Chapter 6 2009_2

download Chapter 6 2009_2

of 41

Transcript of Chapter 6 2009_2

  • 7/27/2019 Chapter 6 2009_2

    1/41

    1

    Chapter 6

    Flow Analysis Using Differential Methods(Differential Analysis of Fluid Flow)

  • 7/27/2019 Chapter 6 2009_2

    2/41

    2

    In the previous chapter-- Focused on the use of finite control volume for the

    solution of a variety of fluid mechanics problems. The approach is very practical and useful since it

    doesnt generally require a detailed knowledge of thepressure and velocity variations within the control

    volume. Typically, only conditions on the surface of the

    control volume entered the problem.

    There are many situations that arise in which thedetails of the flow are important and the finitecontrol volume approach will not yield thedesired information

  • 7/27/2019 Chapter 6 2009_2

    3/41

    3

    For example --

    We may need to know how the velocity varies over the cross

    section of a pipe, or how the pressure and shear stress vary

    along the surface of an airplane wing.

    we need to develop relationship that apply at a point,

    or at least in a very small region ( infinitesimal volume)within a given flow field.

    involve infinitesimal control volume (instead of finite

    control volume)

    differential analysis (the governing equations are

    differential equation)

  • 7/27/2019 Chapter 6 2009_2

    4/41

    4

    In this chapter

    (1) We will provide an introduction to the differential

    equation that describe (in detail) the motion of fluids.

    (2) These equation are rather complicated, partial differential

    equations, that cannot be solved exactly except in a few

    cases.

    (3) Although differential analysis has the potential for

    supplying very detailed information about flow fields, the

    information is not easily extracted.

    (4) Nevertheless, this approach provides a fundamental basis

    for the study of fluid mechanics.

    (5) We do not want to be too discouraging at this point,

    since there are some exact solutions for laminar flow that

    can be obtained, and these have proved to very useful.

  • 7/27/2019 Chapter 6 2009_2

    5/41

    5

    (6) By making some simplifying assumptions, many otheranalytical solutions can be obtained.

    for example , small 0 neglected

    inviscid flow.

    (7) For certain types of flows, the flow field can be conceptuallydivided into two regions

    (a) A very thin region near the boundaries of the system inwhich viscous effects are important.

    (b) A region away from the boundaries in which the flow isessentially inviscid.

    (8) By making certain assumptions about the behavior of the fluidin the thin layer near the boundaries, and

    using the assumption of inviscid flow outside this layer, a large

    class of problems can be solved using differential analysis .

    the boundary problem is discussed in chapter 9.

    Computational fluid dynamics (CFD) to solve differential eq.

  • 7/27/2019 Chapter 6 2009_2

    6/41

    6

    )(.)((.)(.)(.)(.)(.)(.)

    .

    .

    problem.particularafort,z,y,on x,dependlyspecificalcomponents

    velocitythesehowdeterminetoisanalysisaldifferentiofgoalstheofOne

    vtz

    wy

    vx

    utt

    Da

    a

    z

    uw

    y

    uv

    x

    uu

    t

    ua

    dt

    vd

    z

    vw

    y

    vv

    x

    vu

    t

    va

    z

    y

    x

  • 7/27/2019 Chapter 6 2009_2

    7/41

    7

    elementtheofndeformatioangularx

    v

    y

    u

    elementtheofndeformatiolinear

    z

    w

    y

    v

    x

    uNote

    v

    ratedilationvolumetricvz

    w

    y

    v

    x

    u

    dt

    d

    ,

    ,,:

    fluid,ibleincompressanfor0

    )(1

  • 7/27/2019 Chapter 6 2009_2

    8/41

    8

    flowalIrrotation0

    zeroisaxis-zthearoundRotation

    only when)(i.e.blockundeformedanasaxis-zaboutRotation

    )(2

    1assuch(6.12)Eq.From

    2Define

    vor

    y

    u

    x

    v

    x

    v

    y

    uww

    y

    u

    x

    vw

    Vcurlvwvorticity

    OBOA

    z

    Vcurlv

    wvuzyx

    kji

    k

    y

    u

    x

    vj

    x

    w

    z

    ui

    z

    v

    y

    w

    kwjwiw

    vectorrotationtheW

    zyx

    2

    1)(

    2

    1

    2

    1

    })()(){(

    2

    1

  • 7/27/2019 Chapter 6 2009_2

    9/41

    9

    6.2.1 Differential Form of Continuity Equation

    inout

    cv

    vAvA

    dAnv

    zyx

    t

    d

    t

    d

    t

    zyxd

    )()(

    elementtheofsurfacesthethroughflowmassofrateThe)(

    )(

    0

  • 7/27/2019 Chapter 6 2009_2

    10/41

    10

    s

    yx

    xx

    xxx

    x

    uuu

    y

    x

    uuu

    )(,)(assuch,terms

    orderhighneglecting--expansionseriesTaylor

    2

    )(|

    2

    )(|

    direction-xtheinflowThe

    2

    2

    2

    zyxz

    w

    zyxyv

    zyxx

    uzy

    x

    x

    uuzy

    x

    x

    uu

    )(direction-zinrateNet

    )24.6()(direction-yinrateNet

    similarly

    )23.6()(

    ]2

    []2

    [

    direction-in xoutflowmassofrateNet

  • 7/27/2019 Chapter 6 2009_2

    11/41

    11

    .formaldifferentiinequationcontinuityThe

    )27.6(0

    outflowmassofrateNet:

    0][

    0)(Since

    z

    w

    y

    v

    x

    u

    t

    zyxz

    wzyx

    y

    vzyx

    x

    uNote

    zyxz

    wzyx

    y

    vzyx

    x

    uzyx

    t

    dAnvd

    t cscv

  • 7/27/2019 Chapter 6 2009_2

    12/41

    12

    )31.6(0

    )30.6(0

    0

    flowibleincompressFor--

    )29.6(0

    0)(

    fluidlecompressibofflowsteadyFor--

    )28.6(0

    formIn vector

    mechanicsfluidofequationslfundamentatheofOne--

    z

    w

    y

    v

    x

    uor

    vt

    const

    z

    w

    y

    v

    x

    uor

    v

    vt

  • 7/27/2019 Chapter 6 2009_2

    13/41

    13

    equation.continuityhesatisfy ttorequired,w:Determine

    ?

    flowibleincompressanFor

    26.Example

    222

    w

    zyzxyv

    zyxu

    ),(2

    3nIntegratio

    3)(2

    0)()(

    0

    continuityofequationthefrom:Solution

    2

    222

    yxczxzw

    zxzxxz

    w

    zwzyzxy

    yzyx

    x

    z

    w

    y

    v

    x

    u

  • 7/27/2019 Chapter 6 2009_2

    14/41

    14

    6.2.2 Cylindrical Polar Coordinates

  • 7/27/2019 Chapter 6 2009_2

    15/41

    15

    01)(1

    )flowunsteadyorsteady(flowibleincompressFor

    0)()(1

    )(1

    flowlecompressibsteady,For

    scoordinatelcylindricain

    equationycontinualltheofformaldifferentitheisThis

    )33.6(0

    )()(1)(1

    z

    vv

    rr

    rv

    r

    vz

    vr

    vrrr

    z

    vv

    rr

    vr

    rt

    zr

    zr

    zr

  • 7/27/2019 Chapter 6 2009_2

    16/41

    16

    6.2.3 The Stream Function

    )36.6(0

    )2(0)(0

    flowD-2&plane,ible,incompresssteady,ofequationcontinuityFor the

    0

    equationContinuity

    y

    v

    x

    u

    flowDz

    wcte

    twhere

    z

    w

    y

    v

    x

    u

    t

    0)()(

    eq.continuitythesatisfiesitthatso;where

    function,streamthe),(functionaDefine

    xyyxy

    v

    x

    u

    xv

    yu

    yx

    satisfiedbewillmassofonconservati

    unknowoneunknowstwofunction

    streamusing

    v

    u

  • 7/27/2019 Chapter 6 2009_2

    17/41

    17

    6.3.Example

    )42.6(1

    01)(1

    0)()(1)(1

    flow.D-2place,,ibleIncompress

    forequationycontinuallthe,scoordinatelcylindricaIn

    rv

    rv

    v

    rr

    rv

    rz

    vv

    rr

    vr

    rt

    r

    rzr

  • 7/27/2019 Chapter 6 2009_2

    18/41

    18

    Examp le 6.3 Stream Func t ion

    The velocity component in a steady, incompressible, twodimensional flow field are

    Determine the corresponding stream function and show on asketch several streamlines. Indicate the direction of glow alongthe streamlines.

