gaussian striations (averaged over alti- tude) vs time for striation volume center on the 400, 600, and 800 km magnetic field line at burst point.

73

74

75

76

77

81

8-7

Comparison of simple power law fit overlays of typical STARFISH power spectrum using the same slope and different outer scale size values.

Comparison of simple power law fit overlays of typical STARFISH power spectrum using the same outer scale size and different slopes.

95

90

mm

1

LIST OF TABLES

TABLE NUMBER TITLE PAGE

3.1.1 Altitude/time dependence of Exponent V (EQ. 2.2) 57 from mid frequency power law fit for striation volume center on 400, 600, and 800 km magnetic field line at burst point.

3.1.2 Altitude/time dependence of Exponent V (EQ. 2.2) 58 from low frequency power law fit for striation volume center on 400, 600, and 800 km magnetic field line at burst point.

3.1.3 Altitude/time dependence of outer scale size L 59 (EQ. 2,2) from mid frequency power law fit for striation volume center on the 400, 600, and 800 km magnetic field line at burst point.

3.1.4 Altitude/time dependence of outer scale size L 60 (EQ. 2.2) from low frequency power law fit for striation volume center on the 400, 600, and 800 km magnetic field line at burst point.

3.1.5 Altitude/time dependence of the slope from mid 62 frequency power lav/ fit for striation volume center on the 400, 600, and 800 km magnetic field line at burst point.

3.1.6 Altitude/time dependence of the slope from the low 63 frequency power law fit for striation volume center on the 400, 600, and 800 km magnetic field line at burst point.

3.1.7 Altitude/time dependence of the numerator (EO. 2.2) 64 from mid frequency power law fit for striation volume center on the 400, 600, and 800 km magnetic field line at burst point.

3.1.8 Altitude/time dependence of the numerator (EO. 2.2) 65 from low frequency power law fit for striation volume center on the 400, 600, and F00 km magnetic field line at burst point.

3.2.1 Altitude/time dependence of the intercept II from mid 78 frequency exponential fit for striation volume center on the 400, 600, and 800 km magnetic field line at burst point.

"' IIM1 ]^limtltmtKmmlmam^tmlltttltlBmmiim

■■■i ^^v>

*%

TABLE NUMBER

LIST OF TABLES CONTINUED

TITLE PAGE

3.2.2

3.2.3

3.2.3

3.3.1

3.3.2

Altitude/time dependence of the slope from mid frequency exponential fit for Ltriation volume center on the 400, 60C, and 000 km magnetic field line at burst point.

Altitude/time dependence of the intercept 12 and slope from the low frequency exponential fit for striation volume center on the 600 km magnetic field line at burst point.

Altitude/time dependence of the frequency where the filZnz function crosses -lOdb for striation volume center on the 600 km magnetic field line at burst point.

Altitude/time dependence of the area under the radiance profile for striation volume center on the 400, 600, and 800 km magnetic field line at burst point.

Altitude/time dependence of the area under the power spectra for striation volume center on the 400, 600, and 800 km magnetic field line at burst point.

79

80

80

85

86

3.3.3

3.3.4

3.3.5

3.3.6

Altitude/time dependence of the number of stria- 88 tions in spatial volume for striation volume cen- ter on the 400, 600, and 800 km magnetic field line at burst point.

Altitude/time dependence of the most probable 89 striation radius for striation volume cente?- on the 400, 600, and 800 km magnetic field line at burst point.

Altitude/time dependence of the total area in 90 Gaussian striations for striation volume center on the 400, 600, and 800 km magnetic field line at burst point.

Altitude/time dependence of the relative volume 91 emission for striation volume center on the 400, 600, and 800 km magnetic field line at burst point.

10

■ j -~ iMir— -■ -■-■■ M^MMMMM

f^mmm ■—

■■ ■ <* ■1■^^;.■^w^»l^j^^p!^^^Hwwlrt<>p^|^^ ■

SEcriai i

INTPODUCTION

In recent years, the effects of nuclear weapon induced electron

density fluctuations on propagating electromagnetic signals have been in-

tensely studied. A fairly comprehensive discussion of a subset of these

experimental and theoretical activities, based on the theory of thin phase

screen approximation, is presented in Reference 1. In many of these studies

the electron fluctuations are usually characterized by a power spectral den-

sity (PSD) where the major effort is to associate the spatial frequency prop-

erties of the PSD with electromagnetic propagation scintillation effects.

It is this search for an adequate simple analytic PSD description that is

the motivation for this work.

A typical example of current experimental efforts for simulating

nuclear weapon effects in the ionosphere was Operation STRESS (Satellite

Transmission Effects Simulation). The principle objective of such experi-

ments is the study of actual satellite communication links propagating

through structured barium plasma clouds. In such experiments neutral bar-

ium is injected into the ionosphere in sufficient quantity that the photo-

ionized barium atoms constitute the locally dominant positive ion species.

The assumption of charge neutrality leads to the conclusion that the local

electron density fluctuations are directly proportional to the barium ion

density variations. As a result of preferred plasma expansion alonq the

magnetic field line, this localized barium induced plasma leads to forma-

tion of highly organized striation structures along the field lines, which

in many respects simulate those created by high altitude nuclear detonations.

11

j- ■-■'■■-

This mainly two dimensional variation of plasma density in such

a striated region is of particular interest since such electron irregu­

larities impose a corresponding structure on the phase front of a prop­

agating electromagnetic signal. With sufficient distortion of the front,

phase and amplitude fluctuations occur in the received signal. The result

is a degradation in performance of communication systems.

As a consequence of this interaction between striations and com­

munication reliability this report adds data to these barium studies by

presenting results of PSD studies of the late time striated region pro­

duced in the ionosphere following the megaton STARFISH nuclear detonation.

The nuclear device (with an approximate yield of 1.45 megatons 2) was det­

onated at an altitude of 400 km at a latitude and longitude of ground zero

of 16.47° north and 169.63° west. On~oing experiments yielding structured

barium plasma clouds try to simulate many aspects of this nuclear disturbed

ionosphere.

In this report the experimental data base are the measured relative

optical radiance profiles of striated nuclear ionization as recorded in the

optical waveband on film. We assume that at the late times of these meas­

urements in the non burst region the optical radiance of the recorded stri­

ation& is proportional to the integral f N~dz, where the integral is along

the line of sight and is limited by the volume of the recorded optical im­

age. Thus the optical irradiance recorded by the film is that of a super­

position of striations with "profiles"N£ 2 within the optically observed rad­

iating plasma, where N is the free electron density. E

12

!■■ MP 111 ■"

SECTION 2

SUMMRKr OF DATA BASE AND REDUCTION PRDCEDUPES

2.1 STAPFISH STRIATICN DATA

In this section pertinent data necessary to the data reduction pro-

cess are presented. For geometric orientation Figure 2,1 presents a map of

the Pacific showing the location of Johnston Island - the approximate loca-

tion of the burst point, Canton Island - location of the camera system, the

magnetic meridian through the burst point, the magnetic equator, and various

other optical data gathering stations.

The data base was synthesized from a series of photographic images

of the event that are presented in Plates 3.1 through 3.8. These images

were acquired by a SRI International camera system from Canton Island at

approximately the magnetic equator. Canton Island is at a longitude of 2.97

south and a latitude of 171.5° west. At this latitude the field line in the

magnetic meridian through the burst point is located at a longitude of 173.06

west and an altitude of 833 km. The camera optics system consisted of two

major elements - - (1) a Praktina 35 mm camera with an f/2, 50 mm focal length

lens system, and (2) an 18 inch diameter hemispherical plastic lens capable

of a 130° field of view. The plastic lens was placed approximately two feet

above the Praktina camera. The net result was a fourfold increase in the an-

gular field of view of the Praktina camera in the central image region. This

allowed a field of view of approximately 120° to be projected onto the 35mm

film. The optic axis of this composite camera system was pointed vertically

toward the sky, yielding an all-sky type of image.

This camera was run by an automatic clock that took a one minute

u

13

- - -

■ inpii

I900W

BIKINI ATOLL

KWAJALEIN ATOLL -

I800W t700W

MAGNETIC EQUATOR

MAGNETIC r FIELD LINE

THROUGH- BURST POINT

STATUTE MILES AT 20° LATITUDE T r—t r~ i ' ' '—'—r

0 500 1000

NANDI, FIJI IS.

NORTHERN CONJUGATE, PATCH

160° W

FRENCH FRIGATE SHOALS

30° N

LASL A/C

BURST, POINT

JOHNSTON IS.

PALMYRA IS

HAWAIIAN IS.

20oN

MAUNA LOA

-l0oN

CHRISTMAS IS

- 10° s

A/C 53131

I TUTUILA

(AMERICAN SAMOA)

.20°$

I900W ieo0w l70oW I600W

FIGURE 2.1 Location « ii rann vn st;it ions riuvitu' SI ;ii t i M.

14

'■•—■■ ■■'■' — . -^tmi —*m*mBmmmm

'mtm mmm mmmm

exposure once every minute. Thus the times given in this report are av«r«Q«

times of each exposure after burst (i.e., film exposed from 30C to JtC

seconds is presented as occurring at 330 secondrO ,

2.2 SUMMARY OF DATA REDUCTION PROCEDUREo

The details of the data processing procedure has beer, pre Ly

described. Only the basic concepts and their variations as they apiiieo to

this film reduction problem will be presented here. The reduced data covers

the time period after burst from about 330 to 750 seconds at an estimated

altitude of 920 to 1320 kilometers (see below). During this time period, *

except for the possible 'slow' movement of the striated region along the

magnetic field lines towards the southern conjugate, no other motion is

apparent. Thus we assume magnetically aligned striations in which the

statistical properties of the striations are azimuthally symmetric about

the magnetic field. We likewise assume that the striated cloud is optically

thin for which the measured radiance allows the determination of the

electron density distribution, N .

To obtain the raw magnetic field aligned data base the selected

photographic images, shown in Plates 3.1 to 3.8, reprr i the optical

emissions of field ligned spatial distributions of st ionization,

were subjected to a sequence of data reduction cperatioi.: . These data

* A review of color films during this time period from the LASL aircraft, Maui, Mauna Lea, Johnston Island, Canton and Tonga Islands re- veals that the striated region radiates in the yellow and is superimposed on a glowing apparently not structured red sky background. This yellow striated region disappears first in the north, giving the impression to an observer of an apparent southern motion. This apparent motion can also be explained by a decreasing plasma temperature as yielding the earlier decay of the yellow striated region at lower altitudes. In any event, this apparent movement would not introduce a serious across the field line blur factor in the black and white images and is not considered in this data

reduction process.

15

"■■""-'• •-■ -"- r i i-..

^ 1 "'■'"

reduction processes'* can be conceptually separated into four major portions.

(1) The first phase of the data reduction process consists of converting the

image to digital form. This was accomplished by means of an AFWL (Mann -

System) scanning microdensitometer. A selected, approximately magnetic field

aligned area (x = 7, y = 13 mm) of each film image (see for example Plate

3.1) was digitized in a raster pattern using an aperture whose dimensions

were 10 microns in the horizontal (i.e., across the striations, or x-direction),

and 100 microns in the vertical (along the striation, or y-direction).

To form the raster scan pattern, the image density (log of the ratio

of light intensity transmitted by the film) was sampled every 5 microns hori-

zontally, and then the aperture was stepped-over vertically by 100 microns

(i.e., its own length) between adjacent horizontal scans. Horizontal strips

of data consisting of ten adjacent scan lines were selected from this areal

scan and reduced for five different altitude levels for each of the eight

photographic images. These selected strips comprised of 10 adjacent horizon-

tal scans are shown as numbered bands on Plates 3.1 to 3,8; each band is 1 mn

long on the film or approximately 80 kilometers in real space.

Each of these altitude regions is represented by a single "average

power spectrum" which is the average of the 10 individual PSDs contained in

the expanded "synthetic aperture" region. This procedure (use of a long 1 mm

slit along the striation) in the data reduction process is sufficient to en-

sure that the data reduction process would be noise-limited by the inherent

grain noise; i.e., no ^riation information (larger than 5 microns on film

or approximately 0. ' iiameter at 1,000 km range) would be lost ("aver-

aged out") due to fi. impling parameters.

* Each horizontal (across the striation) scan subregion was initially checked for being perpendicular to the magnetic field (as defined by the striation length) by an automatic pattern search sub-routine. If misalign- ment was detected (in this case, angles > 0.2°) a synthetic aperture sub- routine would be activated which would compensate for the determined mis- alignment angle by generating a horizontal scan line of ^ta points from the sea of stored data points from adjacent scan lines th^. ^ving a scan line everywhere perpendicular to the magnetic field.

16

- :..-...*************

"WWPHHPIWP

As shown below, the data is presented in real-space geometries. To

accomplish this a film-plane to real-space transformation at the altitude

regions indicated on the plates is required. To establish the spatial lo-

cations of these luminous auroral like features various documented results

(for example, see references 3 and 6) were reviewed. These studies, and our

study, tried to establish the geometric properties of the optically recorded

striations by triangulation and also by projecting families of magnetic field

lines into the camera field of view. The results of these and our efforts

cannot position the location and volume of the radiating euroral structures

without ambiguity.

Results of two typical examples taken from prior studies are shown in

Figures 2.2.1 and 2.2.2. Tn Figure 2.2.1 the authors6 illustrate the projec-

tion into the camera system, three magnetic field lines at different altitudes

at the burst magnetic meridian plane and also in the 1 west meridian plane

from this burst meridian. As shown both projections line up well with the ob-

served auroral striations. Similarly in Figure 2.2.2 the authors3 analyze

these photographs (Plates 3.1 - 3.8) with projections of magnetic field lines

in the burst magnetic meridian and also with grids of field lines that start

at the same altitude (400, 800, and 1200 km) at the burst latitude and are in

magnetic meridians displaced in longitude about the burst region. Although in

both these, ours and other recorded studies, alignment with the recorded stri-

ations is in good agreement with field line projections, the locations of the

auroral streaks is ambiguous since projection of magnetic field lines in mer-

idian planes, both east and west, into the camera system have similar shapes.

To partially resolve this geometric ambiguity magnetic field lines

were also projected into late time film image records (3 to 13 minutes)

taken by cameras on Maui7 and the LASL aircraft (see for example. Figure

6 in Reference 2). Results of such magnetic field line projections in-

dicate that most of the striation caused (yellow) brightness at these

17

Z'".'. .;—-*. JLvxBBU

^

Geomagnetically aligned streaks in the air-zero and 10-W meridian glares as photographed from Canton I at 540 to 600 seconds.

B. Kith lines superimposed to identify streaks in the air- zero meridian plane.

C. With lines superimposed to identify streaks in the 10-K meridian plane.

FIGL'PF 2.2.1

18

MMHMMaMHH

10 o 340

CALIBRATION

\ 280 /aAQL \ \ I

aVmh I 2 60

240

320°

BOOTES

280°

a VlR 400 km HEIGHT

240

AZIMUTH 180

(a)

200

True Norlh

-W

a LYR

a AQL

800 Km HEIGHT

180°

(b)

0

320

a BOOTES

a LYR

aCrB

280° /„AQL aQPH

IVIR.

.^240°

1200 km HEIGHT

180

(c)

320

a BOOTES ■

280°

a VlR

'40

FIGURE 2.2.2 MAGNETIC FIELD PROJECTIONS FOR ALL SKY PHOTOGRAPHS

19

-— .^-.--—^-.-^ - ■ ■ ---■ -■■-■ ---:--; mtm^^—mwmm

«■MM

times lies between magnetic field lines in the magnetic meridian that passes

through altitudes at the burst point of 300 to 800 kilometers. There are

striations which are apparent to the observer that align with magnetic field

lines at higher altitudes at the burst location (for example, 1,000 and 1,200

km). However, their brightness is very low and should contribute little if

not zero to the recorded radiance values at Canton Island.

Thus, to allow transformation of the film coordinates to real space

coordinates and to minimize the effects of perspective on this analysis, and

thus simplify the computational problem, it is assumed in this study that

the Canton Island striation images (Plates 3.1 to 3.8) are from a radiant

energy source that has both vertical and horizontal extent. For computation-

al purposes it has bet n assumed that the dominant striation radiating region

is contained in an area perpendicular to the magnetic field above Canton Is-

land that is approximately + 200 km in vertical extent about the mean altitude,

and approximately + 2.3 (or + 300 km) in longitudinal extent centered about

a meridian plane at the burst region of 170.5 west longitude. Because of

the geometric ambiguity, a sensitivity of our results to a change of the mean

altitude of this striation volume is demonstrated by performing the calcula-

tions for mean altitudes of the magnetic field line at burst point of 400,

600 and 800 kilometers.

Figure 2.2.3 illustrates (by using the ONEMAG computer program8) the

altitude dependence of the field lines on the selected magnetic meridian

pertinant to this discussion. Shown also in this figure is the burst point

and its relationship to the position of the five windows selected for data

analysis.

(2) The computation of the power spectra requires that the scan profiles

be converted from film units ( image density, film coordinates ) to phys-

ical units ( relati 2 source brightness, real-space units ). This convert on

20

- -it^lü

^^Bi^^^^^^^^^ ■■

MMGNET IL ILLU Lir-IL rKUr ILLJ

2400. f.

] f.n

0 60. U 0 gij.o 95.0 100.0 105.0 110.0 115.0

30LMTITUDE—AGREES

21

■■iMiirm HI HiiiriiiiHiii.«iiiirii|-MiirlMimi

comprises the second phase of the data reduction process. The dimension-

al conversion arises from the 5 micron film sampling increment and the total

scan length. The Fast Fourier Transform algorithm used to create frequency do-

main conversions of the spatial radiance profiles derives its frequency inter-

val from the total scan length. Each digitized horizontal scan resulted in a-

bout 1400 image points. This measured profile was extended artificially to a

scan length of 4096 (21 ) points by adding zero radiance values when (after

film background subtraction) both the first and last measured radiance values

were zero. In cases where these two terminal values of the measurec5. radiance

profile vvere not zero, the radiance value of the 40^6 point was set to that of

the first measured radiance value. The artificial points between the last meas-

ured value and this 4096 point were filled by use of a linear slope between

these two values.

The purpose of extending artificially the radiance profile is to mini-

mize possible aliasing which is one of the primary dangers of using finite

Fourier transforms. This smoothing procedure drops the higher frequencies

rather than allow them to be manifested in a confusing manner. The 5 micron

sampling interval thus produces (for 4096 values) an effective scan length of

20.48 mm which determines a frequency interval of C.C4883 cycles/mm on the

film between sample points. The real-space frequency interval (in cycles/km)

is thus Af = 0.01883/magnification, where the recorc'ing instrument magnifica-

tion factor (km/mm) is determined by dividing the slant range distance from

the camera to the mean striation volume by the effective focal length of 12.5

mm. (The plastic lens has the effect of decreasing the Fraktina focal length

by a factor of 4). Thus for a slant range of 1000 km, Af = 6.104 x 10 ^ cycles

/km and Ak = 3.835 x 10"3 rads/km.

Graphic results presented in this report are scaled in cycles/km and

rads/km in real-space at the altitude level indicated on the plot. The Kyquist

limit (i.e., mamimum possible resolvable spatial frequency under ideal condi-

tions) for the scan data is given by l/(2Ax) where ^x is the (0.C05 mm) film

sampling interval. Thus this limit for the film is 100 cycles/mm (i.e., 7.8

rads/km in real space for the present data). In this study, sional informat-

ion (as measured by the frequency dependencr. of the signal/noise (S/N) ratio,

was found to decay into the film grain noise at approximately 10 cycles/mm.

