Chap 03 Masters

download Chap 03 Masters

of 7

Transcript of Chap 03 Masters

  • 8/20/2019 Chap 03 Masters

    1/15

    Catalysis Engineering - Kinetics

    Catalytic Reaction Kinetics

    Why Catalytic Reaction Kinetics ?

    Derivation rate expressions

    Simplifications

     – Rate determining step

     – Initial reaction rate

    Limiting cases

     – Temperature dependency

     – Pressure dependency Examples

    Catalysis Engineering - Kinetics

    Reactor design equation - Packed bed

    ν η = ⋅ ⋅i  i W dF 

    r dW 

    stoichiometric coefficient i

    catalyst effectiveness

    rate expression

    Molar flow i

    ‘bed coordinate’

    Dimension of rate?

    Catalysis Engineering - Kinetics

    Rate expression

     A + B C + D

    Catalyst 

    How much detail ?

     A + B + * AB* * + C + D

     A + B [intermediates] C + D

    etc.

    overall rate expression?

    .....),,,,( catalyst K k T  pf r eqi 

    =

    conditions

    rate constant(s) thermodynamics

    Catalysis Engineering - Kinetics

    Rate expression – Gas phase reaction

    2C B A c k c c k r    ⋅−⋅⋅=   −+

    forward ratebackward 

    chance to success

    amount of A × chance to meet B

  • 8/20/2019 Chap 03 Masters

    2/15

    Catalysis Engineering - Kinetics

    Role of catalyst?

    Concentrating reactants

    adsorption/complexation

    Providing alternative reaction path

    catalyst selectivity

    other activation energy barrier 

    But:

     – other components adsorb, too

    block ‘active sites’ – fixed number of ‘active sites’

    rate constant 

    affect rate

    affect rate

    affect rate

    other form rate expression expected other form rate expression expected 

    Catalysis Engineering - Kinetics

    Rate vs. pressure/concentration ?

    rate

    mol/s.gcat

     pressure / kPa

    • fixed number of active sites

    • mono & bimolecular reactions

    Catalysis Engineering - Kinetics

    Rate expression – Catalysed reaction

    ads

    C B

    ads

     Asc k sc k r    θ θ    ⋅⋅−⋅⋅=

      −+

    forward ratebackward 

    chance to success

    amount of A adsorbed 

    chance of adjacent B adsorbed 

    Note:

    • cgas and cads differ • ratios components differ 

    Catalysis Engineering - Kinetics

    Kinetics

    Rate expressions in principle crucial for 

     – design

     – process start-up and control

     – process development and improvement

     – selection reaction model

    Often used in catalysis

     – power rate models

     – models based on elementary processes

    • extrapolation more reliable

    • intellectually process better understood

    m

     j 

    n

    i   p pk r    ⋅⋅=

    ( )222

    2

    1

    /

    BB A A

    eqB AB AT 

     pK  pK 

    K  p pK K k sN r 

    ++

    −=

  • 8/20/2019 Chap 03 Masters

    3/15

    Catalysis Engineering - Kinetics

    Simple example: reversible reaction

     A B

    A B

    A* B*

     

     

    ‘Elementary processes’ 

    ‘Langmuir adsorption’ 

    monomolecular 

    e.g. isomerization

    Catalysis Engineering - Kinetics

    Elementary processes

    Rate expression follows from rate equation

    r r r k p N k N   A T T A= − = −− −1 1 1 1θ θ *

    r r r k N k N  T A T B= − = −− −2 2 2 2θ θ 

    r r r k N k p N  T B B T  = − = −− −3 3 3 3θ θ *

    Eliminate unknown surface occupancies

    Catalysis Engineering - Kinetics

    Site balance:

    (3.5)

    Steady state assumption:

    (3.6-7)

    Rate expression:

    (3.9)

    Elementary processes contd.

    1= + +θ θ θ *  A B

    0

    0

    =

    =

    dt 

    dt 

    B

     A

    θ 

    θ 

    321

    321

    :with

    (......)(......)(.....)

    )/(

    K K K K 

     p p

    K  p pk k k N r 

    eq

    B A

    eqB AT 

    =

    ++

    −=

    Microkinetics

    Michaelis-Menten

     Algebraic eqs.

