Centroid of Area (Center of Gravity of an area): Point...

73
Centroid Centroid or center of gravity is the point within an object from which the force of gravity appears to act. Centroid of 3D objects often (but not always) lies somewhere along the lines of symmetry. Centroidal axis or Neutral axis A A x x A A y y A A = = δ δ Q x A y A y A = = δ Ib VQ = τ Centroid of Area (Center of Gravity of an area): Point that defines the geometric center of the area ( ) y x , First Moment of an Area with respect to the x-axis First Moment of an Area with respect to the y-axis Q y A x A x A = = δ

Transcript of Centroid of Area (Center of Gravity of an area): Point...

Page 1: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

CentroidCentroid or center of gravity is the point within an object from which the force of gravity appears to act.Centroid of 3D objects often (but not always) lies somewhere along the lines of symmetry.

Centroidal axisor Neutral axis

A

Axx

A

Ayy AA

∫∫==

δδ

Q x AyAyA

⋅== ∫ δ

IbVQ

Centroid of Area (Center of Gravity of an area):Point that defines the geometric center of the area

( )yx,

First Moment of an Area with respect to the x-axis

First Moment of an Area with respect to the y-axis

Qy AxAxA

⋅== ∫ δ

Page 2: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Calculate the center of gravity of the rectangle:(a)Without a hole(b)With a hole of dimensions c and d

a) Without a hole

22

22

20

20

aabba

ab

xax

A

Axx

bab

abab

yay

A

Ayy

a

A

b

A

====

====

∫∫

∫∫

δδ

δδ

b) With a hole

dcba

dccebaa

xA

Axx

A

Axx

dcba

dcdfbab

yA

Ayy

A

Ayy

n

iiA

n

iiA

⋅−⋅

⋅⋅−−⋅⋅⎟⎠⎞

⎜⎝⎛

===

⋅−⋅

⋅⋅+−⋅⋅⎟⎠⎞

⎜⎝⎛

===

∑∫

∑∫

)2

(2

)2

(2

1

1

δ

δ

The centroid of any area can be found by taking moments of identifiable areas (such as rectangles or triangles) about any axis. The moment of an area about any axis is equal to the algebraic sum of the moments of its component areas.

Page 3: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Moment of Inertia

Second Moment or Moment of Inertia of an Area

∫∫ ==A

yA

x AxIAyI δδ 22

∫ +==A

yxO IIAJ δρ 2

Rectangular Moments of Inertia: Moments of inertia with respect to an axis

Polar moments of inertia: Moment of inertia with respect to a point

also known as the Second Moment of the Area is a term used to describe the capacity of a cross-section to resist bending. It is a mathematical property of a section concerned with a surface area and how that area is distributed about the reference axis. The reference axis is usually a centroidal

Page 4: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Simple rectangular shape

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−−===

−−∫ 8833

332

2

32

2

2 hhbybbdyyI

h

h

h

hx

2 bdydAdAyIA

x == ∫

2 hdxdAdAxIA

y == ∫

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−−===

−−∫ 8833

332

2

32

2

2 bbhxhhdxxI

b

b

b

by

12

3bhIx = 12

3hbI y =

Page 5: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

The polar moment of inertia is an important parameter in problems involving torsion of cylindrical shafts and rotations of slabs.

∫= dArJ 20

The polar moment of inertia is related to the rectangular moments of inertia,

( ) ∫∫∫∫ +=+== dAydAxdAyxdArJ 222220

Polar Moment of Inertia

Simple rectangular shape

12

3bhIx =

12

3hbI y =( )22

33

12

1212

bhbhI

hbbhIII

P

yxPolar

+=

+=+=

xy IIJ +=0

Page 6: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Moment of Inertia: Parallel Axis Theorem for an AreaIf the moment of inertia of an area is known about its neutral axis (centroidaxis), we can determine the moment of inertia of area about a corresponding parallel axis using the parallel axis theorem

Consider moment of inertia of the shaded area

( )

∫∫∫

++=

+=

dAdAdAx

dAx

dAdydAddAyI

dAydI

211

2

21

2

First integral represents the moment of inertia of the area about the centroidal axisSecond integral is equal to zero,  since xc passes through the area’s centroid CThird integral represents the total area A

21dAII xcx ⋅+=

22dAII ycy ⋅+=Similarly:

Page 7: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Simple rectangular shape

12

3bhIx =3

41223

332

bhI

bhbhhAII

BB

xBB

=

+=⎟⎠⎞

⎜⎝⎛+=

Note:

Radius of Gyration2222

22

yxOOO

yyxx

rrrArJ

ArIArI

+==

==

Page 8: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Moment of Inertia of Composite Areas

Determine the moment of inertia of the area shown with respect to the x-axis

X-axis

The moment of inertia of the area shown can be obtained by sustracting the circle from the rectangle

( ) ( ) ( ) ( ) 46224

2'

104.1175252541 mm

AdII yxx

=+=

+=

ππ

( )( ) ( )( )( ) ( ) 4623

2'

105.11275150100150100121 mm

AdII yxx

=+=

+=

Circle

Rectangle

4666 10101104.11105.112 mmI x ×=×−×=

Page 9: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Determine the moment of inertia of the area shown with respect to the centroids.

( )( ) ( )( )( )

( )( ) ( )( )( ) 4923

2'

4923

2'

1090.1250300100100300121

10425.1200300100300100121

mm

AdII

mm

AdII

xyy

yxx

×=+=

+=

×=+=

+=

Rectangle A

( )( )

( )( ) 493

2'

493

2'

8010.1600100121

1005.0100600121

mm

AdII

mm

AdII

xyy

yxx

==

+=

×==

+=

Rectangle B

Page 10: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

( )( ) ( )( )( )

( )( ) ( )( )( ) 4923

2'

4923

2'

1090.1250300100100300121

10425.1200300100300100121

mm

AdII

mm

AdII

xyy

yxx

×=+=

+=

×=+=

+=

Rectangle D

( )

( )49

9

49

9

1060.5

1090.180.190.1

1090.2

10425.105.0425.1

mmI

I

mmI

I

y

y

x

x

×=

×++=

×=

×++=

Adding each segment

Page 11: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Determine the moment of inertia of the area shown with respect to the x-axis centroid.

Bodies Ai yi yi*Ai Ii di=yi-ybar di2Ai

1 21600 90 1944000 58320000 0 02 -9600 90 -864000 -11520000 0 0

12000 1080000 46800000 0

ybar 90 mm I 46800000 mm4

-

mmrmm

mmAIr

x

xx

45.6212000

108.462

46

=

×==Radius of Gyration

Page 12: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Determine the moment of inertia of the area shown with respect to the x-axis centroid.

Page 13: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Moments of Inertia of Composite Areas

Page 14: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Moments of Inertia of Composite Areas

Page 15: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Determine the moment of inertia and radius of gyration with respect to an axis which is parallel to the plate and passes through the centroid of the section.

The strength of a W14x38 rolled steel beam is increased by attaching a plate to its upper flange.

Determine location of the centroid of composite section with respect to a coordinate system with origin at the centroid of the beam section.

12.5095.170011.20Section Beam

12.50425.76.75Platein ,in. ,in ,Section 32

== ∑∑ AyA

AyyA

in. 792.2in 17.95in 12.50

2

3====

∑∑∑∑ A

AyYAyAY

Page 16: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Apply the parallel axis theorem to determine moments of inertia of beam section and plate with respect to composite section centroidal axis.

( )( )

( )( ) ( )( )4

2343

1212

plate,

4

22sectionbeam,

in 2.145

792.2425.775.69

in3.472

792.220.11385

=

−+=+=

=

+=+=

AdII

YAII

xx

xx

2.1453.472plate,section beam, +=+= ′′′ xxx III

4in 618=′xICalculate the radius of gyration from the moment of inertia of the composite section.

inAIr x

x 87.5in 17.95in 5.617

2

4

=== ′′

Page 17: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Relationship between Bending Moments and 

Curvatures

EIM

==ρ

κ 1

Relationship between Bending Moments and 

Normal Stresses

IMy

x −=σ

2

22

1

11

SM

IMc

SM

IMc

==

−=−=

σ

σ

Maximum stresses

S1 and S2 are known as the section moduli.

Page 18: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Stresses in a simple beam.