22

__ - -- ■

■ —

The image density information was converted to relative radiance

r.y using post-factc estimates of the film characteristics. This was neces-

b.'.ry since the SRI positive film used for these STARFISH characterizations

was not intended to provide quantitative source brightness information and

therefore was not calibrated. Thus the standard procedures to convert den-

sity to radiance could not be used. The film did posess rectangular steps

of constant density of 0.3 d as the variation of each step prior to printing,

a relative characteristic curve was established which placed most of the

transmittance measurements of the processed film on the linear portion

(having a slope, y = 0.9) of the diffuse density vs. log (exposure)curve.

(3) The third phase of the reduction process involves computations

which produce a sanitized power spr^trum from the average of ten PSD measure-

ments (one for each of the 10 adjacent scan lines in the synthetic aperture)*,

Each spatial frequency power spectrum is obtained from the sum of the squares

of the A';, and B's which arise as the coefficients of the sine and cosine

series in the Fourier transformation of the artificially extended radiance

prcfile. In essence, the sanitization process involves the construction "♦, 5 '

of a frequency domain filter which compensates for the effects of the

modulation transfer function (high frequency suppression) due to motion

blur and film/lens frequency response characteristics, and ^hich filters

out spurious hiqh frequency power due to film grain noise. In this study

the small perspective problem was incorporated as part of a blur correction.

Tho dominant effect on the frequency domain filter and therefore

on the present data is introduced through the signal-to-noise ratio. The

Through this computational procedure the oscillations of '-he PSD are significantly reduced. No other smoothing of the PSD i^ used since smoothing techniques can seriously effect the data.

23

*—-'■- in,i. --- -■■■inn

^^^— -—^^^^^^^—^pppwmi i ■ in

filter function is close to unity while the S/N ratio is above unity. Once

the S/N = 1 frequency has been exceeded the filter function essentially

follows the random excursions of the measured (noise) power spectrum.

The noise power model as used in these calculations is given by:

sin(7Tvrv) 2 -2V/V, |N(v)| = N e ' N Ü 7TWV

+ N., (2.1) a

|N(v)| is the measured noise power at frequency V; Na is the frequency

independent ambient noise power due to background, instrument, etc., noise.

The form for the noise spectrum was chosen as exponential for computational

convenience. The sin (■nw)/T!WV term indicates the fact that the measured

film grain noise is convolved (in the spatial frequency domain) with the

slit response of the scan aperture (of slit width w).

(4) The final phase of the data reduction process involves the actual

characterization of the sanitized power spectra in terms of the fitting func-

tion and the SRI radius distribution analysis . The power law analytic fits

were performed over two frequency regions: (1) the larger 'mid frequency"

region covered the frequency range -3.8x10" Jl k J^. k^^ radians/km in real

space. The lower frequency bound is the first non-zero frequency resolved

by the scan parameters; the upper bound is the frequency where the filter

function suppresses the "raw" power spectrum by lOdb (Table 3.2.3, and Fig-

ure 3.3.1). Over the time coverage of this analysis (330 to 750 seconds)

this freuqency varied between 1.26 and 1.57 radians/km. The 'low frequency'

-3< < region covered the spatial freuqency range from ~3.8xlO _ k _ 0.24 radians/km.

For both the 'low' and 'mid' frequency ranges the power law fits 9

were to a form :

P(k) = ^7(An) r(v+i)Tr t „here k = 27Tf (2>2)

(L-2 + kV+1

24

H-mr iinnnm.-riiinilir inn i nil in i nir'»« " T | ■ ihMMlMlllllMMlllMiMMB*M«liM»MiMMa«i««M<MiMMIII

- '■nil. ii

The fit of Equation 2.2 to the PSD data is obtained by an itera-

tion process. First, an initial estimate of the value V is obtained by

least squares log-log fits to the measured power spectrum; i.e., ln[P(k)] =

ylnk + B. Thus V is related to the power law slope, Y by: V = -(7/2 + 1) .

Having determined an initial value for V, an initial value for L in Equation

2.2 is obtained from the relationship P(k) = exp(B)/[(L~2 + k2)v+1] where B

is the value obtained from the least squares fit. An improved value for v

is then found (using the initial value of L) by refitting the log-log linear

representation of the PSD. This improved value for v then leads to an im-

proved value for L, etc. Iteration between V and L continues until their

values converge. With L and V determined, the value of (An) can be deter-

mined. This parameter is related to the variance from the mean of the index

of refraction (hence, electron density) in the striated region.

Exponential fits [P(f) = P e 0] were also performed over

the frequency interval 0.016 < k < 0.24 rads/km. As will be shown later in

expanded frequency scale plots, this frequency range represents somewhat of

a compromise, in that below a frequency of 0.03 rads/km, siqnificant depart-

ure from a single exponential of the data is observed. Because of this, a

second exponential is also fitted for the very low frequency k ^ 0.03 rads/

km region, and is also presented in the graphic presentation of the data.

The addition of this second exponential fit allows the low frequencies to

be included. Otherwise, the low frequency power that exists in the stria-

tion structure could be considerably underestimated.

Following a procedure developed at SRI5, the exponential fit

parameters were also used to estimate the striation characterization in

terms of the total number of sLriations. The details of these calculations

are also presented in Reference 4. In this procedure: 3P

DC N = T P

0 (2-3)

25

— ■'-H.IMMIMIIIII-IIMU'IIKMIII iiiiiiiiiiiiiii i .a^njM^maiMil—n

_. """■'■

and defines the total number of striations in terms of the measured zero

frequency DC power (?__,) and the zero-frequency intercept of the exponential

fit P0.

The striation radius probability distribution is assumed to be:

N(r) - 8N (2-rrf ) T o

3y'Tr(27if0r)

exp [ -l/(2TTfor)/] (2.4)

where N(r) is the relative number of striations with Gaussian radius r; f0

is the e-folding frequency from the exponential fit. The most probable rad-

ius (r ) defined by the above expression is given by:

r = l/2TT)/3fn '2.5)

As detailed by Reference 5, Equation 2.4 depends on several as-

sumptions about the physical nature of the striations. Such assumptions in-

clude: (1) the observed cloud is an assemblage of individual striations; (2)

the striations are rendomly positioned throughout the cloud; (3) the observed

radiance is due to recombination only — thus, it is proportional to the

square of the electron density; (4) the cloud is optically thin to its own

radiation; (5) the striations are radially symmetric about the magnetic field

lines; (6) the electron density profile is Gaussian about each striation axis;

(7) the peak (on-axis) electron density is independent of striation size.

26

.. .„ii, .u ■,. i.i.,. n iim n- -, ia>iMaljyg(|| -^MMMMMI ttmtuit^m

vmmmm

SECTION 3

DATA PRESENTATION

This section summarizes the time/altitude characteristics of

possible index of refraction variations in the ionosphere in the time period

over which the STARFISH striations were measured. These characterizations

arise from relative radiance measurenents from e specific SRI Canton Island

film and are presented by power spectrum plots and tabulated parameters

describing simple analytic functions fit to these PSDs which approximately

describe the empirical data. The PSDs cover a spatial frequency range which

contains essentially 100 percent of the measured power.

Only a limited number of spectral power plots are presented to

illustrate the time/altitude ionospheric variations. The time evolution of

icnoFpheric striations was explored by selecting eight frames which covered

a time span of 330 to 750 seconds after burst. The altitude variation (see

Figure 2.2.3 and Plate 3.1) at each time, was obtained by selecting experi-

mental data from five non adjacent windows from the scanned area of each

frame. For a mean altitude of the magnetic field or the striation volume

at the burst point of 800 km, the altitude of the five selected windows

varied from 1000 to 1120 kilometers. At a burst point altitude of 400 km,

the analyzed altitude range is between 810 and 920 kilometers, while if the

altitude at burst latitude is taken as 800 km, then the altitude variation

of the selected windows is between 1190 and 1320 kilometers.

Figures 3.1 to 3.8 graphically illustrate at each altitude

irregularities in the relative radiance above film threshold as measured

perpendicular to the earth's magnetic field defined by the elongated

striation direction. These graphic illustrations are for the 600 km

27

i,'t— —■ -- ■-— — - mm M mmmmtmmmmmmtM tm^m

NO RTH

SOUTH

P LJ\TE 3 . 1 28 T H'!E 3 0 (j - 3 6 () s" nc.: s

niMnm

T Rflw. RFiniFiMnF FIT ^^p smpMn' rißiiFF 3.1

-n I: M

1 n,, o -- -

^VilvV'

io„ o

l/^fflfr d^M«^^ iWW^'

1 1 M ... 2

^ywv4 ^^^^:

J J

't^SL^L

k

Hm^1 / ►/w %*:; "4,

IX.

aMA-^i ̂A:*:

N^M/f _ km ^^M^%^.

i fc

f\ i 7 ; I 1 111 H ,J I,

_J 5 I

; 111!

A ^Wwr HV^J ̂

-'^N^V.,,.,,

0

WEST

120 240 360 480 600

EAST

29

■' -...-.-■-.■■■.^..~. -...- ! n MMMMMMMIH ■MM

^i-t.-.: •■■«::. g-TT

NORTH

EOI.'TH

LA. t, ) . . m ^ N-I ■ f

Ltl

_J

^yi^^U^i'^ld

m\i miimr, fir ^m TLpm 3.2

4>u^^wz-V.,,L ! i i .._i_. m «^ V ^

,,0 K^vi^V,^ ̂At^' A^AW Ww iW^

^w^N^vk^ -i _"

^•^iy^ ̂/1-W^ Wl,

^JWi J^Mw^^NrV/^ :

lü.i1«

^V/w ^A ^fMi V1^,

i o.

4/4VVWA

i 5;

I ^ '.H

«4'

h^iv* r^^

J_ J l«i. 0

WEST

120 240 360 480 600

I'AST

31

!__ - ■ ■ ' —" MMMMMMf^ MMIMMMMMMM^MMMMMI

Lj_,r»^Ä^.

NORTH

IE*, '■:.■■ : V/'ü

m . P*:^;;;^:,. . :'^l"'-V

^V

%3-' ■

■^mtf*" SH ■$$$£

m '> ■■. * -

1 ■> ■'

■■■',• ■ H

W 3

. ;.^-v

SOUTH

PLATK TIVF :>n 4PiO sfd'Tin!

——•——■—^■■■■P

3.3 -r—

s

2 ;

— Tft r ta: "TT

i f^m^^/^^

^^'^W^y^

r -f4-- *—-

w Hyp

^^i^o^lM fM«,«

r-

-I--

^

-^ii—«. ^

ly^'i ^S ^li

yVfe?^^,^

,i' 1-

r-'^ 0

WEST

120 240 360 480

33

5 ^

600

RAPT

- - ■ '■■-■ ■ -■■■'■• ■ - ■■ ■ ■irniimiiniiiiiiinnii- - _^Maa^«^M>^«iMim>^»»- ■^^M

msz

NORTH

H

<

'■?: "

* ;- - '

t

i ■ I/.

SOUTIi

'LATE 3.4 TP-'.I: 4 ri4r snctr.f.

11II

3.4

VW^v^ ■I-- -f-

2 !

i— . ^r ^ft^-^—,—

w («,1 ,*1" »■■ v "1 iij*

■'(fV

iA ^KJ^, ^VV^VWY,,

- i^^t

, J ^_ ; j.Vjy>

', W.>&fcr ^v^^,-. >

... 5

(V I ,1,1 —^j—^j. jjiV'i VR

>/>t. ,.

ivW-^ V^i!\Av

H, cV,.

I 0

WEST

120 240

35

360 4R0

I

600

EAST

-.-. | ■ -- -— - tmmmaätimim

mmm^a^sir &1.1.....

NORTH

ü.

SOUTH

PL ATI ?( 'i'IVI-- jr - f no ivcc r tl

MMÜHI

r n r r i 1"l Q |R 3.5

-4- t-—-[ 1 '■ 1 'jfi i./ M

'4***^^^^^^ ^i'l^T

LX

-J

5. 0

1 1 4 KM

^i5^^!t^^ —-^VVsAwr.^-

^A^W^M'

W,l*i VSh ^VNyL,

■Jte^W^tw^^yV:

fu^ ;: M

A^s^sW^' -#J : --MVTJ

MrWu ̂, »fi^wV*vv~

in on Kr'

; ,^5

—,i_ 'i^w'V'iVVHi,.

iFWmWaw—| iifwi—i«,i.Biwmaii«a<tniin|n:K

0

WEST

120 240

37

360 480 600

EAST

■ ■ ■■■ -^--^MtMimimtu

NORTH

u: <

'S

SOUTH

I'LATE ^.6 3 8 1 I KV tOO - f f'O :;(M'<' ni:r

i^mmmmm*™-

pi 11 ; pcin 1 Ht- H 'P PT ': "v ':■: n -r-^Ii Lai.. JXLUJJ411äU.U.,IJJ—i*lJl it', .J r r i r !

i I I j I i ! '■

0 --

az ar

f—■

! liJljjJ. I I

—4 h- ■r h

1—L

3.6

< -1 on i/ f"i

'T^^f^^w^,;

JW

^^1 ^^>^^

0 -

•vv

)_

M

^ v^^f,^

^s^, i I '^VW^Vr.^;-

)tW \ -.L?^

W A,^V / W/^Lv

r^v'A^-^.u^AAw

0

WEST

120 240

39

360 480

j

5 I

600

EAPT

- ■-••""-- ' Ill 'I IIIMIIII •M^^H^M^HMMMIri

^^■w- ^SSF" ^

NORTH

H u

.SOUTH

ILATI: -10 T i r-"i 'f'' '0 r.ccc r.fl:

mi' i I i'"«

• T J-UJ7»XU^l.. i' t ii ..L„A1^1-^..,.LJJ

■ppnKirp i-- r ni ipi 3.7

~r"

i l i

i^r^ji^ i \f*HT ' i' ,, MK - !_'- U-W-1^

| .. 2 j

w ii^±-l:.L^ _ u >il:^A^^^*:K 1 ' i. " 1 ! ' ' !

i

HV

}A>mv^ Ä '¥^^K f*FA i*

;.o4- l L "„^i1!

W HA-

i'VV^^^.\V^iV

te/^w'/- #

1 ^11

i 0

WEST

120

%h

240 360 480

41

600

FAST

"•"•"■"l"llf '-— -" ■■-nil.- HI-- .immimm ■MU IMM

——" -w

NOFTH

r .

re i'Tü

FLA':'! i n

3.8

,:4--

1' *!■■ «»■■■tl^H- ■

^i^-v^yy^1^ --ir^Vtr—i-- •'V - -

■ r ii 1 ' J. ;, mmshii

J«"** "■ •

-i-

M

^i|y^ir,:^" !«■

V,X\f *$■■**f>lt

«1 ,*f t

i!^'.'»

i

0

V.'LST

120 240 360

'rV'VV

480

43

600

KART

"-'•————- ■■— - — „ggg,

MM

mean burst altitude of the striation volume. For example Figure 3.1

presents the spatial variation of the relative radiance of the first

of the t' scan lines analyzed in each of the five windows which were

used to create the sanitized PSD at 330 seconds after the burst. At

this time the film recorded image is presented in Plate 3.1. As quickly

observed by a review of Figure 2.4 and 3.1 and also Plate 3.1, the rel-

ative radiance values for the analyzed window 1, are shown at the top.

As one goes down the field line towards the southern conjugate, the

radiance values are shown lower and lower in the graphic illustration.

Thus window 5 data is at the bottom.

As also quickly observed the plotted radiance is for a right-

to-left (i.e. West to East) scan line of the photographic image illus-

tration. Similar information for the analyzed five windows at differ-

ent times are presented in Figures 3.2 through 3.8 and Plates 3.2 through

3.8.

3.1 PSD, POWER LAW DATA PARAMETERS

Figure 3.1.1 to 3.1.10 present, as a function of time at a given

altitude and also as a function of altitude at a given time, the behavior

of the normalized power spectrum at the spatial frequencies within which

essentially all the measured power resides. Although such representations

of the data were produced for all three burst altitudes considered only

those for the magnetic field line representing the luminous striation vol-

ume which passes through 600 km altitude at the burst point latitude are

illustrated by these graphical presentations. The power spectrum was nor-

malized so that the area under the curve is equal to one. The maqnitude 8

and its variation with time of this normalization factor (-10 ) is illus-

trated in Figures 3.1.1 and 3.1.2.

In order to observe how the power behaves at the lowest frequencios

44

■"—-• -- _- - . -,

——^ ■ ■■ I ■

the power spectra were plotted against the loq of spatial frequency (k=2TTf) .

The expansion of the region at the low frequencies shows that in a log-log

representation, the data indicates that at near zero frequency, the power

spectrum possesses a small plateau followed by a steep, approximately two

decade drop in the spectral power. This PSD behavior was not observed in

similar analysis of CHECKMATE striations**. The PSD also reveals that as the

spatial frequency increases, a frequency interval exists where the log (pow-

er) vs log (frequency) behavior approaches linearity.

Overlaying the measured data on these plots is the power law fit

expression given by Equation 2.2 as determined by analytic fits in the 'low*

(k S 0.24) frequency interval. Similar overlays were also produced for the

'mid' frequency (k 5 1.4) interval. The low frequency fit interval analytic

overlays were selected since these gave more frequently a better fit to the

measured data.

It is important to note that the power spectrum does not yield

a unique solution to Equation 2.2. The solution depends on the selected

frequency interval of the power spectrum fitting range that is used to ar-

rive at the desired parameters given in Equation 2.2.

The low frequency interval is defined as the interval that in-

cludes all frequencies up to a maximum frequency of 0.24 rads/km. Thus

the selected cut-off frequency is independent of the measured PSD and there-

fore does not vary with time and altitude.

Tables 3.1.1 through 3.1.8 summarize all the least square fit

values for the parameters which allow Equation 2.2 to best fit the data

for each of the measured PSDs in this study. Included in these tables

are the results from all three burst altitudes (400, 600, and 800 km) con-

sidered, thus allowing a comparison of the variation of these parameters,

which result from the altitude ambiguity of the striation region.

45

iii«ann—Mi <MMltM||a^jj^g|gj^||||aMag||M|||

1 ■■ '-

Tables 3.1.1, 3.1.3, 3.1.5 and 3.1.7 present values that define the

analytic fits as obtained from use of the 'low frequency interval", while

Tables 3.1.2, 3.1.4, 3.1.6 and 3.1.8 present values that define the ana-

lytic fits as obtained from use of the 'mid frequency interval'. Because

the selected cut-off frequency, k , for the 'mid frequency interval'

is defined as the frequency where the filter function decays by -10 db,

it is dependent on the measured PSD and therefore does vary with time and

altitude. Its time/altitude behavior is presented in Table 3.2.3 which

lists all the kj^x values that were used to arrive at the 'mid frequency

interval' values.

Time '-nd altitude variation of the power exponent, V, shown in Equa-

tion 2.2, are presented in Tables 3.1.1 and 3.1.2 while Tables 3.1.3 and

3.1.4 present the outer scale size, L. Table 3.1.5 presents the variation

of the slope associated with the linear portion of the loq (power) vs. log

(frequency) plot, while Table 3.1.7 and 3.1.8 give the value of the scal-

ing factor. A, which represents the numerator of Equation 2.2. Also shown

in these tables are the average values of these parameters where the val-

ues were averaged over altitude and time.

To give some insight into the time dependence of the power law par-

ameters, the values which were averaged over altitude at each time are

presented in plotted form. Thus Figure 3.1.11 presents the time behavior

of the average value of the exponent, V, and the outer scale size, L; Fig-

ure 3.1.12 illustrates the time behavior of the slope and of the altitude

averaged value of the scale factor, A, in Equation 2.2. These sets of

graphic illustrations are shown for the three different considered alti-

tude locations of the striation volume, as well as, the arrived at results

from the two different frequency intervals used in computing the analytic

fits for overlaying the measured data. Other plotted representations of

these parameters are possible from the presented tabulations. These are

left as an exercise for the interested reader. The data is detailed e-

nough to arrive at an understanding of the sensitivity of the data to the

ambiguity in our knowledge of the altitude of the striated region.

