Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

17
CHAPTER 1 Resource Use Efficiency Revisited Nicolás Mateo 1 and Rodomiro Ortiz 2 1 Consultant: [email protected] 2 Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden. Abstract The notion of “eco-efficiency” can provide a solid basis for developing a conceptual understanding of rational and effective use of resources in agriculture and a set of tools to move us toward these objectives. It will not, however, be the magic bullet to solve the overuse of resources in agriculture. A wide range of concepts and approaches need to come together if we are to succeed in solving this problem. Both high-input intensive agriculture and low-input agriculture need to evolve based on agroecological principles. In broad terms, high-input agriculture should aim at becoming more eco-efficient, and low-input agriculture needs to increase in productivity while retaining high efficiency of input use. This chapter looks at eco-efficiency from a perspective of experiences and lessons in resource use, research for development, climate change adaptation and mitigation, policies and incentives, and social equity and gender. The narrative: (1) points out the key roles of research and potential research breakthroughs to alleviate food shortages in the future; (2) suggests following the path of “resource use efficiency” in terms of strategies and management practices; (3) suggests the need for changes in land use; and (4) indicates the importance of investing in gender equity as a means to improve food production and food security and achieve greater social equity. Contents 2 Background and historical perspective 3 The need for eco-efficiency in agriculture 4 Higher productivity with lower negative impact 5 Implications of major land use changes, scale of production, biofuels, and global farmland 7 Climate change adaptation and mitigation 8 Eco-efficient practices to resolve land use and climate change challenges 9 Policies, capacity building, and capitalizing on market forces 10 Meeting challenges to social equity 11 Monitoring and evaluation 13 Conclusions 13 References

Transcript of Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

Page 1: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

CHAPTER

1 Resource Use Efficiency Revisited Nicolás Mateo1 and Rodomiro Ortiz2

1 Consultant:[email protected] SwedishUniversityofAgriculturalSciences(SLU),Alnarp,Sweden.

Abstract

Thenotionof“eco-efficiency”canprovideasolidbasisfordevelopingaconceptualunderstandingofrationalandeffectiveuseofresourcesinagricultureandasetoftoolstomoveustowardtheseobjectives.Itwillnot,however,bethemagicbullettosolvetheoveruseofresourcesinagriculture.Awiderangeofconceptsandapproachesneedtocometogetherifwearetosucceedinsolvingthisproblem.Bothhigh-inputintensiveagricultureandlow-inputagricultureneedtoevolvebasedonagroecologicalprinciples.Inbroadterms,high-inputagricultureshouldaimatbecomingmoreeco-efficient,andlow-inputagricultureneedstoincreaseinproductivitywhileretaininghighefficiencyofinputuse.

Thischapterlooksateco-efficiencyfromaperspectiveofexperiencesandlessonsinresourceuse,researchfordevelopment,climatechangeadaptationandmitigation,policiesandincentives,andsocialequityandgender.Thenarrative:(1)pointsoutthekeyrolesofresearchandpotentialresearchbreakthroughstoalleviatefoodshortagesinthefuture;(2)suggestsfollowingthepathof“resourceuseefficiency”intermsofstrategiesandmanagementpractices;(3)suggeststheneedforchangesinlanduse;and(4)indicatestheimportanceofinvestingingenderequityasameanstoimprovefoodproductionandfoodsecurityandachievegreatersocialequity.

Contents

2 Backgroundandhistoricalperspective 3 Theneedforeco-efficiencyinagriculture 4 Higherproductivitywithlowernegativeimpact 5 Implicationsofmajorlandusechanges,scaleofproduction,

biofuels,andglobalfarmland 7 Climatechangeadaptationandmitigation 8 Eco-efficientpracticestoresolvelanduseandclimatechange

challenges 9 Policies,capacitybuilding,andcapitalizingonmarketforces10 Meetingchallengestosocialequity11 Monitoringandevaluation13 Conclusions13 References

Page 2: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

2

Eco-Efficiency: From Vision to Reality

Background and Historical Perspective

In the long run the planet has the upper hand. In the short run humans act as if they do and as if this will continue to be the case (Hall, 2008)

Theconceptof“eco-efficiency”originatesfromthefieldofnaturalresourcesresearch.However,inthischapter,whilegivingparticularattentiontonaturalresources,weadoptthemoreinclusivedescriptionusedbyCIATandelaboratedinitsMedium-TermPlan2010-2012,p.3.Thisstatesthefollowing:

“Eco-efficientagricultureincreasesproductivitywhilereducingenvironmentalimpacts.Eco-efficientagriculturemeetseconomic,social,andenvironmentalneedsoftheruralpoorbybeingprofitable,competitive,sustainable,andresilient.Itharmonizestheeconomic,environmental,andsocialelementsofdevelopment,andstrivestowardsolutionsthatarecompetitiveandprofitable,sustainable,andresilient,andgeneratebenefitsforthepoor.Eco-efficientagriculturecannoteffectivelyaddresstheneedsofthepoorwithouttakingintoaccounttheparticularneedsofwomen.”

ThisdefinitionfollowssuggestionsofauthorssuchasParketal.(2010)toexplicitlyincludesocialcriteriaaswellaseconomicandenvironmentalcriteriainordertoimproveratesofuptakeofeco-efficiencytechnologies,topromotepracticesthatimprovetheeffectivenessofhunger-reductionefforts,andtominimizeenvironmentaldegradation.Chapter2ofthisvolumegoesintodetailonconceptualfoundationsandframeworksforeco-efficiency.

TheseminalworkofMeadowsetal.(1972)—The limits to growth—impactedacademiaandsocietyatlarge,althoughperhapsnotsomuchthepoliticalprocess.Usingwhatwasthenanadvancedmodelofinteractionsbetweenhumanpopulation,industrialgrowth,foodproduction,andecosystems—World3—theauthorswarnedthatgrowthwithoutlimitswouldhaveserious

consequencesonearth’sfiniteresources.Twentyyearslatertheauthorsfollowedupwithanothersignificantpiece,Beyond the limits (Meadowsetal.,1992),inwhichtheyarguedthathumanswereovershootingthecapacityandavailabilityofearth’sresources.Thisresearchsparked,andhasbecomeacornerstoneof,theintensedebateonsustainabledevelopment.Morerecently,Limits to growth: The 30-year update(Meadowsetal.,2004)attemptedoncemoretoprovidedataandmakeacompellingcaseforasignificantdebateandurgentactionstolimitandtomakerationaluseofscarceresources.

TheexperiencesandlessonslearnedfromtheGreenRevolutionofthe1960sandbeyondpointtosignificanttrade-offsinresourceuse.Whiletherewereamplebenefitsfromtargetedplantbreedingandtheapplicationofexternalinputsintermsofincreasedproductivity,income,andfoodproduction,thisstrategyplacedsignificantpressuresonnaturalresourcesandtheenvironment.

Duringthelast4decadesrecognitionofunsustainableresourceuseandtheincreasingconcernsexpressedbyproducers,consumers,andcivilsocietyhavepromptedthedevelopmentandtestingofapproachestooptimizeresourceuse,suchasminimumtillage,precisionagriculture,plantbreedingforinputuseefficiency(water,nitrogen),marker-assistedbreeding,andtransgeniccropsandanimals.Thisvolumehighlightsanumberoftheseaccomplishmentsaswellasrelatedexperiencesandlessonslearned.

Despitetheadvancesinagriculturalproductivity,wastefulandcontaminatingsystemscontinuetocoexistwitheco-efficiency-basedapproaches.Populationgrowth,marketforces,productivitylevels,andincentivesallimpactonthebalancebetweenpositiveandnegativeforcesdrivingagriculturalinnovation.Policiesandincentivesatthelocal,national,andinternationallevelsexertastronginfluenceonoutputsandoutcomes.

Weneedtoconsidereco-efficiencybeyondthefarm,crop,oranimalenterpriselevel,andextend

Page 3: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

3

Resource Use Efficiency Revisited

theconceptstoincludethewholefoodchain.Thiswillincludethefulllifecycleofinputstothefarmandproductsleavingthefarm,i.e.,nutrientandenergyflowsthatincludetransportandprocessing.

Whiletherearegreatopportunitiesforincreasingeco-efficiencybyadoptionofmixedfarmingsystems,particularlythoseinvolvingbothcropsandlivestock,thetrend,particularlyindevelopedcountries,hasbeenforincreasedspecializationandseparationofcropandlivestockenterprises.Increasinglytheremayalsobemarketopportunitiesbasedonconsumerpreferencesforproductsfromeco-efficientsystems.Currentlytheproportionoffoodmarketedasbeingfromsuchsystemsisverysmall.

Severalauthors(Pimenteletal.,2005;Hobbsetal.,2008;Horriganetal.,2002)havemadethecaseformovinghigh-inputagriculturetowardgreatersustainability.Theargumentsforthisincludethebeneficialeffectsofhighlevelsofsoilorganicmatter,whichhelpconservesoilandwaterresourcesandareparticularlybeneficialduringdroughtyears;theunsustainabilityofcurrentlevelsofuseoffossilfuels,water,andtopsoil;andthedocumentedbenefitstoboththeenvironmentandproductivityofdirectseeding,conservationtillage,integratedsystems,bedplanting,andmulching.

