Chapter 3 VLSI Design -...

60
10/21/2003 Devices Chapter 3 Chapter 3 VLSI Design VLSI Design The Devices The Devices March 28, 2003 Rev.1: 3/29/03 Rev.2: 10/20/03

Transcript of Chapter 3 VLSI Design -...

  • 10/21/2003 Devices

    Chapter 3Chapter 3VLSI DesignVLSI Design

    The DevicesThe Devices

    March 28, 2003Rev.1: 3/29/03Rev.2: 10/20/03

  • 10/21/2003 Devices

    Goal of this chapterGoal of this chapter

    Present intuitive understanding of device operationIntroduction of basic device equationsIntroduction of models for manual analysisIntroduction of models for SPICE simulationAnalysis of secondary and deep-sub-micron effectsFuture trends

  • 10/21/2003 Devices

    The DiodeThe Diode

    n

    p

    p

    n

    B A SiO2Al

    A

    B

    Al

    A

    B

    Cross-section of pn - junction in an IC process

    One-dimensionalrepresentation diode symbol

    Mostly occurring as parasitic element in Digital ICs

  • 10/21/2003 Devices

    Depletion RegionDepletion Regionhole diffusion

    electron diffusion

    p n

    hole driftelectron drift

    ChargeDensity

    Distancex+

    -

    ElectricalxField

    x

    PotentialV

    ξ

    ρ

    W2-W1

    ψ0

    (a) Current flow.

    (b) Charge density.

    (c) Electric field.

    (d) Electrostaticpotential.

  • 10/21/2003 Devices

    Forward BiasForward Bias

    x

    pn0

    np0

    -W1 W20p n

    (W2)

    n-regionp-region

    Lp

    diffusion

    Typically avoided (seldom used) in Digital ICs

    Excess Minority Carrier

  • 10/21/2003 Devices

    Reverse BiasReverse Bias

    x

    pn0

    np0

    -W1 W20n-regionp-region

    diffusion

    The Dominant Operation Mode

  • 10/21/2003 Devices

    Diode Current (Ideal Diode Equation)Diode Current (Ideal Diode Equation)

    •Is: Saturation Current• : Thermal Voltage•VD: Voltage drop over Diode

    Tφ 300Kat 26/ mVqkTT ≈=φ

  • 10/21/2003 Devices

    Models for Models for Manual AnalysisManual Analysis

    VD

    ID = IS(eVD/φT -1)+

    -

    VD

    +

    -

    +

    -VDon

    ID

    (a) Ideal diode model (b) First-order diode model

    •1st-order model is important for early-stage analysis•VD,on = 0.7V for manual analysis•Otherwise, you need to solve non-linear equations to find ID

  • 10/21/2003 Devices

    Dynamic, or Transient BehaviorDynamic, or Transient Behavior

    Junction Capacitance in Reversed BiasJunction Capacitance in Reversed Bias

    m : grading coefficient

  • 10/21/2003 Devices

    Diffusion Capacitance (forward bias)Diffusion Capacitance (forward bias)

  • 10/21/2003 Devices

    Secondary Effects of DiodeSecondary Effects of Diode

    –25.0 –15.0 –5.0 5.0VD (V)

    –0.1

    I D(A

    )0.1

    0

    0

    Avalanche Breakdown

  • 10/21/2003 Devices

    Diode ModelDiode Model

    ID

    RS

    CD

    +

    -

    VD

    Symbol

    For Circuit Simulation(IC Designers)

    Modeling(SPICE)

    IC Manufacturer(TSMC, UMC)

  • 10/21/2003 Devices

    SPICE MODELS• SPICE: Simulation Program with Integrated Circuit

    Emphasis, by UCB in early 1970’s.• Level 1: Long Channel Equations - Very Simple

    • Level 2: Physical Model - Includes Velocity Saturation and Threshold Variations (Short channel considered)

    • Level 3: Semi-empirical - Based on curve fitting to measured devices

    • Berkeley Short-Channel IGFET Model (BSIM3v3): Empirical – Industrywide standard for modeling deep-submicron MOSFET transistors.