46

in'ii-iiim ■irm ■ ■ ii aaaanigag

r

3.1.1

■k^S-:

;ui -

wv

1.295E09 9.713E08

>V,

,168E08 ABCISS? x 7 = k (radians/V.iloroeter) ^.l^^F'"1

47

.-.>«,:.-«W<«*«fo*llrtX:ffi..-..

I" «"

3.1.2

_ _ J^^T

:/■"-...: . ;

-1 .. _._. __ .- : _ ^ .. ..

-r-_j_. ', • ■ •'v.\'. ' 5

V.

■-- ■ ■ ■ -----i - - ■■ - - - - ■ -

[_ _ J __ l

- J 1 ^ - - .:V ■ i '■.:,. '

ij 'i ' :

■*

'll

--— "■■"^■■■" ■

" i

■■■ -^ ■

~:

.-«•

2.155E08

3==.'

1.534E08

*- r. .-:r—^::-- -T..:t:t;ifr-:-- "

M:M I, . -.' i/- M" t- .- _ ^ .

'. %

" .M'Äi ■i* It:

#■»

y.

7,918E08 ABCirsA x j = k (radiansAilometer)

48

6.865E07

' —-«* —____ —^ a

—~

3.1.3

■|«—WBBW

:im r;:: ci^x

wm

•ft% '

*»' >

1.2 37E09 1.030E09

,-1. .

'«.,

'üfe

m ■*-4i

Si.

8.108E:08 ABC1SSA x - = k (radiansAilometer) 5.457E08

49

■*■■ -' '- - i ~—— -- -■- ■ ^m^amm^^uim ■M> -mm

3.1.4

3.268E08 2,414E08

^^ tttfc^rirjrrd

::1 fe^s=g!!S y^J^'f I -r:;-"fyff?^:--rf ---i-•■-:..

1.197E08 ABC I SSA x - - k (radians/kilometer)

50

1.286E08

=3 ■ , ..„ „^ |f|1. , ,--^::_-;E. t—am

^^•»

3.1.5

—■——■» i ■

;^E=^; E=

*i s

t-I-t3-—-"*

H=s==*a£; .jp;: rrr:::":^^: 3 L: j'-TX §

^ ^n--rc nz^xra p ll.- ^

' ' i

;-n- ■1.

'4

ismm

m 1.2 38E09 1.191F09

:!.^;;:-bi tü;-'"""""^""?""?1"11^-

•4— ::i fftt^ jrgf-^ri^: [:: .-^"y?^7

i

--4

W JiS^i't-*^^" ^ 5;t" ■:;=2:^ ;,

f ir. :J3" .-'--■rj"—I-t. j:r "

r=TS=r;^r~=::=t:tr.-~ö^l-:

3r?n-:

i i T:,^;;.

1 s !

iJ^^zrfa^jpj3tL~J^y :...T^XM-> s_;-.,_^,.::;_:'::_ :•:.:.„ A,

s i j nfe i

.pi. i

1,099E09 ABCISSA

x - x k (radians/kilometer)

51

7.796E08

■ ■--■ ■ ■ ■■-■ - — ■ > M..w.[llttowi.^^»^^-.*-t

Illl-I

3.1.6

X

■■tsgi; rj-mteS^ :-i3SE- J i

-i *-■■

sfc; _r_"t" ' ' 11

i i

sAj^rz :

^§8 .

^ f.. 4

&.052E08 3.712F,08 -a—1 ' 1,1 my

r i:^^ -CJ :3iT-Ttffff.-^_l.;j:v;,.

I^W1- ^"'^-ji^T'?

- -_- fc=^=^=4==j=p4=s^m=.- :*n^--t4rtt| I- --vr.:;-.:^4-S lut jl ti.

--:z::-::.r:4 . I ! H Li'-' • _\l

---T-" Hi »- -| ' -^4-H-t—l^j 1+-....4 ■<'•;•* H- --V,

\^

HU

liillii . ;:i-:..,ra-

1 ■ i

1.597R0e Tl

ABCISSA x - = k (radiansAilometer) 2

52

1.733F08

*■_•

3.1.7 1 ■•']

1.508E09

t-::L ^3SH3HEE3E3331 ... J- ■

i ■

1.746E09

;;f;igg^:-::3=|3=^g5g^=f3^-:r ;:E3imj| (=::;v: T-^:: iF^^tfi r= ■: -! :f ^ J f I' j

:!.. i -. ; i : : t. tl ! ^ .■-.Ji-.t t-l T4-rt^~"t-r-. i ! : I i ■ ri: 1 ] : ; : i ! i|

* «

■ r- r

. ,,,, i ■ ,

i +t

v A.; " : ■: ■;.

'. ♦ . i\l ' ' '■ W

.11

I !

I I

1u

1.770E09 ABC ISSA x - = k (radians/V-ilometcr)

53

1.1G4E09

■TI. ■■— - ■-im mi — —liM^tMA

I

^ T1^rr, ,..,

:-C: r ■i ;- r- i'"

3.1.8

6.481E08 5.180E08

■:|^;^ffl^ f — ■■■-^™"^™^rMi'rrr^^?,-™™'T-"""(~---f-"f ■r-

■T t inzrnrn

,4 4 u- ^ t j-, "K ..4 ^ S-i^ . -..- -. - -.-

firli.. i-:

«-f ' - - - - -

i

: i

1 ! i

..; t-.l- .t-i;14*H, i 1 -4 t:.*ii-

2.177E08 ABCISSA x - = k (radians/Kilometer)

54

2.046F08

—' iirt—Mt ttmtutmmmmmm

^^»

3.1.9

zt=t=i::;t!=m==::

izilin"t"~i T^t]""T 'fl—t- -rt-j |-r'ri-

L:r:^^^^-

tli !► r-

ill r

:„:-1

:-:H ^....-4

zprtFCpni:

ff tntr

gü ESSIT!

Ah

2.034E09

-i-'XL: . I ....... gLi. ...|

2.539E09 --,—f.-,,-,..,.^.^—^™,—t—,—n

-ff^ff" ' <: ' ■ ■ ! '"

J ; - I 1 ^ t-l IJ 1J :^ {• t I. • .M Ml , t

Fr!« t

1 ■,;;.-::

1 ; : S ^*

^1

Uli Ji

■ ^

ki

2.201E09 ABPIfSA x - - k (radians/kilometer,

55

'vm^wt-tKitmimmim* •

] . 3f'2FOO

IfaMkMAMMMMMa«—«iMaVM'^Ma

«IP — :

'Jill I^LL_

--« r—-—Fl I i i -ri— r—f—t—t- r.-.. ,..,.■ :

f -r^rf ^:ZT-^ ■-■'-' - - L.

ta

-Igrjj^j. _ '; 3--:; -.1-4-3 -3.

iHUij —I—r

:t=z!r:nrrrTtlt"r:;:izx:E

tt*fi»i=*===^---=: =;:::i==:==Ji==V|4»*;_=i;r,^-...:;rT-::;-;;-_.=-

— -\* Ji -

-p^i4n:-".F=-:::l:- rtrtü H

7.52E08

- ", ' ^:::-::i

3.1.10

^3 U:--::-^.

-f—t-H(-f-|~t-—^

Irl^'xtf: -^_-i L-ctxtij L- 1-:- ,:-/",

^T-tC".

3

■::1

1 .-+- ;.

f ;rv'**- i

■ÜB _^s 5.5?2E08

r—^—t—r"

r-^rr; rJ-J-ttfi i "'-■ '!: o! ■-t

ü"|r.s*3JiM5 !-" '+=f'j-t;iH: ' r' '-'. 't'-F**

! "

i -I 1 1141-1

f • '

1 :. s*tr,

2.400E08 ABCISSA x - ^ k (radiansAilometer) 2

56

2.IR^KOB

MM

TABLE 3.1.1

MID FK TTMf

(SEC)

330. 390. U5u . SIO .

«;70. 630. 690. 7^0 . TIMF

GIFNi.Y FOWKf-

,9^F

,3;F

..33F

.wlF

. 1J 7 h

. S '.F

.J.SF:

• n? j?

■ (J<

■ o? • bi.

• n? -n? -n?

L C U I- Tl E X P ON Ftl T M U ( ^ 'J . I) 1*00 KM AT

q It, .

-f .?Ft -n?

c; . 3 r F - n ?

-U.Hnt.-0d -h.7 if -Ü? -h.hut -r?

-h ,w«F -U?

3.üHF-n? ft. 7?F-n2

H.hbF-n ^

-3. 7M:-(U - ,1 . «'♦ e - 1 ? -t, .i.r,f -n ■;

■ 1

-1.H9F-02

6,9 3f -0<? 7 .1 ?F -L 2 , .3 '.F-J 3

-l,.?^^ -u? -1 .7 IF -0/

- W.7F-Ü2

-2.12b-02 o.t, ^E-l>2 7 . .•> .U - " c- 2. ocr-n?

-s.M 6f -ü? -2.1%t -02

h . F -L - i^ 3 -P.7/C-07.

b.i^ST PDIM fl>/r, UUFP

flcTITüGt

-l.^it-O? 1 . b ^F - 0 2

^ .i. 7F-u<- l.'.eF-G?

-5.r.6t -C2 - «♦ • 0 6L-Q2 -?.ft3F-(j2

-3 . lt.t -12

• 7 . ? 7F - o 2 3.0 3F-12 1.79t-0Z ^.9'.F-0,; 7 .OHf-r,,-,

MIO FFF TTMF

rsEO

3 30. 390.

4 50. 51 0. 57. . 63Ü . o9D. 75 0. TTMF

AVb

r.L-Ni » FU

120.

ui-f- i.nw

1

, tv 1F -

.i* !F-

. 'T'*c -

. . /t -

.H-F -

.7f F-

. U^F -

n ?

0 2

r 1

01 n i

ii

^.3 • <.9

• UQ

1 . 1 • h. 2

-1. < .«.? - l.U

HT P ß

IF-0 2 -' - ;? r r - 13

hi- - T 2 ? c _ ; ^

1r - 12 5; -n.<

LTiTunr (KM ) 2.21

1 1 7 f .

i- .i.ct- o ;• , .r,7F- n ?

-/ .M7F-';2 - 1 . 1 ^ F -1] ^

1 . l^'-ll? - S . 1 ^1 - '1 ■'

1 ü *• ^ .

..7hF 1 . / 7 F

-2 . bnl

-r ? -02

-7 a.» r -C2 1 .<"-A -y3

-5 . u c F - u 2 -l.Jr'f -U2

„r K'"l "I

1 u u 0 •

-1. - kJ ' 1 . 7 9F 2 .SIF 2 . C ht.

-9 .t- It

o2 r2

■02 •02 •03

:-u2 r, < r _ n / 1 .i , e _ n 9 - X , „ '• C

- S. 5 3 r - j ^

-"» . rt " r. - 0 i.

-7 .J fr -13

iiitvoT H^INT ft V L. 0 V t K ALTTTUCt

1 .22E-02

5 . 3 fcF - C i -h.bFt-0?

?..: 9F.-0-. -u . *iht-- 0 2

-^.3lF-02 -T. ihF-02 -7. 0 't -0«:

MIO FFFHl

Tlil" (SLC)

uo. ^9Q .

SIP . ^7^ . 63L..

O9J . 7^0 . TTMF

Ai/(.

r pn

'.- ).

,. a -

. - 7^-1

. U riF-

. •? 2t

. ^ HI

nf f

n^

i i

1.1 ■n i

t.<4 F 1

IMS,

< . h S F - - < . ^ I r -

1.7 'r- u. s; t -

- H . ►■ '. ^ -

-1.7, - ~? .u ; t- -

-1 .2H-

-7 .;• .<■

At.TITu['c ( <" I i /1 <-. 12 3-1

■02

-" 1

-Z 1

7 . VJ( - r: c

h»f - 12 T-.F-,),' 7 - I - !) 2

■) ^ , <M ^ I HIJKS I F'ol NT

A V!, UVF h 11 ^0. ALTIT.JI i

^. ^ t 7 .^l -

■■i .**, -u;

-1 .»-: f

-1.1 «■

.r-j2 --. .9 i» -i

- I . 1 ■•< F -1" 1

i . (• '.■ - u c

1 ., i- L - 1 2 •i . r ,M -02 ^ . 7 M ■- - u 2 1 .,' hi -u2

-i. , n9r - ■ ■ s.f,,'r-n/ 1 . ♦ r'r -"''

■; . 7 f i- -1.2

i«. S U -02 2. j-t-0 2 ?.«2t -02 ), r'F-03

•n.Zl'i -•:.' -1 . u ■it-01 -7. S.-u. -f1 ' -1 .071 -U 1

57

mm

TABLE 3.1.2

LOH Ff-PCf-'Ni-Y FOWcK LflVs FIT EXPCNtM NU (fQ. ?.?) -00 KM TIMF flLITTiUjc (KMt

«SEC» ^?0. 11^. ^C. rtf-l. m.

Ar H.Jf-ST HuINT AWC OV cK ÄLTlTULt

3i0. ^."J.IF-V - - . T f ^ - n ? ."< .b/F-n < -1.7 CF-0 ? -1 .cfct-Q2 l.b(SL-0 3

390. -2^öt-Ö? -1 .^vf-o^ 8 .»-»-F-Ü? : .ITF-C 1 rt . 1 1F - u 2 »• . 3 t-.F - 0 2 wso. -6.1UF-C? 1.n lf-02 ^ . 7 >♦ F -1 2 U .hfc^-O? "> . rt J E - n 2 2.Glt-ü2

51C. -q. 33k-0 2 d.2 5i--C2 5.-SF-.1 ? - '.U nF-D2 ^ .-of -0 2 --. H-^L-Q 5

57:. -7.1.it-".? M.S ^ -C ^ i.Pzf-rt 1.9/ £-0? -7 .l^E-G^ S , 5 HE - C 3 Ö3Q . -5.0LF-Q? - H . 3 tr - u 2 i.*1F-l<: 1 .3 It-O 1 i..l2E- 03 2.'.3t- C3 Rqn. -1 .2 »SF - Q 1 -l.^bF-ül -3.^2F-0 2 3.0^-02 -i, IMF-0 3 -S.c,7f-^2

^^n. -?. 3.^-0^ ^f. 1 »t -U2 -u.M^F-n2 -7.i7t -P2 7.7 fat -02 -fi.jiöt -03 TIMF

avG -S.li.E-u? -J.r.'-.e-o? 2 ./t.r.-G2 ^.h^h-u? Z.^ML-02

LOW FRFGUNCir HOhEK LAW FTT FXPCNtMl Ml UQ. 2.2) oüj KM AT HUr^S I KuTM TIMF AlTITtjoF (KM Atfb OVhK

(SFD ii2n. iiiu. vjr'f. m^b. uon. ALTITUL»

3 30. 3no . U5Q . 510. 570. 630. ftqo. 750. TIME

AVG

-3.T2F-J2 -2.^of -0? -«4.9iE-n2 -i.,qfcc-02 ■?.-»GF-C? -l.uef-n? -ri.qCb-02 -3.?cf-_u<'>

-7.S1F-U2 -1. t IF-b? ■1 .''U-ni -u.3^--02

1 .5.7F-02 -1 .qjF-n2 q.?hF-"/ i,?ue-c2

•: .OrtE-O / -.uir-o'

- 3. n MF - n ^ -ci .t^t-b

l.l^t -n? »..i.'^ -L 2 -..7 CE-n2 1.2F,j -0 2 i . / ^ -: - o ^ i. H u ^ - u 2

.bt'--n2

-l .HMI- - 0 3 2 .1 1F - ^ 2 rt.C 7t-02

-2 .uut -[)-.■>

-1 , J ht-*,3 -2 .i- Ht -,, t' -1 .1 ^r

-1.H1.E-C1 -l.n?F-01 -:.c":f-il2 -3.2^^-02 -2.rti.f-02

-'j.MZf -0 ä - H . w - f - ;, ,i

1.7-E-02 2.1 'F-0 3

-J.QSt-02 -2.53f -t;2 -♦.23F-U2 -/.r>Hf -02

• 7. 1 OF - 0 2 . I IF -0? -rt.^.'F -ü ^ 1.1^-02 ^.^li

W FPFCLFNLr POKF»- LAW FIT - X PC(a N I M) (F J. 2. ') rt U 0 K ^ H 1 H>JiO, I POINT

TIME A ( TT Tut) f (KK ) AW (, Oyt »• SFT» UcO. 1 5 1 ■> . VK^. 12 H. i 1 H, ■ ALTI T.jLi

330 . -h.-bF-u'' ? . h H r - 0 2 1 . •-1- F - 0 2 - i.2Mf -0/ -4 .4 ^ - J3 -1 . 2rtF-C2 390. -•>. J1F-G2 -l .niF-m -f,.^'f-n^ 7,h2F -0 2 1 .-.21- -IJI - 1 .: 0 f - c.,

'♦5ü. -f .r,7F-n? -5.3nF-a2 S.SMF -n ? 1 . 7 4f -0 2 1 , 1 7r - ul 1 . '■> 'i - fl 2

5in. -s..'qt -(12 -3.7ff -.-V i.'"-.» - r ,■ -' . 7 7f -u2 5 . 7'•if -1.h2t-02 570 . -^ .2rF-r? - 2 . q <■-. F - o 7 i . v<r- n, '. .* 'A -? ,' -/.r-i - oi-' -2.2ft-C2

63 o. -1 .1 Mf-u 1 -1.2 7f -0 1 - 7. n/f _n / -2.83r-r ' 7.^i - IJ , -'>. Wt -U2

f)S0. -7 .snt-cz - 1 . 7 ^ - '1 1 '. .l)!E- 1 . -..7 ^ -r,i 3 , M ÜF -lj<' -U . UMf -(J/

7SL. -f-. 'nF-f,/ -(: . 4f h -" ■' -1 .<'■'» -i 1 -7 .c , t -1 2 ..' t" - 1. 1 - 'i . ^ i( - u2

TIME AVG - 7 . 0 '4t - ü >" -7.1 ?r-rt? - i ,hui -,] ; -U.2 '■• -r < S.fa?" -02

58

■ ii ■MBi AMMUM MMMMHte

1 ■ II

TABLE 3.1.3

HID FREQUEMU PDwEÄ LA^ FIT TME

(SEC) 92D. 915.

-JW7 390. '.SO. 510, Ö7D. 630. 690. 7b0. TIME AVG

3JTER SCALE L ALTITUDE (KN)

890.

(EO. 2.2 -

2,Ü8E*02 2.87E+02 3.^0E*02 3,59E+02 t.t3lE+02 3.82E*02

'r.^9E*Ö2 3.29fc*02 3.96E+02 3.98E*02 3.e6E+02 <..i2E*02

3.fc2E*32" 3.75E+Ü2 5».^66*02

J.711 + 02 3.61E+02 <..25£-»'02 <..i06*02 <t.'t3E+02 <».2ÜE*02

3.9'ȣ+02

851

<».35E*02 3.91E+Ü2 <..0<.E*02 <». <. 2 E ♦ 0 2 <..76E<-02 <..'.6E*02

<t.56E*02

<i/RADIAN) AT ^00 AVG OVER

810. ALTITUDE

Kl

5.06E+02 <t.98E+02 <f.'.7E*02 3,Ö3E*02 3.98E+02 <..63E*C2

3.91E+02

3.7^02 3.73E+02 '..02E + 02 3.98E*02 't.37E*02 <».2^E + 02 ^.17E*0'2 <..32t*02

3.'.9E*02 <».J5E*Q2 <t.lbf+02 <..3'»E+J2 ^.35E + a2

MID FREOJESCY PO^E« L*ä FIT JUTE* SCALE L (EO. 2.2 TIME ALTITUDE (KM) (SEC) 1120. 1114. 1078. 1045.