Ultimately,therewillnotbeasimple,singlesolutiontoincreasingtheeco-efficiencyofagriculture.Therearepracticaladvantagesforintensiveagricultureandlow-inputagriculturetoeachadaptandadoptthebestpracticesoftheother.High-inputagricultureshouldaimatbecomingmoreeco-efficient,andlow-inputagricultureneedstoaimathigherproductivity,oftenbasedonmoreintensivepractices.Tomeetthegrowingdemandsforfood,feed,fiber,andfuelsfromagricultureinthelongterm,thiscombinationofhigherproductivityandsustainabilitythrougheco-efficientpracticesisimperative.

The Need for Eco-Efficiency in Agriculture

Thequestion“whyworryaboutproducingmorefood?”needstobeconsideredfromseveralangles.

Firstishowmuchwearecurrentlyproducing.Despiteconstraintsinwateravailability,land,andfertilizers(particularlynitrogen),theworldshouldbeabletofeeditself.AccordingtoThe Economist (2011),allowingforthestaggeringamountsoffoodwastedandallthefoodthatcouldbeeatenbutisinsteadturnedintobiofuels,farmersareproducingmuchmorefoodthanisrequired—morethantwicetheminimumnutritionalneedsofabout2100caloriesaday.

TheFoodandAgricultureOrganizationoftheUnitedNations(FAO)estimatedthatweneedtoincreasefoodsuppliesby70%by2050ifwearetofeedapopulationof9billion(FAO,2009).Thisisamajorchallenge,andevenmoresowiththeconstraintsofavailablewater,land,andfertilizer.

Currently,every9monthsweconsumewhattheplanet’secologycanprovidesustainablyinanygivenyear(GlobalFootprintNetwork,2011).Fromthatpointuntiltheendoftheyear,wemeetourecologicaldemandbyliquidatingresourcestocksandaccumulatingCO2intheatmosphere.Thiscannotcontinue.

Anotherwaytovisualizethisimbalanceinresourceuseishumanity’secologicalfootprint.TheLiving planet report 2010 (WWF,2010)revealsthatthisfootprinthasmorethandoubledsince1966.In2007,themostrecentyearforwhichdataareavailable,humanityusedtheequivalentof1.5planetearthstosupportitsactivities.EvenwithmodestUnitedNations(UN)projectionsforpopulationgrowth,consumptionpatterns,andclimatechange,humanitywillneedthecapacityoftwoearthsby2030toabsorbCO2wasteandkeepupwithnaturalresourceconsumption.Thereportillustratesthescopeofthechallengeshumanityfaces,notonlyforpreservingbiodiversity,butalsoforhaltingclimatechangeandmeetingbasichumandevelopmentaspirations,suchasreducingworldwidehungerandpoverty.

Page 4: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

4

Eco-Efficiency: From Vision to Reality

Theincreasedfoodinsecurityandvulnerabilityofalargenumberofpeopleworldwidepointtoabrokenfoodproductionanddistributionsystem.Weneedtolookatthecontributionagricultureshouldmakenotonlytofeedagrowingpopulationbutalsotoimpactlessontheplanet’sresources.Thefuturefoodsupplyequationneedstoconsiderthecurrentrealityoflowergrowthratesformajorcropyieldsinconventionalagriculture,eco-efficientapproachestodiminishimpactsonnaturalresources,theclimatechangechallenge,andthevolatilityofenergyprices.Intensive,oil-dependentagricultureisreachingworrisomeyieldplateausandwatertableskeepdecreasing.

Theworldneedsanewparadigmforthewaysthatweusenaturalresources—anewsetoftoolsandpolicies.Shouldweeatless?Shouldweeatsmarter(e.g.,lessproteinofanimalorigin,withitshighdemandsforenergy,land,andwater)?Shouldwecreateincentivestousefewerresourcesandimplementlegaldirectivestopushforeco-efficiency?Shouldweputinplacemeasurestocontrolpopulationgrowth?Pimenteletal.(2008)demonstratethatuseoffossilenergyintheUnitedStates’foodsystemcouldbereducedbyabout50%ifappropriatetechnologieswereadoptedinfoodproduction,processing,packaging,transportation,andconsumption.

Higher Productivity with Lower Negative Impact Agriculturalproductivitymustincreaseifwearetomeettheincreasingdemandsofagrowingandmoreaffluentpopulationforfood,feed,fiber,andfuelsinthecontextoflimitedlandavailableforexpansionofagriculture(Hubertetal.,2010).Humanshavealwaysattemptedtoraisetheefficiencyofagroecosystems,aimingtoharvestmoreperunitofinput,mainlywater,nutrients,energy,oragrobiodiversity(seeChapter2ofthisvolume).Effortstoincreaseproductivityshouldthereforeconsidercropbreeding(particularlyformaximizinginputuseefficiencyandforhostplantresistanceforreducingpesticideuse),eco-friendlyhusbandry,andthesustainableuseofnaturalresources(especiallyagrobiodiversity),while

enhancingecosystemservices.Thisvolumeexploresmanywaysthatthiscanbeaccomplished.

Sustainableintensificationofagricultureshouldreducetheneedtoexpandintoenvironmentallyvulnerableareas,therebysparingsomelandsfromfurtherdegradationbyconcentratingproductioninothers.However,theresultofthisapproachisnotalwaysclearcut.Rudeletal.(2009)analyzedtrendsinareaplantedto10majorcropsbetween1970and2005,withparticularemphasisonthe1990–2005period.Thedatasuggestthatagriculturalintensificationwasnotoftenaccompaniedbydeclineorevenstasisincultivatedareaonanationalscale,exceptincountriesthatimportedgrainandimplementedconservationset-asideprograms.Thus,policiesandinnovationsaimedatincreasinglanduseefficiencymustbecarefullydesignedandmonitoredtoassuretheyhavethedesiredimpact,ratherthanleadingtouncontrolledlanduseexpansion(LambinandMeyfroidt,2011).

Humansfacethechallengeofmanagingtrade-offsbetweenimmediateneedsandmaintainingthecapacityofthebiospheretoprovidegoodsandservicesinthelongterm(Foleyetal.,2005).Policymeasuresareneededthatprovideincentivesfordevelopmentandadoptionofmorediverse,eco-efficientfarming;suchmeasuresincludepremiumpricesforproductsfromeco-efficientsystems,andpricesupportsfortheprovisionoftheirenvironmentalservices.Innovativeeducationisneededonwhole-systemapproachesthatfeatureresource-useefficiencyandresilientfarmingsystemstotrainanewgenerationofpractitionerswhosemainaimwillbeensuringproductivity,profitability,andsecurityoffoodvaluechains(Francisetal.,2011).

Therearenumerousapproachesforincreasingagriculturalproductivityusingeco-efficientproductionsystems.Forexample,integratinglivestock,crops,andforestrysystemscanleadtohigherproductivityandlowernegativeimpact.Insuchintegratedsystems,livestockarerearedmostlyongrass,browseonnonfoodbiomassfrommaize,millets,rice,andsorghumandinturn

Page 5: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

5

Resource Use Efficiency Revisited

supplymanureandtraction(Herreroetal.,2010).Wilkins(2008)arguesthateco-efficiencycanbeincreasedeitherbyalteringthemanagementofindividualcropandlivestockenterprisesorbyalteringthelandusesystem,forexamplebyadoptingmixedcrop-livestocksystemsthatincorporatebiologicalnitrogenfixationanduseofmanureasfertilizer.Combiningintensification,betterintegrationofanimalmanureincropproduction,andmatchingnitrogenandphosphoroussupplytolivestockrequirementscaneffectivelyimprovenutrientflows(Bouwmanetal.,2011).Furthermore,ashiftinhumandiets(e.g.,poultryorporkreplacingbeef)canreducenutrientuseincountrieswithintensiveruminantproduction.

Implications of Major Land Use Changes, Scale of Production, Biofuels, and Global Farmland

Land use changesLandusechangesimpactthequalityandavailabilityofsoils,water,andbiodiversity.Globally,croplands,pastures,plantations,andurbanareashaveexpandedinrecentdecades,accompaniedbylargeincreasesinenergy,water,andfertilizerconsumption,andsignificantlossesofbiodiversity(Foleyetal.,2005).ThesechangescanalsoleadtochangesinatmosphericconcentrationofCO2,andmaythereforebeacontributortoclimatechange(seediscussionbelow).

AsnotedbyLambinandMeyfroidt(2011),Bhutan,Chile,China,CostaRica,ElSalvador,India,andVietnammanagedtoincreasebothagriculturalproductionandtheareaofforestsintheirterritories.Indoingthis,theyreliedonvariousmixesofagriculturalintensification,landusezoning,forestprotection,increasedrelianceonimportedfoodandwoodproducts,creationofoff-farmjobs,foreigncapitalinvestments,andremittances.Theauthorsconcludethatsoundpoliciesandinnovationscan,therefore,reconcileforestpreservationwithfoodproduction.