( )( )( ) ( )( )( ) ( )( )

KipsRKipsR

RM

RRF

BA

AB

BAy

41.21 59.23

09221211225.1220

125.1220

@

==

=−−−==

+−−==

∑∑

CqdxVqdxdV

x =−==−= ∫ 0

( )

( )

( ) ( ) ( ) ftKipsMKipsVKipsVxxM

CMCxxM

xVRCRVCxVx

x

x

x

AAx

−=−==+−=

=⇒=⇒++−=

+−=

=⇒=⇒+−=≤≤

+− 6.151 91.1 09.1059.2375.0

0059.2375.0

59.235.15.1 90

999

2

2022

101

Rectangular Cross Section( )( )

3

43

10632

2714352

1435212

2775.8

incIS

inIz

===

==

Page 19: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

( )

( )

( ) ( ) ftKipsMKipsVxxM

CMCxxM

xVCVCxVx

x

x

x

x

−==++−=

=⇒=⇒++−=

+−=

=⇒−=⇒+−=≤≤ +

6.151 41.2102.10859.1175.0

02.108059.1175.0

59.115.159.1191.15.1 229

922

2

42242

393

ftkipsM Max −= 6.151

psiS

M MaxMax 1710

10631210006.151

=××

==σ

Page 20: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

A cast-iron machine part is acted upon by 3 kN-m Knowing E = 165GPa and neglecting the effects of fillets, determine (a) the maximum tensile and compressive stresses, (b) the radius of curvature.

(a) Based on the cross section geometry, calculate the location of the section centroidand moment of inertia.

(b) Apply the elastic flexural formula to find the maximum tensile and compressive stresses.

(c) Calculate the curvature

Page 21: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

(a) Based on the cross section geometry, calculate the location of the section centroidand moment of inertia.

Page 22: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

(b) Apply the elastic flexural formula to find the maximum tensile and compressive stresses.

3649

3649

108.22038.010868 038.0

1045.39022.010868 022.0

mm

mcISmc

mm

mcISmc

B

zBB

A

zAA

−−

−−

×=×

===

×=×

===

MPammN

SM

MPammN

SM

BB

AA

3.131108.22

3000

0.76105.394

3000

36

36

−=⋅

⋅−==

=⋅

⋅−−=−=

σ

σ

(c) Calculate the curvature

( )( )m

mmPa

mNEIM

7.47

0209.01086810165

30001 1499

=

=⋅⋅

⋅== −

ρρ

Page 23: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Stresses in a beam with an overhang.Cross Section

Reactions ( )( )( )

( )( ) kNR

kNR

A

B

6.38.105.42.3

8.103

25.45.42.3

=−=

=−

=

( )

( )

( ) ( )

( ) ( ) 6.3 025.2 8.4 0.6

6.36.1

006.36.1

125.12.36.306.32.3

6.36.32.3 30

0.3125.1

33

2

2022

101

mkNMmkNMkNVkNV

xxM

CMCxxM

mxVxV

kNCkNVCxVx

x

x

xx

x

−−=−=

=−=+−=

=⇒=⇒++−=

==⇒=⇒+−=

=⇒=⇒+−=≤≤

+−

Page 24: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

( )

( )

4.324.146.1

4.326.34.146.1

4.142.34.148.42.3 5.43

2

4342

333

−+−=

−=⇒−=⇒++−=

+−=

=⇒=⇒+−=≤≤

xxM

CMCxxM

xVkNCkNVCxVx

x

x

x

x

( ) ( ) 6.3 025.2 0.3125.1 mkNMmkNM −−=−=Maximum Bending Moments

Page 25: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

34

222

34

111

4012952.61

2468761 52.61

13359148.18

2468761 48.18

mmmmmm

cISmmc

mmmmmm

cISmmc

z

z

====

====

Page 26: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

MPam

mNSM

MPam

mNSM

mx

5.5010401.0

2025

2.1510336.1

2025125.1

332

2

331

1

−==

−=×

−−=−=

=

σ

σ

MPammN

SM

MPammN

SMmx

8.8910401.0

3600

9.2610336.1

36000.3

332

2

331

1

−=×

−−==

−−−=−=

=

σ

σ

Maximum Tensile Stress = 50.5MPa at x=1.125m

Maximum Compressive Stress = 89.8MPa at x=3.0m

Page 27: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Which type of cross section is the most efficient in resisting the bending stresses??

Consider beams made of the same material, subjected to the same moment and with similar cross section areas.

Allowed

MSσ

=

Page 28: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

4

2dA π=Circular cross section

334

098175.0322

64

ddd

ISdI circle ====ππ

Square cross section dhdhA 886.04

22 =⇒==

π

33

44

6955.062

12 12

dhh

hShI square ====

dnhdnhbhA

24

22 ππ=⇒===Rectangular cross section

h

b=h/n

3

3

3

33

4

tan

4

367.0 10164.0 2116.0 1

116.062

12 12

dSndSndSn

dnn

hh

nh

Sn

hI glerec

==

==

==

====

Page 29: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object
Page 30: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Design of a post using solid wood or aluminum tube.