- KM/PADIAN) AT 600 AVG OVER

1000. ALTITUDE

K1

330. "T9DV 450. 510. 570. 630. 690.

TIME AVG

2.<tqE02 2.33t*ü7" 2.i9E*02 2.81E+02 2.42E+02 4,3BE+02 3.0<.k+J2 Tvrwrvz

2 .'-. 71 ♦ 0 2 "7.'t5t+U2 3.Ü5E+02 3.12E+Ü2 3.b6E+02 «..77E + 02 3.<t3E+02 Tr54E+D7

2.83E+02 -^-.T^E'+UZ 3.22E+C2 3.47E+02 3.70E+02 5.08E*02 4.4ÜE+02 4.20E+02

3.61F02 l.^BZE + OZ 3.61E*02 3.99E+02 5.04E+02 3.25E+02 4.08E+02 4.BCE*02

't .JOE + 02 3.9'iE+02 4,56E*02 3.61E+02 3.69E+02 3.72E+02 3.73E+02 3.66E+02

3 . Ü 8 E + 0 2 3.06F+C2 3.33E*0? 3.'.0E+02 3.70F+02 4.18E+02 3,7<tE*02 3.93E+D2

2.8'.E + 02 3.32E + 02 3.71E+02 «..02E*02 3.86E + 02

TIME (SEC)

PUifEK 1*1 FIT

1320, 1315.

1ÜTER SCALE L ALTITUDE (KM)

1265. 1239.

(EO. 2.2 - <H/RADIAN) AT BOO AVG OVER

1190. ALTITUDE

KM

2.78E+Ü2 <♦ .0Dt+U2

~5~.15rTDZ 3 .b2E+J2 3.74E+02 4 .406*02 '».'.OE+02 ^ .80EO2

3.J8E+Ü2 4.80E+02 Tprzttrz i.bl£+02 3.82E+02 5.i2E*02 3.96E+02 3.94E+02

2.97E+02 3.52E+02 T.5ÖF*DZ 4.^üE+02 4.40E+02 p. 38t+ü2 4.3QL+02 4.i6t +02

3.48E+02 4,77E*02 6.51E+D2 6.44E+Ü2 3.99E+02 2.^3£*02 3.6bE+02 4 .6üE»02

4.00E+C2 '..70E+C2 3.91E+02 3.85E+C2 3.20E+02 3.Ü1E+Ü2 2.!35E+02 2.65E+02

3.26E+02 4. 36E+02 4.62E+02 A.38E+02 3.331*02 '..O7E + 02 3.79F+02 ^.ü7F+0?

4.ilE*02 4.J3E+Ö2 ^.i3E*02 4.49E+02 3.48E*02

S9

M—1 -• lmtmm^äM

^^^"

TABLE 3.1.4

L04 hrtEQJtNCr PÜWEÄ LAW FIT TIME

JOTER SCALE L ALTITUDE (KN)

890.

(EO. 2.2 - Kfl/RADUN) AT <»00 AVG OVER

851. 810. ALTITUDE

KM

33Ü. 390. 'OO. 5i0. 57ü. 630, 690. 750. TIME

AVG

3.73E02 4.57u*J2 3.72t+02 i* .00E+J2 3.bl£*02 3.95E+Ü2 2.9i)fc*02 3.70t+ü2

3. b 1E + 0 2 <t.i2E + 02 ^.«»bE + 02 't.Ö9E*02 ^.0'.&*02 3.iit*U2 3.30E+02 3.83E+D2

2.89E+02 3.80E+02 3.99E+02 3.32E+Ü2 't.37E*02

_3_.j»!JE*0 2 <». D5E*0'2 't.lOE+02

3.19E+02 3.b9E+02 3.8ÜE+02 3.63E*02 '..53E + 02 <>.QIE»Q2 'f .4bE♦0 2~ 3.8'tt+02

5.59E+02 !J.09E*02 <».<»5E + 02 ^.01E*02 ^.23E*02 ^ '78E»02 ^. 72E+02' 3.35E+02

3.80E+02 't.25E*02 <..08E*02 3.97E+02 ^.16E*02 ^t. 2 6J + 02 ^ .00 E♦0 2 3.36E+02

3.78E+Ü2 3.92t*02 ^.Obt»02 3.e9E*02 <..b9E*02

Hit FRcQJcSCY POWER LA^ FIT THE (SEC) 1123. 111'».

3UTEK SCALE L ALTITUDE (KM)

lJ7d. lO'»^.

(EO. 2.2 - KM/RADIAN) AT 600 AVG OVER

1000. ALTITUDE

KM

33U. 390. <oJ. 5iQ. 573. 630. 690.

~TVJ7 TIME

AVG

3.9uE*ü2

3.96E+02

^.9'.E*Ü2 3.96E+02

_7.Ü6E*02

't.'tüE-»-02 TTTÖTÖT <».b8E*ü2 3.16E+C2 3.72E+D2 <..6^E*G2 ^.^6£*02

3.77E+02

3.67t+02 3.99E+02 <».16t+02 '..39E + 02 i».bOb*02 "3^8t + 02

_3.3^E*02

3.68E+02 <..72E + 02 <r.29E+02 <».89E + 02 ^.3üE02

'..Ö9E+02 X.2 8T+02 3.2<.E+02 <..27E*02 <».32E*02 ^.77E*02 ^.86E*02 3.71E+02

3.90E+02

3.P5E+02 ^.12E*02 <..29E*02 <..53E + 02 5.05E*02 <».12E + Ö2

'..57E+J2 '».19E + 02 ^.10E+02 «,.22E + D2 '..19E+02

134 FR£3Uc^Cr POrfE* 147 TXT TIME

(SEC) 1320. 1315.

JÜTEÄ SCALE L ALTITJJE (KM)

1265. 1239.

(EO. 2.2 - <M/RADUN) AT 800 AVG OVFR

1190. ALTITUDE

KM

333. 390. 450. aiO. 570. b iJ . 690. 7 iü. TTffi

AVG

4.11E+02 <..<.3E+02

i».03E»a2 <..00E+02 "♦ .81t*32 3.6DE02 3.73E+32

4.D0E+02 5.<tlE+02 3-.TWTÜ7 3.6bfc*02 3.71E+02 '.,2ÖE*02 <».!8E02 3.33E+02

3.Ö8E+02 ^.32E+02

'..27t*Ü2 3.'»8E*02 '..b8E+02 3.39E+02 3.75£*C2

3.9ÜE02 3.<.8E+32 zi.77I+D2 3.96t+02 3.83E+02 <f .05E+02 <t.l9F*02 «».64E*Ü2

^.38E+0? 3 .67F+02 2..06E*D? '».Z^E + OZ 5.a7E+02 3.71E*02 <».3OE*02 <..07£+02

'..05E + 02 <..20E + 02 4.10E+O2 '..03E + 02 <..02E+02 <..31E+02 <t .01Et02 3.87E+02

'♦,J6c*02 '..iüE+02 3.97E+U2 i».Ü9E*Ü? <..19E + 02

60

„■.■...■.■-,.^..,-J. -■■■-■--T^aAM^^ÜM ■ ■Mil ^M^—

mm mm ——^ü^^»—-

111

• 11

LV L. 1 [ i I , 1

■P j

TTT

it

.. fti.

i „: i

■I h

K\, J

r-

I felt.

l i l

i i i

Mt I I ! lll.'i/'M ^ IMI II II HI I II I1 I' . -I I I I II I

11 ■ [ 1 1

— . ;■"'■■■'

.,,.. r3 ~ I ' W ■ i s- 1 1 ";' i' i

■ 1 '■i ' 1'

l !■ t i i l : ■ 1

11

L .. |

1 Ill li, 1 ./J/i li | 1 1 ' E

\ ] i * / | 1 1 1 •v \ l ' / i'i S t. ' 'l i

. 1 V 1 1 j 1

I'd 1 j

I \ Ml i I 1 ', il t

i i ' iii t iii i

1 . 1 ,},l li, i i 1 .i,,ii j i i i ,, , . i 1 t ■ i

1 1 i I ■ "1 1 i ! 1 i ;' : 1

r, i 1 ■ i i i i I'I ! ti tl j | i . '■; 1 I I i-!^ ; i

] ' , ; e 1 ! 1 ' I

i ■ 1 ■' ■■■

1 |ii

I 1 1 11 f I i ;, H. i « t 1 r.'i ,-.■ 1 1

i' i ! 1 1 ' 1 j / ' 1 i i 1 I j | ', '',1 j

'(' ■'■i i i 11' ] i j ■•,: V i

i ■■ i i i i

i , ii iii <i

' I'I' I

, ., .-^m— ■■ J '■-A |- .,. J i ' , ^ L . . .. * ■ .' i

f ]

J ]

-'---^mm —mi mtamtmm mm

_

TABLE 3.1.5

MIT FrtOUFNIY POER LßW SLCFf 1*00 KM ^T RU^ST POINT TTHF ALTITUL-f (KN» fl>/G 0\/£F

(SEC) j?0. qiS. «"(. . M^i. rtlO. ALTITUDE

^3G. 390 . «♦50. 51J . 57C. 630. 690. 75C. TIME AVG

■I.IÜE+Ol l.PHF+ni: -P.ürF + OQ -1.46F«-QC -l,96E + 00 •l.fl«)E*Qr -1.HHE + 0C -2.1^F*flT -?.l'»t*Q0 •l.«3F*0r -P.01F+Q., -2.1.1F+m -?.luf-«-0j •i.^lFfG: -?.11E«-nn -?.17E+0ri -?.01F«-ÜC •l.f. «»EfCC -1.HIJF*0 1 -l.H?F«-nn -2.(jHt + 0G •l.fl7E*üCi -l.MqF«-Jll -1,P?E«0C -1.47F4-ür • i.Hit*cn -i.^hc^-cp -x.qQF+oi: -S.OUF+QO -2.0it tan •1.8«F*l) -l.MMF+a: -1.41F«-0i -1 .-MF+n 0 -1.95E4-ÜG

-2 .1 2L«-üü

-Z.ISE+'CÜ -2.Cur4-0C -2. 17E + QU

1 .4 fc £ ♦ 0 0

-l.cl7E + 00 -2.0 E*on •2 . uSF. + OO ■2 .n^F + öQ •I .9rtF+00 ■1.42E^CG ■1. 9Ut +G0 -1 .qiE + oo

• 1 . 8 SF ♦ 0 •i.p^F + oi] -2.n?F+no -2.oiF + nc -2.Q«4E«-OO

MIC Fr-FQUCM.Y FCWEF L A H SLOPE FQO KM /U HUFbT t-ülNT TIME flLTITunF iKt-) AWO 0*yFK

(SEC» iicO. iii<«. nrf. IP'-'J. icuo. ActiTunt

3 ^n . 3 93 .

«♦^3. sm.

6-fC. 690. 75C. TTMF

AV&

.HA ♦, - J . I 1 F -1 .9 It* C.I -1.92F*0} ■2. TJF* 0 J

-l.o^F + öC -1.9Mr*Uu -2.Uoi>ü'J - 1 . rt 9F * r, r - ^ . n ?e * n r - ? . u C;F < ü J

-1.-»JF + n." -l.«nF+nn -i.qi.t-*-i,

-1.71E4-0'1 -1.ct7t*ü0 -1.4fF*-0r; -l.6r-F*cn -l.«*tF*nn -?.Q?F»0u -I./MF + U' -i,7iE*nc -i.P0f*nn

-l.oiF+CÜ -l^HFi-yi, -2 . j.'t t-n n

-C:»OIF«-OD -1 .q^ttaü -2. 1 rF +DG -2.?«.£♦• GO -2.uiu>no -2.t6c.*un -l.^F+O 0 -2,G«4t+00 -1 .«C'F ♦[ j -1 .qHcfGC -2.02F+00 -1.rQE+G0 -1 .H^tfJG -1.9 It + Qu -1.9rtt-+U0 -2.GCe+nO

-l,97F«-iJL -l.^qE + On

■2 .G2L + G0 •2,Qlt + U0 ■1 .9SE*CG ■1 ,49t+0G •1 .9it+oa ■ 1. 9 it: + C G ■1 .7ht»-0Q ■1.H6F *00

MTf F-FOUFNCY FFWFh 1 Aw SHJPF «JO XM TIMF ALTITUPF (KKJ

(S^D 1320. n IB. 12rt. 1? <H .

AT HUrvST HUINT

1141. AVG Uv/tr- ALTITUOF

^30. 390 . UbG . 510. ci7C. o3D. 6 9o . 7C0. TT^F

AVG

■ 2 . ^ f; F ♦ U u

• 1 . 9 CF ♦ ü 1 ■i .aic »r.;

■1 .-«F.t ♦ C n •i .7iF*n .

- 2 . 19 P ♦ ü C - 1. M ? F «• I ', -2 .n 4.t4-n n

-2 . 'i'iF* oO - 1 . M L E •■ G 0

•1. 7r,F +on -1 .h^F *no ■1 ./ ^t «-u ■: -1 .Mc«-n ^

■ 1 . o l E ♦ u 0 -1. 7 ^ P ♦ ) C

-P.^-F+OL -2.J7F + GO -2.',f:.*G0 -2.09L+0:J

-2.!?F*n^ -2. 1 Bf ♦n ■ -2.19E«-ur -2.0ht.*uÜ -2.UE*u.- -2.1>'t_*rü -2.?Pfc*G0 -2.0Rt+UO -2.1Hr*U-l -l.H9F+m -2.0Htr*Uü -2.Q2t+0U - l.'i^t ♦(! Q -l.P^i-:«-Gu -2.0 3FtüO -l.»»7E*0G -UhHf+u'] «2.n5b*0n -1.91F*0^ -1.7MFf^G -i .or-L + n G -i.4^F»a: -2.iit+un -i.«6E*oo -1.7ef*0C -1.7«F»G{; -^.n3t+on -1.74L+00

-1 . 1GF + G l.ifr + TL -l.qMF + n"' -1.44F+CL iC rtt »ti G

MID FREQUENCY = k <_ 1.4 radians/km

62

- -■ M -MHMMHm t^am^m

^

TABLE 3.1.6

Lr> F^rcoENry PCWI-P L£W sint-p UDG KM AT RUKST POINT

TIME aLTTTiJDF (KM) Atf G OVEk

(SFC) 9?0. PIS. ^sr. HSl. i*10. ALTITUDE

33n.

390 .

i*5ü.

510.

57G.

bJo .

690.

750.

TIME

AVO

• ?. u ^E ♦ n n

•). q * E ♦ ü G

•1 .onfc"«- CO

■1 .fllfc + C j

■ i.flfHF + on

•i .oat ♦o c

■i .75F + on

•i .qR;F + on

-l.M?F+iJ i,

-i .97t*nn

-?.0?E*Qfl

-2.n6t*üC

- ?. a 2F ♦ ü 0

-1 .«.'E + OO

- 1.7 it + ao -?.neE*an

-^.L/l•*n■;

-? .i.«F + on

-? .1 OFfO 1

-2 .n7F«-0 c

-2.2rF*0ö

-?. Q* E*u G

-i .ft^L* n u

-1 .40E*JT

-1.9 71- +c n

-2 .2<;E*-OQ -2.G4F+00

-i.-i3F*aa

-J.ut'F+Cu

■1 .9 7F ♦!;.

■2 .lfcE»0a

■2.1?E«-Oü

•2 .u9F«-0C

■1.9 9P*u„

-2.2hF + 0G -2.01c«-0G

-2.CFE: + 0n -1.49F*0Q

-1 .rthc«-fl C -2 .lhE«-uü

^.t-GL«- 0 J

■2. USt + CC

-2. OUFrOO

■1.99t+0T

•? . C2E«-LG

•2 .0 GE+OG

■1 .ri9F. + 0Ü

•i.99etaQ

■l .9rE + r:; -i ,P!.t *ui •2.rf.F*f, -2.LbE*GG -^.C^L + Of

LCh FSECUFNLY FCWFt^ Lflh SLOPE huO KM AT RüPST POINT

TIMF fiLTlTttPfc (KM) ttrfc CHKt-

JSFC» 1120. 111U. 107f. IT-^. 1QC3. ÄLTIIUDE

330. 390. i4«5r. 510 . 570. 630. isqo.

750.

TIME

AWG

• 1.9 3F + C il

•1 .9^*0 0

•1.92F+C •1 .9u£*0r,

■ 1. H LT + U 0

•1 .H<4E*00

•1.7fiF *u-1

■i .'iF*on

-2.1^F+üU

-i.M?h*ni

-I.P^F + O1:

-1.Q /1 + n n

- i. 9 3 p m n

-1.4«t*0 U -l.9lt*ü1 -l.« TF »-n r

-1.9hf+ 0 n - 2 . 0 ^E + Ü G

-2 .1 '.'K +0 ]

-2. ü«L» 0 C

-i .mFf n c

- 1.9UL +0 1

-l.Mrf »0 .

- 1.Mbfc+0 J

- 2 . 0 2 F ♦ 0 Ü

-2.Ü9M00

- 2 . u 9E ♦ Ü t

-2. J iFfn

-2.Q'.F + 0 0

-?.G'»f +0 0

-.. -J^F +n ;

-1.93F+0Q

-2 .0 JE* 0 0

-2.C'»t »on -2.1 f-t^-G.

-2 . J uF+ uO

-2, Ü Gfc>uu

-1 .4S^«-0J

-1 . 9rtt *0i

-1 .9i.ti ♦ GO

-1.99E*U0

•1.9nE + 0G

-2 .C.i£ + Üü

-2.üGt +tC

-1 .9UE»C0

-1.9St +ÜL.

■1 . 9c:Fi-iJü

■1.MbE + 0C

■1 .ttFFfÜ .) -1 .^PE +J ■i.^(iF*oc -2.ü2e«-on -?.rit.

TIME

(StCJ

530 . 3 90. «»50. 510. 570 . 630. 690 . 750. TIMF flVG

LOk F-'FUUENCY FCHhK LAW SLOPF ^00 K^ AT HKFoT POINT

fl LT ITHfif (KM )

13^0. 1^15, 1?^^. 1239.

-1 .8 7t f 0 "

- 1 . -i CF «■ 0 T

-1 .brtF^-R.i

-1. a ^f + c n

-1.9 r F ♦ n G

-1.7 7b 4-CC

-1 .«r,t «-n 0 -l.fi^F^CT

-1. « 7F ■•• 0 0 -1. H tE ♦ 0 L - 1. 7 HE ♦ ü L

-^.ObF+ra

-i.? ^-i- 4-n r

-1. H -> F •■ J ü

- 1. 9 JF ♦ o n - l.QuF*p '•

- 1 ^"JF + UQ -1 .Hhf ♦■01

- 2 . o: E ♦ Q c

-2. r1 «t+n n -1,4 iF«-nc

-l.M7t + 0i -2,lSt-'fGG

-2.11t*m -2.d*.h*JG

2.0Hf »u

-?.Ü-TE»Q 1

-1 .9,vf ♦•(

- 2 . Ü 71 ♦ 0 C

-1 .-t^F^O [

-2 .0 21- +0 .J

-1 .H^F «-0Ü

1190 .