AccordingtoFAO(1993),thereisanincreasinglyurgentneedtomatchlandtypesand

landusesinthemostrationalwaypossible,soastomaximizesustainableproductionandsatisfythediverseneedsofsocietywhileatthesametimeconservingfragileecosystemsandourgeneticheritage.Landuseplanningisfundamentaltothisprocess.Itisabasiccomponent,whetherweareconsideringmountainecosystems,savannas,orcoastalzones,andunderliesthedevelopmentandconservationofforestry,range,inland,andcoastalresources(FAO,1993).Forexample,landuseallocationhascontributedtoprotectingthePeruvianAmazon,inspiteofrecentincreasesindisturbanceanddeforestationrates(Oliveiraetal.,2007).Likewise,protectionofproductiveagriculturallandhasbecomeamajorpriorityinmanyregionsoftheworld.Overgrazingandintensiveagricultureonmarginallandsareamajordriveroflandlossthroughdegradation.Policiesareinplaceinmanycountriestoavoidthislossofproduction,buttheireffectivenessinthefaceofeconomicdemandisoftenlimited(EllisandPontious,2010).

Scale of productionTheassumptionthatlarge-scalemechanizedagricultureismoreproductiveandefficientthansmall,familyfarmsmaybeinfluencingagriculturaldevelopmentpolicyaroundtheworld.Inseveralcontinents,developingcountriesaremovingtowardlarge-scale,corporatefarmingasawaytoboostproductionandjump-startagriculturaldevelopment(Landesa,2011).

InthecaseofCanada,MaynardandNault(2005)proposetomaintainbothbigandsmallfarms,giventhecurrentsituationwhere2%offarmsproduce35%ofthefood.Theauthorsproposeoverallstrategiestokeepandexpandthenumberofsmallenterprises,forexample,maintainingvibrantruralcommunities,investinginresearchandextension,andimplementingincentives,regulations,andindicators.Currentregulationsarenotproperlydifferentiatedandtendtofavorbigfarms.Theyalsoexaminetheterm“sustainability”inthecontextofbigandsmallfarmsandfindthatconclusionsaredifficult,asthetermisopentomultipleinterpretations.Thedailyrealityoffarmingasksthequestionsoftradeoffsbetweensustainabilityandprofitability.

Page 6: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

6

Eco-Efficiency: From Vision to Reality

BiofuelsThedebateaboutthecostsandbenefitsofbiofuels(economicallyandenvironmentally)nowfocusessquarelyonwhethertheirusecausestoomuchconversionofnaturallandsintocropandlivestockproductionaroundtheworld.AccordingtoBabcock(2009),“theworryisthatthelossofcarbonstocksontheconvertedlandwouldmorethanoffsetthedirectreductioningreenhousegasemissionscausedbylowergasolineuse.TheCaliforniaAirResourcesBoardhasconcludedthatcornethanolcausessuchlargeamountsoflandconversionthatitdoesnotqualifyasalow-carbonfuel.Initsrecentanalysisofgreenhousegasemissionsfrombiofuels,theU.S.EnvironmentalProtectionAgencyestimatesthatcornethanolandbiodieselmadefromsoybeanoilcauseenoughlandusechangestocallintoquestionwhetherthesebiofuelsmeetrequiredgreenhousegasreductions.”

Newtechnology,cropmanagementchanges,andrenewableenergyareplayingimportantrolesinincreasingtheenergyefficiencyofagricultureandreducingitsrelianceoffossilresources(Woodsetal.,2010).Alternativerenewableenergysourcesalsobringdiverseopportunitiesandchallenges,suchashowtointegratepotentialbiofuelmarkets,dealwithimpactsonfoodsecurity,alleviatepoverty,andmanagecropandnaturalresourcessustainably(FAO,2010).Theagriculturalsystemsusedtoproducefeedstockforbiofuelsmustusebiomasssustainably,andpartitionitamongenergy,feed,food,andCO2fixationdemands(Tilmanetal.,2009).Hilletal.(2006)indicatethatbiofuelsproducedfromlow-inputbiomassplantsgrownonmarginallandorfromwastebiomass,couldprovidemuchgreatersuppliesandenvironmentalbenefitsthanstaplefood-basedbiofuels.Appropriatelife-cycleanalysiswillthereforebeneededtodeterminetheuseoflandresourcesandestimatenetcarbonemissionsofeachsuggestedrenewableenergytechnology(VonblottnitzandCurran,2007).

Global farmlandTherehasbeenadramaticriseininterestofinvestorsinacquiringfarmland,particularlyinAfrica,asaresultoftheescalatingfoodpricesat

theendofthefirstdecadeofthe21stcentury.Thefocusofthisinteresthaslargelybeenonlandwithagriculturalpotentialthatiseitheruncultivatedorproducinglessthanitspotential.Thisfoodcrisispointedtonewplayers,challenges,andperhapssomeopportunitiesassociatedwithlandusechanges.Thisphenomenaldevelopment,ifconsideredbythesheersizeofthelandsbeingacquired(some56millionhectaresin2009),haspromptedspecificproposalsontheethicsandprinciplesthatshouldbeappliedbyallinterestedparties(Deiningeretal.,2011).Threekeyprinciplesthatarecloselyrelatedtotheissueoflandusechangeare:

• Respecting land and resource rights.Existingrightstolandandassociatednaturalresourcesshouldberecognizedandrespected.

• Responsible agro-investing.Investorsshouldensurethatprojectsrespecttheruleoflaw,reflectindustrybestpractice,areeconomicallyviable,andresultindurablesharedvalue.

• Environmental sustainability.Environmentalimpactsofaprojectshouldbequantifiedandmeasurestakentoencouragesustainableresourceusewhileminimizingandmitigatingtheriskandmagnitudeofnegativeimpacts.

ArecentreportfromtheWorldBank(2009)examinescommercialagricultureintheGuineasavannaandelsewhereinAfrica.ThereportclaimsthatAfricanagriculturecontinuestolag,asreflectedinthedeclineininternationalcompetitivenessofmanytraditionalAfricanexportcropsduringthepast30years,aswellasinthecompetitivenessofsomefoodcropsforwhichimportdependencehasincreased.Incontrast,overthesameperiodtwoagriculturalregionsinthedevelopingworldhaveshowntheway—theCerradoregionofBrazil(seeChapter4ofthisvolume)andtheNortheastRegionofThailand.Bothhavedevelopedatarapidpaceandconqueredimportantworldmarkets.Theirsuccessdefiedthepredictionsofmanyskeptics,whohadassertedthatthetworegions’challengingagroecologicalcharacteristics,remote

Page 7: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

7

Resource Use Efficiency Revisited

locations,andhighlevelsofpovertywouldproveimpossibletoovercome.

TworecentdevelopmentshaveledtoachangeinthinkingaboutthepotentialofAfricanagriculture(TheWorldBank,2009).First,duringthepastdecade,strongagriculturalgrowthhasbeenrecordedinmanyAfricancountries,suggestingthatthesectorcanindeedbeadriverofgrowthwhentheconditionsareright.Second,thesteepriseinpricesoffoodandagriculturalcommoditiesthatoccurredin2008hasledtoarealizationthatnewopportunitiesmaybeopeningforcountriesthatareendowedwiththeland,labor,andotherresourcesneededtorespondtothegrowingdemandforfood.

Climate Change Adaptation and Mitigation Althoughtheremaybealargeregionalvariability,modelssuggestthatchangesintemperatureandprecipitationpatternsduetoclimatechangeandincreasingconcentrationsofatmosphericCO2willsignificantlyaffectagroecosystemsandyields(BattistiandNaylor,2009;LobellandField,2007),reducingfoodavailabilityandtherebyjeopardizingfoodsecurityandfarmincomes(Lobelletal.2008)(seealsoChapter3ofthisvolume).Therewillbeshiftsofplantdistributionsbecausesomespecieswillexpandintonewlyfavorableareasandotherswilldeclineinincreasinglyadverselocations.Climatechangemayincreaseglobaltimberproductionasaresultofchangesofforestrylocations(shiftingfromlow-latituderegionsintheshorttermtohigh-latituderegionsinthelongtermasclimatechanges),whereasdemandforforestproductswillriseslightly(KirilenkoandSedjo,2007).

Agriculturecontributestocarbonemissionsthroughthedirectuseoffossilfuelsinfarming,theindirectuseofenergyininputsthatareenergy-intensivetomanufacture(e.g.,fertilizers),andthecultivationofsoilsresultinginthelossofsoilorganicmatter(PrettyandBall,2001).Agriculturalmanagementexplainshistoricchangesinregionalsoilcarbonstocks.Agricultureisalsoamajorcontributorof

atmosphericnitrousoxide(N2O),apotentgreenhousegas(GHG)commonlygeneratedbytheuseofmanureornitrogen(N)fertilizers.Inintensivewheat-croppingsystems,commonNfertilizerpracticesmayleadtohighfluxesofN2OandNO(nitricoxide).SeveralgroupsofheterotrophicbacteriauseNO3

-asasourceofenergybyconvertingittothegaseousformsN2,NO,andNO2.N2Oisthereforeoftenunavailableforcropuptakeorutilization.