    Catalysis Engineering - Kinetics

    Quasi-equilibrium / rate determining step

    r 1

    r 2 

    r 3

    r -1

    r -2 

    r -3

    rate determining 

    ‘quasi-equilibrium’ 

    r = r 2 - r -2 

  • 8/20/2019 Chap 03 Masters

    4/15

    Catalysis Engineering - Kinetics

    Rate expression - r.d.s.

    r r r k N k N  T A T B= − = −− −2 2 2 2θ θ Rate determining step:

    Eliminate unknown occupancies

    Quasi-equilibrium:

    r r k p N k N   A T T A1 1 1 1= =− −  θ θ *

    So:   θ θ 

    θ θ 

     A A

    BB

    K p K k 

    k  p

    = ⋅ =

    = ⋅

    1 11

    1

    3

    *

    *

      with:

    Catalysis Engineering - Kinetics

    Rate expression, contd.

    Substitution:

    { }

    r r r k N K p k N p K  

    r k N K p k p k K K  

    T A T B

    T A B

    = − = −

    = −

    − −

    2 2 2 1 2 3

    2 1 2 2 1 3

    θ θ 

    θ 

    * *

    *

    /

    /

    K K K K   p

     peq

    B

     A eq

    = = 

    1 2 3where:

    Unknown still θ * 

    Catalysis Engineering - Kinetics

    Rate expression, contd.

    Site balance:

    { }1 1 1 3= + + = ⋅ + +θ θ θ θ  * * / A B A BK p p K  

    ( )θ *

    /= + +11 1 3K p p K   A B

    Finally:

    { }( )

    r k N K p p K  

    K p p K  

    T A B eq

     A B

    =  −

    + +

    2 1

    1 31

    /

    /

    Catalysis Engineering - Kinetics

    Surface occupancies

    Empty sites

    Occupied by A

    Occupied by B

    ( )θ B

    B

     A B

     p K 

    K p p K  =

    + +

    /

    /3

    1 31

    ( )θ  A

     A

     A B

    K p

    K p p K  =

    + +1

    1 31 /

    ( )θ *

    /=

    + +

    1

    1 1 3K p p K   A B

    BK K 

    =3

    1

  • 8/20/2019 Chap 03 Masters

    5/15

    Catalysis Engineering - Kinetics

    Other steps rate determining

     Adsorption r.d.s

    Surface reaction r.d.s.

    Desorption r.d.s.

    { }( )

    r k N K p p K  

    K p p K  

    T A B eq

     A B

    =  −

    + +

    2 1

    1 31

    /

    /

    { }( )

    r  k N K K p p K  K K p

    T A B eq

     A

    =   −+ +

    3 1 2

    2 11 1/

    { }( )

    r k N p p K  

    K p K 

    T A B eq

    B

    =  −

    + +

    1

    2 31 1 1

    /

    / /

    Rule of thumb:Generally surface reaction r.d.s.Catalysis Engineering - Kinetics

    Thermodynamics

    Equilibrium constant 

     Adsorption constant 

    Reaction entropy 

    Reaction enthalpy 

     Adsorption enthalpy,

  • 8/20/2019 Chap 03 Masters

    6/15

    Catalysis Engineering - Kinetics

    Langmuir adsorption model

    Generally used – although nonlinear, mathematically simple

     – simple physical interpretation

     – rather broadly applicable

    • multicomponent adsorption

    • non-uniform surfaces

     – ‘compensation effect’

     – very weak and strong sites do not contribute much

    to the rate

    • for microporous media (activated carbons) often

    not satisfactory

    Catalysis Engineering - Kinetics

    Dissociative adsorption

    H 2 + 2* 2H* 

    ( )( )

    θ H H H 

    H H 

    K p

    K p=

    +

    2 2

    2 2

    0.5

    0.5

    1

    Two adjacent sites needed 

    Catalysis Engineering - Kinetics

    Initial rate expressions

    Forward rates

    Product terms negligible

    r k p  A='

    0 r k p

    K p A

     A A

    =+

    '0

    01r k = '

     Adsorption Surface Desorption

    r 0 

    T1

    T2

    T3

     p A p A  p A

    T1

    T2

    T3

    T1

    T2

    T3

    See tutorial  Catalysis Engineering - Kinetics

    Dual site reaction :

     A + B C

     A + * ↔  A*

    B + * ↔ B*

     A* + B*   ↔ C* + *

    C*   ↔ C + *

    (r.d.s.)