-1 .4 ,11-. ♦t'C

-2.2«fr»ÜG

-2.2 ?-. ♦ 10

-2.0 .xf i-bL

-1 . C ** r ♦ u 1

-2.1 S-.-t-oG

-2 .G b^^u0

~?,? ft ♦ i

fii/.. OVFP

ß L T I T u o E:

-1 . 97L + 1,0 •2.0 uE +00

• 2 . 0 3t + 0 u

•1 .9 7E ♦■ . :

•1 .9Sf tub

■ 1 . ^ 9t ♦ 0 0 ■ 1 .4 2t «-0 G

■i ,92L «-..U

1 .IFF +C 1 .MhE * J 1 . )TF«- J I - 1. -CU +u, 11 F Mj G

Low Frequency = k _< 0.24 radians/km

63

111—11 mamm

TABLE 3.1.7

ilD FREQUENCY POdER LAW FIT ^ÜMEkATOR (EQ. 2.2) «.00 KM AT BURST POINT TIflE ALTITUDE (KM) AVG OVER

(SEC) 920. 915. 890. 851. 810. ALTITUDE

330. 390. «»50. 510. 570. 630. 690. 750. TIME

AVG

'5.52E-36" 5.<.6E-06 7.56E-06 6.01E-06 8.81E-Ü6 7.b9E-06

5.86E-06 6.56E-&6 5.56E-06 5.62E-06 5.3<»E-06 5.UE-06

5.51E-06 <».99E-06 ^.93E-06 <..10E-06 ^.l<«E-06 •t .57E-06

b.lOE-06 <f .66E-06 <..29E-06 7.8ÖE-06 <..70E-06 <..50E-06

<».e^E-06 i*.Tit-Ob 5.15E-06 7.'.'«E-06 <».36£-06 5.09E-06

6.25E-Ü6 6.73E-06 VTZTE^Si r.2eE-Ö6 WTE E^ÜF 8.29E-0b 8.28E-06 8.57E-06 8.78E-06 8.97E-06

b.95E-06 b.l^E-06 S.UE-Oo 5.67E-06 5.60E-0b

5,57E-06 5.32E-06 5.50E-06 6.21E-0b 5.<.7E-06 5.<.0E-06

'5.löE-"X>r B,58E-06

HID FREOUEMCY POWER LAw FIT NUHEfUTOR (EQ. 2.2) 600 KM AT BURST POINT TIME ALTITUDE (KM) AVG OVER

(SEC) 1120. 111'.. 1078. 10^5. 1000. ALTITUDE

33ü. 3.83E-06 3.9oE-0b 3.50E-06 <..27E-06 3.21E-06 3.75E-06 390. J.32E-Ub '♦.69E-Ub 3.23E-Ü6 3.Ü2E-U6 d. /3E-Ü6 3.50E-D6 <i50. 5.32E-Ub 3.bbE-üb 3.11E-06 2.<f3E-06 2.92E-0b 3.^9E-0fe 510. <t.<.9E-06 3.57E-06 2.92E-06 «..80E-06 <..79E-06 <..12E-06 570. 8.12E-0b «..25E«06 3.J6E-06 3.52E-06 3.21E-06 '..<.3E-06 630. 6.3^E-06 3.31E-06 3.31E-06 3.<.9E-06 3,7bE-06 '..O'iF-06 690. 6.0'»E-0b 2.90E-Ub 2.88E-06 '..75E-Ü6 ^.asE-oö <..26E-06 750. 7.82E-U6 '♦.SOE-Ob -TTTbt^OB- 5.90E-06 "5."B8f-xre 5.97f-06 TINE

AVG 5.72E-06 3.88E-0b 3.i.5E-06 <t .02E-06 3.92E-0o

MID FREUUEMCT PJWER LAW FII NUMERATOR rFQ. "2.2T 800 KM AT BURST POINT TI?1E ALTITUDE (KM) AVG OVER

(SEC) 1320. 1315. 1265. 1239. 1190. ALTITUDE

330, 3.29E-06 2.77E-0b 2.55E-06 3.2'.E-06 2.50E-06 2.87E-06 390. 2.77E-06 ■i,<f<fi-Qb 2.'.2E-0b 2.20E-06 2.17E-06 2.606-06 «.53. 3.86E-(Jb ■2.75E-C6 2.<.9E-Üb 1 .98E-0b "2.631-0^ 510. 3.27£-0b 2.59E-0b 1.92E-06 3.22E-C6 S.'.SE-Ob 2.90E-06 570. '..SIE-Üb 2.92E-U6 2.27£-0b 2.6eE-06 2.37E-06 3.01E-06 630. <».78£-06 2.90E-0b 2.b0E-0b 2.56E-06 2.75E-06 3.12E-Ob 690. 5.38E-06 3.69E-06 1.92E-06 2.70E-06 3.6<.E-06 3.47E-n6 750. 5.<.lE-üb 3.77E-Üb <t,olE-0b <..7(j£-06 <..61E-06 <..62E-06 TIME

AVG <t.l9E-üb 3.10E-Ob 2.6ÜE-0b 2.91E-06 2.93E-06

64

■ - ' - ",,.! - - ■ ""^ I

TABLE 3.1.8

LOW FftEClUENCf PDiJEK Ikd FIT Nu1E*AT3R (EQ. 2.2) <.00 KM AT BURST POINT TIME ALTITUDE (KM) AVG OVER (SEC) 920. -m. 890. 651. 810. ALTITUDE

33J. "i^BE-Ob <..7IE-0b <».75E-06 «..b'.E-Db <..b8E-0b <..63E-06 390. <».00fc-0b 3.30E-0b 3.92£-0b «..lOE-üb <r.21E-0b '..aiE-Ob «»50. <..92£-06 «».2iE-0fa '».^aE-Gb 3.81E-0b <..blE-06 «..'.OE-Ob !?1J. <».81E-06 <..30E-06 3.87E-Ob 5.33E-06 7.53E-0b 5.17E-0b 570. 3.B<.E-06 3.79£-0b 3.25E-06 3.'»9£-0b 3.70E-Ob 3.b2E-0b 63J, 3.79£-Jb 3.bl£-Üb 3.23E-0b 3.00E-Ob 3.81E-Ob 3.<»9£-0b bVO. 3.63E-06 3.<»<i£-0& 3.66£-0b 3.59E-0b 3.70E-Ob 3.bOE-0b 750. b.03£-üb <t.57£-06 5.3bE-06 b.<tlE-Ob <».92E-06 5.<.6E-0b TIME

AVG <..<.3£-Jb <».2'.£-C5 ^.ObE-Ob <.,30E-0b <..b5E-06

LOrf FREQuESCr PJ^ER LA^ FIT SUMERATOR (EQ. 2.2) 600 KM AT BURST POINT TIME ALTITUDE (KM) AVG OVER (SEC) 1120. 111«.. 1078, 1046, 1000. ALTITUDE

330. 3.i8£-üb 3.58E-Ob 3.73E-06 3.17E-0b 3.28£-0b 3.39E-0b 3^0. 2.07E-a6 4.43E-Ü6 3.3bE-06 3.66E-06 2.9ÖE-05 3.44E-Ö6 450. 3.biE-0b 3.3bE-0b 3.12£-Ob 2.55E-0b 2.73E-Ob 3.08E-06 510. B.'tbE-Ob 3.03E-0b 2.b5E-06 3.42E-0b 4.99E-06 3,51E-06 570, S.S'.E-Ob 2,79£-0b 2.52E-06 2.49E-06 2.48E-0b 3,12E-06 630, 3.53t-0b 2.87E-0b 2.47E-06 2.43E-06 2.91E-Ob 2.84E-06 b90. 4.3<»E-L)b 2.b8E-Ob 2.91E-Qb 3.49E-06 2.e5E-0b 3.25E-0b tbU, 5.J<.E-üb 3./3b-Ub 4.27b-06 5.20fc-D6 3.95E-06 4.4VE-06 TIIE

AVG 3.92E-0b 3.31E-Db 3,13E-0b 3.30E-06 3.2bE-Ob

LJM FRbUUcNCY PJWbK PHJ FTl THE

(SEC) 1320. 1315.

SUIb^AIUR (ES. 2,21 BOD KH AT ALTITUDE (KM)

1265. 1239. 1190.

BURST POINT AVG OVER ALTITUDE

330. 2.32E-Jb 2.2'»E-0b 2,b0E-O6 2,30E-06 2,43E-06 390, 2,20E-06 3.43E-06 2,44E-06 2,24E-0b 1.95E-0b 430, 510. 570. 630. b90, 750, TIME

AVG

2.50t-üb 2.4b£-0b 4.01E-Ob 2.74E-0b 3.52E-06 '-..OBE-Ob

2.,3bb-06 2.30E-Üb 2.11E-0b 2.21E-Ob 2.aiE-06 2,95E-0b

2,13b-06 l,79E-0b 1.68E-06 1.99E-06 l,92E-06 3.2i£-06

1.5/b-ü6 2.24E-06 1.67E-0b 1.72E-0b 2.3bE-06 3.1bE-G6

TTHTT-UF' 2,77E-Ob l.e5E-0b 1.75E-0b 2.00E-06 2.64E-06

2,3BE-06 2,45E-06 2.08b-17B 2.31E-06 2.26E-06 2,08E-06 2,36E-06 3.21E-06

2.98E-3b 2.45E-06 2.22E-0b 2.1bE-3b 2.15E-Ob

65

i imntinviifciittaMiMit

■WHBB^H '^WWfWIBWi" iu|J|'"

n' [i i

I !

•f i

l!

:.[&.„. "n.

I

I "•! ^

r'1 ,t ' I1 t

UN f

11

I

.11 'tf r

'ill 1

ll /

rt|, If

1 ;

1 11 • III 11 {.'I ii >l ll I

T I I i

hi'-f!

'•J I

I'-] i', i i:

Ui, i Vi i

X.

\'i

I' '

,1..J- -1 ' ' ■i 1 I

I I

lf. i |

r,1!

i i

i

i i i i i i

',, I

iii I

yj,, i... J

I 'i'

i i A-, :•, i

1 ll*, It

1 i 1 ' 1

1 > l' 1 1

1 i 1

L. J, .U- J. a..,.

i, i

66

, i n i maw ^^^-^^mn

mmm

3.2 PSD, EXPONENTIAL FIT DATA PARAMETERS

In this section we overlay the measured data b a two term exponen-

tial fit. A similar PSD representation for the STARFISH northern conjugate

beta patch striations is presented in Reference 10. Figures 3.2.1 through

3.2.10 present part of our PSD overlayed data as a function of time, at

constant altitudes. In a review of these plots it is evident that a de-

parture occurs from the data (at k < 0.04 radians/km) when fit by a single

exponential P{f) - Ij exp (-kAo) over the range 0.016 < k < 0.236 radians/km.

Thus to prevent the underestimation of the very low frequency power (k < 0.04

radians/km) a second semi-log linear curve I2 is added to represent this low

frequency region.

Tables 3.2.1 through 3.2.3 summarize the least square fit values for

the semi-log linear analytic fit parameters. Tables 3.2.1 and 3.2.2 pre-

sent the intercept, ll, and slope (1/koj) for the frequency fit interval

(0.016 < k < 0.236 radians/km) for the three different locations of the stri-

ated region. Table 3.2.3 presents the intercept I2, d/koa) for the very

low frequency range (0 < k < 0.04 radians/km) at only one altitude. Be-

cause of the steepness of the data in this frequency range, these paramet-

ers do not vary significantly with altitude and therefore tabulated values

of the parameters are omitted for the other two altitudes of the luminous

striation volume. The tables also present the values of these parameters

averaged over time and over altitude. The time variation of these para-

meters (of the slope, the intercepts Ii and 12) are presented in Figure 3.2.11.

67

• - ■--- ■ n - - MMH

SFINITIZEO POWER SPCCTMJfl

' 3.2.1 hi 1120 i([L0METE:R5 rißURI

i—i

i r."t _ I

:iz=ir=dj3Q '5EC

mmmi m^ , —41U-

=33=- =p -»...■,-

^z.?-V-:

_L

±zz:ziii^9n

te*:

iTi i^ 3^

f '■'-■'-^ ^-

3E32"SS5 ^äS ,;=c=;:-:

■ . — .

3: i^r::

1

m i n

,- -4

1_, 1H

s tip;;:

P s zrz^t ■, py-

_ = - -1-: - --^15..t.,^

"4"

IA

1+^^:;; =

m: -l-lj 17--

■ - 1 r rr

:: irx - - - —-T

l-

V*

U. ijlj

ABCISSA x - ■= k (radians/kilometer) 2

68

^ i..,„ ■ ■ ■ -— ■- ^MMHMMHiM ^^t^m mm

" "

cc

TT . ABCISSA x - = k (radiansAilometer)

? 69

L^ ^ I lllfrtlMMIMllMIIII mililMi—!■—MM

»

..'I I' J I 1. i I'JLJI ' ' - KU

jMir-'M.'p 3.2.3

^^M5^:-J.:-r j - i ir —^-~ " : —~_: :.;: z.z—— | J. L_. *

• ., jf ~" in iiz rri: jrrir j

J

Hp= ■—^——_J——-—- i

i 1 V^i; 1

V

r ^ lit izrz zzi^ii" n "ii zr::ri:::::;:;::z:::-:i::::::::M|

IM^HZ;--. NeiEiOflz •fe^-fi-ZMf/ji; - -

■ T

-51, "1— .;: -'■; .::.::: J,-^3'';_^: - .:: ' , . j — 1— - -- 1.-. _ w_. „ . , "i*.\|-- i

rrEErz:frf:5M^:r;5r 1 I ;

s||.KI|||Zr|:/ 1

-■ ^p "-=r

\~3^

f --JiL-:: r -vrr _; ET

■1 It

V

im: 11-

■li.-^-i -

'11 * 'U \:.,Ä

'■%!/' -■!£ ■'

i I i h

m*ia* IHMWIMWi

ABCISSA x

7J . K (radiansAilometer)

70

—«—^-^——^-—^ ■'"■■'■, "—

3.2.4

iJ=

üiiül! 1 r J I

a=. ^■S:

jr.

3HE

i A_

-I-

-- - ^ ■ - l ^^ V

i -4=

^^ t—H

\ \ 4 - ~i - ■

=W^t:

•'A.,.

1

t

-.ff-.

i t

■ \ *

"_

. 4 ■I

- V ;. • ;

- '

I it

| I *:;

i'-...v ;

I !

V.

. — . —.. J

RBCISSA x - = k (radian?;Ai loinetpr)

71

— "■ ■>-'--^—■■' - ■ mmammm

mmm ■^^^■■pw—

H [! DilFTrR'S c ' ;ni [Pf 3.2.5

UJ

:^==:tE:= r,-l

_.l

Zi.jij 'JLL'',.!

j—

I tt

=fc-=r-

1 h r| e ft=

-^ ,—j.,^

= =.'l^^ =-, ^f=g

;i:_:rr^: % £

- -f.x -■■

... 4.J-. _ __.,'

A -+

^-r

-•»-

fr

it ' i.

'i !i

-If HA. t,,

'-i

i L \. \- -i vv^

1 i

ABCIESA x - = k (radians/kilometer) 2

72

- - - ■ ■— iMMHM

^■nzcn ^uy: y^:i 3.2.6

, n IT

— h.

:H,,-.-

■i ~

=£=? •*=---; !==r-=i -T-

r ■-,, -»-.-t-

- fe*:;- v'1.^;^^ - p s

■-i —

"■V'

il.. i 1.:

- -ii-ii v. , L - ... - 4 -

1

:- L -. ' -T-J..,

1

V

1 . i

' "V.

ABC1SSA x - -- k (r

73

adiansAilOIT,eter)

■■ — ■MMMM

■^■" mimmmm ^ MH^^M

a:

iT !U4^ K[UJi1ETl::R'j FIGURE 3.2.7 4 ! I

i L1

1 ^i1^ v--1 HI i

r* ij JIJ

■i M ; rr~"

:::■!

-..i -^3:-

qr-

'^S

r; A- r - "T

rt

■+—f- r

\ 1—

4- —:—

.=4= i=

■sj 1=1 ?3ülg

-V - -1 ■

- -\ -

: t - - 1:

: i . - — t — -1-

v- --ft- -" ■ A !■

-f

1 f^:: :

1-4 — - — - - -L__ P I "7; - V I

*

b fe : = 1 ;■-■ -i .

1 • ; A

.1 if *,• J,

I

1 4t. -J ,i -p

j ''■ T ' ' ' ■v .. , >

; -n- :-r \: li S:. J ■] 1 , . 1-

[ - - ■ 1 * ■ 'j

1 i t

1 1 1 1

ABCIESA x - = k (radiansAi lometer) 2

74

■ Kaa^mr^aiii MIMHMHM

^—

i rri

mwr. ! p-

4= .t n

!E;^

'f'^H- •1-- •- t- p ^

\

i lau >H.

* r~. - -^ r ,- ~t .••■.

} ■ - • -

-1; - - * - - - "

' :

- t

■ :

f I

^44

i j

i t

ABCISSA x - = k (radians/kilometer) 2

75

"-■■ ' ■ ■ ■■ -■- ■- - - ■

il iimlilfcul^MIIMWillilli »il I ■—WHWiflWrtMWWOIMWilHliH»

I I

■' i lim iiniiui.iwHii i ■ »n ^

SHNITIZEI] PDl-O rjPi:CTKüN

RT 1000 fMt n ru..,pTi:'pci F ! I'nl IRF 3.2.9

1 I'I

t= ::i30Ü '3LL" 1 I

+3ü

i™ l!j JL-,'.j

+:: -%-rr

LJ

-*.- :■ V

» I ! ^ —--- v—m

-rr-^; t^^=^^E

ft-iK .■■-,

-e^

I «— —- —*—

ZIZJ ZZZZX I; I i

i

':ZJ:

- -~-t

i

111 p -A

%

u-5if-E^

_-.-_l. f-— ._ v-^-^

i -J== = ?^ ■■ = - -4-

', I- ■

: v .izti::" t-

- \if - ■'*..r

"i HE -A +---

J L

TT

ABCTSSA x - = k (radians/kilometer)

76

j-:^r-- ^-' ■ Ml M^MMHMMMB

^MITIZLH PTHCr

er

iF 3.2.10 1 ll' -3

-f~-^ I EI ~

.i / U J L

is

" A

1 p"--^,- —

4 U-Ji --H..: -i rt I—-4-

s > ' ' ' ' - ' ',

rny 'i - — -::-;>■ v:» -^53;: :

1 P

" i- —\

. j

t-^ -*

i i U '= :

! n *-

-3

„ -i

ii:=i::

* i=^^! tr^^

4-fv ^y, k._..

tllX- fi#§ sin ^^ I I = $| |^i ,ir

i i V-- "Tl

??S(SS i !

r:i ■? i v-

L „l: ? ;V -.„..

-i -

==.-=. ■!=-.

