CHAPTER 7 EIGENVALUES AND EIGENVECTORS

63
CHAPTER 7 EIGENVALUES AND EIGENVECTORS 7.1 Eigenvalues and Eigenvectors 7.2 Diagonalization 7.3 Symmetric Matrices and Orthogonal Diagonalization 7.4 Applications of Eigenvalues and Eigenvectors Elementary Linear Algebra 投投投投投投投投 R. Larson (7 Edition)

description

CHAPTER 7 EIGENVALUES AND EIGENVECTORS. 7.1 Eigenvalues and Eigenvectors 7.2 Diagonalization 7.3 Symmetric Matrices and Orthogonal Diagonalization 7.4 Applications of Eigenvalues and Eigenvectors. - PowerPoint PPT Presentation

Transcript of CHAPTER 7 EIGENVALUES AND EIGENVECTORS

Page 1: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

CHAPTER 7

EIGENVALUES AND

EIGENVECTORS

7.1 Eigenvalues and Eigenvectors

7.2 Diagonalization

7.3 Symmetric Matrices and Orthogonal Diagonalization

7.4 Applications of Eigenvalues and Eigenvectors

Elementary Linear Algebra 投影片設計編製者R. Larson (7 Edition) 淡江大學 電機系 翁慶昌 教授

Page 2: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

2/62

CH 7 Inner Product Space

Diffusion (p.348) Relative Maxima and Minima (p.369)

Genetics (p.359)

Population of Rabbits (p.373) Architecture (p.382)

Page 3: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

3/62

7.1 Eigenvalues and Eigenvectors

Eigenvalue problem:

If A is an nn matrix, do there exist nonzero vectors x in Rn

such that Ax is a scalar multiple of x?

Eigenvalue and eigenvector:

A : an nn matrix

: a scalar

x: a nonzero vector in Rn

xAx

Eigenvalue

Eigenvector

Geometrical Interpretation

Elementary Linear Algebra: Section 7.1, p.342

Page 4: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

4/62

Ex 1: (Verifying eigenvalues and eigenvectors)

10

02A

01

1x

11 201

202

01

1002

xAx

Eigenvalue

22 )1(10

11

010

1002

xAx

Eigenvalue

Eigenvector

Eigenvector

10

2x

Elementary Linear Algebra: Section 7.1, p.343

Page 5: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

5/62

Thm 7.1: (The eigenspace of A corresponding to )

If A is an nn matrix with an eigenvalue , then the set of all

eigenvectors of together with the zero vector is a subspace

of Rn. This subspace is called the eigenspace of .

Pf:

x1 and x2 are eigenvectors corresponding to ) , ..( 2211 xAxxAxei

) toingcorrespondr eigenvectoan is ..(

)()( )1(

21

21212121

λxxei

xxxxAxAxxxA

) toingcorrespondr eigenvectoan is ..(

)()()()( )2(

1

1111

cxei

cxxcAxccxA

Elementary Linear Algebra: Section 7.1, p.344

Page 6: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

6/62

Ex 3: (An example of eigenspaces in the plane)

Find the eigenvalues and corresponding eigenspaces of

10

01A

y

x

y

xA

10

01v

If ) ,(v yx

0

100

10

01 xxx

For a vector on the x-axis Eigenvalue 11

Sol:

Elementary Linear Algebra: Section 7.1, p.344

Page 7: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

7/62

For a vector on the y-axis

yyy

01

00

10

01

Eigenvalue 12

Geometrically, multiplying a vector (x,

y) in R2 by the matrix A corresponds to a

reflection in the y-axis.

The eigenspace corresponding to is the x-axis.

The eigenspace corresponding to is the y-axis.

11

12

Elementary Linear Algebra: Section 7.1, p.344

Page 8: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

8/62

Thm 7.2: (Finding eigenvalues and eigenvectors of a matrix AMnn )

0)Idet( A(1) An eigenvalue of A is a scalar such that .

(2) The eigenvectors of A corresponding to are the nonzero

solutions of .

Characteristic polynomial of AMnn:

011

1)I()Idet( cccAA nn

n

Characteristic equation of A:

0)Idet( A

0)I( xA

Let A is an nn matrix.