    { }2421

    213

    /1

    /

    K  p pK  pK 

    K  p p pK K N sk r 

    C B A

    eqC B AT 

    +++

    −=

  • 8/20/2019 Chap 03 Masters

    7/15

    Catalysis Engineering - Kinetics

    Dual site reaction, contd.

    { }*3333   θ θ θ θ  C B AT  k k N sr r r  −−   −⋅=−=

    Number of neighbouring sites (here: 6)

    Catalysis Engineering - Kinetics

    More than one reactant

    • One-site models

    • Two-site models

    e.g. hydrogenation, oxidation

    dual site reaction

    single site reaction

    • Number of sites conditions dependent

    )1(1 B AB A A

    B A AB AT  ABT 

     pK  pK 

     p pK K kN kN r 

    ++==   θ 

    2)1( BB A A

    BB A AT B AT 

     pK  pK 

     pK  pK skN skN r 

    ++==   θ θ 

    )1()1( BB A A

    BB A AT B AT 

     pK  pK 

     pK  pK skN skN r 

    ++==   •∗θ θ 

    ( )( ){ }21

    21

    0

    1  A A

     A AT T 

     pK 

     pK N N 

    +=

    different sites

    optimal surface concentrationsoptimal adsorption strengths

    Catalysis Engineering - Kinetics

    Langmuir-Hinshelwood/Hougen-Watson models

    (LHHW)

    r k ine tic fa ctor d rivin g fo rce

    adsorpt ion term=

      ⋅( ) ( ) 

    ( )n

    includes N T , k (rds)

    For: A+B C+D

     p A pB-pC  pD /K eq

    molecular: K  A p Adissociative: (K  A p A)

    0.5 = 0, 1, 2...

    number species in

    and before r.d.s.

    Catalysis Engineering - Kinetics

    What about observed: reaction order activation energy ?

    Determination:

    i  p

    r n

    ln

    ln

    ∂=

    ln r 

    ln pi 

    slope = order ni 

    ln r 

    1/T 

    slope = -E aobs /R 

    r RT E obsa

    ∂=

    ln2

    LHHW models ? ( )r 

    k N K p

    K p K pT A A

     A A B B

    =+ +

    2

    1

  • 8/20/2019 Chap 03 Masters

    8/15

    Catalysis Engineering - Kinetics

    Reaction order - Activation energy

    ( )

    r k N K p

    K p K p

    T A A

     A A B B

    =

    + +

    2

    1

    rate expression

    Reaction order 

     Activation energy

    BB

     A A

    n

    n

    θ 

    θ 

    −=

    −= 1

    ( ) BB A Aaobsa H H E E    ∆−∆−+=   θ θ 12

    • depend strongly on occupancy! 

    • vary during reaction

    limiting cases?

    Catalysis Engineering - Kinetics

    Limiting cases - forward rates

    Surface reaction r.d.s.( )

    r k N K p

    K p K pT A A

     A A B B

    =+ +

    2

    1

    1. Strong adsorption A

    r k N T = 2

    E E aobs

    a= 2

     A* 

    B* 

     A* # 

    E a2 

    Catalysis Engineering - Kinetics

    Limiting cases - forward rates

    2. Weak adsorption

    r k N K pT A A= 2

    Surface reaction r.d.s.( )

    r k N K p

    K p K pT A A

     A A B B

    =+ +

    2

    1

    E E H aobs

    a A= +2   ∆

     A* 

     A(g) + * 

     A* # 

    E a2 

    Catalysis Engineering - Kinetics

    Limiting cases - forward rates

    3. Strong adsorption B

    r  k N K pK p

    T A A

    B B

    = 2

    Surface reaction r.d.s.( )

    r k N K p

    K p K p

    T A A

     A A B B

    =+ +

    2

    1

    E E H H  aobs

    a A B= + −2   ∆ ∆

     A* # 

    B* + A

    B+*+AE a2 

     A* 

  • 8/20/2019 Chap 03 Masters

    9/15

    Catalysis Engineering - Kinetics

    Cracking of n-alkanes over ZSM-5J.Wei I&EC Res.33(1994)2467 

     A A pK k r  20  =

     Aaobsa H E E    ∆+= 2

    Carbon number 

    negative!?E a2

    E aobs

    ∆H  A

    kJ/mol

    200

    100

    -200

    -100

    0

    0 5 10 15 20

    Catalysis Engineering - Kinetics

    n-Alkanes cracking

    Energy diagram

    Initial state Transition state

     Adsorbed state

     A + * 

    ∆H adsE a2 

    E a,obs

     A* B*,C* 

    Catalysis Engineering - Kinetics

    Observed temperature behaviour 

    • T higher coverage lower • Highest E a most favoured 

    Change in r.d.s.

