Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given...

70
Chapter 10 Gases

Transcript of Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given...

Page 1: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Chapter 10

Gases

Page 2: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Gas

Page 3: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Gas Model

• Gases are composed of tiny, widely-spaced particles. – For a typical gas, the average

distance between particles is about ten times their diameter.

Page 4: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Gas Model (cont.)• Because of the large distance between

the particles, the volume occupied by the particles themselves is negligible (approximately zero). – For a typical gas at room temperature

and pressure, the gas particles themselves occupy about 0.1% of the total volume. The other 99.9% of the total volume is empty space. This is very different than for a liquid for which about 70% of the volume is occupied by particles.

Page 5: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Gas Model (cont.)

• The particles have rapid and continuous motion.– For example, the average velocity of a

helium atom, He, at room temperature is over 1000 m/s (or over 2000 mi/hr). The average velocity of the more massive nitrogen molecules, N2, at room temperature is about 500 m/s.

– Increased temperature means increased average velocity of the particles.

Page 6: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

• The particles are constantly colliding with the walls of the container and with each other. – Because of these collisions, the gas

particles are constantly changing their direction of motion and their velocity. In a typical situation, a gas particle moves a very short distance between collisions. Oxygen, O2, molecules at normal temperatures and pressures move an average of 10−7 m between collisions.

Gas Model (cont.)

Page 7: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

• There is no net loss of energy in the collisions. A collision between two particles may lead to each particle changing its velocity and thus its energy, but the increase in energy by one particle is balanced by an equal decrease in energy by the other particle.

Gas Model (cont.)

Page 8: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

• The particles are assumed to be point-masses, that is, particles that have a mass but occupy no volume.

• There are no attractive or repulsive forces at all between the particles.

Ideal Gas

Page 9: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Gas Properties and their Units

• Pressure (P) = Force/Area– units

• 1 atm = 101.325 kPa = 760 mmHg = 760 torr• 1 bar = 100 kPa = 0.9869 atm = 750.1 mmHg

• Volume (V)– unit usually liters (L)

• Temperature (T)– ? K = --- °C + 273.15

• Number of gas particles expressed in moles (n)

Page 10: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Gas Law Objectives

• For each of the following pairs of gas properties, (1) describe the relationship between them, (2) describe a simple system that could be used to demonstrate the relationship, and (3) explain the reason for the relationship.

• V and P when n and T are constant• P and T when n and V are constant• V and T when n and P are constant• n and P when V and T are constant• n and V when P and T are constant

Page 11: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Apparatus for Demonstrating Relationships Between Properties of Gases

Page 12: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Decreased Volume Leads to Increased Pressure

P α 1/V if n and T are constant

Page 13: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Relationship between P and V

Page 14: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Boyle’s Law• The pressure of an ideal gas is inversely

proportional to the volume it occupies if the moles of gas and the temperature are constant.

Page 15: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Increased Temperature Leads to Increased Pressure

P α T if n and V are constant

Page 16: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Relationship between P and T

Page 17: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Gay-Lussac’s Law

• The pressure of an ideal gas is directly proportional to the Kelvin temperature of the gas if the volume and moles of gas are constant.

Page 18: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

V α T if n and P are constant

Increased Temperature Leads to Increased Volume

Page 19: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Relationship between T and V

Page 20: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Charles’ Law

• For an ideal gas, volume and temperature described in kelvins are directly proportional if moles of gas and pressure are constant.

Page 21: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Increased Moles of Gas Leads to Increased Pressure

P α n if T and V are constant

Page 22: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Relationship between n and P

Page 23: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Relationship Between Moles of Gas and Pressure• If the temperature and the volume of an ideal gas

are held constant, the moles of gas in a container and the gas pressure are directly proportional.

Page 24: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

V α n if T and P are constant

Increased Moles of Gas Leads to Increased Volume

Page 25: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Relationship between n and V

Page 26: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Avogadro’s Law

• For an ideal gas, the volume and moles of gas are directly proportional if the temperature and pressure are constant.

Page 27: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Engines and Pressure

Page 28: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Breathing

Page 29: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Ideal Gas Equation

Page 30: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Ideal Gas Equation Problems

• Tip-off – The usual tip-off that you can use the ideal gas equation to answer a question is that you are given three properties of a sample of gas and asked to calculate the fourth. A more general tip-off is that only one gas is mentioned and there are no changing properties.

Page 31: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Ideal Gas Equation Problem Step 1

• Step 1: Assign variables to the values given and the value that is unknown. Use P for pressure, V for volume, n for moles, T for temperature, g for mass, and M for molar mass.

Page 32: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Ideal Gas Equation Problem Step 2

• Step 2: Write the appropriate form of the Ideal Gas Equation.– If the number of particles is given or desired in

moles, use the most common form of the ideal gas equation.