If has nonzero solutions iff . 0)I( xA 0)Idet( A0)I( xAxAx

Note:(homogeneous system)

Elementary Linear Algebra: Section 7.1, p.345

Page 9: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

9/62

Ex 4: (Finding eigenvalues and eigenvectors)

51

122A

Sol: Characteristic equation:

0)2)(1(23

51

122)Idet(

2

A

2 ,1 :sEigenvalue 21

2 ,1

Elementary Linear Algebra: Section 7.1, p.345

Page 10: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

10/62

2)2( 2

0 ,1

33

00

31~

31

124

0

0

31

124)I(

2

1

2

12

ttt

t

x

x

x

xxA

1)1( 1

0 ,1

44

00

41~

41

123

0

0

41

123)I(

2

1

2

11

ttt

t

x

x

x

xxA

Elementary Linear Algebra: Section 7.1, p.345

:Check xAxi

Page 11: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

11/62

200020012

A

Sol: Characteristic equation:

0)2(200

020012

I 3

A

Eigenvalue: 2

Ex 5: (Finding eigenvalues and eigenvectors)

Find the eigenvalues and corresponding eigenvectors for

the matrix A. What is the dimension of the eigenspace of

each eigenvalue?

Elementary Linear Algebra: Section 7.1, p.346

Page 12: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

12/62

The eigenspace of A corresponding to :2

0

0

0

000

000

010

)I(

3

2

1

x

x

x

xA

0, ,

1

0

0

0

0

1

0

000

000

010

~

000

000

010

3

2

1

tsts

t

s

x

x

x

2 toingcorrespondA of eigenspace the:,

1

0

0

0

0

1

Rtsts

Thus, the dimension of its eigenspace is 2.

Elementary Linear Algebra: Section 7.1, p.346

Page 13: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

13/62

Notes:

(1) If an eigenvalue 1 occurs as a multiple root (k times) for

the characteristic polynominal, then 1 has multiplicity k.

(2) The multiplicity of an eigenvalue is greater than or equal

to the dimension of its eigenspace.

Elementary Linear Algebra: Section 7.1, p.346

Page 14: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

14/62

Ex 6 : Find the eigenvalues of the matrix A and find a basis

for each of the corresponding eigenspaces.

30010201105100001

A

Sol: Characteristic equation:

0)3)(2()1(

30010201

105100001

I

2

A

3 ,2 ,1 :sEigenvalue 321 Elementary Linear Algebra: Section 7.1, p.347

Page 15: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

15/62

1)1( 1

0

0

0

0

2001

0101

10500

0000

)I(

4

3

2

1

1

x

x

x

x

xA

0, ,

1

2

0

2

0

0

1

0

2

2

0000

0000

2100

2001

~

2001

0101

10500

0000

4

3

2

1

tsts

t

t

s

t

x

x

x

x

1

2

0

2

,

0

0

1

0

is a basis for the eigenspace of A corresponding to 1

Elementary Linear Algebra: Section 7.1, p.347

Page 16: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

16/62

2)2( 2

0

0

0

0

1001

0001

10510

0001

)I(

4

3

2

1

2

x

x

x

x

xA

0 ,

0

1

5

0

0

5

0

0000

1000

0510

0001

~

1001

0001

10510

0001

4

3

2

1

tt

t

t

x

x

x

x

0

1

5

0

is a basis for the eigenspace of A corresponding to 2

Elementary Linear Algebra: Section 7.1, p.347

Page 17: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

17/62

3)3( 3

0

0

0

0

0001

0101

10520

0002

)I(

4

3

2

1

3

x

x

x

x

xA

0 ,

1

0

5

0

0

5

0

0000

0100

5010

0001

~

0001

0101

10520

0002

4

3

2

1

tt

t

t

x

x

x

x

1

0

5

0

is a basis for the eigenspace of A corresponding to 3

Elementary Linear Algebra: Section 7.1, p.347

Page 18: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

18/62

Thm 7.3: (Eigenvalues of triangular matrices)

If A is an nn triangular matrix, then its eigenvalues are

the entries on its main diagonal. Ex 7: (Finding eigenvalues for diagonal and triangular matrices)