    1/T 

    ln r obs

    desorption r.d.s.

    adsorption r.d.s.

    Catalysis Engineering - Kinetics

    Catalytic reaction kinetics, summary

    Langmuir adsorption

     – uniform sites, no interaction adsorbed species,

    finite number of sites, multicomponent

    Rate expression derivation

     – series of elementary steps

     – steady state assumption, site balance

     – quasi-equilibrium / rate determining step(s)

     – initial rates (model selection)

    LHHW models

     – inhibition, variable reaction order, activationenergy

    s   i     m     p   

    l     e   r    

    mechanism kinetics

  • 8/20/2019 Chap 03 Masters

    10/15

    Catalysis Engineering - Kinetics

    Hydrodesulphurization kinetics

    Sie, AIChE-J 42(1996)3498 

    • Apparent second order behaviour 

    • H2S inhibits strongly

    Example HDS vacuum gasoil 

    0.0 0.1 0.2 0.3 0.4 0.5 0.6

    1/LHSV (h)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

       1   /   S  -   1   /   S   0

       (   1   /  w   t .   %   )

    Gasoil CoMo-aluminatrickle flow L=0.2-0.4 m

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.5

    1.0

    1.5

    2.0

    bed length

      c

    concentration

    conversion

    fast decrease followed by slow decrease

    Catalysis Engineering - Kinetics

    Composition oil fractions

    S

    S

    SR R

    S

    RS S

    R

    R S R

    0 5 10 15 20 25 30

    Vacuum gasoil

    Simulated distillation b.p.

    Sulphur compounds

    Thioethers

    ThiopheneBenzthiophene

    Dibenzthiophene

    Substituteddibenzthiophene

    complex mixtures

    different reactivities

    ⇒lumping 

    Catalysis Engineering - Kinetics

    Simulated profiles - HDS reactivity lumping

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.5

    1.0

    1.5

    2.0

    bed length

      c  o  n  c  e  n   t  r  a   t   i  o  n

    Three lump model: first order reactionsSimulated model data:2 nd order 

    k=10 m3 /mol.sc 0 =2 mol/m

    3

    Three lump model:

    1st  orders

    k 1=36.1 s-1 c 01=1.23

    k 2 =16.0 s-1 c 02 =0.59

    k 3=7.5 s-1 c 03=0.18 

    sum

    1

    3

    Three lump model adequateInhibition through LHHW models Which groups lumped?

    ⇒model studiesCatalysis Engineering - Kinetics

    Kinetic coupling between catalytic cycles

    Bifunctional catalysis: Reforming

    Isomerization n-pentane: n-C5 -> i -C5

    Pt-function: n-C5 -> n-C5=

    surface diffusion

     Acid function: n-C5= -> i -C5=

    surface diffusion

    Pt-function: i -C5= -> i -C5

    Coupled catalytic cycles on different sites

    low concentrationclose proximity 

    See tutorial 

  • 8/20/2019 Chap 03 Masters

    11/15

    Catalysis Engineering - Kinetics

    Initial rates - CO hydrogenation over Rh

    Van Santen et al.

    Kinetic model 1. CO + * ↔  CO* 

    2. CO* + * →  C* + O*  (r.d.s.)

    r sN k  T CO0 2= ⋅θ θ *

    { }

    r sk N K p

    K p

    T CO CO

    CO CO

    02

    2

    1

    =

    +

    Initial rate

    0.2

    0.40.6

    0.8

    1.0

    O  c  

    c  u   p a n c   y   (  -  )  400

    450500

    550

    600

     T e m p e r a t

     u r e  (  K )

    0

    200

    400

    600

    800

       R  a   t  e

    Catalysis Engineering - Kinetics

    Catalysis Engineering - Kinetics

    Catalysed N2O decomposition over oxides

    Winter, Cimino

    Rate expressions:

    ( )( )r 

    k p

     p K 

    obs N O

    O

    =+

    2

    21 3

    0.5

    r k pobs N O= ⋅ 2

    ( )r k   p

     pobs

    N O

    O

    = ⋅ 2

    2

    0.5

    1st order 

    strong O2  inhibition

    moderate inhibition

     Also: orders 0.5-1

    water inhibition

    = Explain / derive =

    Catalysis Engineering - Kinetics

    N2O decomposition over Mn2O3

    2 N 2 O 2N 2 + O2 

    Vannice et al. J.Catal. 1996 

    Rate expression

    ( )( )r 

    k N K p

    K p p K  

    T N O

    N O O

    =+ +

    2 1

    1 3

    0.5

    2

    2 21

    Kinetic model1. N 2 O + * ↔ N 2 O* 2. N 2 O* →  N 2 + O* 

    3. 2 O* ↔  2* + O2 

  • 8/20/2019 Chap 03 Masters

    12/15

    Catalysis Engineering - Kinetics

    N2O decomposition over Mn2O3Vannice et al. 1996 

    0.0 2.0 4.0 6.0 8.0 10.0

    pO2

    / kPa

    0.0

    0.1

    0.2

    0.3

    0.4

      r   /   1   0  -   6  m  o   l .  s  -   1 .  g

      -   1

    Oxygen inhibitionorder N 2 O ~0.78 

    E aobs= 96 kJ/mol 

    648 K 

    638 K 

    623 K 608 K 

    598 K 

    = Explain =

     pN2O = 10 kPa

    Catalysis Engineering - Kinetics

    N2O decomposition over Mn2O3Vannice et al. 1995 

    Kinetic model

    1. N 2 O + * ↔ N 2 O* 

    2. N 2 O* →  N 2 + O* 

    3. 2 O* ↔ 2* + O2 

    Rate expression

    ( )( )5.03112

    22

    2

    1 K  p pK 

     pK N k r 

    OON 

    ON T 

    ++=

    Values

    E a2 130=  kJ / mol

    KJ/mol109S

    kJ/mol92

    3

    3

    =∆

    =∆H 

    KJ/mol38S

    kJ/mol29

    1

    1

    −=∆

    −=∆H 

    = Thermodynamically consistent =

    Catalysis Engineering - Kinetics

    Ethanol dehydrogenationFranckaerts &Froment 

    C 2 H 5 OH ↔  CH 3CHO + H 2 

    Model:

    1. A + * ↔   A* 

    2. A* + * ↔  R* + S*  (r.d.s.)

    3. R* ↔  R + * 

    4. S* ↔  S + * 

    = Derive rate expression =

    Cu-Co cat.

    Catalysis Engineering - Kinetics

    Initial rates - linear transformation

    Full expression

    Initial rate

     After rearrangement 

    { }{ }

    r k s N K p p p K  

    K p K p K p

    T A A R S eq

     A A R R S S

    =  −

    + + +

    2

    21

    /

    { }r 

    k K p

    K p

     A A

     A A

    0 21

    =+

     p

    r  k K 

    k K  p A

     A

     A

     A

     A

    0

    1= + ⋅

    y a b x  = + ⋅linear form:

    linear least squares fit 

    trends, positive parameters

    Ethanol dehydrogenation

  • 8/20/2019 Chap 03 Masters

    13/15

    Catalysis Engineering - Kinetics

    Kinetic studies

    ( ) ( )oi i i 

    i o

    F W 

     x r r 

    F W d 

    dx 

    ⋅−=⇒⋅−=

    ν ν   

    Rate equation

    = model selection =

    = rate parameters =

    Differential reactor:• plug flow, low conversion

    • CSTR 

    Take care catalyst

    effectiveness = 1 ! 

    Integral reactor 

    Catalysis Engineering -Kinetics

    Model selection

    Mechanistic information

    Initial rate measurements

    Fit data on rate expressions (non-linear least squares)

    Best model:

     – low SSR (sum of squares of residuals)

     – no trending in residuals

     – parameters significant

     – parameters obey thermodynamics

     – ‘linearization’

    Catalysis Engineering - Kinetics

    Data fitting - Parameter estimation

    Linear least squares - straightforward

    Nonlinear least squares methods:

     – Simplex / Powell etc. (iterative)

     – Levenberg-Marquardt (gradient)

    ( )O F Min x x  

     x f k K 

    obs calc  

    calc j  

    . .

    (.... , ...)