    4xv2yu

  • 7/27/2019 Chapter 6 2009_2

    19/41

    19

    Example 6.3 Solution

    (y)fx2(x)fy 2212

    Cyx222

    From the definition of the stream function

    x4x

    vy2y

    u

    For simplicity, we set C=0

    22yx2

    =0

    01

    2/

    xy22

  • 7/27/2019 Chapter 6 2009_2

    20/41

    20

    6.3 Conservation of Linear Momentum

    amF

    amFordt

    vdmFEq

    VCsmallFor

    FdAnvvdvtdt

    vmD

    dmvdvP

    Pdt

    Ddv

    dt

    D

    dt

    vmD

    sys

    cvcv

    csvc

    cv

    sys

    syssys

    sys

    sys

    systemaforlaw2ndNewtonsThe

    )44.6(

    ..

    )44.6()()(

    momentumlinearfor thet theoremtransporReynoldstheFrom

    where

    )(

    momentumlinearFor the

    ..

  • 7/27/2019 Chapter 6 2009_2

    21/41

    21

    Figure 6.9 (p. 287)Components of force acting on an arbitrary differential area.

  • 7/27/2019 Chapter 6 2009_2

    22/41

    22

    Figure 6.10 (p. 287)Double subscript notation for stresses.

  • 7/27/2019 Chapter 6 2009_2

    23/41

    23

    Figure 6.11 (p. 288)Surface forces in the x direction acting on a fluid element.