LandusechangecontributesconsiderablytoincreasesinatmosphericCO2.TheIPCC(2007)estimatesthelandusechange(e.g.,conversionofforesttoagriculturalland)contributes1.6±0.8gigatonsofcarbonperyeartotheatmosphere,comparedwith6.3±0.6gigatonsofcarbonfromfossilfuelcombustionandcementproduction.

Thetotalbiomasscarbonstockoftropicalforestsisestimatedtobe247gigatons,with193gigatonsstoredabovegroundand54gigatonsstoredbelowgroundinroots.LatinAmerican,sub-SaharanAfrican,andSoutheastAsianforestsaccountfor49,25,and26%ofthetotalstock,respectively(Saatchietal.,2011).Deforestationanddegradationoftropicalforestsaccountedfor12to20%ofglobalanthropogenicGHGemissionsinthe1990sandearly2000s.ReducingdeforestationandforestdegradationwouldthusbothreduceGHGemissionsandincreasethepotentialofforeststoremoveadditionalcarbonfromtheatmosphere.

ExpansionofcattleranchinghasbeenidentifiedasamajorcauseofdeforestationandamajorcontributortoCO2emissions(seeChapter10ofthisvolume).ThecarbonfootprintofbeefproducedonnewlydeforestedlandintheAmazonexceeds700kgCO2equivalentsperkilogramofcarcassweightifdirectlanduseemissionsareannualizedover20years(Cederbergetal.,2011).EntericfermentationisalsoamajorcontributortoGHGemissions,particularlyinthedevelopingworld,whichaccountsforalmostthree-quartersofsuchemissions(Thorpe,2009).Intensiveruminant-basedmeatproductionsystemsconsumelargeamountsofhigh-valuefeedbutsufferfromlow

Page 8: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

8

Eco-Efficiency: From Vision to Reality

feedconversionratesandlongreproductiveintervals,makingtheminefficientusersofresources.ChangingfromruminantstomonogastricscouldsignificantlyreducethecontributionoflivestocktoGHGproduction(SteinfeldandGerber,2010).

Eco-Efficient Practices to Resolve Land Use and Climate Change ChallengesAdoptionofeco-efficientpracticeswouldcontributeimmenselytosolvinglanduseandclimatechangechallengesnotedintheprevioussections.Agriculturecansequestercarbonwhenorganicmatterisbuiltupinthesoilorwhenabove-groundwoodybiomassactseitherasapermanentsinkorisusedasanenergysourcethatsubstitutesfossilfuels.Themitigationeffectsofadoptionofimprovedpastures,intensifyingruminantdiets,changesinlandusepractices,andchangingbreedsoflargeruminantscouldaccountfor4to7%oftheglobalagriculturalmitigationpotentialto2030,orUS$1.3billionperyearatapriceofUS$20/tofCO2equivalents(ThorntonandHerrero,2010).

Expandingcroplandontoareasundernaturalecosystemsreducescarbonstocksinnaturalvegetationandsoils,withtheamountofcarbonreleasedandcropyieldsdifferingmarkedlybetweentemperateregionsandthetropics(Westetal.,2010):foreachunitoflandcleared,landinthetropicsreleasesnearlytwiceasmuchcarbon(~120t/havs.~63t/ha)andproduceslessthanhalftheannualcropyieldaslandintemperateregions(1.71t/haperyearvs.3.84t/haperyear).However,high-inputindustrializedagricultureusesfarmoreenergy,intheformofnitrogenfertilizers,pumpedirrigation,andmechanicalpower,thandoeslow-input,sustainableagriculture,makingitlessenergyefficient.Productionof1tonofcerealsorvegetablesfromhigh-inputfarmingconsumes3000–10,000MJofenergy,comparedwithonly500–1000MJusingsustainablefarmingpractices(PrettyandBall,2001).

VanWesemaeletal.(2010)studiedchangesinsoilorganiccarbon(SOC)stocksinsoilsin

Belgiumbetween1960and2006,andfoundalargereductioninSOCingrasslandsoilsthathadbeendrainedafter1960,andlargegainsincroplandsinsandylowlandsoilsduetomanureadditions.

Cassman(1999)indicatesthatprecisemanagementandimprovementsinsoilqualityareneededtoachievehighyieldswithoutcausingenvironmentaldamage.Conservationagriculture,greenmanures,andcovercropscontributetoorganicmatterandcarbonaccumulationinthesoil,physicallyprotectthesoilfromtheactionofsun,rain,andwind,andhelpfeedsoilbiota.No-tillagesystemsresultinaccumulationof0.3–0.6tC/haperyear,butno-tillagecombinedwithrotationsandcovercropsmaydoubletheamountofcarbonaccumulated,to0.66–1.3tC/haperyear(PrettyandBall,2001).

No-tillagehasrevolutionizedagriculturalsystemsbecauseitallowsindividualproducerstomanagelargeramountsoflandwithfewerinputsofenergy,labor,andmachinery(TrippletandDick,2008).Lal(2010)pointsoutthatnotallconservationagriculturepracticesandotherresourceconservationtechnologiesareapplicableacrossallfarmingsystems.However,hereportsthatincreasingSOCintherootzonecanincreasegrainyields(kg/hapertonofC)ofbean(30–60),maize(200–300),rice(20–50),soybean(20–50),andwheat(20–40).SuchincreasesinSOCalsoimprovesoilquality,increaseeco-efficiency,andenhanceecosystemservices.Suchsoilsinksmustbecomepermanentiftheyaretocontributetomitigatingclimatechange;iflandsunderconservationagricultureareploughedallthegainsinsoilcarbonandorganicmatterwouldbelost.

UsingthecorrectamountandtimingofNapplicationcanhalveNO2emissionsinintensiveirrigatedagroecosystemswithoutsignificantlyaffectingcropyields(RuanandJohnson,1999).Usingahandheldopticalsensorthatcalculatesthenormalizeddifferentialvegetationindex(NDVI),therebyassessingyieldpotentialasplantsgrow,canreduceunnecessaryN-fertilizerinputs,savingfarmersmoneyandprotectingtheenvironmentbyreducingtracegasemissions.

Page 9: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

9

Resource Use Efficiency Revisited

Someplantsproducechemicalsthatinhibitnitrificationinthesoil,reducinglossoffertilizerN(Fillery,2007).Thisability,whichisreferredtoasbiologicalnitrificationinhibitionorBNI(Subbaraoetal.,2006),seemstovarywidelyamongandwithinspecies,andappearslikelytobeawidespreadphenomenonintropicalpasturegrasses(Subbaraoetal.,2007).

Nitrificationinhibitionenhancesagroecosystemfertilityinasustainableway,especiallyunderhighnitrateleachinganddenitrificationfluxes,whichmayaccountfortheecologicaladvantageofAfricangrassesoverindigenousgrassesinSouthAmericanpastures(Boudsocqetal.,2009).Thesedeep-rootedgrasses(e.g., Brachiaria humidicola)alsosequestersignificantamountsoforganiccarbondeepinthesoilandhelpoffsetanthropogenicCO2emissions(Fisheretal.,1994).Brachiaria humidicola,anAfricanforagegrassfoundfromsouthernSudanandEthiopiainthenorthtoSouthAfricaandNamibiainthesouth,showsparticularlyhighBNIcapacity(Ishikawaetal.,2003;Subbaraoetal.,2009).

Localagrobiodiversitywillbeanimportantcopingmechanismforclimatechange,especiallyforthemostvulnerablepeople(Ortiz,2011a).Agro-silvo-pastoralsystemscanalsobedesignedtooptimizeagrobiodiversityandattainproductionbenefitswithoutaddingpressuretoconvertnaturalhabitattofarmland(Ortiz,2011b;seealsoChapter4ofthisvolume).However,insomeareaslocallyavailableagrobiodiversitymaynotabletoadaptquicklytochangingconditions,andthereforenewcropcultivars,livestockbreeds,orotherspeciesbettersuitedtothenewenvironmentswillbeneededtocopewithclimatechange.

Nitrogenuseefficiency(NUE)ofagriculturalsystemscanbeincreasedbygrowingplantspeciesorgenotypeswithhighNuptakeandutilizationabilities(FageriaandBaligar,2005).Whole-plantphysiology,quantitativegenetics,andforward-andreverse-geneticsapproachesareprovidingabetterunderstandingofthephysiologicalandmolecularcontrolsofNassimilationincropsundervaryingenvironments(Hireletal.,2007).CropsarebeingbredforNUE

becausethistraitwillbeakeyfactorinreducingNfertilizerpollutionandincreasingyieldsinN-limitingenvironments.