Solid wood: σAllowed=15MPa

Aluminum tube: σAllowed=50MPa

( )( ) mkNmkNPhM Max −=== 305.212

Solid wood:

mmd

mmMdSAllowed

MaxWood

273

10232

1

363

=

⋅===σ

π

Aluminum tube

( )[ ]

mmd

mmMd

IS

dtddI

Allowed

Max

208

106002

03356.064

2

33

22

42

42

42

=

⋅===

=−−=

σ

π

Page 31: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Bending Members Made of Several Materials

Consider a composite beam formed from two different materials E1 and E2.

The normal strain varies linearly. ρ

ε yx −=

Piecewise linear normal stress variation

ρεσ

ρεσ

yEE

yEE

x

x

222

111

−==

−==Elemental forces on the section areNeutral axis does not pass through

section centroid of composite section.

dAyEdAdF

dAyEdAdF

ρσ

ρσ

222

111

−==

−==

Define a transformed section such that

( )ndAyEdAynEdAyEdFρρρ112

2 −=−=−=

1

2

EEn =

Page 32: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

A bar is made from bonded pieces of steel (ESteel=29000ksi) and brass (Ebrass=15000ksi). Determine the maximum stress in the steel and brass when a moment of 40kips-in is aplied.

(a) Transform the bar to an equivalent cross section made entirely of brass

933.11500029000

===ksiksi

EEn

Brass

Steel

( )( ) ininininbT 25.24.075.0933.14.0 =++=

Evaluated the transformed cross sectional properties

( )( ) 433

063.512

325.212

inhbI T ===

Calculated the maximum stresses

( ) ( )( ) ksiin

ininkipsI

McMaxBrass 85.11

063.55.140

4 =⋅

=−=σ

( ) ( ) ksin MaxBrassMaxSteel 9.2285.11933.1 =×== σσ

Page 33: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Shear Stresses in Beams of Rectangular Cross Section

Note that at the top or at the bottom of the beam the horizontal stresses must vanish.

xx V

dxdM

= The change of moment with the distance xgenerates a shear force.

Glued beam: When it is loaded horizontal shear stresses must develop along the glued surface in order to prevent the sliding.

Page 34: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

( )I

ydMMI

My

+−=

−=

2

1

σ

σ

Isolate a subelement mm1p1p and find the forces acting (assuming equilibrium).

( )

( )

∫∫

∫∫

∫ ∫

∫ ∫

==

−+

=−=

+==

==

ydAI

dMdAI

dMyF

dAI

MydAI

ydMMFFF

dAI

ydMMdAF

dAI

MydAF

3

123

22

11

σ

σ

bdxF τ=3

∫∫

∫==

=

ydAIbVydA

dxdM

Ib

ydAI

dMbdx

τ IbVQ

This equation is known as the shear formula.V, I (for the entire section) and b (width at y1) are constants with y, while Q varies with y.

Page 35: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Distribution of Shear Stresses acting on a BeamThe first moment Q of the shaded part of the cross-sectional area is obtained by multiplying the area by the distance from its centroid to the neutral axis.

⎟⎟⎠

⎞⎜⎜⎝

⎛−=⎥

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −+⎥

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −== 2

2

1111 142221

2yhbyhyyhbyAQ Shaded

For y1=h/2 then Q=0For y1=0 then Q is maximum

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

⎟⎟⎠

⎞⎜⎜⎝

⎛−==

22

22

1

1

42

42

yhI

V

yhbIbV

IbVQ

τ

τParabolic distribution

( )( )

0 0 2

23

12

8 8

0

0 0 2

2

3

22

2

=⇒=⇒−=

==⇒=⇒=

=⇒=⇒=

⎟⎠⎞

⎜⎝⎛ −

⎟⎠⎞

⎜⎝⎛

h

MaxMax

h

Qhy

AV

bbh

bhVbhQy

Qhy

τ

τ

τ

AV

Max 23

Page 36: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Shear FlowThe shear flow represents the force over a unit length of the beam that would be required to hold the beam together. If the beam started out as two pieces separated along a horizontal line, and the two pieces were welded together, the strength of the weld would have to be at least equal to the shear flow. It wouldrepresent the required strength of a unit length of the weld. It can also be used to determine how many nails are required to hold together two pieces of a fabricated wooden beam.

bdxF τ=3

xVb

IVQqFlowShear

IbVQydA

IbVydA

dxdM

Ib

ydAI

dMbdx

Horizontal

Δ====

===

=

∫∫

τ

τ

τ

_

1

From the equation:

Page 37: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object
Page 38: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

A beam is made of three planks, nailed together. Knowing that the spacing between nails is 25 mm and that the vertical shear in the beam is V = 500 N, determine the shear force in each nail.