4- ■ 1

U. JU II.,; i'.

:H

| t5: _:.4 : ::. . _ i, -

- H- - ■ - :

'H

1 !

i

r ■ ' - "4-

j

i i J immm

+ |

ABCISSA x - = k (radiansAilometer) 2

77

- —•"' "—* ■•"-"■ - - n ^^^UJUMI

^^——

TABLE 3.2.1

Mia Fi-t QJhi-if; Y F AP(j^.F^.Tl Ai FIT IN T h P( EHT 11 H U K/1. AT rtlJhb T PUINT

T1WF ALTIfuPF (Kf-;) AVG OVEN ^EC) ■J?0. ^ I'r . ^SC. 861 . H n. ALTITUOE

130. 3.lt*F-!13 j .1HF-0O ? ..^F.-Oi 3.?7e-03 2.ÖKE-Q3 3. Iht-M jqü. 2.7 1F-n ^ £. 9 3F - D 3 2,s:t -n' ?.,2H -C.- 4.73e-r3 2 , 91 fc - Ü 3 *«;o. ? .T^E-O.^ .<.B7F-0 ^ ? .ü^t-n ' .^.h :F-L.< «.. 1 Ü L - 0 3 3.17E-03 510. 2.61c - a .< 2.1 CF-T.5 ?,?.1F- 0 ? i.-iF-nj l,»3c-Ü3 2.UUF-03 ^70 . ?.f>Ot-0.> 1 .^HF-j/ u.HF-T-f o .H'«t-0 3 3 .8^^-03 3.27F-C3 63r. 2. ^ IF - 0.1 ■4.1 ÜH-J3 ,5.M7f- -n 5 - .H.U -P j •♦.S4k -03 <♦ .ü rth-ü3 fi9r. p.q.e- i ? 3 ." 7 f - n ,•! i .n"F-i>i 3 .U3( -0.5 3 .(^7^-0^ 3.2^E-03 r^o. 5. j pt - n < J.nsF-C.I 2.Ht,P- n •( 3.b2F-0.i 2 .ortt-ui 3 . l-E-03 TIMF

Avr, p.rqf -o i '.^t- -fM J . n hf - n ^ J.SSh -P3 i.i» 9^-03

Min F r,|- r.UtNf T F XI-rNFNTTaL FIT T NTFt. CF F T 11 h )0 KM AT «U^b 1 PUTNT

TTMf A 1 T ITimE ( <M) AVG OVEF* (ser» 112 a. 111^. 107H. 1 O'i'i . 111,";. AL TITüfifc

3 30 . 2.ToE-C3 2.37E-0^ S .hff -').', ?.32f-n3 1. rt rt E - 0 3 2.2hE-C3 59Ü . 1 .MF- C.< l.H7P-fl < i .^ht-n 1 1 .tt 1F-0 ? 2. J3F.-U3 l.B«fc-03 kbQ . f.lnfc-C3 ?.?tF-03 2.ihF-n' 2.2ÜF-Ü3 2 . b 11- - 0 3 2.2nfc -Q 1 5lL . i .^jf -P.-; ?.nMF-:!3 ..■. J ^f - o .•> -.- .J-^F-O/ 2.. "E-^M 2. li.f -03 570. 1 .«'•£-0 3 i .i- t-F-n.s 2 .i.7f.-n' 2.??E-Ü3 2.? It-03 2.UUt-03 633. 1 .93F-Ü 'S 2.uiF-n < 2 . 1 n F - 0 ^ 2,6 IF-Di ?.5Tr-ü3 2.^UF-0 5 690. i .m-.j3 l.*'.L-T< 1 .H1F-0 5 2 .3'«E-Ü 3 2.12E-03 1.9Mt -U3 7 50. 2.niF-o ^ 1 .-"HF-t, ^ i, h^F-ij •; ,J. q>iF -r.s 2.1*^-t3 2.12F-03 TIKE

Ay/G 1 . 4 UF - Q ,•! ?.nu--c3 ^. i :F-0 3 2.»i-F-03 ? .?«P-Ü ^

MIO F.^FQUfNr.Y FVFLKfKTXAL FIT INTTFTf-FT Tl ftf C TIHF A LT TTlJL'? ( Kf )

(SEC) U?'1. 1315. U'b^.. 12^.

KM AT HUhiJT F'oINT A 7G UVFh

1140. ALTIlunF

330. 1.5 nt - i) 3 1.7 3F -r3 l.h7F -0 1 1 . v^F -P 3 1.3«F -b.J 1. 5 fat - C 3 3QC . l ..>.,? -n3 1 .i.ft -ü3 1 .^TF -P < 1 .54.f-C3 1 .* CL-03 l.blE-03

U5L . i .f;?F-rj3 l. <» H F - r ■; 1 .^^F-O.» l.b'JF -0 3 ? . U F, F - Ü 3 l.huF-G 5

51G . i. r" HF - c7 1 . 5 'F - u 3 i . Hi.F-n 5 1 .D'.F -U ^ 1 .4 W-uS 1.5bt-Co 573 . 1 .^Ht-O < l.hbi -"3 i. 7hF -n ' i .S^F -c ■: 1 .64F -Ü 3 l,h3f -0 3 633 . i.' -it -;; - i .5fF-n ■, 1 ./^F -0 3 1,6iF -n : i .r fcF-L3 i ..■> qt-03

69G . i .3 2E-D.-' 1 . U-t -Ü 7 1 . ^HF-n ^ 1.^SF-Ü3 1. H «■> E - 0 3 1. i>2F - 03

7^(1. 1 .5 wF - 0 ' I.t4lt-0 3 1. "'iF-n » 2.IMF-Ü ^ 1 .o 1^-03 1.bMF-03 TIME

flrfG 1 . L, It - il ■■! i.^-'t -r 7 •. .c. '.i -u ' i .t;i7F -,:.■ 1 ,^7^ -:,..■)

MID FREQUENCY = (0 . 016<k<0 . 2 36 radians/kip)

78

,-

TABLE 3.2.2

NIO FREOJENCY EXP3NENTUL FIT SL3PE TINE ALTITJOE

(SEC) 9Z0. 915. 890.

3'ivJ. 390. «►SO. 510, 570, b30.

"FTTTT 750, TIIE

k\tQ>

(K1/RADIASJ (KM)

851.

-l,73E*3l -1.71E+01 -1,5^E*D1 -i,55E+0l -l,<r5£ + 01 -1 ,55E*0i -i.fa/b+Jl -1.6i£*üi -

-l,t.7E01 -1.58E+01 -l.BOE+Ci -l,^8E*01 ■1.52E+01 -1.98E+01 rrffSTTDT •1.67E*Gi

-L.?oe+oi -1,^7E*01 -1.59E+Ü1 -2.03E+O1 -2.v>6E+0l -1.8 IT*01 -l.a'.E^Ol

-I.68E01 -1.39E+01 -l.BBE+Ol -I,71E*0l -1.97E+01 -2,l7E*ai -T.77r*ar -1,56E*01

AT AOO KM

810.

-1.6^E+01 -1.87E+01 -1.92E+01 -1,07E*01 -1.99E+01 -2.12E+01 -T.V7"E*0T -1.53E+01

BURST LATITUDE AVG OVER ALTITUDE

-1.6<)E*01 -1.65E+C1 -1,73E*01 -1.V8E+01 -1.79E+01 -1.97E+01 -1,5DE>-01 -1.58E+01

-l,bOc*01 -i.70E*Ji -i.7^c+01 -1.7o£+01 -1.76E+01

MIO FÄEOJtNCY EXPJMEHTIAL FIT SLJPE TIME ALTITUDE (SEC) 1120. ill'.. 1078.

(KM/RADIAM) (KM)

10<t5.

AT 600 KM

1000.

ftURST LATITUDE AVG OVER ALTITUDE

330. JW, ^»50. 510. 570, b30. *»90. 750, TIME

AVG

•1,716+01 •i.69b+01 •l.b9E+01 •1 .58E4-01 •1«%0E*01 ■1,63E+01 •1.52E + 01 ■i.'t^E+or

•i.90E+ül

•1.7<t£+01 •1,73E*01 •1.55E+01 ■1.89E+01 ■1.75E+01 •i.bbE^in

-l,78E+01 ^TTT5E*01 -1.7<»E*01 -1.87E+01 -1.97E+01 -1,89£+01 -1.71E+01 ^.itVE+Dl

1.76E+01

1 .87E+01 l,7bE*01 .89E*01 .02E+01 .77E+01 .68E+01

-l,65E+0l -1.B7I+01 -1.95E+01 -l,«»faE*ül -1,92E*01 -1,95E*01 -1.B3E+01 -1.6^E*01

-l.ME + 01 -1.&3E+01 -1.80E+01 -1.6BE+G1 -1.75E+01 -1.8eE*01 -1 .72E+01 -1.56E+01

■1.59E+01 -l.b9E+01 -l^'.E + Ol -1.79E+01 -1.78E + 01

WIO MbUUbMlT kXPJSbSI irLTTTT SLO^E (XH/RADIAN) AT 300 K! TIME ALTITUDE (KM)

(SEC) 1320. 1315. 1265. 1239. 1190.

BURST LATITUDE AVG OVER ALTITUOF

330. 390, «•50. 510. 5 70. 6 30. 690. 750. THE

AVG

•1,68E+01 ■1,63E01 •l,58E*-0r •1.53t+01 ■l.«.0E*01 •1 .53E*01 •l,'.6E*01 ■l^lb + Ol

■1.76E+01 •1.<.9E*01 tTmtTxnr •l,b9E*01 ■I.81t + 01 •i.75F+ül •1,73E + 01 '1,5«»E*-01

-1.67E+01 -1,66E*01 =T-.l>9EtDl -i.77t+01 -1.96E+01 -1.7bE+01 -1,7«»=+01 -i,60E*01

•l,70E+ül -1,70E*01 ■1.9«.E + 01 •1.78E + 01 •1.90E*Oi •1 .92E+Ü1 •1,7<.E01 ■i,71E+ül

•1,62E*01 •ue'.F+oi •1.95E + 01 ■1 ,69E*01 •1.90E+01 ■1,Ö9E*C1 ■l,86E*01 •1 .62E + G1

-1,69E+01 -1.6bE*01 -1.78E+01 -1.69E+01 -1.79E+01

71E*C1 .71E+01 58F+01

-1. -1 -1

•1.5'tb*Ji -i.68£*01 -1.73E+01 -1.6DE+01 -1.7bE + Cl

79

TABLE 3.2.3

I3ä MEQJEMCY EXPONENTIAL FIT INTERCEPT 12 600 KM AT BURST POINT TIME ALTITUDE (KM) AVG OVEB

(StC) 1120. liU. 1078. 10<.5. 1000. ALTITUDE

330. 390. <»50. biO, 570. 630.

9.50E-O1 8.9^E-01 8.<»3E-01 <i.b3E-01 5.'»7E-01

690. 750. TIME

AVG

7.Ö0E-01 7.83E-01 7.65E-01 7.58E-01 8.21E-01

Ö.55E-01 8.75E-Ü1 9.10E-01 1.0^£+00 7.71E-Ü1

8.O5E-01 8.20E-01 8.ilE-0i 9.226-01 7.11t-01

9.02E-01 7.3I)E-01

9.80t-01 8.85E-01

9.<»3E-01 8.66E-01

5.92E-01 8.90E-01 8.3^E-01 7.0<»E-01 5,67E-01 5.87E-01 V.VOE-Ol

9.9'»E~01 7.53E-01 6.176-01 6.37E-01 5.36E-01 6.38E-01 7.6^E-01

7.19E-0I 8.17E-01 a.2<.E-01 7.89E-01 8.126-01 6. 8 IE-01 8.TOE-oi 7.38E-01

7.99E-Ü1 9.016-01 9.<»8E-0i 6.35E-01 6.866-01

L3rf F><6JJEN:r EXPJNeSTlAL FIT SLOPE UI/RADIAN) AT 600 KM TUE ALTITUDE (K1)

(SEC» 1120. HI«». 1078. 10<.5. 1000.

BURST LATITUDE AVG OVER ALTITUDE

330.

<oO. 310. 570. 630. 690. 750. TIME

AVG

•3.28E+02 •3.0^E*(J2 •3.136*02 •3.02t+02 •2.99E+02 •3.19E+D2 •3.'»0E*02

-3.3^E+a2 -3.23E+02 •3.2<tE + C2 •3.37E+02 -3.6'»£+02 •2.67E + C/2 •3.386+02

•2.98E+02 •3.32E+02 •2.716+02 ■2.65E+02 -2.93E+02 •2.28E+02 •3.09E+02

•2.9iE + Ö2

■3.12E+02

^TJ2E + 02

•3.28E+02

•i.05E+02

-2.68E + 02

-1.95E+02 -2.13E + 02"" -2.<.OE + 02 -2.38E+02 -2.39t+02 -1.89E+02 -2.<»lE+02

■^mr+sT

-1.98E+02 ^r.T9I + 0'2 -2.16E>02 -1.99E+02 -2.23E+02 -1.77E+02 -2.33E+02 -X.67E+ÜI

-2.71E+02 '-T.^T'+Ul' -2.72E+02 -2.68E+02 -2.8<»E + 02 -2.36E+02 -2.92E+02 -2.82E+Ö2

•2.21E+02 -2.20E+02

F^EiÜt^Cy w^EAE FILTER FJt4CTnKrTRT35TEJ -10BQ RADIANS/KM AT 600 KM TIME ALTITUDE (KM) AVG OVER

(SEC) 1120. 111«.. 1078. m5. 1000. ALTITUDE

330. 390.

T5ÜT 510. 370. 630. 690. 750.

TTHF AVG

1.36E+00 1.606+00

1.51E+00 1.35E+00

1.51E+00 i.27F+00

1.68E+00 1.476*00 1.636+00 1 .456+00 1.60E+30 I .45E+Ü0

1.38E+ÜQ 1.38E+00 1.47E+00 1.22E+00 1.596+00 1.196+00

1.466+00 1.166+00 1.396+00 i.446+00 1 .06E + 00 1.386+00

1.5U+00 1.156+00

TTTJI+UO" 1.816+00 1 .656 + 00 1.49E+Ü0 1.466+00 1.516+00

1.30E+00 1 .356+00 "ITW+ÖO 1.706+00 1.33E+00 i.466+00 1.656+00 1.626+00

1.48E+00 1.356+ÜC 1.45E+00 1.50E+00 1.496+00 I.^IE+OO 1,47E+O0 1.43E+GC

1.566+00 1.39E + 00 1.336 + 00 1,47E+0Ü l.<f9E + 00

PC

■„I -IMUlll mm

IHM"1 I

^ 1

: j 1 \ r

*N l i ) lii

] _.-l

4* i "_J

.1 ■ v ■ 'S ';

j 1 '' ^ H'

,:

1 •]

t' .1 - V If 1 "

LJ ir

B ir

■ "T

■ .j. !j

'iii r ■ 1

P.l l! ■i

1 1 r - 1 1 ^

1 '1 L 1 1 1

■ 1' iii Cf

? rj. t 1 If 1 h+

1 '' 1 _i

fi 1 ;_;■

" j

:, "i

i—1 ■%.,—

" 1

"" — —f T ' i

j i ■'

ll I

Niniii

! r J

ff l. 1 F-' [, 1

Q lf a : i'i i.l

■ j i ui ii

-H-- i

H

ai

Y—

t i.

*

fri v1

•v 1i

J H+i » *-J.

'"1 '

N

ifl

$

■< f—-

I i 1

.TJ

81

■ •■■-' - ^MMMMHMI^MHMIMMMi

■IPI

3.3 OTHER DATA ANALYSIS RESULTS

As previously reported various other parameters are determined

from the PSD by the Aurora computer program.

3.3.1 Radiation Profile Integral 1168

For each scan line considered the optical power integral, ^Ax Y. 1=2

1/2[R(I-1)+R(I)], was determined from each relative radiance profile a-

cross the observed striations. The average value of this integral was de-

termined for each of the five windows (illustrated on the enclosed photo-

graphs) by averaging over the total number of scan lines comprisina each

window. Table 3.3.1 summarized the results and illustrates the observed

variation in optical power with altitude and time. The values were also i

averaged over altitude at each time, to remove the altitude fluctuations. f

The results of this averaging are presented in Figure 3.3.1. As expected,

the time variation shows a decay of the radiant striation optical power i

with increasing time.

3.3.2 Power Spectral Integral 2 o u e

In all cases considered the integral *=:Av Z 1/2 [P (I)+P{I-1) ] , over 1 = 2

the sanitized power spectrum was determined at each altitude and time. The

results of this integral as it varied with altitude and time are presented

in Table 3.3.2. Also shown in this table are the average values after the

altitude variation at each time were averaged out. Figure 3.3.1 illustrates

the time variation of the average value of this integral. Its decay in time

is similar to that of the optical power from which its value arises.

3.3.3 Frequency Where Filter Function Decreases By 10 db

In the data analysis, a filter function was used m order to

* For plotted data Ax and Av are taken as one.

82

■■--

i..l(-- -^- --^^a.M—Ü

wmm*

describe and correct for the spatial frequency response of the various com-

ponents in the film measuring process. It can be assumed that no usable data

exists in the power spectrum at frequencies larger than the frequency where

the filter function operating on the "raw" power spectrum, suppresses its

value be 10 db. The frequency at which this first occurred was determined

as a function of time and altitude for all the PSDs. Some of the determined

values of this frequency are presented in Table 3.2.3. The time variation of

the value of this frequency after averaging over altitude at each time is

graphically illustrated in Figure 3.3.1.

3.3.4 Number of Striations

It was indicated before that by following a procedure developed

by SRI , the exponential fit parameters can be used to estimate the total

number of striations in the imaged spatial volume. Using the expression

given by Equation 2.3 and the required fit parameters, the number of stria-

tions were determined. The time/altitude values of striations which resulted

in this analysis are presented in Table 3.3.3. As observed from a study of

the data (and also Fiqure 3.3.2) it is clear that these values are not

unique for they depend on the assumptions used and the frequency interval

over which the semi-log linear fit is established. Fiaure 3.3.2 presents

the time variation of the number of striations after the altitude variations

of this value were averaged out. It is significant to note that over the

time period considered the number of striations does not appear to chance

even though the relative radiant power has decreased by approximately a

factor of three (see Figure 3.3.1).

3.3.5 Most Probable Striation Radius

As shown by Equation 2.4 a radius probability distribution can

be determined from the exponential fit. The most probable radius values of

this distribution wnich arises from the data at each altitude and time

■—

— I,, mmmmmmm

are summarized in Table 3.3.4. The time dependence of the altitude-averaged

value of this most probable radius is illustrated in Figure 3.3.2. This

plotted data indicates that no significant change in this value is observed

in the time span of this analysis.

3.3.6 Total Area Contained in Gaussian Striations

Another parameter that can be determined is the total area/TT

(or total unit volume, i.e., unit length along the striations) of all stri-

f ■> ations m the imaqed spatial volume. This total area/7T is defined as :-i(r)r dr.

N(r) is the striation radius distribution (Equation 2.4) normalized such that

ll(r)dr equals the total number of striations. The symbol r is the Gaussian

striation radius (in cm). The time and altitude values of this parameter

are presented in Table 3.4.5, Figure 3.3.2 presents the time dependence of

the value of this parameter after the altitude averaging has been performed.

A review of Figure 3.3.2 indicates that the striations occupy about 10% of

the total volume used in these calculations for the imaged striation region.

Likewise, except for the shift brought about by the ambiguity of the location

of the striation volume, no time variation of this parameter is determined.

3.3.7 Relative Volume Emission

Having determined the total striation area A, (or unit volume a-

long the striations) the volume emission of optical light can be determined

from the expression E =- [47TJR{x)dx]AA, where P(x) is the meanured, relat-

ive radiance profile across the striations. Thus, E is the relative volume

emission in units of emitted power per cubic centimeter for each striation

averaged over the emission alonq the camera line-of-sight. The value of this

optical emission volume as determined for each altitude and time, using the

measured relative power, is presented in Table 3.3.6. It is likewise graph-

ically illustrated in Figure 3.3.1.