  • 7/27/2019 Chapter 6 2009_2

    24/41

    24

    6.3.2 Equation of Motion

    Velocitiesstresses-----Unknowns

    .restatormotioninfluid)or(solidcontinuumanytoapplicablealsoareThey

    fluid.aformotionofequationaldifferentiGeneral

    )50.6()(

    )50.6()(

    )50.6()(

    using

    czww

    ywv

    xwu

    tw

    zyxg

    bz

    vw

    y

    vv

    x

    vu

    t

    v

    zyxg

    azuw

    yuv

    xuu

    tu

    zyxg

    dzyxm

    zzyzxzz

    zyyyxy

    y

    zxyxxxx

    zszbzzz

    ysybyxx

    xsxbxxx

    maFFmaF

    maFFmaF

    maFFmaF

  • 7/27/2019 Chapter 6 2009_2

    25/41

    25

    6.4 Inviscid Flow

    stressnormalecompressiv

    0&

    0flowinvisicidFor

    .ssfrictionleor,nonviscous,inviscidbetosaidare

    negligiblebetoassumedarestressesshearingthein whichfieldFlow

    zzyyxxP

    0&0&&,waterandairassuch,fluidcommonSome

    waterair

    waterairsmall

  • 7/27/2019 Chapter 6 2009_2

    26/41

    26

    6.4.1 Eulers Equations of Motion

    )51.6()(

    )51.6()(

    )51.6()(

    00with(6.50c)&(6.50b)(6.50a)EqFrom

    cz

    ww

    y

    wv

    x

    wu

    t

    w

    z

    Pg

    bzvw

    yvv

    xvu

    tv

    yPg

    az

    uw

    y

    uv

    x

    uu

    t

    u

    x

    Pg

    P

    and

    z

    y

    x

    zzyyxx

    (6.52)Eqsolveto)(usingSimplify

    .solvetoDifficulty

    )52.6(])([

    motionofequationsEulersastoreferredCommonlyareequationsThese

    vvt

    vPg

  • 7/27/2019 Chapter 6 2009_2

    27/41

    27

    6.4.2 The Bernoulli Equation

    equationEulersequationBernoullisectionIn this

    law2ndNewtonsequationBernoulli23.sectionIn

    )(

    2

    1

    )()(2

    becomes(6.53)Eq

    )()(

    2

    1)(

    identityvectorandngUsi

    )53.6()(

    )statesteady(0where

    )52.6(])([

    equationEulersForm

    2 vvzgvp

    vvvvpzg

    vvvvvv

    zgg

    vvpg

    t

    v

    vvt

    vpg

    1p

  • 7/27/2019 Chapter 6 2009_2

    28/41

    28.202

    1

    )]([

    ./)(0)]([

    )()(

    )(

    Similarly

    state.)steadyif(

    ,,,,

    )]([)()(2

    1

    streamlinealonglengthaldifferentiaLet

    )(2

    1

    22

    22

    2

    2

    constgz

    vdp

    gdzdv

    dp

    sdvv

    papeyofoutinvvbecausesdvv

    dzkdzjdyidxkz

    zdsz

    dvsdv

    dpdzzpdy

    ypdx

    xp

    dzdydxz

    p

    y

    p

    x

    pdsp

    sdvvsdzgsdvsdp

    kdzjdyidx

    ds

    dsvvzgvp

  • 7/27/2019 Chapter 6 2009_2

    29/41

    29

    streamlineaalongFlow

    flowibleIncompress

    flowSteady

    flowInviscid

    2

    fluidibleincompressInviscid,For

    2

    constgzvp

  • 7/27/2019 Chapter 6 2009_2

    30/41

    30

    6.4.3 Irrotational Flow

    flowalirrolationanofexampleAn

    0

    0

    .)(

    does.flowuniformaHowever,

    equations.threehesesatisfy t

    notcouldfieldflowgeneralA

    Vorticity)(0Vorticity00)(2

    1

    flowalIrrotation

    w

    v

    constUu

    x

    w

    z

    uzv

    yw

    y

    u

    x

    v

    VorVorVw

  • 7/27/2019 Chapter 6 2009_2

    31/41

    31

    6.4.5 The Velocity Potential

    mass.ofonconservatiofeconsequenca--

    functionstreamThe

    .fieldflowtheofallyirrotationtheofeconsequenca--

    potentialvelocityThe:Note

    flowD-2torestrictedis

    flowD-3generalafordefinedbecan

    potentialvelocityfunctionscaleais),,(where

    ,,

    0

    00)(2

    1flowalirrotationFor--

    kwjviuv

    zyx

    zw

    yv

    xu

    x

    w

    z

    uz

    v

    y

    wyu

    xv

    wvuzyx

    kji

    v

    vorvw

  • 7/27/2019 Chapter 6 2009_2

    32/41

    32

    flow.potentialacalledcommonlyisflowoftypeThis

    .fieldflowalIrrotation

    ,ibleincompress,Inviscid

    )66.6(00

    thatfollowsit,)(flowalirrotationand

    )0(fluidibleincompressanFor

    2

    2

    2

    2

    2

    22

    equationLaplace

    zyxor

    v

    v

    pressurescalculateToequationBernoulliwith

    determinedbecan

    conditionsboundary

    withEq.(6.66)from

    knownisIf

    vor

    w

    v

    u

  • 7/27/2019 Chapter 6 2009_2

    33/41

    33

    )71.6(01

    )(1

    )70.6(;1

    ;

    )69.6(Since

    ),,(

    )68.6(1

    )67.6((.)(.)1(.)

    (.)

    ,,s,Coordinate

    2

    2

    2

    2

    2

    2

    zrr

    r

    rr

    zv

    rv

    rv

    evevevv

    zrwhere

    ez

    er

    er

    ez

    er

    er

    zrlCylindricaIn

    zr

    zzrrr

    zr

    zr

  • 7/27/2019 Chapter 6 2009_2

    34/41

    34

    2133

    1

    22

    ,/10,30if

    (2)pointatpressure(b)

    potentialvelocity(a)

    :eDetermin

    rightonreFigu

    &/2sin2:Given

    functionstream6.4Example

    zzmkgkpaP

    mrsmr

    )1()(2cos2)(2cos4

    ;1

    ;

    2sin42sin2

    2cos42)2(cos21

    2sin211

    )(:

    12

    1

    2

    22

    CrCdrrdrvdrv

    zv

    rv

    rv

    conditonslcylindricainpotentialVelocityflowalIrrotat ion

    rrr

    v

    rrr

    rr

    v

    rv

    rv

    massofonconservati

    conditionslcylindricainfunctionstreamaSolution

    rr

    zr

    rr

  • 7/27/2019 Chapter 6 2009_2

    35/41

    35

    )(2cos2(2)&(1)Eq

    )2(.)(0)(

    )(2)2sin(22sin4

    )](2cos2[12sin4

    1Since

    )1()(2cos2)1(

    2

    11

    1

    22

    1

    2

    1

    2

    AnsCr

    constCCorC

    Crr

    Crr

    r

    rv

    CrEqFrom

  • 7/27/2019 Chapter 6 2009_2

    36/41

    36

    )(36/)416(/102

    11030

    (3)EqFrom

    /245.01616

    5.0(2),pointAt

    /41616

    1(1),pointAt

    16)2sin4()2cos4(

    sin

    )3(2

    1

    2

    1

    )(

    2

    1

    2

    1

    aswrittenbecanequationBernoullithe

    fluid,ibleincompress,nonviscousaofflowalirrotationanFor(b)