335

011

002

)( Aa

3000004000000000002000001

)( Ab

Sol:

)3)(1)(2(

335

011

002

I )(

Aa

3 ,1 ,2 321

3 ,4 ,0 ,2 ,1 )( 54321 bElementary Linear Algebra: Section 7.1, p.348

Page 19: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

19/62

Eigenvalues and eigenvectors of linear transformations:

. of eigenspace thecalled

is vector)zero (with the of rseigenvecto all setof theand

, toingcorrespond ofr eigenvectoan called is vector The

.)(such that vector nonzero a is thereif :

n nsformatiolinear tra a of eigenvaluean called is number A

T

TVVT

x

xxx

Elementary Linear Algebra: Section 7.1, p.349

Page 20: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

20/62

Ex 8: (Finding eigenvalues and eigenspaces)

.

200

013

031

seigenspace ingcorrespond and seigenvalue theFind

A

Sol:

)4()2(

200

013

0312

AI

2 ,4 :seigenvalue 21

2for Basis )}1 ,0 ,0(),0 ,1 ,1{(

4for Basis )}0 ,1 ,1{(

follows. as are seigenvalue twofor these seigenspace The

22

11

B

B

Elementary Linear Algebra: Section 7.1, p.349

Page 21: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

21/62

Notes:

)}1 ,0 ,0(),0 ,1 ,1(),0 ,1 ,1{('

diagonal. is,basis the torelative

ofmatrix the,Then 8. Ex.in found rseigenvectot independen

linear threeof up made of basis thebelet and 8, Ex.in A is

matrix standard n whosensformatiolinear tra thebe Let (1)3

33

B

B'

TA'

RB'

RT:R

200020004

'A

A of rsEigenvecto A of sEigenvalue

. of seigenvalue theare matrix theof entries diagonalmain The (2) AA'

Elementary Linear Algebra: Section 7.1, p.349

Page 22: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

22/62

Key Learning in Section 7.1

▪ Verify eigenvalues and corresponding eigenvectors.

▪ Find eigenvalues and corresponding eigenspaces.

▪ Use the characteristic equation to find eigenvalues and eigenvectors, and find the eigenvalues and eigenvectors of a triangular matrix.

▪ Find the eigenvalues and eigenvectors of a linear transformation.

Page 23: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

23/62

Keywords in Section 7.1

eigenvalue problem: 特徵值問題 eigenvalue: 特徵值 eigenvector: 特徵向量 characteristic polynomial: 特徵多項式 characteristic equation: 特徵方程式 eigenspace: 特徵空間 multiplicity: 重數

Page 24: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

24/62

7.2 Diagonalization

Diagonalization problem:

For a square matrix A, does there exist an invertible matrix P

such that P-1AP is diagonal?

Diagonalizable matrix:

A square matrix A is called diagonalizable if there exists an

invertible matrix P such that P-1AP is a diagonal matrix.

(P diagonalizes A) Notes:

(1) If there exists an invertible matrix P such that ,

then two square matrices A and B are called similar.

(2) The eigenvalue problem is related closely to the

diagonalization problem.

APPB 1

Elementary Linear Algebra: Section 7.2, p.353

Page 25: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

25/62

Thm 7.4: (Similar matrices have the same eigenvalues)

If A and B are similar nn matrices, then they have the

same eigenvalues. Pf:

APPBBA 1similar are and

A

APPAPPPAP

PAPAPPPPAPPB

I

III

)I(III

111

1111

A and B have the same characteristic polynomial. Thus A and B have the same eigenvalues.

Elementary Linear Algebra: Section 7.2, p.354

Page 26: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

26/62

Ex 1: (A diagonalizable matrix)

200013031

A

Sol: Characteristic equation:

0)2)(4(200

013031

I 2

A

2 ,2 ,4 :sEigenvalue 321

Ex.5) p.403 (See

0

1

1

:rEigenvecto 4)1( 1

p

Elementary Linear Algebra: Section 7.2, p.353

Page 27: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

27/62

Ex.5) p.403 (See

1

0

0

,

0

1

1

:igenvectorE 2)2( 32

pp

200

020

004

100

011

011

][ 1321 APPpppP

400

020

002

010

101

101

][ (2)