0 4

■ -'—

r^

TABLE 3.3.1

A-.FA l)Ni)f> hflLlAUfF FfCiFlLf UQQ KM AT BlieST POINT TIME AlTTTtlDF (<M AV6 OVEF

(SFC) -(c_r . qi^. HM[ , fli-l. «13. ALlITULt

33 0. 390. i»5n. 510 . 570. 630. fSSO. 76,1. TIME

AVG

« . ft ?E ♦ u .5 7.P.0fc »03 &.33F♦03 U . q C F ♦■n 3

'.-j^f ♦&$ £ . q 3F ♦ C 3 2.1 4F »C ^ t'." 3F tSJ

«, UF^-u^

?.T7F*03 0.bHF4-U3 S.^^F*0 ^ t-,3 ie*o^

?,7 7E +C3

H.32F + 0 ^ H .p^t.^n • 7 . b 3f ♦ 0 3 f- .b-lF* 0 3 S.2c.'F+ 0 <, u .tut *r\T, 3.G3E+0 3

^2CFfr3 5 .7hh+0 3 S.nfH »1)3 7 . (S q F ♦ 0 3 5 .^TFfU3 5 .l'>'*3 3 3.^ !t+0 3

3 .Hlt+C3

1 .UfcF + OU 1.17 E ♦ 0 «♦ 1 .Ohfe '•■U'» « . 3 «t ♦ 0 3

f>,3 9F.*0 3 b . 3 h E ♦ 0 3 3.7LL+03 3 .7 It* (13

4. Ü.iF + 03 4.a?E»03 «. 1 3f f 03 b.bbF*03 5.(]7t ♦03 «♦.PhE* Ü3 ^. U2t ♦03 3.U'.E + Q3

i4.77|-+n3 ^.17f4-n3 ^.H?F+03 F,.7^+03 7.bSF*03

iINT TIME UTTTUPF (K -) AWO OVEt<

I SED ii?r. n 1«.. IC^f . 10 '^ . 1000. ALTIT UCE

iTO . « . 7 ht ♦ tv. H . ^ 3 F -•■ U 3 * .h7f ♦• n."> q. 2 L F ♦ C 3 1 . L bF ♦ iJ<* M .1 1E*G3

390. 7 .f r.F »03 ^ .7 7F *0 < n.?^F*n3 4.7hE«-U 3 1 . 1 7 E ♦ 0 «♦ 4.U2F♦03

^^n. fc . 3 oF ♦ fl < fi.bKf *[) 3 7. F .-.f ♦ n .' -) . *♦ 0 E ♦• 0 3 1.Obc+Ou B . 1 3t ♦ 0 3

blO. *.. fl hF ♦ C 3 4 . '. '-) t * f1 ^ h . «« ? F «■ fM / . fi f' h ♦■0 3 H. 3 7- ♦(13 b . b bF »03

570. ?.55F+n3 u.i;u +0 •; b./.'E*!1 < S.4 rF ♦( 3 o.3 HE♦0s S. C7t »03

F.3ü . ? .q-iF «-Uo ' . ^ M f + 0 3 •« .3i*F »U < 5 .1 Ct*03 ■5.3bF*03 U .2hE +C3

fS^O. ^.H^tG 3 ?.h t f ♦03 3 . U 3M n ' 3 .6 3f «-n ^ 3. 7nr. ♦ J3 3.0?E+0?

75C. 2 . J„F*U 3 2.7^*03 3 .1Mt*U 3 3 .<4<;t»03 3 .7 IE »03 3 . 0 UE ♦ n 3

TIME AVE, i4 .'H^f n ^ h. . 2 r F ♦ 113 = .f2F* ni F .^t:^ fü^ 7. «i t» -: ♦ o 3

o^~u umi^v Kan .'»UCE 1- kdFTl F « u: KM AT <U>- ST HOlhT

TIME fll TTT(ir F (K ^ ) AVb OtfEK

(SEC» 1320. 13 1^ • 12t ^ . 12 3 -) . 1 I 'O . ALTIluui

3 3 ü . P . 7bE 4-G < -A . r) 3 f ♦ 11 ^ rt .'»7 E ♦ 0 -i 4, 2 ■> t ♦ 0 3 1 . G b E ♦ 0 A M . 1 21 ♦ 0 i

390. 7 . u G F * o ,, ^.7 7» ♦ 03 o, ,?^t * n 5 q . 7Kt »r ^ 1 . 1 7: ♦Gu 4 . 0 If ♦U3

U^G . fc.J ',t ♦ G ■ h . K Hf ♦ n.^ 7 . b.' E ♦ fM ^ .Ait. ♦r3 1 , f, b t ♦ 0 - H .13( »0 3

510 . t.. u „r*- n 3 h .?-.( ♦03 F ,tHt+ 0 3 7 . n rt E ♦ C 3 rt .3 7- tu 5 F. .3HE »03

570 . 3. r> VF ♦ a s M. <u ♦u3 [.. .'I'F ♦ 0 < v . q 'J i- ♦ n 3 h . 3 M L ♦ T 5 . 0 / E ♦ 0 3

630. ?. q 7F ♦ G 3 3.54f ♦ 03 u . ^f ♦ (M > . 1 '.t +0 3 ->. .•! bt ♦ i) ; i* . 2 h I ♦ U 3

69; . 2 . 1 Mf + rj ' ,'.^f-F ♦ i ■' <.r,-E *i .■, A. -jiU »L 3 u . h L ♦ ') 3 < . <♦ U t ♦ ö <

750 . 2 ,1 ^E ♦ C .1 2.7 If ♦ 0 ' 3. 1"E ♦03 l.^MI »O ' 3 . 7 11 ♦ 0 3 3.Gwf ♦03

T IM^

nvr, U .F/E* J < h. i qf ♦ 0 3 S , Ml.f 4 0 ' b. nr( »r: 3 / .h /! f f) '.

85

'"■"*-' in mm

"'"

TABLE 3.3.2

TIMP CSFC»

jsn.

610. bin. 830. OSL .

TIMF ftVf.

Ah FA

1. 'IF*

^ . ^ It ♦ T.;7F. ♦

»j. 1 at ♦

?.1 bF* 1 . b 'F ♦

7.-)/F ♦

fc , P ? ^ ♦

IINn^F Fti^th StFCff A '.LP f" Al TITUl f (KM

i, n

OH

i, ''

1 .2uF ♦D'i

1 . U :u ♦ 0 H

« . t It ■♦ n M *-. a r^ ♦ n n

JI.;_' ?F + np

?.Mf ♦HP 1.XIF♦nn

1 ./ «-f ♦On

rtMC.

1 .?uF«-0M 1, iqn-ns 1 .1 ^F+O1-

M.fet-F-HJM

S.O^F +0 r

J. 71f ♦DC 1 . K t ♦ d rt

1 .""f »O"

ul tUJhbT POINT

1 . «10.

1 .h lh*Ou

I./^-F »a <; 1 .77^0" 1 .lhP*0^

b .ufh<-0 f.

'■,. 1 «F »-Oi4

.^.irF »ct*

,'.ü tr -t-O *

^.J JF*-U^

2. F>»«t +Ü4

1 . jt-.€ ♦•QH

7 .5 2 £ ♦• 0 « s , "^ -^F ♦ U o d . u i; i ♦ ü rt

2 , .i o P ♦ ü «

ftLlITUÜt

1 .i»r.E»-0'i

1. 5 Ot ♦ 0 q

1,3?f♦Q^ S.2 -t tCrt

4.H0fc »On

<,. b^t• +ü«

l.h4k*QH l.b^h*Crt

S.:?F»O« b.H.^^OM 7.1'F*n>- ^.7?F*0^ l.^^t + QM

AhFfi UNI*-'»-

T IMF

(SFLI

5J0.

Ubü . 510. 6 7 5 .

690. 7^0. T1MF

AVf-

K'^FF ^H TF A ► HP KK AT MIIF^T PUlNT

CLTlTUMr: ( K f »

11 2U.

i. J i £ * r ^ i./lFfbM

7 .l/E«-0n ^. lif7 *■ r .i

.IFF* C«

, F) « ♦■ Q ^

. 9 ? t ♦ G 7

. u 7F *■ C /

11 1^.

^ ,91. I- fP ^

i. n TF ♦■ i) -)

«. 11 F * n -*

.< .?7f «■(' «

?,U IF* QM

l.?ut »DM 1. ^GF *G ^

l(i 7r.

1 .cVF*no

1 .IHf ♦ns i. i" t ♦ n « 7.-irf *i1 ^ t.OF F* 0H

;<. 71 F + n M

l. b '■ f ♦ T i 1 .7 't * T*

1 . ^ 1 F * Ü 4

1 . 7C,h *ü H

1 . 7 7 c * 0 4 l.l^F*^ -» t . i- ^ t. * " f ^. i M F ♦ n >• ?.lHt*Cl« >_ .3U>^ +0 H

loon.

?. o i F * Ü H 2 .SUH * U4

? . ? 01 ♦ J H i .ot-.L*;.^

7 .'. 2 i- * U M

F> . b ^ r * U ■■> 2 . t* C t * G «

2. '. "t *',rt

ftVU (WFK

ALTH UHF

1.U7F »O^

1.601 *04

i. ??F *ÜS

H.6.iE * GH

u . H Ü F * Ü H

j.hrtf ♦Oc Lh/it *CM

l.h.it ȆH

|-'(- + ur c-.'-Ht*!^ .42f*0rt 4.7 2^*01 1 ..F * n-i

TIK'

(SF(,)

3?n.

3S0.

i«6u .

61 G. 670 .

n30 .

h1r .

76C.

TTHF

„r.r a UM

us: o.

.' IF *ou

. 71f »Or

.1 7F *L ^

. 1 JF ♦ C^ ,, 1 •'-, r + f w

. , ir ♦ n J

. ) 'e *o' . r, , l ♦ !, .""

. 2 .tF • G i

( m r v ^Fft TF A H" " 0 1 T T Tilt F (KM.)

KM AT t'Uh

m1 .

1 .2<> »u u

l.f -i *r ^

H.I ^ *J« j . r> i- *• G H

« . ? 7 F ♦ 11

? . (. 1F ♦ G r

1.-'-if ♦ G^-

-,. '. 't ♦ u^

l?f.£ .

1 .2tf »nw

l. 1 it *n i 1 .1 " F * G '-, 1.2^ »^ ^ , T.t *f) H

5. 71 f * T ^

1 .h' f * 1 M

/ .-,,•( ♦ n -

12 !H

1.6 It

1. 76*

i,7n i.i' f i,.'. -t-

4 . q M f

i. '-t

♦ GM

4GM

♦ G J

♦ Ü '1

♦ G "

♦ OM

♦ G-

I » i

1HÜ

2 . G J t.

1 .of.t

7.62'

'. ,h 4[

- . 7 1 ;

2. '"i

1 . /■' t-F

INT

+ 1.4

♦u -»

*UM

* 0 H

* on * Ort * :jn

AVG. ÜVFH

ALT 1 I Ml.»

1 .u7t »34

1 .61 F ♦ '' ■■• 1 ..<2t »GM

1 . 0 r. F ♦ 0 H

u .H lie * G^

<.f,MF * ul

2. <«F »G»*

i. h A f * n«

86

^^i. - MM^HMMM «MflMMMH

I, I

I r LI

L I

1'J fr

il

Li I

.1 l J L 1

i

l.i

/

t;M

/'

63'

/

rl \A

I, I

u . I i !

,l I I:I)IN

1.1

I l' 1

I I I I 1 I J I i 1

■ \> 11 .1

. 1 i

1 -1 l-.-k 1

1

/

1

r

1

\ _ .,,.»,.., b—■ ■ m**... ,*» \—" -v. .J

Il 1

1.1

11 I

11

R7

— ' -—--—- - - i miMimii iWiMiirti iiir

TABLE 3.3.3

N U N F (

(SEC)

3 30. 3<»0. U^O . •5 1C . 57Q. 630 . 691) . 76d. TIMF

ftVG

Of Sr^IuTlDNS IN SFftTiAL VOLllfF L

Al TlTijfF (KN' > MSI

Kh- ^.T HIJKbT POINT

f-.^Mf- ♦!) ?

b .6ftt ♦ C/

e. »♦ HF + o ? 6 .Mt ♦( fc.-)7f +0 2 f .<f7f »0? S.J'.FtCr'

q is.

s. wc?

i.. h 4 F ♦ 0 ?

7 .MI<P*O?

A .«7^+n?

«, .7 3F.4-n? t, M ^ F ♦• n ?

■•.. 1 Hfc * o ?

7.Mf'Ft O?1

7.1C1F♦0:,

,< . '^ u F- » 0 ? ^ .Hi. F ♦ U,'

«^ .7f F + U;-"

F.'47t «-112

S. 16( +C?

u.l7h'-n2

«.t«7t.*02

i*.2U +02 < .1 rF ♦•0 2

5 ,0 2F*C2

i4.4 3F*0?

«10.

S , 7Mt ♦0 2

u. •; /1 ♦ 'i <'

j .7i.h ♦ u?

« .Ubh ♦ J2

«♦.23t + n?

<* .u2-:* 02

8 . 5 o t! ♦• u 2

ALtlTuüf-

-,. ihf +Ü£

b.ulfc + 02

b. 4 U ♦ 0 2

^i.oCt +02

c,. IHt+ u^

S.-.'-t +02

5. 7jb +02

t..UF +02 f-,.0^t*02 .b- »0? u.7H^ +0 2 5.0 7t«-C2

NUHF

TIMF (SEC»

3 ?u. 390. HSO . 510 . 670. ft30.

7t>u . TIMF

Awn

h CF STKIAT inNb m syi.Tin A I TTTUI'F

1120.

^hSt+02 ft br ♦ o 2 h ne + n ? ?FH +fl/

•jFe +0 2

71Ff II '

1. j .?F + n <

c.: 2f- +12

11 1 u.

7.iif+02 q .^t-. + o^

?.ü c^ ♦ 02 H .ij IF *t 2

1.1 7F + T

F ,F >-t- »o;1

I . f1 t ♦ L, .1

■;0 KM Al r<l)FST PuINl

h .«IF* u2

1 . 101 + 0 3

7. Wf +b c

7 .i' f £+0 2

(- .C)<-f + 02

7.r)F,F+n ? q.bif +n2 1 .i 5F ♦ u ■■

r'.?r,l +0?

- . 0 T- -0 ?

ta.« ^ +0 ^

D . 7 r C ♦ W 2

7 .2/»- +u ^

•, .7MF.+L2

7 .ibt +J^

D .^ 71- +rv

,L 7F+n? rt.7FF»n2 .IHF^-U? 7 .0'»F + ü2

n . 8 M- +02

F, .'^c* 02

S.HbF +0<:■ 7 . 7 F t ♦ 0 2

7 .< t^-+ u2

b . Ü 0 '. ♦ 0 2

o. G4L + 0?

1 . i, i. f + 0 2

7 . 3 7F ♦ G 2

A _Tj. TUbe

7 .70f +U2

4.2ht+02

7 . 0 2t + u l 7.oht+G2

fi.bOF +02

b,rtS c+ 02

0 . ^ -> t + u 2 « ,73t + ü2

TIME (Sf f,)

330.

iPf1 .

u5Q .

510 .

570 .

63 0.

690 . 750 . TTMF

ay 1,

* OF STrvTATIOf^ IN SPA^lf' '/nnj'-r A L FT Till t- (KM

1Mb. 12»'-. 1?

K r AT

1320.

1 .1 7f- ♦ u <

i.3 HF ♦ 1 ^

1. JUF »a <

1 .3 7t » Ü < 1 . 1 ^f ♦ 0 < 1.2DF »r.^

1.3^F«-0 < 1.2Jt + n3

1 '■\: ♦;

1 . 0 1 F + 0 ? i .211 ♦ a < I . I i'F ♦ U ^

t .O^F »U ^ 1. ') HF ♦ n <

1 . ■ Ar ♦:'.-

1 .^91 + J '.

l.'>7f- +0*

t . 1 ..< ♦ -

1 .n 't -MU 1 .1F F♦ iM

i. QMf* rn

1 .1 2' ♦ 0 ^

4.2:t +0 ? ! . 1 1F + M

1 .2- t +1 •! 1 . iMt- ♦ ü '

'.. 1 Ji ♦0 3

1 .ü nF +b <

).3bt. *U2

-1 . ^ 1 r ♦ j ^

1.0 If +1 ^

'-..-, ~>t »1:2

1 ,r)it +03

•■. 2 U +02

ll^b

1 . ? 1F

7 , u H t-

/ . iM'

■),►■>'*-

1 .tibl

). ti ^e 1 . 0 n r

U ^ S J 1 - iiMf •WC, ()v^

• ALU t »1;-

♦ >. '. 1 .Uf +'j3

♦ 0 2 I . 1 -^ c +03

+ 0 2 ), 1h( f Ü2

+ oc- 1 . j ►- f + 0 ' ♦ n.1 1. u n ♦ ü < ♦• fi •; 1 .1 b f + 0 ■( + 0, I.141 +03

+ 0 3 1. iw * c •:

88

■^M

TABLE 3.3.4

iOST PR06A8LE STR1ATIJN RADIUS '.OO KH AT BURST P3INT HIE

(SEC)

330. 390. <»50. 510. 570. 630. 690. 750. TINE AVG

920. 915. ALTITUDE (KM)

890. 851.

1.00E+01 9.8'.E*00 8.96E+00 3.96E+0Ü e.32E*00 8.88E*00

9.76E+00 9.12E+00 l,3«tE*0i e.^BE+OO 8.72E+Ü0 l.l^E+Ql

9.8^E*0ü 9.B<.£*00 a.'tSE+OO 9.20E+00 i.l7E*Cl 1.19E+01

9.60fc*00 9.2&E+00

i.ObE+Ol 9.33E+00

i.O^E+01 8.Ö8E+U0

9.68E+00 8.00E+Ü0 1.09E+01 9.8^E+00 1.1<»E*01 1.25E*01 9.92E+00 9.0<.E*00

810.

9.<t'VE + 00 1.08E+G1 1.10E+01 6.16E+00 1.15E+G1 1.22E+01 1.14E+01 8.80E*Q0

AVG OVER ALFITUDE

9.7<.E + 00 9.52E*-Ü0 9.95E*00 8.53E+00 1.03E+01 U1<.E*01 l.O'.E+'oi 9,l<rE*00

9.23E+00 9.78E+00 1.00E*0i 1.02E+01 1.02E+01

THE (SEC)

330. 390. ^.50. 510. 570, 630. 690. 750. TIME

IDST PRJdAbLE STRiATIÜN RADIUS 600 KM ALTITUDE (K>1)

il2J. lll<t. 1078. I0<»5.

AT BURST P3IMT

9.8<»E*00 1.03E+01 1.J2E+01 1,U2E*01 9.76E+00 9.76E+00 9.12E*00 6.00b+00 9.<.^E*00 8.d0E-t-0Ü 8.56E+00

8,6^E*00 i.0i£*ul 1.00t+01 8.96E+00 1 .09E+01 1.01E*01 8.96E+Ü0

8.96E+00 l.OOE+Oi i.07E*01 l.UE + Ol 1.09E+01 9.8^E»00_

9.96r*00 1.08E*01 1.02E+D1 1.09E+01 1.17E+01 J.Ü2E + Ü1 9.661*00

1000.

_^^52E*00 T.oeP+'oi 1.13E+01 8.<»0E + 00 1.11E+01 1.12E+01 1.Ü6E+01 ?.4^f+00

AVG OVER ALTITUDE

1.00E+Ü1

1.0<»E*01 9.68E+CC 1 .01E+01 1.08E+01 9.90E+00 9.9^P+00

9.17E*00 9.74E+00 1.00E+01 1.03E+31 1.03E*01

i3ST PR33AtiTT STR IITKJ^ RADIÜS 8Ö0 KM AT BURST PDINT TIIE ALTITUDE (KM) AVG OVER

(SEC) 1320. 1315. 1265. 1239. 1190. ALTITUDE

330. 3 90.

T5Tr

570. 630. 690. 750.

TPTT AVG

9.7SE*00 9.<.<.£+00 !5.68E+aO 8.88E*00 9.08E+Ü0 b ,6Bt-t-uO 8.^9£+00

1.02E+01 ö.ö'tfc+üO 9.50E+JÜ" 9.76E+00 1.0^E*Ü1 1.01fc*ul 1.00E+01

9.68E+00 9.60t*00

~Trr¥r*üTj 1.02E*01 1 .13E + 01 1.02E+01 l.OOEfOl

9.e^E+oo 9.b^E+00 1.ITF+0I 1 .02£*01 1 ilOEOi 1 .10fc + Jl 1 ,00£*0l

9.3bE*00 1 .06fc*01 l'.13I*01 9.7bE*00 1 .10E+01 9,20b+00 1.07F+01

a.i6E*00 8.yBE+00 9.20E+00 9.92F+J0 9.36F*0J

8.92£*ü0 9.69E+00 9,99E*0Ü i.0«F*01 1.02E+Ü1

9.76E+00 9.63E*00 l.a3E*Cl 9.78F*00 1 .03E*01 9.H7E+00 9.e<tE*00 9.10F*00

89

■ -■ - - -■■ i (my^riJumaKiii^Mlii mtmmmmm

TABLE 3.3.5

TOTAL THE

(SEC)

AR6A Uf1**2)

920.