    • Full-fledged BSIM3v3 model (denoted as LEVEL 49) covers over 200 parameters.

  • 10/21/2003 Devices

    SPICE ParametersSPICE Parameters

  • 10/21/2003 Devices

    What is a Transistor?What is a Transistor?

    VGS ≥ VTRon

    S D

    A Switch!

    |VGS|

    An MOS Transistor

  • 10/21/2003 Devices

    The MOS TransistorThe MOS TransistorPolysilicon

    Aluminum/Cu

  • 10/21/2003 Devices

    MOS Transistors MOS Transistors --Types and SymbolsTypes and Symbols

    D

    S

    G

    D

    S

    G

    G

    S

    D D

    S

    G

    NMOS Enhancement NMOS

    PMOS

    Depletion

    Enhancement

    B

    NMOS withBulk Contact (4-terminal MOS)

  • 10/21/2003 Devices

    Threshold Voltage: ConceptThreshold Voltage: Concept

    n+n+

    p-substrate

    DSG

    B

    VGS+

    -

    DepletionRegion

    n-channel

  • 10/21/2003 Devices

    Threshold VoltageThreshold Voltage

  • 10/21/2003 Devices

    Body Effect (New Tool for LowBody Effect (New Tool for Low--Power Design)Power Design)

    -2.5 -2 -1.5 -1 -0.5 00.4

    0.45

    0.5

    0.55

    0.6

    0.65

    0.7

    0.75

    0.8

    0.85

    0.9

    VBS

    (V)

    VT (V

    )

  • 10/21/2003 Devices

    Transistor in LinearTransistor in Linear

    n+n+

    p-substrate

    D

    SG

    B

    VGS

    xL

    V(x) +–

    VDS

    ID

    MOS transistor and its bias conditions

  • 10/21/2003 Devices

    Transistor in SaturationTransistor in Saturation

    n+n+

    S

    G

    VGS

    D

    VDS > VGS - VT

    VGS - VT+-

    Pinch-off

  • 10/21/2003 Devices

    CurrentCurrent--Voltage RelationsVoltage Relations(Long(Long--channel Device)channel Device)

    QuadraticRelationship

    0 0.5 1 1.5 2 2.50

    1

    2

    3

    4

    5

    6x 10

    -4

    VDS (V)

    I D(A

    )

    VGS= 2.5 V

    VGS= 2.0 V

    VGS= 1.5 V

    VGS= 1.0 V

    Resistive Saturation

    VDS = VGS - VT

    Linear/

  • 10/21/2003 Devices

    CurrentCurrent--Voltage RelationsVoltage RelationsLongLong--Channel DeviceChannel Device

    Kn: gain factor of the MOS

  • 10/21/2003 Devices

    A model for manual analysisA model for manual analysis

  • 10/21/2003 Devices

    CurrentCurrent--Voltage RelationsVoltage RelationsThe DeepThe Deep--SubmicronSubmicron Era (short channel MOSEra (short channel MOS

    LinearRelationship

    -4

    VDS (V)0 0.5 1 1.5 2 2.5

    0

    0.5

    1

    1.5

    2

    2.5x 10

    I D(A

    )

    VGS= 2.5 V

    VGS= 2.0 V

    VGS= 1.5 V

    VGS= 1.0 V

    Early Saturation

  • 10/21/2003 Devices

    Velocity SaturationVelocity Saturation

    ξ (V/µm)ξc = 1.5

    υn

    ( m/s

    )

    υsat = 105

    Constant mobility (slope = µ)

    Constant velocity

    S/D: only need 2V to reach the saturation point in 0.25um process

  • 10/21/2003 Devices

    PerspectivePerspective

    IDLong-channel device

    Short-channel device

    VDSVDSAT VGS - VT

    VGS = VDD

    VDSAT: VDS whenVelocity saturationhappen

  • 10/21/2003 Devices

    IIDD versus Vversus VGSGS

    0 0.5 1 1.5 2 2.50

    1

    2

    3

    4

    5

    6x 10-4

    VGS(V)