    = −

    =

    ∑2

    with:

    to be estimated 

    = initial parameters values needed =

    Catalysis Engineering -Kinetics

    Model selection

    Divergence rival models

    Experimental design (sequential)

     po

    rate

    model 1

    model 2 

    experimental range

  • 8/20/2019 Chap 03 Masters

    14/15

    Catalysis Engineering - Kinetics Catalysis Engineering - Kinetics

    N2O decomposition over ZSM-5 (Co,Cu,Fe)

    2 N 2 O 2N 2 + O2 

    Kapteijn et al. 11th ICC,1996 

    Rate expression

    ( )r k N p

    k k T N O

    = +1

    1 2

    2

    1

    Kinetic model

    1. N 2 O + * →  N 2 + O* 

    2. N 2 O + O* →  N 2 + O2 + * 

    no oxygen inhibition

    Catalysis Engineering - Kinetics

    N2O decomposition over ZSM-5 (Co,Cu,Fe)Kapteijn et al. 11th ICC,1996 

    Rate expression

    ( )r 

    k N p

    k k K pT N O

    O

    =+ +

    1

    1 2 3

    2

    21

    Oxygen inhibition model

    1. N 2 O + * →  N 2 + O* 

    2. N 2 O + O* →  N 2 + O2 + * 

    3. O2 + * ↔  *O2 

    0 2 4 6 8 10

    p(O2) / kPa

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

       X

       (   N   2

       O   )

    Fe-ZSM-5

    Co-ZSM-5

    Cu-ZSM-5

    743 K

    833 K

    793 K

    733 K

    688

    773 K

    Catalysis Engineering -Kinetics

    Effect of CO on N2O decomposition

    0.0 0.5 1.0 1.5 2.0

    molar CO/N2O ratio

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

       X   (   N   2

       O   )

    Co-ZSM-5 (693 K)

    Cu-ZSM-5 (673 K)

    Fe-ZSM-5 (673 K)

    CO removes oxygen from surface

    so ‘enhances’ step 2, oxygen removal 

    now observed: rate of step 1 r 1 = k 1 N T  pN2O

    increase: ~2, >3, >100 

    CO + O* →  CO2 + * 

    CO + * ↔  CO*  (Cu+)

  • 8/20/2019 Chap 03 Masters

    15/15

    Catalysis Engineering - Kinetics

    Effect of CO on N2O decomposition

    rate without CO rate with CO

    r k N pT N O= 1 2

    So k 1 /k 2 = : 1 Co

    >2 Cu>100 Fe

    ratio = 1 + k 1 /k 2 and:21

    21*

    1 k k 

    k k O

    +=θ 

    θ O*  = 0.7 

    >0.9>0.99

    ( )211

    12

    k k 

     pN k r  ON T 

    +=

    Catalysis Engineering -Kinetics

     Apparent activation energies N2O decompositionCO/ N2O = 2

    Cu ( )r 

    k N p

    k k K p

    k N p

    K pT N O

    CO CO

    T N O

    CO CO

    =+ +

      ≈1

    1 2

    12 2

    1

    Co,

    Fe

    r k N pT N O= 1 2

    E E aobs

    a= 1

    E E H aobs

    a CO= +1   ∆

     Apparent activation energies (kJ/mol)

    onl y N2O CO /N2O=2

    Co 110 115

    Cu 138 187

    Fe 165 78

    Catalysis Engineering - Kinetics

     Apparent activation energies N2O decompositionCO/ N2O = 0

    Co,Cu

    Fe

    ( )r 

    k N p

    k k T N O=

    +1

    1 2

    2

    1

    r k N pT N O= 2 2E E a

    ob sa= 2

    E E E aobs

    a a= mix( )1 2,

     Apparent activation energies (kJ/mol)

    on ly N2O CO /N2O=2

    Co 110 115Cu 138 187

    Fe 165 78

    Catalysis Engineering -Kinetics

    Kinetic coupling between catalytic cyclesadsorption effect on selectivity

    Hydrogenation: butyne -> butene -> butane

     A1 A2 A3

    butyne and butene compete for the same sitesbut: K 1 >> K 2resulting high selectivity for butene (desired) possible

    even when k 2 > k 1

    since:

    22

    112,1

    K k 

    K k S   =

    Meyer and Burwell (JACS 85(1963)2877) mol%:

    2-butyne 22.0

    cis-2-butene 77.2

    trans-2-butene 0.7

    1-butene 0.0

    butane 0.1