Besidessophisticatedapproachestomakephotosynthesismoreefficient,anumberofalreadywell-developedbiotechnologiessuchasplantmicropropagation,virus-freeplantingmaterials,moleculardiagnosticsofplantandlivestockdiseases,andmolecularmarkerstoidentifysuperiorlinesandpopulationsinconventionalbreedingoperationsmustcontinuetobeimprovedanddisseminated,particularlyinthosecountrieswithlimitedresearchinfrastructureandlowratesofadoption.Productionofgeneticallymodifiedorganisms(GMOs),undoubtedlythemostcontroversialapproachofthenewbiotechnologies,holdssignificantpromiseforcontributingtoeco-efficientagriculture,butthereisanurgentneedtofocusinvestmentontheneedsofthepoor(TheWorldBank,2008).Thisislikelytorequireincreasedpublicinvestmentinthesetechnologies.Itwillalsobenecessarytoincreasethecapacitytoevaluatetherisksandregulatethesetechnologiesinwaysthatarecosteffectiveandinspirepublicconfidenceinthem.

However,conventionalbreeding,benefittingfromtechniquessuchasmarker-assistedselection,islikelytobeatthecenterofagriculturaldevelopmentsintheimmediatefuture.Unfortunately,thenumberofplantandlivestockbreederscontinuestodecline.Thiswillaffectourcapacitytoimprovecropsandanimalsinthefuture,andurgentmeasuresareneededtoreversethistrend.

Policies, Capacity Building, and Capitalizing on Market ForcesEco-efficientagriculturewillonlybeadoptedandimplementedifconducivepoliciesandincentivesareinplace.Thiswillrequirethatlessonsbelearnedfrompriorexperiences,alignmentwithmarketforces,clearcommunicationandengagementwithpublicopinion,developmentofpublic-privatepartnerships,andstrongleadership.

Page 10: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

10

Eco-Efficiency: From Vision to Reality

Anyeco-efficiencyapproachmustrecognizeandexploittheimpactofmultidimensionaleconomic,environmental,andsocialinteractionsonthefourcomponentsofthefoodsystem,i.e.,availability,utilization,accessibility,andstability(Parketal.,2009).Failingtodosowillimpedeuptakeofadaptationandefficiencystrategies.

Thereisanurgentneedtointensify,diversify,andintegrateproductionsystemstoachieveeco-efficiency,butthiswillrequiremorethanjusttechnicalsolutions.Anewvision,combinedwithpoliciesandincentives,needstobepartofthemix.Revertingtomixedfarmingwillnotbeeasy(Wilkins,2008).Persuadingfarmerstodosowillrequireevidenceofcleareconomicadvantagesfromlinkingcropandlivestocksystems,cost-effectivewaysofhandlingandincorporatinganimalmanures,andsystemsthataremanageriallysimpletooperate.Itmayalsorequireconducivepoliciesandsupportpayments.Forexample,theEuropeanUnion’sNitrateDirectiveandtheWaterFrameworkDirective,bylimitinginputs,haveprovidedaverydirectincentivefortheadoptionofeco-efficientpractices,whilesupportpaymentshavepromotedconversionoflandtoorganicfarmingandmaintenanceoforganicsystems(Wilkins,2008).

Thefoodrequirementsoftheexpectedpopulationlevelsin2050cannotbemetexclusivelybytheintensiveagricultureoftoday,simplybecausethenaturalresourcebasewouldeithercollapseorbeplacedunderveryseverestress.Likewise,lessinput-intensive,agroecologicalapproaches—inparticularintegratedlivestock,crop,andtreesystems—couldnotbeutilizedeverywhereduetolimitationsinlabor,land,water,markets,andinfrastructure.Technology,innovation,andpoliciesareessentialcomponentsofthemixinordertoreachacceptablesocial,economic,andenvironmentaloutputsandoutcomesinthefuture.Consumersexertsignificantpressureonthemarketandareultimatelyoneofthemaindriversoftheagriculturalagenda(Gopalan,2001).

Policiesandsubsidiesaresensitiveandcontroversialissues.Developed-country

agriculturalpoliciescostdevelopingcountriesaboutUS$17billionperyear,acostequivalenttoaboutfivetimesthecurrentlevelsofoverseasdevelopmentassistancetoagriculture,whilesubsidiesindevelopingcountriesdivertfundsfromhigh-returninvestmentsinpublicgoods(TheWorldBank,2008).Investmentininfrastructure(irrigation,roads,transport,power,andtelecommunications),markets,ruralfinance,andresearchwouldboostagriculturalproductivityindevelopingcountrieswhilebeinglessdistortingthanpricesubsidiesandincentives.

Howbesttopromoteproductsfromeco-efficientsystemsisanareathatrequiresfurtherresearchandmoresystematicanalysesinordertoguidebothproducersandconsumersonfoodgrownusingeco-efficientapproaches.Forexample,therearelearningopportunitiesfromtheexperiencesoftheorganicmarketsandlocallyproducedfoodstuffs,aswellasconsiderationofnon-priceincentivesandthepowerofconsumerstoguideproductiontowardsamoreeco-efficientpath.

Meeting Challenges to Social Equity

Eco-efficientagriculturecandeliverqualityproductsthatmeetconsumers’needswithalowecologicalimpact.However,toensurethatitdoessoequitablyandsustainablyitisimperativethatassessmentsaddresssocialandeconomicperformanceaswellasecologicalcriteria(Parketal.,2010).

Researchonandimplementationoftheconceptandpracticesofeco-efficiencymustbesensitivetogenderissues.Womenplayamajorroleinagriculture,accountingforabout70to80%ofhouseholdfoodproductioninsub-SaharanAfrica,65%inAsia,and45%inLatinAmerica,cultivatingfoodcropsandcommonlycontributingtoproductionofcommercialcrops(TheWorldBanketal.,2009).Womenaregenerallyresponsibleforfoodselectionandpreparationandforthecareandfeedingofchildren.Theyarethuskeytofoodsecurityfortheirhouseholds(Quisumbingetal.,1995).

Page 11: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

11

Resource Use Efficiency Revisited

Womenalsocommonlyplayactiverolesastraders,processors,laborers,andentrepreneurs.However,manydevelopmentpoliciesandprojectscontinuetoassumethatfarmersandruralworkersaremainlymen(TheWorldBanketal.,2009).AccordingtoDeereandLeon(2003),about70to90%offormalownersoffarmlandaremeninmanyLatinAmericanlocations.

AWorldBankwaterandsanitationstudy(Fongetal.,1996)concludedthatgenderisanissuenotonlyofequitybutofefficiency,becauseinvolvingbothwomenandmenenhancesprojectresults,increasescostrecovery,andimprovessustainability.Areviewof121ruralwatersupplyprojectsfoundthatwomen’sparticipationwasamongthevariablesstronglyassociatedwithprojecteffectivenessinthesector.Women’sparticipationservesbothpracticalandstrategicgenderneeds.Thepracticalgenderneedsofwomenareneedsbasedonexistingdivisionsoflaborandauthority,whereasthestrategicgenderneedsarethosethatrequireredressofgenderinequalitiesandredistributingpowermoreequitably.

Acloserlookatwomen’srolesinagriculturalproduction(Table1-1)illustratestheimportantparttheyplayineveryaspectofagricultureandfoodproduction,thesignificantchallengestheyface,andwhygender-neutralstrategiesalonewillnotbesufficienttomeetfutureneedsandexpectations.

Bothmenandwomenplaycriticalandoftencomplementaryroles,bothatthefarm-levelinsmallholderagriculturalsystemsanddownstreaminmoreintensiveproductionsystems,whereprocessing,packaging,andoverallvalue-addingrequirethecomplementaryabilitiesandknowledgeofwomenandmen.Interventionsmustaddressthespecificneedsandopportunitiesofbothwomenandmen,particularlythepoorest,iftheyaretoreduceinequalities,stimulategrowth,andcontributetoreducingenvironmentaldegradation(TheWorldBanketal.,2009).Toachievethisitisvitaltounderstandandchangenaturalresourcetenureandgovernanceandaddressgender-basedinequalitiesinaccesstoandcontrolovernaturalresources.

TheWorldBank(2006)sumsuptheimportanceofaddressinggenderissues,statingthat“Gainsinwomen’seconomicopportunitieslagbehindthoseonwomen’scapabilities.Thisisinefficient,sinceincreasedwomen’slaborforceparticipationandearningsareassociatedwithreducedpovertyandfastergrowth.Insum,thebusinesscaseforexpandingwomen’seconomicopportunitiesisbecomingincreasinglyevident;thisisnothingmorethansmarteconomicsandappropriatesocialpolicy.”

Monitoring and Evaluation

Eco-efficiencymonitoringrequiresdisciplinedrecord-keepingandmanagedconservationtoensurelong-termenvironmentalimprovement(ReithandGuidry,2003).

