Chapter 3 Example 1

6
 Dept. of Civil & Urban Eng., iOTec-HU. Hawassa University  _________________________  Advanced Structural Design (CEng 5721  ) Chapter 3 Examples 1  Example 1: A transfer girder with a clear span of 6m is to support a column having a factored axial load of 5000KN and an additional uniform factored load including self weight of Wd=268.45KN/m. Using the empirical method of Deep beam design, design the beam for flexure and shear. Use C-25 for concrete and S- 360 for steel class I works. Solution:  Check for deep beam /   = 6 + 0.3 + 0.3 = 6.6 1.15   = 1.15 6 = 6.9     = 6.6  = 6.6 4 = 1.65 < 2                     Design for flexure  Material design strength   = 0.85  = 0.85 0.8 25 1.5 = 11.3 3/ 2     =   = 360 1.15 = 313. 04 / 2   Max span moment = 2 8 + 4 = 268.45 6.6 2 8 + 5000 6.6 4 = 9711.71   Max shear at support = 2 + 2 = 268.45 6.6 2 + 5000 2 = 88 5. 88 + 25 00 = 33 85 .8 9  %         = 2500 3385.89 100 = 73.84 > 50        Main reinforcement Lever arm: 1 / 2   = 0.2( +2 ) = 0.2(6.6 + 2 4) = 2.92 = 2920  A s = M sd f yd z = 9711.71 10 6 313.04 2920 = 10624.61 2  Provide 24 24mm diameter bars, A s,provided  = 10857.34mm 2 This reinforcement shoul d be placed within the lower y depth of the deep beam where: = 0.25 0.05 = 0. 25 4000 0.05 6600 = 670 

Transcript of Chapter 3 Example 1

Page 1: Chapter 3 Example 1

8/11/2019 Chapter 3 Example 1

http://slidepdf.com/reader/full/chapter-3-example-1 1/6

 Dept. of Civil & Urban Eng., iOTec-HU. Hawassa University

 ___________________________________________________________________________

 Advanced Structural Design (CEng 5721 ) Chapter 3 Examples 1 

 Example 1: A transfer girder with a clear span

of 6m is to support a column having a factored

axial load of 5000KN and an additional uniform

factored load including self weight of

Wd=268.45KN/m. Using the empirical method

of Deep beam design, design the beam for

flexure and shear. Use C-25 for concrete and S-

360 for steel class I works.

Solution:

  Check for deep beam

≤ /  = 6 + 0.3 + 0.3 = 6.61.15 ∗  = 1.15 ∗ 6 = 6.9    = 6.6 

= 6.64

= 1.65 < 2      

∴         

  Design for flexure

 Material design strength

  =0.85  =

0.85 ∗ 0.8 ∗ 25

1.5= 11.33/2     =

  =360

1.15= 313.04/2 

 Max span moment

=

2

8

+

4

=268.45

∗6.62

8

+5000

∗6.6

4

= 9711.71

 

 Max shear at support

=

2+

2

=268.45 ∗ 6.6

2+

5000

2= 885.88 + 2500 = 3385.89 

%       =2500

3385.89∗ 100 = 73.84 > 50 

∴      Main reinforcement

Lever arm: 1 ≤ /  ≤ 2 ∴   = 0.2( + 2) = 0.2(6.6 + 2 ∗ 4) = 2.92 = 2920 

As =M

sdf yd ∗ z =

9711.71

∗106

313.04 ∗ 2920 = 10624.612 

Provide 24 24mm diameter bars, As,provided = 10857.34mm2

This reinforcement should be placed within the lower y depth of the deep beam where:

= 0.25 − 0.05 = 0.25 ∗ 4000 − 0.05 ∗ 6600 = 670 

Page 2: Chapter 3 Example 1

8/11/2019 Chapter 3 Example 1

http://slidepdf.com/reader/full/chapter-3-example-1 2/6

 Dept. of Civil & Urban Eng., iOTec-HU. Hawassa University

 ___________________________________________________________________________

 Advanced Structural Design (CEng 5721 ) Chapter 3 Examples 2 

 Assume cover=50mm,   stirrup=12mm,   main =24mm

∴         = 50 + 12 + 24/2 = 74 

c/c distance b/n first row bars to last row bars =670-74-24/2=584mm

 /  = 584/7 = 83.43 

row d from bottom

1st row d1  74

2nd  row d2  157.43 

3rd  row d3  240.86 

4th  row d4  324.29 

5th  row  d5  407.72 

6th  row  d6  491.15 

7th  row  d7  574.58 

8th  row  d8  658.01 

the centroid of the reinforcements d’ from the bottom is

’ =61 + 62 + 23 + 24 + 25 + 26 + 27 + 28   

=6 ∗ 74 + 2(157.43 + 240.86 + 324.29 + 407.72 + 491.15 + 574.58 + 658.01)

24= 256.34 

Effective depth d=h-d’=4000-256.34=3743.66

 

  =0.6  =

0.6

313.04 ∗ 400 ∗ 3743.66 = 2870.172 ≤ = 10857.34mm2 … .ok! 

  Design for shear

B/c more than 50% of the shear at the support is

caused by the concentrated load, the load is a

principal load. Thus the critical shear is calculated

at av/2, where

≤  /       = 3300

1.15 ∗ /        = 1.15 ∗ 3000 = 3450 

∴ = 3300 

Vmax=3385.89

Vsd=2943

2500

2500

Vmax=3385.89

av/2=1.65

3.3

SFD

  y  =   6   7   0  m  m

d

d’ 

Page 3: Chapter 3 Example 1

8/11/2019 Chapter 3 Example 1

http://slidepdf.com/reader/full/chapter-3-example-1 3/6

 Dept. of Civil & Urban Eng., iOTec-HU. Hawassa University

 ___________________________________________________________________________

 Advanced Structural Design (CEng 5721 ) Chapter 3 Examples 3 

= 2500 +3.3 − 1.65

3.3∗ 3385.89 − 2500 = 2943 

Limiting shear capacity

= 0.25

  = 0.25

∗11.33

∗400

∗3743.66

∗10−3 = 4241.57

 

Shear carried by concrete

= ∗ 0.25  12 

=2 =

2 ∗ 3743.66

3300= 2.27, 1 = 1 + 5 0 = 1 + 5 0

  = 1 + 5 0 ∗  10624.61

400 ∗ 3743.66= 1.35

2 = 1.6 − = 1.6 − 3.743 = −2.14 ≥ 1 − − − not ok ‼   take 2 = 1

 =

0.21

  2

3

=

0.21

∗20

23

1.5

= 1.03 

= ∗ 0.25  12 = 2.27∗ 0.25 ∗ 1.03 ∗ 1.35 ∗ 1 ∗ 400 ∗ 3743.66 ∗ 10−3 = 1181.66 

      = − = + = 2943 − 1181.66 = 1761.34 

Assume 1000KN is carried by vertical stirrups and the remaining 761.34KN is carried by

Horizontal stirrups. i.e Shear carried by vertical stirrups = 1000  and Shear carried by

horizontal stirrups = 761.34. Assume  12 is used for both vertical and horizontal stirrups

 

=

 = 2

∗ ∗ 122

4= 226.19

=    −

2 ≤    

=    −

2 =

226.19 ∗ 313.04 ∗ 3300 − 3743.662

1000 ∗ 103

= 101.12 

≤  

=226.19 ∗ 313.04 ∗ 3743.66

1000

∗103

= 265.08    ≤ 4

=3743.66

4= 935.91 

Provide  12 c/c 100mm for vertical stirrups.

=    3

2 − ≤    

Page 4: Chapter 3 Example 1

8/11/2019 Chapter 3 Example 1

http://slidepdf.com/reader/full/chapter-3-example-1 4/6

 Dept. of Civil & Urban Eng., iOTec-HU. Hawassa University

 ___________________________________________________________________________

 Advanced Structural Design (CEng 5721 ) Chapter 3 Examples 4 

=    3

2 − =

226.19 ∗ 313.04 ∗ 32

∗ 3743.66 − 3300761.34 ∗ 103

= 215.35 

≤ 

=

226.19∗313.04∗3743.66

761.34

∗103 = 348.17

 

 

≤3

=3743.66

3= 1247.89

 

Provide  12 c/c 200mm for horizontal stirrups.