    I D(A

    )

    0 0.5 1 1.5 2 2.50

    0.5

    1

    1.5

    2

    2.5x 10-4

    VGS(V)

    I D(A

    )

    quadratic

    quadratic

    linear

    Long Channel Short Channel

  • 10/21/2003 Devices

    IIDD versus Vversus VDSDS

    -4

    VDS(V)0 0.5 1 1.5 2 2.50

    0.5

    1

    1.5

    2

    2.5x 10

    I D(A

    )

    VGS= 2.5 V

    VGS= 2.0 V

    VGS= 1.5 V

    VGS= 1.0 V

    0 0.5 1 1.5 2 2.50

    1

    2

    3

    4

    5

    6x 10-4

    VDS(V)

    I D(A

    )

    VGS= 2.5 V

    VGS= 2.0 V

    VGS= 1.5 V

    VGS= 1.0 V

    Resistive Saturation

    VDS = VGS - VT

    Long Channel Short Channel

  • 10/21/2003 Devices

    Unified model for manual analysisUnified model for manual analysis

    S D

    G

    B

  • 10/21/2003 Devices

    Simple Model versus SPICE Simple Model versus SPICE

    0 0.5 1 1.5 2 2.50

    0.5

    1

    1.5

    2

    2.5x 10

    -4

    VDS (V)

    I D(A

    )

    VelocitySaturated

    Linear

    Saturated

    VDSAT=VGT

    VDS=VDSAT

    VDS=VGT

    Solid Line:Simple model

    Dotted Line:SPICE SimulationResults(Empirical)

  • 10/21/2003 Devices

    A PMOS TransistorA PMOS Transistor

    -2.5 -2 -1.5 -1 -0.5 0-1

    -0.8

    -0.6

    -0.4

    -0.2

    0x 10

    -4

    VDS (V)

    I D(A

    )

    Assume all variablesnegative!

    VGS = -1.0V

    VGS = -1.5V

    VGS = -2.0V

    VGS = -2.5V

  • 10/21/2003 Devices

    Transistor Model Transistor Model for Manual Analysisfor Manual Analysis

  • 10/21/2003 Devices

    SubSub--Threshold ConductionThreshold Conduction

    0 0.5 1 1.5 2 2.510

    -12

    10-10

    10-8

    10-6

    10-4

    10-2

    VGS (V)

    I D(A

    )

    VT

    Linear

    Exponential

    Quadratic

    Typical values for S:60 .. 100 mV/decade

    The Slope Factor

    ox

    DnkTqV

    D CCneII

    GS

    +=1 ,~ 0

    S is ∆VGS for ID2/ID1 =10

  • 10/21/2003 Devices

    VDS from 0 to 1.0V

    SubSub--Threshold Threshold IIDD vsvs VVDSDS( )DSkT

    qVnkT

    qV

    D VeeIIDSGS

    ⋅+

    −=

    −λ110

  • 10/21/2003 Devices

    ( )DSkTqV

    nkTqV

    D VeeIIDSGS

    ⋅+

    −=

    −λ110

    VGS from 0 to 0.3V

    SubSub--Threshold Threshold IIDD vsvs VVGSGS

  • 10/21/2003 Devices

    Summary of MOSFET Operating Summary of MOSFET Operating RegionsRegions

    Strong Inversion VGS > VTLinear (Resistive)

    VDS < VDSATSaturated (Constant Current)

    VDS ≥VDSATWeak Inversion (Sub-Threshold) VGS ≤VT

    Exponential in VGS with linear VDS dependenceLeakage current cannot be ignored

  • 10/21/2003 Devices

    MOS Transistor as a SwitchMOS Transistor as a SwitchVGS ≥ VT

    RonS D

    ID

    VDS

    VGS = VD D

    VDD/2 VDD

    R0

    Rmid

    )(21

    Omideq RRR +=

  • 10/21/2003 Devices

    MOS Transistor as a Switch (contMOS Transistor as a Switch (cont’’d)d)