– If mass or molar mass is given or desired, use the expanded form of the ideal gas equation.

Page 33: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Ideal Gas Equation Problem Steps 3-6

• Step 3: Rearrange the equation to isolate the unknown.

• Step 4: Plug in the known values, including units. Be sure to use kelvin temperatures.

• Step 5: Make any necessary unit conversions and cancel your units.

• Step 6: Calculate your answer and report it to the correct significant figures and with the correct unit.

Page 34: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Combined Gas Law Equation

Page 35: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Combined Gas Law Equation Problems

• Tip-off – The problem requires calculating a value for a gas property that has changed. In other words, you are asked to calculate a new pressure, temperature, moles (or mass), or volume of gas given sufficient information about the initial and other final properties.

Page 36: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Combined Gas Law Equation Problem Steps 1 and 2

• Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

• Step 2: Write out the combined gas law equation, but eliminate the variables for any constant properties. (You can assume that the properties not mentioned in the problem remain constant.)

Page 37: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Combined Gas Law Equation Problem Steps 1 and 2

• Step 3: Rearrange the equation to isolate the unknown property.

• Step 4: Plug in the values for the given properties.

• Step 5: Make any necessary unit conversions and cancel your units.

• Step 6: Calculate your answer and report it with the correct units and significant figures.

Page 38: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Equation Stoichiometry

Page 39: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Dalton’s Law of Partial Pressures

Page 40: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Dalton’s Law of Partial Pressures Equations

( ) )

))

+ = + = +

+ ∑

= = = =∑∑

=

each gas

each gaseach gas

=

= or = (

mole fraction A ((

A A B B A BT A B

A B

T A B T

A

A AA

T

A A T

n RT n RT n RT n RTP P PV V V V

RT RTP n n P nV V

n RTP nV XRTP nn

VP X P

Page 41: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Dalton’s Law of Partial Pressures Problems

• Tip-off – The problem involves a mixture of gases and no chemical reaction. You are asked to calculate a value for one of the variables in the equations below, and you are given (directly or indirectly) values for the other variables.

Page 42: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Dalton’s Law of Partial Pressures Problem

Steps 1 & 2• Step 1: Assign variables to the values that are

given and the value that is unknown.• Step 2: From the following equations, choose

the one that best fits the variables assigned in Step 1.

)+ ∑ =each gas= = ( T A B T A A TRTP P P P n P X PV

Page 43: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Dalton’s Law of Partial Pressures Problem Steps 3-6

• Step 3: Rearrange the equation to solve for your unknown.

• Step 4: Plug in the values for the given properties.

• Step 5: Make sure that the equation yields the correct units. Make any necessary unit conversions.

• Step 6: Calculate your answer and report it with the correct units and significant figures.

Page 44: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Collecting Gas Over Water

Page 45: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Vapor Pressures of Water

T mmHg T mmHg

-10 2.15 40 55.30 4.58 60 149.4 5 6.54 80 355.110 9.21 95 634 11 9.84 96 65812 10.52 97 68213 11.23 98 707 14 11.99 99 73315 12.79 100 76020 17.54 101 78825 23.76 110 1074.630 31.8 120 148937 47.07 200 11659

Page 46: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

• The particles are assumed to be point-masses, that is, particles that have a mass but occupy no volume.

• There are no attractive or repulsive forces at all between the particles.

Ideal Gas Assumptions

Page 47: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

• The ideal gas assumptions are generally valid for real gases at relatively low concentrations (leading to low pressures) and at temperatures well above the condensation temperature of the substance.

• Decreased temperature and/or increased concentration of gas leads to greater differences between the properties predicted by gas law calculations and the real, measured properties.

Real Gases

Page 48: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

• Attractions between the particles in a gas decrease the average force of their collisions with the walls, leading to a measured pressure that is lower than that predicted by the ideal gas equation calculations, which are based on the assumption that there are no attractions between the particles.

Attractions and Gas Pressure (1)

Page 49: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Attractions and Gas Pressure (2)

Page 50: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Attractions and Gas Pressure (3)

Preal = Pmeasured

Preal < Pideal

idealnRTP =

V

Page 51: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

• Increased concentration of gas (due to increased number of gas particles and/or decreased volume) leads to decreased average distance between the particles, increased attraction between the particles, decreased average force of collisions with the walls, and decreased pressure. This means a greater deviation of the real, measured pressure from the ideal, calculated pressure.

Concentration Effect (1)

Page 52: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Concentration Effect (2)

Page 53: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

• Decreased temperature leads to decreased velocity, which leads to a decreased chance of having particles break attractions among them.

• This leads to more attractions between particles at a given time, decreased average force of collisions with the walls, and decreased pressure.