200

040

002

100

011

011

][ (1)

1132

1312

APPpppP

APPpppP

Notes:

Elementary Linear Algebra: Section 7.2, p.353

Page 28: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

28/62

Thm 7.5: (Condition for diagonalization)

An nn matrix A is diagonalizable if and only if

it has n linearly independent eigenvectors. Pf:

ablediagonaliz is )( A

),,,( and ][Let

diagonal is s.t. invertiblean exists there

2121

1

nn diagDpppP

APPDP

][

00

0000

][

2211

2

1

21

nn

n

n

ppp

pppPD

Elementary Linear Algebra: Section 7.2, pp.354-355

Page 29: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

29/62

][][2121 nn

ApApAppppAAP

) of rseigenvecto are of tor column vec the..(

,,2 ,1 ,

APpei

nipAp

PDAP

i

iii

t.independenlinearly are ,,, invertible is 21 npppP

rs.eigenvectot independenlinearly has nA

n

npppnA

,, seigenvalue ingcorrespondh wit

,, rseigenvectot independenlinearly has )(

21

21

nipAp iii ,,2 ,1 , i.e.

][Let 21 n

pppP

Elementary Linear Algebra: Section 7.2, pp.354-355

Page 30: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

30/62

PDppp

ppp

ApApAp

pppAAP

n

n

nn

n

n

00

00

00

][

][

][

][

2

1

21

2211

21

21

ablediagonaliz is

invertible is tindependenlinearly are ,,,1

11

A

DAPP

Pppp n

Elementary Linear Algebra: Section 7.2, pp.354-355

Note: If n linearly independent vectors do not exist,

then an nn matrix A is not diagonalizable.

Page 31: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

31/62

Ex 4: (A matrix that is not diagonalizable)

10

21

able.diagonaliznot ismatrix following that theShow

A

Sol: Characteristic equation:

0)1(10

21I 2

A

1 :Eigenvalue 1

0

1 :rEigenvecto

00

10~

00

20I 1pAIA

A does not have two (n=2) linearly independent eigenvectors,

so A is not diagonalizable.Elementary Linear Algebra: Section 7.2, p.356

Page 32: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

32/62

Steps for diagonalizing an nn square matrix:

Step 2: Let ][ 21 npppP

Step 1: Find n linearly independent eigenvectors

for A with corresponding eigenvalues

nppp ,,, 21

Step 3:

nipApDAPP iii

n

,,2 ,1 , where ,

00

00

00

2

1

1

Elementary Linear Algebra: Section 7.2, p.356

n ,,, 21

Note:

The order of the eigenvalues used to form P will determine

the order in which the eigenvalues appear on the main diagonal of D.

Page 33: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

33/62

Ex 5: (Diagonalizing a matrix)

diagonal. is such that matrix a Find

113

131

111

1APPP

A

Sol: Characteristic equation:

0)3)(2)(2(113

131111

I

A

3 ,2 ,2 :sEigenvalue 321

Elementary Linear Algebra: Section 7.2, p.357

Page 34: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

34/62

21

000010101

~313111

111I1 A

1

0

1

:rEigenvecto

1

0

1

0 1

3

2

1

pt

t

t

x

x

x

22

0001001

~113151

113I 4

141

2 A

4

1

1

:rEigenvecto

4

1

1

241

41

41

3

2

1

pt

t

t

t

x

x

x

Elementary Linear Algebra: Section 7.2, p.357

Page 35: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

35/62

33

000110

101~

413101

112I3 A

1

1

1

:rEigenvecto

1

1

1

3

3

2

1

pt

t

t

t

x

x

x

300

020

002

141

110

111

][Let

1

321

APP

pppP

Elementary Linear Algebra: Section 7.2, p.357

Page 36: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

36/62

Notes: k is a positive integer

kn

k

k

k

n d

dd

D

d

dd

D

00

0000

00

0000

)1( 2

1

2

1

1

1

1

1111

111

1

1

)()()(

)())((

)(

)2(

PPDA

PAP

APAAP

APPPPPAPPAP

APPAPPAPP

APPD

APPD

kk

k

kk

Elementary Linear Algebra: Section 7.2, Addition

Page 37: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

37/62

Thm 7.6: (Sufficient conditions for diagonalization)

If an nn matrix A has n distinct eigenvalues, then the

corresponding eigenvectors are linearly independent and

A is diagonalizable.