Life-cycleanalysis(LCA)helpstoassesspotentialenvironmentalimpactsalongthevaluechain(McGregoretal.,2003).LCAquantifiesinputs(e.g.,water,nutrients,energy,andagrochemicals)andoutputs(e.g.,grain,stubble,flour,oil,waste),assessestheenvironmentalperformancerelativetoinputuseandoutputs,analyzesandexplainstheenvironmentalperformanceofthesupplychain,andsuggestswhereandwhatmeasurescanimproveperformance.LCAhelpstheindividualactors(farmers,foodprocessors,farmsuppliers,retailers,andendusers)tomanagetheirenvironmentalongthevaluechain,tosettheirownenvironmentalperformancegoalsandindicators,andtoidentifypractical,cost-effectivemeasurestoimproveenvironmentalperformance.Itcanalsobeusedtoimprovethequalityofextensionservices,increasetheprofitabilityoffarmsbygreenmarketing,andsupporttheregionaltransitiontosustainableagriculturalsystems(Hayashietal.,2007).

Inagriculture,water,energy,andlanduseintensityareusedasresourceintensityindicators,whereasNOxpollution,CO2,andCH4intensityareusedtomeasureenvironmentalimpacts(UnitedNations,2009).Wießneretal.(2010)introducedasetofpracticalindicatorsreflectingecologicalandagronomicperformancetodescribethecurrenteco-efficiencyofsugar-beetcultivation,

Page 12: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

12

Eco-Efficiency: From Vision to Reality

Activities Keycharacteristics

Agriculturalproduction

Ruralwomenarethemainproducersoftheworld’sstaplecrops—rice,wheat,andmaize—whichprovideupto90%ofthefoodconsumedbytheruralpoor.Womensow,weed,applyfertilizerandpesticides,andharvestandthreshcrops.Theircontributiontogrowingsecondarycropssuchaslegumesandvegetablesisevengreater.Grownmainlyinhomegardens,thesecropsprovideessentialnutrientsandareoftentheonlyfoodavailablewhenmajorcropsfail.

Waterownershipandtenure

Womenhavemuchlessaccesstowaterthanmen.Thedistributionofwaterandlandisamajordeterminantofpoverty,andinheritancelawsthatdeprivewomenofaccessareoftenthecauseofwomen’spoverty.

Selection,improvement,andadaptationoflocalcultivars

Womenaretypicallyinvolvedintheselection,improvement,andadaptationoflocalcultivars,aswellasseedexchange,management,andsaving.Theyoftenkeephomegardenswheretheygrowtraditionalcultivarsofvegetables,herbs,andspicesselectedfortheirnutritional,medicinal,andculinarybenefits.Women,therefore,playanimportantroleinmaintainingbiodiversity.Womenarealsotheprimarycollectorsofwildfoodsthatprovideimportantmicronutrientsindietsandthatarevitalforthesurvivalofhouseholdsduringfoodshortages.

Climatechange Least-developedcountriesaremorereliantonrainfedagricultureandnaturalresourcesthanmoredevelopedcountries,andarethereforethemostvulnerabletoclimatechange.Thesecountriesgenerallylackthenecessaryadaptivecapacitiestocopewithclimatechange.Poorpeopletendtoliveonmarginallandsthataresubjecttofrequentdroughtsorfloodsandaremostlikelytobeaffectedbyevensmallchangesinclimatevariability.Becauseofgender-basedinequalitiesinaccessingcriticallivelihoodassets(suchasland,credit,technology,information,markets,andorganizations),womenaremoreexposedtotheserisks.

Biomassandfuelwood

Overone-thirdoftheworld’spopulation(2.4billionpeople)reliesonfuelwood,agriculturalresidues,andanimalwastesfortheirprimaryenergyneeds.Manywomenspendupto3to4hoursadaycollectingfuelforhouseholduse,sometimestraveling5to10kmaday.InmanyAfrican,Asian,andLatinAmericancountries,ruralwomencarryapproximately20kgoffuelwoodeveryday.Thisworkburdenlimitstimeavailableforfoodproductionandpreparation,household-relatedduties,andwomen’sparticipationinincome-generatingactivitiesandeducationalopportunities.

Weeds,pests,anddiseases

Some20–40%oftheworld’spotentialcropproductionislostannuallybecauseoftheeffectsofweeds,pests,anddiseases.Attemptstocontrolagriculturalpestshavebeendominatedbychemicalcontrolstrategies,buttheoveruseofchemicalshasadverselyaffectedhumanhealth,theenvironment,internationaltrade,andfarmbudgets.Itisbroadlyestimatedthatbetween1millionand5millioncasesofpesticidepoisoningoccureachyear,resultinginseveralthousandfatalities.Pesticidefatalitiesareoverwhelminglyadeveloping-countryphenomenonandchildrenandwomenareespeciallyatrisk.

Table1-1. Roles,needs,andchallengesfacedbywomeninagriculture.

andshowedthateco-efficiencycouldbeenhancedbyreducinginputlevels.Recently,BASF(2010)announceditsfirsteco-efficiencyanalysisformaizegrownwithorwithoutafungicide.Theanalysiscomparedbotheconomicandenvironmentalaspectsofproductsandprocesses,andtooktheproduct’sentirelifecycle

intoaccount,fromsourcingrawmaterialstoproductmanufacture,use,anddisposal.Theyfoundthatusingthefungicidereducedcostsandenergyandresourceuseanddeliveredhighyields,i.e.,farmerscouldbothearnmorebyusingthisfungicideandprotecttheenvironment.

SOURCE:SummarizedandadaptedfromTheWorldBanketal.(2009).

Page 13: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

13

Resource Use Efficiency Revisited

Conclusions

ThoseagriculturalsystemsandpracticesthatreleaselessCtotheatmosphere,conserveorganicmatter,utilizebiologicalmethodsfordiseaseandpestcontrol,usecleverrotations,pursuerecyclingopportunitiesbymeansofcrop,treeandanimalcomponentsandinteractions,andusewaterrationallytendtobeinherentlyeco-efficient.Humankind—givenprospectivedemandsandsocio-economic,politicalandenvironmentalchallenges—willnotbeabletosustainandsurvivebasedsolelyonlow-inputagriculturalsystems.Intensiveandhigh-inputagriculturealsohasakeypresentandfutureroletoplay;however,itmustattempttodomorewithlessand,asarguedbyseveralauthors,itshouldaimatbeingmoresustainable(Pimenteletal.,2005;Hobbsetal.,2008;Horriganetal.,2002).

Insummary:

• Inviewofthechallengetoenhanceproductivityandcounteractcurrentyieldplateausinkeycropandanimalsystemsbymeansofeco-efficientmethods,technologymustbeattheforefrontofpolitical,strategic,andinvestmentpriorities.

• Policiesandincentivesshouldbealsoofhighpriority,inordertotiltthebalancetowardseco-efficiency,foodsecurity,foodsafety,andreducedwaste.

• Researchersandpolicy-makersneedtoconsiderthemore-from-less,themore-from-more,andeventhesame-from-lessscenariostodefineprioritiesandgoalsatthenational,regional,andlocallevels.Inthiscontext,eco-efficiencyneedstobeconsideredatwiderscalesthanthefarmorindividualcroporanimalproductionsystem.

• Thewidelyassumednotionthatdevelopedcountriesaretheonesthattendtospecializeinfewintensiveproductionsystemsnolongerholds.Agrowingnumberoflargeandintensivecropandanimalenterprises(inparticularfruits,vegetables,poultry,andbeeffortheexportmarkets)arenowadayscommonlyfoundinthetropicalbelt.

• Generationanddisseminationofeco-efficiencyknowledgeandadoptionwill

greatlybenefitfromactiveparticipationoffarmersinresearchanddevelopment,enhancedextensionmethods(includingthenewinformationtechnologies),andproducerandconsumereducation.

• Thecurrentandpotentialimpactofclimatechangeonachievingahigherdegreeofeco-efficiencyneedstobebetterresearchedandunderstood.Therearebothchallengesandopportunitiesthatmustbeworkedout,particularlyinrelationtohoweco-efficiencymayormaynotimpactdiversificationandsystemsadaptability.

• Researchandimplementationoftheconceptsandpracticesofeco-efficiencycannotandshouldnotbemadewithagender-neutralapproach.Lessonslearnedallovertheworldandabundantliteratureclearlyshowtheadvantages—smarteconomicsasdepictedbytheWorldBank(2006)—ofconsideringanddesigningresearchandimplementationofeco-efficientsystemsbasedongenderrolesandinherentadvantages.

Inthelinesofthoughtoutlinedabovethebestpossibleoutcomeisforhigh-inputintensiveagricultureandlow-inputagriculturetocomeclosertoeachother.High-inputagricultureshouldcertainlyaimatbecomingmoreenvironmentallyfriendlyandlow-inputagricultureshouldadopt,wheneverpossible,amoreintensiveapproachleadingtohigherproductivity

References

BabcockBA.2009.Measuringunmeasurableland-usechangesfrombiofuels.IowaAgReview[online]15(3).Availableat:www.card.iastate.edu/iowa_ag_review/summer_09/article2.aspx

BASF.2010.Makingheadlines–corngrownwithorwithoutBASFFungicide,Headline®.Availableat:www.agro.basf.com/agr/AP-Internet/en/content/sustainability/eco-efficiency-analysis/case-study-corn-grown-with-or-without-BASF-fungicide-headline

BattistiDS;NaylorRL.2009.Futurefoodinsecuritywithunprecedentedseasonalheat.Science323:240–244.