IS GAJiSIA* STRUTn^S AT '.OO KM AT ALTITUDE (KM)

91b. 890. 851. 810.

ajRST LATITUDE AVG OVER ALTITUDE

J3J. 39J.

510. 370.

690. 730. Tilt AVG

9.b3E*0<» l.l^E+05 9.<.7t*0't 9.3^E*0<i S.^tZEO'» 9.92b+J<.

9.20E*0^ 8.90fc*0<i 8.96E*ü^ 1.03E+05 1.22E+Ü5 9,17E*0^

l.J<»E*05 8.26b>0^

1.15E+05 9.82E*3^

8.78E+0'. I.32i:*05 1.01E+05 l.09E*05 9.66E+0'. 9.71E*0^ 1.12E+05 8.^6E+0<t

8.6'.E*0'. ö.27Ei-0<. Ö.82E>0^ 7.76E*0'f 9.71E*0<. Ö.SBE + J't

9.22E+0't 9.0lE*0<t B.l&E+O^ 5.79E*0<» 1.00E+05 8,26E*0<»

B.ÖbEtO«. 7.15E*a^

1.02E+05 9.07E+04

9.Ü9E+0A 9.55E + 0'. 9.11E*0<. 8.82E*0<. 9.99E*0<t 9.13E*0<» 1.05E+05 a.SSE + O't

9.6üE+0^ i.00E*03 9.98E*-0't 8.^7E*0^ 8.72E*0^

TJTAL AÄEA (<i«»2) 1-i GAJiSIAS STRIATID^S AT 600 KM AT TIME ALTITUDE (KM) li£C) 1120. ilU. 1078. 10<t5. 1000.

BURST LATITUDE AVG OVER ALTITUDE

33U.

<tt>0, 510. 570, 630. 690, 750. TIME

AVG

i.50E+Ü5 1.70t+05 1 .31E05 1.31E+05 i.l2E*05 1.3eE*05 i.^2E*05 I.i9t+Ü5

l.^iE*05 1.27E+C5 i.33E+05 1.^3E+05 1.70E+O5 l.t2E*05 i.7^E+05

i.21E*ü5 1.57E+Ü5" 1. 32E+05 l.^faE+05 1.52E+05 1»50E*05 i.65E+ü5

1.3^E*05 "TTTIFfTT" 1.^3E+05 1.2<.E*05 1.55E+05 1.<I1E*05

1.38E+05 1.33E+D5

l.43E»Q5 'X.T5E + 05 1.33E+05 9.82E+0^ 1.63E+05 1.36E+05 1.62E+05

1.33E+05

1.3<»E*05 1.28E+05 1.50E+05 1.AIE+05 1.56E+05 1.251 ♦03

1.37E + 05 1.WE+G5 l.^'tE+OS 1.33E + 05 1.39E+0b

IJTAL AKEA" (f<M**Tr~rTI~T;5g55TSN TnflÄTIÜNS AT BOO KM AT TIME ALTITUOE (KM)

(SEC) 1320. 1315. 1265. 1239. 1190.

BJRST LATITUDE AVG OVER ALTITUOE

330. 390.

"«.SO. 510 . 570. 630. 690. 750. TT^F AVG

1.98E+05 2.19E+05 i.ME+uy 1.91b+05 1 .39E+05 1.76E+05 1 .76E+Ü5 1.<»3E*05

1.Ö6E+05 1.60E+Ü5

"T7T3ITÜT- l.ti5b*05 2.J1E*05 1 .88h+05 2.31E*05 i.79E*ü5

1.72E+05 1.91E*05

2.09t+05 2.11E+05 2.05E+05 2.24E+Ü5 1.57E*05

l.fi8E+05 1.83E+05 TiTTETUT 1.76b+05 2.19E+J5 2.05E+05 1.91E+05 1.<.'.E*05

1.88E+05 1.R2E+05

1.36E+C5 2.07E+05 2.20E+05 i.99E+C5 1.69E+05

1.86E+05 1.87E+05 l.T«iF*D3 1.79E+05 1.95E+05 1 ,99E*05 2.G<.E*05 1.58E+05

1.77E+05 l.b9b*05 i.9^E*05 1.90E+05 l.e^E+OS

90

-^^n-i

TABLE 3.3.6

RELATIVE »/JLJ^E EMISSION (VE) 00 KM AT BURST POIMT TME ALTITUDE (<rt) AV6 OVEP

tStC) 920. 915. 890. 851. 810. ALTITUDE

330. 3^0. '.SO. 513. 57Ü. 630.

1.32E-0^ 1.33E-0«r 1.35r-Ö6 I.45E-Ö6 1.^9£-06

750, TIME AVG

9.80E-07 9.83E-07 8.15E-07 b.20E-07 <»«35E-07 3.iOE-07

1.28E-05 1.09E-06 8.20E-Ü7 5.2OE-07 5.73E-Ü7 3.33E-07^

i.I&E-06 1.08E-O6 9.i5E-07 7.70E-O7 b.38E-07 3.88E-ÜT

3.63E-07 ^.i3E-07 5.^0E-O7

1.61E-06 1.^5E-06 i.35E-06 8.2eE-07 3.10E-07

1.68E-06 1.68E-06 l.e7E-06 8.25E-07 B.^OE-O?

T".43t-07 <..63E-Ö7" b.65E-07 5.30E-07

1.39E-06 1.3<.E-06 1.26E-06 1.15E-06 7.13E-07 6.59E-07

5.02E-07

7.28E-Q7 7.95E-Ü7 9.5'.E-Ü7 1.&9E-06 1.17E-06

TI1E liECl

RELATIVE VDLÜ1E

1120.

EMISSIJM (VE) 600 ALTITUDE UH)

Kl AT BURST PQIMT

111«., 1078, 10<.5. 1000. AVG OVER ALTITUDE

330. TTOT «.50. 510. 570. 630. 690. 75 Ü. THE

AVG

1.05E-06 Ö.U5b-0/ 8.65E-07 Ö.68E-07 5.68k-07 3.80E-07 2.78E-07

Tiü5b-UT-

i.OÖE-06 ~r.U^b-U6 8.93E-07 6.85E-07 ^.55E-07 ^.50E-Ü7 2.73E-07

i.21E-06

9.98E-07 7.58E-07 5.95E-07 5.00E-07 3.18E-07 ¥".Z5E-ÜT

1.15E-06 "T.T5T-Ü5 1.10E-06 l.ü'.E-Oö 6.38E-07 6.05E-07 «t^üE-O? 5-.T0E-0 7

1.19E-C6 Tr27E-0b 1.23E-06 1.36E-C6 6.28E-07 6.33E-G7 3.68E-07 ^.60E-07

l.l'.E-Ob 1.07E-06 1.03E-06 9.02E-07 5.77E-07 5.1«»E-07 3.33E-07 '..2OE-07

6.15E-07 6.59E-&7 7.13E-07 8.'.7E-07 9.00E-07

ÄELAI IVb~ VULülk EmTTSm TTET FTOO XH AT BURST PGIST TIME ALTITUDE (KM) AVG OVER

(SEC) 1320. 1315. 1265. 1239. 1190. ALTITUDE

330. 390.

-'.30. 510. 570. 630. 690.

AwG

9.35E-07 7.33E-07 T./UE-UT 2.2i£-Ü6 5.'.lE-07 ä.50E-07 2.63E-07 3.00E-Q7

9.65E-07 1.02E-06 T. 5^r-ir7 2.5<.E-07 <..50E-07 '..01E-07 2.'.lE-07 3.25E-Ü7

9.99E-07 tl.7'.E-07 r.^SE-or 2.5iE-07 5.00E-O7 ^.29E-07 2.7<.E-07 '..i2E-07

9.67E-07 1 .0bE-06 8.85E-D7 8.67E-07 5.3'.E-07 '..9'.E-07 1.60E-06 <..80E-07

1 .39E-06 1 .23E-06 1.20E-06 1 .17E-06 5.88E-07 «. ,65E-07 1.53E-06 4.20E-07

9.g9E-07 9,82E-07 B.B9E-07 9.50E-07 5.23E-07

7.91F-07 3.87E-C7

7.b2E-J7 5.52E-Ü7 3.7iE-07 8.61E-07 9.59E-07

91

—■■" ■■" ■ ■■ ■ -iM^MMMi

NUMEO Of STRJHTION^ IM SPHTlfil ica ii i. n

lOOC

LT.

■ - c

-i- -TJI- —

-4-

_.-J,!.,K:-

-*-

.-fik.

%-<..

1!^

*: -IL

1 |

_.--■ „^ —:—-tH— . t-- — -444- —

1

"■"-'^■l——.

t —- r "tp"

_.., —-^:—:: ^.,t-.t

,_,J5..^=-. .ili =;. =.,

3.3.2

92

■ - ■■— i -■■■--

MM

'"""■" I mmm . ■

SECTION 4

CONCLUSIONS

In this report we have summarized results of derived parameters

of simple analytic representations of spatial frequency power spectra that

arose from relative radiance measurements of STARFISH striations as recorded

on film at Canton Island. We have tried to establish a time and altitude

dependence of the power spectra. Because of the allowable time element for

this study, and complexity of the data, we were not successful in this en-

deavor. Study of the presented data reveals that it is not obvious if one

exists in the time period and location of our analysis. It could very well

be, that at these late times, the striation region, which is far removed

from the burst location, is substantially the same and regions within this

striation volume of different character, which ought to be described by

different PSDs, do not exist. In any event the data is presented in suffi-

cient detail to allow review by others, as to the existence of possible

time/altitude effects on the determined PSDs.

Although ambiguity exists as to the actual altitude of the stria-

tion volume, the results of the fit parameters describing the two considered

analytic fits to the PSDs (log-log linear, semi-log linear) are quite insen-

sitive to this ambiguity. This is not true regarding derived parameters that

are model dependent (such as number of striations, striation area, volume

emission, etc.). As shown by the presented data these parameters are sensi-

tive to the selected location of the striation volume. The time dependence

of these model dependent parameters likewise indicates that the sampled

striation region, is substantially the same over the time/altitude interval

studied.

93

■ - • i i^i

—-———"""•■■■P

The prime purpose of these measurements was to establish the power

spectral density from the striation properties and determine if these stria-

tion properties would restrict the PSD to a relatively simple analytic form.

It is clear from the presented results how well this car; be achieved by a

power law or a single exponential fit. It is also shown in Figures 3.2.1

through 3.2.10 that a much better fit to the data is achieved by a two-

term exponential fit. Although time did not allow to review the data in

terms of a similar two-term power law fit, it is certain that because of the

sharp PSD drop a k = 0.01 rads/km, a better representation of the PSDs

would be achieved by such a considerötion. This is easily seen by a review

of Figure 4.1 and 4.2 where one of the PSDs from Figure 3.1.1 is reproduced.

In Figure 4.1 analytic fits of Equation 2.2 are overlayed for a fixed

slope (V = 0.014, i.e., Y = 2.03) and six different values of the outer scale

size, L. Likewise in Figure 4.2 analytic fits of Equation 2.2 are overlayed

over the experimentally determined PSD for an outer scale, L = 390 and five

different values of V represented by the slope, y. It will be noted that for

wave numbers greater than 0.03 rads/km, a very good fit to the data is achieved

by a power law fit having a slope of about 2 (i.e., V = 0) and an outer scale

size of 20 f L < 100 km/rad. If this were selected then the power region at

lower wave number (km/rad) values could be expressed by an added second func-

tion. Our endeavor to fit all the data by one simple expression forces the

selection of a large value (~ 400) for the outer scale size. Since this is

about the distance of the entire scan length across the striations, it seems

clear that this very large outer scale size is not a result of stochastic

large scale fluctuations, but is instead related to the deterministic gross

structure of the radiance profile. On several of the PSD plots shown in Sec-

tion 3 there appears to be a short flat shelf at k ~ 0.03 rads/km. This sug-

gests that the true outer scale for the stochastic fluctuations may be in the

range of 20 to 40 km/rad, and that the increase in the PSD for k < 0.03 km/rad

is due to the deterministic structure of the radiance profile.

94

mmmiM -,ii ^imtmiämtmmmimmMmma^^mmie^HmBIIHttiiilitKttlBltä

PGWLF;

I Ml 11 . I l! 4.1 OUTER

iScale t t— -4 F r + -

rrir: T"

'.::' ; ri^ r 1—r ,—,. r t r-'

T~X r

Jkm/rad; " ^_».

r-.. f - iz: rt-- zrn :;■ ir - j— !Z n t-r-T —

-1 oo -»-^™-— _._r f* * i i I ' ' . ; " ■ i ~

\ ■ \- ■' i i '11 i i ^1 200 +^^i±?X=:'—r:^:-:-=:. - - {

i "1 J

i

- xJ-_l-r ,.-+.-

100 -»—.:^:

40 -►'

K

■i=c..i::q

.,! :_. .„J_.„,l_,

.;.. v,.

20

f;::5:+;:i: ^-:rzä;.tt±.. £f:-c;:mÖ«±

TTaV-;:

-- I -,--:-■■ -]

-r- i- ' ■ >H 1_— i—U-J -i

r K _:.4Zjrrr-,a; ̂ .I..,:,:.:F ::t. riid; fiÄS ■■-•{ ■!■-. I-

-i- l-U- T- r I -| r i

i i ill

MI iii _P r...[. _T.-; „.

N^r;

f:.„-i-r::t:H:-m .,'.. ,-. L, l- ..I—I. u ■ J .i__ ' . ;. _ '. J, _.L [ J

i- - ] r j ! ! i i f

5

I. "f^f-

i - i- ! ■; i-. i

I i i ' i i i i

\

Am tit

ABCISSA x j = k (radiansAilometer)

95

i^teta^... - -— ■ —--- ■mm

a:

4.2 SLOPE

- 2.5 -»•: r-^.:1 ^.i:,;1-;!.::: t:;:;.-: :. . :'■ \—z: t -rX til :

2.25*!-;'—1~r-4r:-r-;---f-i--r------ --r ,--]■ - S--t I-r i-- r , - - T -';- < t —

'"■ ' ■ ' i , ' 1 '; 1 ! i , 1

:: 1. 75-»--,. - -X U'.XiZ- - - - !. - . ,.-.

( . . I !

J [' ^^rc'^'Si^ zh...::irM.:::^:[~z :L 1 - t- - i

4 1.5-*- - .„

--;-—- -Vrr - n - V-j .,-•.,.

rxi" btfc: .1—1 — i^Z ■\

,L xZi' 11 T_

-;:■:': rj c i. r r ' ■. M

x;: V-V!'^ Ui-.-l--

Vt1'^ ^ - !

; Ur:

■i : -!-■

\ If ■■

ABCISSA x ^ = k (radiansAilometer)

96

'''■"■"' ■• — • -' - ■':^--^.- , -' Ill-I ■■*■'■*■'■-"■■■T-* r' i in imatt*iim*m*i****t*mt*,^^^m mm

mmmunHfii 'i

REFERENCES

1. Wortman, W.R., R.W. Kilb, "The Relation Between PEDs and Striation Properties',' Mission Research Corp. , unpublished.

2. Herman Hoerlin, "United States High-Altitude Test Experiences", LA-6405, Los Alamos Scientific Laboratory, 1976.

3. Hodges, J.C., W.G. Chesnut, "Starfish Photography from the Equator", DASA 2361, SRI International, 1969.

4. Dudziak, W.F., D.I. Devan, "Characterization of Checkmate Etriations, Information Science, Inc., unpublished.

5. Chesnut, W.G., "Spatial Frequency Analysis of Striated Nuclear Phenomena", SRI International, unpublished.

6. Leonard, L.H., R.E. McDevitt, "Starfish Late Time Streaks and Aurora", EG&G Inc., unpublished.

7. Dudziak, W.F., Unpublished Starfish film records from Maui.

8. Strassinopoulos, E.G., G.D. Mead, "Computer Programs for Geomagnetic Field Line Calculations", NASA, NSSDC 72-12, 1972.

9. Wittwer, L.A., "Propagation of Satellite Signals through Turbulent Media", AFWL TR-77-183, Air Force Weapons Laboratory, 1978.

10. Schurin, B.D., et. al., "Long-Wave Infrared Background", unpublished.

11. Overbye, DNA3213F,"Operation Dominic - Nuclear Induced Striation Charac- teristics Of Fishbowl Magnetic Conjugate Aurora", Technolocry International, Nov. 1973.

97

.MM M*MM

DISTRIBUTION LIST

ÜLI'AKIHINI 01 ULI LNSL ütl'ARTHEN! Ul ULI LNSL COfiIRAClU«S

Uefense Nucluar Aijenty ATTN NAI U AITN NATU AT IN ST NA AHN RALL

! cy ATTN RAAl 4 ty ATTN TITI

Defense Technical Information Center 12 cy ATTN: DU

l ield Command Defense Nuclear Aqency

ATTN: fCPR

field Conjnand Defense Nuclear Agency Livemiore Branch

ATTN: FCPRL

Berkeley Research Associates, Inc. AT IN: J. Workman ATTN: (,. Prettie

LSI , Im. ATTN: 1, Marshal I

General Research Corp ATTN: J. Ise, Jr.

lln i yers i ty (it 111 inois AITN: Security Supervisor foi I. i'en

Infonnat ion Si. iom e, Im AITN: H. Uiiit/i,il AT IN: IS lad

lAYCUR ATTN: J. Sperling

DEPARTMLNT (J( THE ARMY

HMD Advanced Technology Center Department of the Army

AT IN: AIC-T, M. Capps

DEPARTHCNT Of Tilt NAVY

Naval Research Laboratory ATTN AITN ATTN AITN Al IN ATTN

Code 7600, B Code 4700, T Code 7550, .! Lode 4780, S Code 7950, J Code 4187

Wald Coffey Davis Ossakow Goodman

Kdinan TEMPO ATTN: W. Knapp AHN: DAM AC

M.l.T, 1 incoln Lab AITN: U. Towle

Mi ss ion Researi h Corp ATTN AHN ATTN AHN AHN AHN

R. Hendrii1 T. laJen 1). Sappenfield loch I ;t)i ary R. Kill, R. liogusch

DEPARTMENT Of IiiL AIR I URGE Sic i f i i -Siei ra Reseat LII Cue p

AHN: II. Borde

Air- force Geophysics laboratory ATTN DPR, II. Gardiner ATTN ül'R-1 AHN LKB, K. Champion ATTN HPK, A. Stair AHN S. Basil AHN PHP ATIN PHI , >). Ben.hau ATTN R. Thompson

rce Weapons 1 aboratory AITN Sill AITN N1YC AHN NTN

L lef.tronic Systems Divis ion Department of the Air force

AHN: UCrC, J. Clark

Di PARIM1 NI 1)1 ENERGY I 0N1RACT0RS

I us Alamos Nat ional Si lent i f ic I ab AHN: .J. Simons Al IN: :. Tones AHN: is 564, 1. 1 inn

Phys ic a I Dynamic s, Im ATTN: 1 . \ remuuw

R R, l.i As-.t.i i ■■ AI 'S AI-s A'"

R % li A'.', AHS

Rand ( ot p AHN: I . BcTlrci/ian

Sr i ein c Appl mit ions , Itu AHN: I). Haml in AHN: I . 1 inson

SR i ! nt ci nat HUM I AHN ,v Burns AHN Al IN 1 .

' tu".nut Ririi)

AHN M Ba i on

'J'J >nLCl.üii4U PAOS BUNK-NOT Flu«£D