Elementary Linear Algebra: Section 7.2, p.358

Page 38: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

38/62

Ex 7: (Determining whether a matrix is diagonalizable)

300

100

121

A

Sol: Because A is a triangular matrix,

its eigenvalues are the main diagonal entries.

3 ,0 ,1 321

These three values are distinct, so A is diagonalizable. (Thm.7.6)

Elementary Linear Algebra: Section 7.2, p.358

Page 39: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

39/62

Ex 8: (Finding a diagonalizing matrix for a linear transformation)

diagonal. is torelative

for matrix thesuch that for basis a Find

)33()(

bygiven n nsformatiolinear tra thebe Let

3

321321321321

33

B

TRB

xxx, xx, xxxx,x,xxT

RT:R

Sol:

113

131

111

)()()(

bygiven is for matrix standard The

321 eTeTeTA

T

Elementary Linear Algebra: Section 7.2, p.359

From Ex. 5, there are three distinct eigenvalues

so A is diagonalizable. (Thm. 7.6)

3,2 ,2 321

Page 40: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

40/62

300

020

002

][ ][ ][

][ ][ ][

])([ )]([ ])([

332211

321

321

BBB

BBB

BBB

ppp

ApApAp

pTpTpTD

The matrix for T relative to this basis is

Elementary Linear Algebra: Section 7.2, p.359

)}1 ,1 ,1(),4 ,1 ,1(),1 ,0 ,1{(},,{ 321 pppB

Thus, the three linearly independent eigenvectors found in Ex.

5

can be used to form the basis B. That is

)1 ,1 ,1(),4 ,1 ,1(),1 ,0 ,1( 321 ppp

Page 41: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

41/62

Key Learning in Section 7.2

▪ Find the eigenvalues of similar matrices, determine whether a matrix A is diagonalizable, and find a matrix P such that P‒1 AP is diagonal.

▪ Find, for a linear transformation T: V→V a basis B for V such that the matrix T for B relative to is diagonal.

Page 42: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

42/62

Keywords in Section 7.2

diagonalization problem: 對角化問題 diagonalization: 對角化 diagonalizable matrix: 可對角化矩陣

Page 43: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

43/62

7.3 Symmetric Matrices and Orthogonal Diagonalization

Symmetric matrix:

A square matrix A is symmetric if it is equal to its transpose:

TAA

Ex 1: (Symmetric matrices and nonsymetric matrices)

502031210

A

1334

B

501041123

C

(symmetric)

(symmetric)

(nonsymmetric)

Elementary Linear Algebra: Section 7.3, p.362

Page 44: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

44/62

Thm 7.7: (Eigenvalues of symmetric matrices)

If A is an nn symmetric matrix, then the following properties

are true.

(1) A is diagonalizable.

(2) All eigenvalues of A are real.

(3) If is an eigenvalue of A with multiplicity k, then has

k linearly independent eigenvectors. That is, the eigenspace

of has dimension k.

Elementary Linear Algebra: Section 7.3, p.362

Page 45: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

45/62

Ex 2: Prove that a symmetric matrix is diagonalizable.

bcca

A

Pf: Characteristic equation:

0)( 22

cabbabc

caAI

022

222

22222

4)(

42

442)(4)(

cba

cbaba

cabbabacabba

As a quadratic in , this polynomial has a discriminant of

Elementary Linear Algebra: Section 7.3, p.363

Page 46: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

46/62

04)( (1) 22 cba

0 , cba

diagonal. ofmatrix a is 0

0

a

aA

04)( )2( 22 cba

The characteristic polynomial of A has two distinct real

roots, which implies that A has two distinct real eigenvalues.

Thus, A is diagonalizable.

Elementary Linear Algebra: Section 7.3, p.363

Page 47: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

47/62

A square matrix P is called orthogonal if it is invertible and

Orthogonal matrix:

TPP 1

Elementary Linear Algebra: Section 7.3, p.364

. 01

10 because orthogonal is

01

10 (a) 1

TPPP

Ex 4: (Orthogonal matrices)

.