Page 14: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

14

Eco-Efficiency: From Vision to Reality

BoudsocqS;LataJC;MathieuJ;AbbadieL;BarotS.2009.Modellingapproachtoanalysetheeffectsofnitrificationinhibitiononprimaryproduction.FunctionalEcology23:220–230.

BouwmanL;GoldewijkKK;VanDerHoekKW;BeusenAHW;VanVuurenDP;WillemsJ;RufinoMC;StehfestE.2011.Exploringglobalchangesinnitrogenandphosphoruscyclesinagricultureinducedbylivestockproductionoverthe1900–2050period.ProceedingsoftheNationalAcademyofSciences(USA).Availableat:www.pnas.org/cgi/doi/10.1073/pnas.1012878108

CassmanKG.1999.Ecologicalintensificationofcerealproductionsystems:Yieldpotential,soilquality,andprecisionagriculture.ProceedingsoftheNationalAcademyofSciences(USA)96:5952–5959.

CederbergC;PerssonUM;NeoviusK;MolanderS;CliftR.2011.IncludingcarbonemissionsfromdeforestationinthecarbonfootprintofBrazilianbeef.EnvironmentalScience&Technology45:1773–1779.

DeereCD;LeonM.2003.Thegenderassetgap:LandinLatinAmerica.WorldDevelopment31:925–47.

DeiningerK;ByerleeD;LindsayJ;NortonA;SelodH;SticklerM.2011.Risingglobalinterestinfarmland.Canityieldsustainableandequitablebenefits?TheWorldBank.Washington,DC.214p.

EllisE;PontiousR.2010.Land-useandland-coverchange.In:ClevelandCJ,ed.EncyclopediaofEarth.EnvironmentalInformationCoalition,NationalCouncilforScienceandtheEnvironment,Washington,DC.RetrievedJune24,2011.Availableat:www.eoearth.org/article/Land-use_and_land-cover_change

FAO(FoodandAgricultureOrganizationoftheUnitedNations).1993.Guidelinesforland-useplanning.FAODevelopmentSeries1.Rome,Italy.

FAO(FoodandAgricultureOrganizationoftheUnitedNations).2009.Howtofeedtheworldin2050.Availableat:www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf(12January2012).

FAO(FoodandAgricultureOrganizationoftheUnitedNations).2010.Bioenergyandfoodsecurity:TheBEFSanalyticalframework.FAOEnvironmentandNaturalResourcesManagementSeries16.Rome,Italy.92p.

FageriaNK;BaligarVC.2005.Enhancingnitrogenuseefficiencyincropplants.AdvancesinAgronomy88:97–184.

FilleryIRP.2007.Plant-basedmanipulationofnitrificationinsoil:AnewapproachtomanagingNloss?PlantandSoil294:1–4.

FisherMJ;RaoIM;AyarzaMA,LascanoCE;SanzJI;ThomasRJ;VeraRR.1994.Carbonstoragebyintroduceddeep-rootedgrassesintheSouthAmericansavannas.Nature371:236–238.

FoleyJA;DeFriesR;AsnerGP;BarfordC;BonanG;CarpenterSR;ChapinFS;CoeMT;DailyGC;GibbsHK;HelkowskiJH;HollowayT;HowardEA;KucharikCJ;MonfredaC;PatzJA;PrenticeC;RamankuttyN;SnyderPK.2005.Globalconsequencesoflanduse.Science309:570–574.

FongMS;WakemanW;BhushanA.1996.Toolkitongenderinwaterandsanitation.GenderToolkitSeriesNo.2.TheWorldBank,Washington,DC.181p.

FrancisCA;JordanN;PorterP;BrelandTA;LiebleinG;SalomonssonL;SriskandarajahN;WiedenhoeftM;DeHaanR;BradenI;LangerV.2011.Innovativeeducationinagroecology:Experientiallearningforasustainableagriculture.CriticalReviewsinPlantSciences30:226–237.

GlobalFootprintNetwork.2011.EarthOvershootDay.Availableat:www.footprintnetwork.org/en/index.php/GFN/page/earth_overshoot_day/(accessed8March2013).

GopalanR.2001.Sustainablefoodproductionandconsumption:Agendaforaction.EconomicandPoliticalWeekly36:1207-1225.

HallJV.2008.TheicebergandtheTitanic:Humaneconomicbehaviorinecologicalmodels.In:MarzluffJM;BradleyG;ShulenbergerE;RyanC;EndlicherW;SimonU;AlbertiM;ZumBrunnenC,eds.Urbanecology:Aninternationalperspectiveontheinteractionbetweenhumansandnature.Springer,NewYork,NY,USA.p485–492.

HayashiK;GaillardG;NemecekT.2007.Lifecycleassessmentofagriculturalproductionsystems:Currentissuesandfutureperspectives.Availableat:www.agnet.org/htmlarea_file/library/20110721140039/bc54011.pdf

HerreroM;ThorntonPK;NotenbaertAM;WoodS;MsangiS;FreemanHA;BossioD;DixonJ;PetersM;vandeSteegM;LynamJ;ParthasarathyRaoP;MacmillanS;GerardB;McDermottJ;SeréC;RosegrantM.2010.Smartinvestmentsinsustainablefoodproduction:Revisitingmixedcrop-livestocksystems.Science327:822–825.

Page 15: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

15

Resource Use Efficiency Revisited

HillJ;NelsonE;TilmanD;PolaskyS;TiffanyD.2006.Environmental,economic,andenergeticcostsandbenefitsofbiodieselandethanolbiofuels.ProceedingsoftheNationalAcademyofScience(USA)103:11206–11210.

HirelB;LeGouisJ;NeyB;GallaisA.2007.Thechallengeofimprovingnitrogenuseefficiencyincropplants:Towardsamorecentralroleforgeneticvariabilityandquantitativegeneticswithinintegratedapproaches.JournalofExperimentalBotany58:2369–2387.

HobbsPR;SayreK;GuptaR.2008.Theroleofconservationagricultureinsustainableagriculture.PhilosophicalTransactionsoftheRoyalSocietyB363(1491):543–555.

HorriganL;LawrenceRS;WalkerP.2002.Howsustainableagriculturecanaddresstheenvironmentalandhumanhealthharmsofindustrialagriculture.EnvironmentalHealthPerspectives110:445–456.

HubertB;RosegrantM;vanBoekelMAJS;OrtizR.2010.Thefutureoffood:Scenariosfor2050.CropScience50:S-33–S-50.

IPCC(IntergovernmentalPanelonClimateChange).2007.Climatechange2007:Synthesisreport.ContributionofWorkingGroupsI,IIandIIItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimateChange[CoreWritingTeam,PachauriRK;ReisingerA,eds.].Geneva,Switzerland.104p.

IshikawaT;SubbaraoGV;ItoO;OkadaK.2003.SuppressionofnitrificationandnitrousoxideemissionbythetropicalgrassBrachiaria humidicola.PlantandSoil255:413–419.

KirilenkoAP;SedjoRA.2007.Climatechangesimpactsonforestry.ProceedingsoftheNationalAcademyofSciences(USA)104:19697–19702.

LalR.2010.Enhancingeco-efficiencyinagro-ecosystemsthroughsoilcarbonsequestration.CropScience50:S-120–S-131.

LambinEF;MeyfroidtP.2011.Globallandusechange,economicglobalization,andtheloominglandscarcity.ProceedingsoftheNationalAcademyofSciences(USA)108:3465–3472.

Landesa.2011.Isbiggerbetter?AFactSheetonLarge-ScaleCorporateFarmingVersusSmallFamilyFarmsinDevelopingCountries.IssueBrief.Seattle,WA,USA.2p.

LobellDB;FieldCB.2007.Globalscaleclimate–cropyieldrelationshipsandtheimpactsofrecentwarming.EnvironmentalResearchLetters2(1).DOI:10.1088/1748-9326/2/1/014002.

LobellDB;BurkeMB;TebaldiC;MastrandreaMD;FalconWP;NaylorRL.2008.Prioritizingclimatechangeadaptationneedsforfoodsecurityin2030.Science319:607–610.

MaynardH;NaultJ.2005.Bigfarms,smallfarms:Strategiesinsustainableagriculturetofitallsizes.AgriculturalInstituteofCanada,Ottawa,Canada.44p.

McGregorM;vanBerkelR;NarayanaswamyV;AlthamJ.2003.Aroleofeco-efficiencyinfarmmanagement?CasestudyoflifecycleassessmentofAustraliangrains.In:14thInternationalFarmManagementCongress“FarmingattheEdge”,Perth,WesternAustralia,August10-15,2003.InternationalFarmManagementAssociation,Cambridge,UK.2p.