 Example 2: Design a corbel to support a factored ultimate load of 400KN at a distance of 360mm

from the face of a column 300x300mm in cross section. Proportion the various dimensions of the

corbel and find the amount of reinforcement required to resist the load without failure. Use C-

30 for concrete and S-400 for steel class I works.

Solution:

  Proportions corbel 0.4d< av <d 

  = 0.8   = 0.8

=360

0.8= 450 

      = 50  = + = 450 + 50 = 500 ∴  = 500, = 450   = 300(    )

  Design material strength 

  =0.85  =

0.85 ∗ 0.8 ∗ 30

1.5= 13.6/2     =

  =400

1.15= 347.83/2 

Main Rebar As 24 24mm

Av  2mm c/c 100mm

Ah  2mm c/c 200mm

y= 0.25h-0.05l=670mm 

Page 5: Chapter 3 Example 1

8/11/2019 Chapter 3 Example 1

http://slidepdf.com/reader/full/chapter-3-example-1 5/6

 Dept. of Civil & Urban Eng., iOTec-HU. Hawassa University

 ___________________________________________________________________________

 Advanced Structural Design (CEng 5721 ) Chapter 3 Examples 5 

 

Check for diagonal compression failure (limiting shear capacity) 

= 0.25  = 0.25 ∗ 13.6 ∗ 300 ∗ 450 ∗ 10−3 = 459 > = 400−−−−! 

∴   

   Main reinforcement 

  = 2 ∗      (1 −     1 − 2  

   22 Determine     = 0 

= =      =    − − − −1 

= 0 ∗ = ∗    

 

=

2

 

 

=

 

  

∗ = ∗    

   ( − 2) = ∗       =

         1  

    ∗ ∗    ( −   

2 ) = ∗    

( −  

2

 

 

) = −  

 

  sin (2

)

=  

= −     sin (2)

  =

450 − 400 ∗ 103

300 ∗ 13.6 ∗ sin (2)

360= 1.25 − 0.2723

sin (2) 

= 1.25 − 0.2723

sin (2)     = 44.360 

∴ = 2 ∗      (1 −     1 − 2  

   22 

  = 300 ∗ 450 ∗244.36 ∗13.6

347.83 (1 −     1 −2

∗400

∗103

∗360

13.6 ∗ 300 ∗ 4502244.36 = 1176.482 

  Horizontal design force ≥ 0.2 = 0.2 ∗ 400 = 80 

  =   =

80 ∗ 103

347.83= 2302 ≥ 0.25  = 0.25 ∗ 1176.48 = 294.122 

Page 6: Chapter 3 Example 1

8/11/2019 Chapter 3 Example 1

http://slidepdf.com/reader/full/chapter-3-example-1 6/6

 Dept. of Civil & Urban Eng., iOTec-HU. Hawassa University

 ___________________________________________________________________________

 Advanced Structural Design (CEng 5721 ) Chapter 3 Examples 6 

∴              =   +  = 294.12 + 1176.48 = 1470.62   ≥ , = 0.004 = 6002 ‼ 

Provide 520 diameter bars at the top,   , = 1570.82 

  Shear reinforcement

  ≥ 0.5  − = 0.5 ∗ 1570.8 − 294.12 = 637.952   ≥ , = 0.4  = 0.4 ∗ 1570.95 = 628.382 −−−−! 

        2

3     =

2

3∗ 450 = 300 

Assume 10 diameter bars is used as stirrup

= 2 ∗ ∗ 102

4= 157.082 

     =  =

637.95

157.08≈ 4. 

Provide 4 10 closed stirrup bars

/  /   = 3004

= 75 

  Minimum width of bearing 

To resist bearing failure, the bearing stress developed should be less than 0.4fcu ≤ 0.4  = 0.4 ∗ 30 = 12 

= ≤ 12

  ≥ 12 =

400 ∗ 103

12 ∗ 300= 111.11 

Provide a bearing with width of w=115mm

  = 5∅20 

  = ∅10 / 75 

b

w

F vd