5

30

5

40105

40

5

3

because orthogonal is

5

30

5

40105

40

5

3

(b) 1

TPPP

Page 48: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

48/62

Thm 7.8: (Properties of orthogonal matrices)

An nn matrix P is orthogonal if and only if

its column vectors form an orthogonal set.

Elementary Linear Algebra: Section 7.3, p.364

Page 49: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

49/62

Ex 5: (An orthogonal matrix)

535

534

532

51

52

32

32

31

0P

Sol: If P is a orthogonal matrix, then I 1 TT PPPP

I100010001

0

0

535

32

534

51

32

532

52

31

535

534

532

51

52

32

32

31

TPP

535

32

3

534

51

32

2

532

52

31

1 0 , ,Let ppp

Elementary Linear Algebra: Section 7.3, p.365

Page 50: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

50/62

1

0

roducesp

321

323121

ppp

pppppp

set. lorthonormaan is } , ,{ 321 ppp

Elementary Linear Algebra: Section 7.3, p.365

Page 51: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

51/62

Thm 7.9: (Properties of symmetric matrices)

Let A be an nn symmetric matrix. If 1 and 2 are distinct

eigenvalues of A, then their corresponding eigenvectors x1

and x2 are orthogonal.

Elementary Linear Algebra: Section 7.3, p.366

Page 52: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

52/62Elementary Linear Algebra: Section 7.3, p.366

.orthogonal are seigenvaluedistinct toingcorrespond

01

10 of rseigenvecto any two that Show

A

Ex 6: (Eigenvectors of a symmetric matrix)

Sol: Characteristic function

0)4)(2(8631

13I 2

A

4 ,2 :sEigenvalue21

0 ,1

1 x

00

11~

11

11I2 (1)

111

ssA

0 ,1

1 x

00

11~

11

11I4 (2)

222

ttA

.orthogonal are xand x 0xx2121

stst

t

t

s

s

Page 53: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

53/62

Thm 7.10: (Fundamental theorem of symmetric matrices)

Let A be an nn matrix. Then A is orthogonally

diagonalizable and has real eigenvalue if and only if A is

symmetric. Orthogonal diagonalization of a symmetric matrix:Let A be an nn symmetric matrix.

(1) Find all eigenvalues of A and determine the multiplicity of each.

(2) For each eigenvalue of multiplicity 1, choose a unit eigenvector.

(3) For each eigenvalue of multiplicity k2, find a set of k linearly independent eigenvectors. If this set is not orthonormal, apply Gram-Schmidt orthonormalization process.

(4) The composite of steps 2 and 3 produces an orthonormal set of n eigenvectors. Use these eigenvectors to form the columns of P. The matrix will be diagonal.DAPPAPP T 1

Elementary Linear Algebra: Section 7.3, p.367

Page 54: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

54/62

Ex 7: (Determining whether a matrix is orthogonally diagonalizable)

111101111

1A

081812125

2A

102023

3A

2000

4A

Orthogonally diagonalizable

Symmetricmatrix

Elementary Linear Algebra: Section 7.3, p.367

Page 55: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

55/62

Ex 9: (Orthogonal diagonalization)

142

412

222

A. esdiagonaliz that matrix orthogonalan Find

A

P

Sol:0)6()3( )1( 2 AI

)2 ofty multiplici a has( 3 ,6 21

) , ,( )2 ,2 ,1( ,6 )2( 32

32

31

1

1111

v

vuv

)1 ,0 ,2( ),0 ,1 ,2( ,3 )3( 322 vv

Linear IndependentElementary Linear Algebra: Section 7.3, p.369

Page 56: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

56/62

Gram-Schmidt Process:

)1 , ,( ),0 ,1 ,2( 54

52

222

233322

www

wvvwvw

) , ,( ),0 , ,(53

553

453

2

3

335

15

2

2

22

w

wu

w

wu

535

32

534

51

32

532

52

31

321

0

] [ (4) pppP

300

030

006

1 APPAPP T

Elementary Linear Algebra: Section 7.3, p.369

Page 57: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

57/62

Key Learning in Section 7.3

▪ Find the eigenvalues of similar matrices, determine whether a matrix A is diagonalizable, and find a matrix P such that P‒1 AP is diagonal.