MeadowsDH;MeadowsDL;RandersJ;BehrensIII,WW.1972.Thelimitstogrowth.APotomacAssociatesBook.UniverseBooks,NewYork,NY,USA.205p.

MeadowsDH;MeadowsDL;RandersJ.1992.Beyondthelimits:Confrontingglobalcollapse,envisioningasustainablefuture.ChelseaGreenPublishingCo.,PostMills,VT,USA.300p.

MeadowsDH;RandersJ;MeadowsDL.2004.Limitstogrowth:The30-yearupdate.ChelseaGreenPublishingCo.,WhiteRiverJunction,VT,USA.322p.

OliveiraPJC;AsnerGP;KnappDE;AlmeydaA;Galván-GildemeisterR;KeeneS;RaybinRF;SmithRC.2007.Land-useallocationprotectsthePeruvianAmazon.Science317:1233–1236.

OrtizR.2011a.Agrobiodiversitymanagementforclimatechange.In:LennéJM;WoodD,eds.Agrobiodiversitymanagementforfoodsecurity.CABInternational,Wallingford,UK.p189–211.

OrtizR.2011b.Revisitingthegreenrevolution:Seekinginnovationsforachangingworld.ChronicaHorticulturae51(1):6–11.

ParkSE;HowdenSM;CrimpSJ.2009.Iseco-efficiencyenoughtotacklefoodsecurityunderachangingclimate?CGIARScienceForum2009,Wageningen,16-17June2009.Availableat:www.scienceforum2009.nl/Portals/11/5Park-pres.pdf

ParkSE;HowdenSM;CrimpSJ;GaydonDS;AttwoodSJ;KokicPN.2010.Morethaneco-efficiencyisrequiredtoimprovefoodsecurity.CropScience50:S-132–S-141.

Page 16: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

16

Eco-Efficiency: From Vision to Reality

PimentelD;HepperlyP;HansonJ;DoudsD;SeidelR.2005.Environmental,energetic,andeconomiccomparisonsoforganicandconventionalfarmingsystems.BioScience55:573–582.

PimentelD;WilliamsonS;AlexanderCE;Gonzalez-PaganO;KontakC;MulkeySE.2008.ReducingenergyinputsintheUSfoodsystem.HumanEcology36:459–471.

PrettyJ;BallA.2001.Agriculturalinfluencesoncarbonemissionsandsequestration:Areviewofevidenceandtheemergingtradingoptions.CentreforEnvironmentandSocietyOccasionalPaper2001-03.UniversityofEssex,Colchester,UK.31p.

QuisumbingAR;BrownRL;FeldsteinHS;HaddadL;PeñaC.1995.Women:Thekeytofoodsecurity.FoodPolicyStatement21.InternationalFoodPolicyResearchInstitute,Washington,DC.

ReithCC;GuidryMJ.2003.Eco-efficiencyanalysisofanagriculturalresearchcomplex.JournalofEnvironmentalManagement68:219–229.

RuanWR;JohnsonGV.1999.Improvingnitrogenuseefficiencyforcerealproduction.AgronomyJournal91:357–363.

RudelTK;SchneiderL;UriarteM;TurnerBL;DeFriesR;LawrenceD;GeogheganJ;HechtgS;IckowitzA;LambinEF;BirkenholtzT;BaptistaS;GrauR.2009.Agriculturalintensificationandchangesincultivatedareas,1970–2005.ProceedingsoftheNationalAcademyofSciences(USA)49:20675–20680.

SaatchiSS;HarrisNL;BrownS;LefskyM;MitchardETA;SalasW;ZuttaBR;BuermannW;LewisSL;HagenS;PetrovacS;WhiteL;SilmanM;MorelA.2011.Benchmarkmapofforestcarbonstocksintropicalregionsacrossthreecontinents.ProceedingsoftheNationalAcademyofSciences(USA)108:9899–9904.

SubbaraoGV;IshikawaT;ItoO;NakaharaK;WangHY;BerryWL.2006.Abioluminescenceassaytodetectnitrificationinhibitorsreleasedfromplantroots:AcasestudywithBrachiaria humidicola.PlantandSoil288:101–112.

SubbaraoGV;RondonM;ItoO;IshikawaT;RaoIM;NakaharaK;LascanoCE;BerryWL.2007.Biologicalnitrificationinhibition(BNI)–Isitawidespreadphenomenon?PlantandSoil294:5–18.

SubbaraoGV;NakaharaK;HurtadoMP;OnoH;MoretaDE;SalcedoAF;YoshihashiAT;IshikawaT;IshitaniM;Ohnishi-KameyamaM;YoshidaM;RondonM;RaoIM;LascanoCE;BerryWL;ItoO.2009.EvidenceforbiologicalnitrificationinhibitioninBrachiaria pastures.ProceedingsoftheNationalAcademyofSciences(USA)106:17302–17307.

SteinfeldH;GerberP.2010.Livestockproductionandtheglobalenvironment:Consumelessorproducebetter?ProceedingsoftheNationalAcademyofSciences(USA)107:18237–18238.

TheEconomist.2011.The9billion-peoplequestion.Aspecialreportonfeedingtheworld.24February2011.

TheWorldBank.2006.Genderequalityassmarteconomics:AWorldBankGroupGenderActionPlan(FiscalYears2007-10).Washington,DC.25p.

TheWorldBank.2008.Worlddevelopmentreport2008:Agriculturefordevelopment.Washington,DC.365p.

TheWorldBank.2009.AwakeningAfrica’ssleepinggiant:ProspectsforcommercialagricultureintheGuineaSavannahzoneandbeyond.Agricultureandruraldevelopment.Washington,DC.218p.

TheWorldBank;FAO(FoodandAgricultureOrganizationoftheUnitedNations);IFAD(InternationalFundforAgriculturalDevelopment).2009.Genderinagriculturesourcebook.Agricultureandruraldevelopment.Washington,DC.764p.

ThorntonPK;HerreroM.2010.Potentialforreducedmethaneandcarbondioxideemissionsfromlivestockandpasturemanagementinthetropics.ProceedingsoftheNationalAcademyofSciences(USA)107:19667–19672.

ThorpeA.2009Entericfermentationandruminanteructation:Therole(andcontrol?)ofmethaneintheclimatechangedebate.ClimaticChange93:407–431.

TilmanD;Socolow;FoleyJA;HillJ;LarsonE;LyndL;PacalaS;ReillyJ;SearchingerT;SomervilleC;WilliamsRW.2009.Beneficialbiofuels—Thefood,energy,andenvironmenttrilemma.Science325:270–271.

TrippletGBJr;DickWA.2008.No-tillagecropproduction:Arevolutioninagriculture!AgronomyJournal100:S-153–S-165.

Page 17: Chapter 1: Resource Use Efficiency Revisited - CIAT - cgiar

17

Resource Use Efficiency Revisited

UnitedNations.2009.Eco-efficiencyindicators:Measuringresource-useefficiencyandtheimpactofeconomicactivitiesontheenvironment.UnitedNationsEconomicandSocialCommissionforAsiaandPacific,Bangkok,Thailand.ST/ESCAP/2561.24p.

vanWesemaelB;PaustianK;MeersmansJ;GoidtsE;BarancikovaG;EasterM.2010.Agriculturalmanagementexplainshistoricchangesinregionalsoilcarbonstocks.ProceedingsoftheNationalAcademyofSciences(USA)107:14926–14930.

VonblottnitzH;CurranM.2007.Areviewofassessmentsconductedonbio-ethanolasatransportationfuelfromanetenergy,greenhousegas,andenvironmentallife-cycleperspective.JournalofCleanerProduction7:607–619.

WestPC;GibbsHK;MonfredaC;WagnerJ;BarfordCC;CarpenterSR;FoleyJA.2010.Tradingcarbonforfood:Globalcomparisonofcarbonstocksvs.cropyieldsonagriculturalland.ProceedingsoftheNationalAcademyofSciences(USA)107:19645–19648.

WießnerJ;StockfischN;MärländerB.2010.Approachfordeterminingtheeco-efficiencyofsugarbeetcultivationinGermany.JournalfürKulturpflanzen62:409–418.

WilkinsRJ.2008.Eco-efficientapproachestolandmanagement:Acaseforincreasedintegrationofcropandanimalproductionsystems.PhilosophicalTransactionsoftheRoyalSocietyB363(1491):517–525.

WoodsJ;WilliamsA;HughesJK;BlackM;MurphyR.2010.Energyandthefoodsystem.PhilosophicalTransactionsoftheRoyalSocietyB365(1554):2991–3006.

WWF(TheWorldWildlifeFund).2010.Livingplanetreport2010:Biodiversity,biocapacityanddevelopment.ProducedincollaborationwiththeGlobalFootprintNetworkandtheZoologicalSocietyofLondon.Gland,Switzerland.117p.