    0.5 1 1.5 2 2.50

    1

    2

    3

    4

    5

    6

    7x 10

    5

    VDD

    (V)

    Req

    (Ohm

    )

    VDS

  • 10/21/2003 Devices

    The Transistor as a SwitchThe Transistor as a Switch

  • 10/21/2003 Devices

    MOS CapacitancesMOS Capacitances

  • 10/21/2003 Devices

    Dynamic Behavior of MOS TransistorDynamic Behavior of MOS Transistor

    DS

    G

    B

    CGDCGS

    CSB CDBCGB

  • 10/21/2003 Devices

    The Gate CapacitanceThe Gate Capacitance

    tox

    n+ n+

    Cross section

    L

    Gate oxide

    xd xd

    L d

    Polysilicon gate

    Top view

    Gate-bulkoverlap

    Source

    n+

    Drain

    n+W

    Overlap Capacitance

    WCWxCACCC

    dOX

    OXGDGS

    0

    00

    ====

    000 gdgs CCC == : overlap cap

    per unit transistor width

  • 10/21/2003 Devices

    Gate Capacitance (Cg)Gate Capacitance (Cg)

    S D

    G

    CGCS D

    G

    CGCS D

    G

    CGC

    Cut-off Resistive Saturation

    Cutoff SaturationTriode

    WCCCCC gdgsgbg 02)( +++=

  • 10/21/2003 Devices

    Diffusion (Junction) Capacitance: S/DDiffusion (Junction) Capacitance: S/D

    Bottom

    Side wall

    Side wallChannel

    SourceND

    Channel-stop implantNA+

    Substrate NA

    W

    xj

    L S

  • 10/21/2003 Devices

    Junction CapacitanceJunction Capacitance

    m: grading coefficient

  • 10/21/2003 Devices

    Capacitances in 0.25 Capacitances in 0.25 µµm CMOS m CMOS processprocess

  • 10/21/2003 Devices

    Parasitic ResistancesParasitic Resistances(Source(Source--Drain Resistance)Drain Resistance)

    W

    LD

    Drain

    Draincontact

    Polysilicon gate

    DS

    G

    RS RD

    VGS,eff

    Employ Silicidation: Slicided Source/Drain

    3.47) (Eq.,, CDS

    DS RRWL

    R += ∆

  • 10/21/2003 Devices

    SecondSecond--order Effect in Deep Suborder Effect in Deep Sub--Micron MOS TransistorMicron MOS Transistor

    Threshold Variations (p.114)Hot-Carrier Effects (p.115)For reference only

  • 10/21/2003 Devices

    SPICE Transistors Parameters

  • 10/21/2003 Devices

    MAIN MOS SPICE PARAMETERS

  • 10/21/2003 Devices

    SPICE Parameters for Parasitics

  • 10/21/2003 Devices

    SPICE Model for NMOS and PMOSSPICE Model for NMOS and PMOS

  • 10/21/2003 Devices

    SPICE Deck for a CMOS InverterSPICE Deck for a CMOS Inverter

  • 10/21/2003 Devices

    SPICE Simulation ResultSPICE Simulation Result

  • 10/21/2003 Devices

    Process VariationProcess Variation

    Variations in process parameters: impurities, oxide thickness, diffusion depth, etc. sheet resistance, Vt,…Variations in dimensions of the devices: due to limited resolution of lithography W, L, Width of Interconnection wiresFast and slow device models are created in addition to the nominal ones larger of smaller currents of the device (3 variations)σ

  • 10/21/2003 Devices

    Process VariationsProcess Variations

  • 10/21/2003 Devices

    Future PerspectivesFuture Perspectives

    25 nm FINFET MOS transistor

  • 10/21/2003 Devices

    SummarySummaryTransistor Modeling is important for CMOS circuit design (updated by IC manufacturing companies based on ongoing technologies).

    SPICE parameters provide a good link between manufacturer and IC designers.SPICE model/parameters need to be updated to reflect the behavior of the MOS in deep sub-micron technology.

    Recently, capacitor/inductor modeling become important for Radio-frequency (RF) designs.