▪ Find, for a linear transformation T: V→V a basis B for V such that the matrix T for B relative to is diagonal.

Page 58: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

58/62

Keywords in Section 7.3

symmetric matrix: 對稱矩陣 orthogonal matrix: 正交矩陣 orthonormal set: 單範正交集 orthogonal diagonalization: 正交對角化

Page 59: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

59/62

Key Learning in Section 7.4

▪ Recognize, and apply properties of, symmetric matrices.▪ Recognize, and apply properties of, orthogonal matrices.▪ Find an orthogonal matrix that orthogonally diagonalizes a

symmetric matrix A.

Page 60: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

60/62

Diffusion

Eigenvalues and eigenvectors are useful for modeling real-life phenomena. For instance, suppose that in an experiment to determine the diffusion of a fluid from one flask to another through a permeable membrane and then out of the second flask, researchers determine that the flow rate between flasks is twice the volume of fluid in the first flask and the flow rate out of the second flask is three times the volume of fluid in the second flask. The following system of linear differential equations, where represents the volume of fluid in flask models this situation.

y1' = ‒2y1

y2' = 2y1 ‒ 3y2

In Section 7.4, you will use eigenvalues and eigenvectors to solve such systems of linear differential equations. For now, verify that the solution of this system is

y1 = C1e ‒2t

y2 = C1e ‒2t + C2e ‒3t .

7.1 Linear Algebra Applied

Elementary Linear Algebra: Section 7.1, p.348

Page 61: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

61/62

Genetics

Genetics is the science of heredity. A mixture of chemistry and biology, genetics attempts to explain hereditary evolution and gene movement between generations based on the deoxyribonucleic acid (DNA) of a species. Research in the area of genetics called population genetics, which focuses on genetic structures of specific populations, is especially popular today. Such research has led to a better understanding of the types of genetic inheritance. For instance, in humans, one type of genetic inheritance is called X–linked inheritance (or sex-linked inheritance), which refers to recessive genes on the X chromosome. Males have one X and one Y chromosome, and females have two X chromosomes. If a male has a defective gene on the X chromosome, then its corresponding trait will be expressed because there is not a normal gene on the Y chromosome to suppress its activity. With females, the trait will not be expressed unless it is present on both X chromosomes, which is rare. This is why inherited diseases or conditions are usually found in males, hence the term sex-linked inheritance. Some of these include hemophilia A, Duchenne muscular dystrophy, red-green color blindness, and hereditary baldness. Matrix eigenvalues and diagonalization can be useful for coming up with mathematical models to describe X-linked inheritance in a given population.

7.2 Linear Algebra Applied

Elementary Linear Algebra: Section 7.2, p.359

Page 62: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

62/62

Relative Maxima and Minima

The Hessian matrix is a symmetric matrix that can be helpful in finding relative maxima and minima of functions of several variables. For a function f of two variables x and y—that is, a surface in R3 —the Hessian matrix has the form

The determinant of this matrix, evaluated at a point for which fx and fy are zero, is the expression used in the Second Partials Test for relative extrema.

7.3 Linear Algebra Applied

Elementary Linear Algebra: Section 7.3, p.369

.

xx xy

yx yy

f f

f f

Page 63: CHAPTER 7 EIGENVALUES AND EIGENVECTORS

63/62

Architecture

Some of the world’s most unusual architecture makes use of quadric surfaces. For instance, Catedral Metropolitana Nossa Senhora Aparecida, a cathedral located in Brasilia, Brazil, is in the shape of a hyperboloid of one sheet. It was designed by Pritzker Prize winning architect Oscar Niemeyer, and dedicated in 1970. The sixteen identical curved steel columns, weighing 90 tons each, are intended to represent two hands reaching up to the sky. Pieced together between the columns, in the 10-meter-wide and 30-meter-high triangular gaps formed by the columns, is semitransparent stained glass, which allows light inside for nearly the entire height of the columns.

7.4 Linear Algebra Applied

Elementary Linear Algebra: Section 7.4, p.382