Temperature Effect

Page 54: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Real (Measured) Pressure Different from Ideal (Calculated) Pressure

Page 55: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Real and Ideal Volume• The ideal gas equation was derived

based on the assumption that the particles in a gas occupy no volume, therefore, the volume calculated from the ideal gas equation is the volume of empty space.

• The real volume is the volume of empty space plus the volume occupied by the particles. Therefore, it is greater than the calculated ideal volume. Videal = VemptyVreal = Vempty + VparticlesVreal > Videal

Page 56: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Concentration Effect on Volume

• Increased concentration of gas leads to an increase in the percentage of the volume occupied by particles and therefore, a greater difference between the calculated ideal volume and the measured real volume.

Page 57: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Ozone, O3, as Oxidizing Agent

• Used to sanitize hot tubs• Used in industry to bleach waxes, oils,

and textiles.• Strong respiratory irritant that can lead to

shortness of breath, chest pain when inhaling, wheezing, and coughing

• Damages rubber and plastics, leading to premature deterioration of products made with these materials.

• Ozone damages plants.

Page 58: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Ozone as PollutantHighest concentrations found in large industrial cities with lots of cars and lots of sun.

N2(g) + O2(g) → 2NO(g)

2NO(g) + O2(g) → 2NO2(g)

λ < 400 nmNO2(g) NO(g) + O(g)

O(g) + O2(g) → O3(g)

Page 59: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

National Ozone Concentrations

Page 60: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

The Earth’s Atmosphere

Page 61: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Ultraviolet Light

• UV-A 320-400 nm– reaches the surface of the Earth– helps create Vitamin D

• UV-B 290-320 nm– some reaches the surface of the Earth– leads to sunburn, skin aging, and skin cancer

• UV-C 40-290 nm– mostly removed in upper atmosphere– alters DNA (≈260 nm) and protein (≈280 nm)

Page 62: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Removal of UV in Stratosphere

Page 63: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Ozone Destruction -Paul Crutzen (1970)

NO(g) + O3(g) → NO2(g) + O2(g)NO2(g) + O(g) → NO(g) + O2(g)

net reaction NO catalyst

O3(g) + O(g) 2O2(g)

Page 64: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Chlorofluorocarbons (CFCs)

• CFC-11 CFCl3– average lifetime in atmosphere is ≈ 50 years

• CFC-12 CF2Cl2– average lifetime in atmosphere is ≈ 102

years

• used as propellants in aerosol cans, solvents, blowing agents for foams, coolant in refrigerators, and other uses

• very stable, nontoxic, and can be liquefied with minimal pressure

Page 65: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Aerosol Can Propellants

Page 66: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Refrigeration• The refrigerant is a substance that is a gas at

normal pressures but one that can be converted into a liquid at slightly greater than normal pressures.

• Outside the refrigerator, gas is compressed to liquid. Increased attractions leads to increased stability, lower PE, and the release of energy into the room.

• Inside the refrigerator, the liquid is allowed to form a gas. Decreased attractions leads to decreased stability, higher PE, and energy is absorbed. This decreases the temperature inside the refrigerator.

Page 67: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

CFC Threat to Ozone (1974) Mario Molina and F. Sherwood Rowland

λ < 215 nmCF2Cl2(g) CF2Cl(g) + Cl(g)

Cl(g) + O3(g) → ClO(g) + O2(g)ClO(g) + O(g) → Cl(g) + O2(g)

net reaction Cl catalystO3(g) + O(g) 2O2(g)

Page 68: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Another Possible Mechanism for the CFC Threat to Ozone

λ < 215 nmCF2Cl2(g) CF2Cl(g) + Cl(g)

2Cl(g) + 2O3(g) → 2ClO(g) + 2O2(g)2ClO(g) → ClOOCl(g)ClOOCl(g) → ClOO(g) + Cl(g)ClOO(g) → Cl(g) + O2(g)

net reaction Cl catalyst2O3(g) 3O2(g)

Page 69: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

Inactive Chlorine

CH4(g) + Cl(g) → CH3(g) + HCl(g)

ClO(g) + NO2(g) → ClONO2(g)

Page 70: Chapter 10 PowerPoint · Step 1: Assign the variables P, T, n, and V to the values you are given and to the unknown value. Use the subscripts 1 and 2 to show initial or final conditions.

1985 - Ozone Hole -Reactions on the surface of ice crystals

ClONO2(g) + HCl(s) → Cl2(g) + HNO3(s)ClONO2(g) + H2O(s) → HOCl(g) + HNO3(s)HOCl(g) + HCl(s) → Cl2(g) + H2O(s)

radiant energy

HOCl(g) Cl(g) + OH(g)radiant energy

Cl2(g) 2Cl(g)