    22333

    2

    2

    222

    2

    1

    22

    1

    2222

    222

    2

    2

    2

    112

    212

    2

    22

    1

    2

    11

    Anskpasmmkgpap

    smvrv

    mr

    smvrv

    mr

    rrrv

    vvvevevvce

    vvpp

    zzgzvp

    gzvp

    rrr

  • 7/27/2019 Chapter 6 2009_2

    37/41

    37

    6.5 Some Basic, Plane Potential Flows

    00

    0)()(0

    flowalIrrotation,ibleincompressfor(6.66)EqFrom

    0)()(

    (6.74)EqUsingflow)nal(Irrotatio

    (6.72)EqFrom

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    yxzyx

    yyxxy

    v

    x

    u

    yxxxyy

    x

    v

    y

    u

    flowplaneyx

  • 7/27/2019 Chapter 6 2009_2

    38/41

    38

    6.8 Viscous Flow

    es.velociti&stresseshebetween tiprelationshaestablishtonecessaryisIt

    equations.thanunknownsmoreareThere

    .fluidaformotionofequationaldifferentiGeneral

    )50.6()(

    )50.6()(

    )50.6()(

    .assuch

    Eq.6.50,motion,ofequationsgeneralderivedpreviouslythereturn tomustwe

    motion,fluidofanalysisaldifferentitheintoeffectsviscouseincorporatTo

    cz

    ww

    y

    wv

    x

    wu

    t

    w

    zyxg

    bzvw

    yvv

    xvu

    tv

    zyxg

    az

    uw

    y

    uv

    x

    uu

    t

    u

    zyxg

    zzyzxz

    z

    zyyyxyy

    zxyxxx

    x

  • 7/27/2019 Chapter 6 2009_2

    39/41

    39

    6.8.1 Stress - Deformation Relationships

    )125.6(2

    )125.6(2

    )125.6(2

    2

    2

    2

    n.deformatioofratethetorelatedlinearlyare

    stressest theknown thaisit,fluidsNewtonian,ibleincompressFor

    cz

    wP

    b

    y

    vP

    ax

    uP

    z

    wP

    y

    vP

    x

    uP

    zz

    yy

    xx

    zz

    yy

    xx

    )125.6()(

    )125.6()(

    )125.6()(

    fx

    w

    z

    u

    ey

    w

    z

    v

    dx

    v

    y

    u

    xzzx

    zyyz

    yzxy

  • 7/27/2019 Chapter 6 2009_2

    40/41

    40

    )126.6(][

    )126.6(]

    1

    [

    )126.6(]1

    )([

    )126.6(2

    )126.6()1

    (2

    )126.6(2

    fluidsibleincompressNewtonian,forstressesThe

    scoordinatepolarlcylindricaIn

    fr

    V

    z

    V

    e

    V

    rz

    V

    dV

    rr

    V

    rr

    c

    z

    VP

    br

    VV

    rP

    ar

    V

    P

    zr

    rzzr

    z

    zz

    r

    rr

    z

    zz

    r

    r

    rr

  • 7/27/2019 Chapter 6 2009_2

    41/41

    41

    6.8.2 The NavierStokes Equations

    )127.6()()(

    direction-z

    )127.6()()(

    direction-y

    )127.6()()(

    direction-x(6.31),Eq,continuityofEq.and

    (6.125f)~(6.125a)with(6.50c)~Eq.(6.50a)From

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    cz

    ww

    y

    wv

    x

    wu

    t

    w

    z

    w

    y

    w

    x

    w

    z

    Pg

    bz

    vw

    y

    vv

    x

    vu

    t

    v

    z

    v

    y

    v

    x

    v

    y

    Pg

    az

    uw

    y

    uv

    x

    uu

    t

    u

    z

    u

    y

    u

    x

    u

    x

    Pg

    z

    y

    x