Calculating Q:

( )[ ]( ) 361012006.01.002.0 mmmmyAQz−×===

To determine Q, cut the cross section horizontally at the NA and choose either the top or the bottom portion, it doesn't matter which because the same answer will result using either portion.

Calculation of the moment of inertia about the centroid( )( ) ( )( )( ) ( )( )

46

32

3

1020.16

1202.01.0206.01.002.0

121.002.0

mI

I

z

z

−×=

⎥⎦

⎤⎢⎣

⎡+⎥

⎤⎢⎣

⎡+=

mN3704

m1016.20)m10120)(N500(

46-

36

=

××

==−

qI

VQq

Calculating the shear flow (q): Calculating the shear force per nail for a nail spacing of 25 mm.

mNqF 3704)(m025.0()m025.0( ==

N6.92=F

Page 39: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Determination of the Shearing Stress in a Beam

On the upper and lower surfaces of the beam, τyx= 0. It follows that τxy= 0 on the upper and lower edges of the transverse sections.

The average shearing stress on the horizontal face of the element is obtained by dividing the shearing force on the element by the area of the face.

ItVQ

xtx

IVQ

Axq

AH

ave

ave

=

ΔΔ

=ΔΔ

=ΔΔ

=

τ

τ

Page 40: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

For a narrow rectangular beam,

AV

cy

AV

IbVQ

xy

23

123

max

2

2

=

⎟⎟⎠

⎞⎜⎜⎝

⎛−==

τ

τ

For American Standard (S-beam) and wide-flange (W-beam) beams

web

ave

AV

ItVQ

=

=

maxτ

τ

Shearing Stresses in Common Beam Types

Page 41: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

The diagram shows a simply supported 20 ft. beam with a load of 10,000 lb. acting downward at the center of the beam. The beam used is a rectangular 2" by 4" steel beam. We would like to determine the maximum bending (axial) stress and the maximum shear stress

Reactions:

lbC

lbA

y

y

5000

5000

=

=

( )( )psi

inI

inyftlbM

Max

Max

112500

67.1012

422

50000

43

=

==

=−=

σ

( )( ) psiAV

inAlbV

Max 5.93723

8425000

2 ====

Page 42: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Determine the normal and shear stresses at point C.

Rectangular section

( )( )

( )( ) ( )( ) ( ) inlbM

lbVlbRlbR

C

C

BA

⋅=−

−−−=

−=−−===

179202

8368361608362880

160083616028802880 2880

( )( ) 433

333.512

0.40.112

inbhI ===

( )( ) psiin

ininlbI

yMCC 3360

333.50.117920

4 −=⋅

−=−=σ

( )( )( )( ) psi

inininlb

IbQV CC

C 4500.1333.5

5.116004 ===τ

( )( )( ) 35.15.10.10.1 ininininyAQ CCC ===

Page 43: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Determine the maximum permissible value PMax if the allowable stresses for bending and shear are 11MPa and 1.2MPa respectively. Data : h=150mm ; b=100mm and a=0.5m

bhAbhh

bh

cIS

PaMPV MaxMax

====

==

62

12

23

32

23

23

66 2

2

bhPbhP

AV

abhP

bhPa

SM

AllowedShearMax

MaxMax

AllowedBendingMax

MaxMax

ττ

σσ

=⇒==

=⇒==

kNPMPa

kNPMPaShear

MaxAllowed

BendingMaxAllowed

0.122.1

25.811

=⇒=

=⇒=

τ

σ

The bending stress governs the design.

Page 44: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

A timber beam is to support the three concentrated loads shown. Knowing that for the grade of timber used,

psi120psi1800 == allall τσ

determine the minimum required depth d of the beam.

inkip90ftkip5.7kips3

max

max⋅=⋅=

=MV

Determine the maximum shear force and moment.

( )

( ) 2

2612

61

3121

in.5833.0

in.5.3

dS

ddbcIS

dbI

=

===

=Determine the section moduli

Page 45: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Determine the beam depth based on allowable normal stress.

( )in.26.9

in.5833.0in.lb1090psi 1800 2

3max

=

⋅×===

ddS

Mallσ

Determine the beam depth based on allowable shear stress.

( )in.71.10

in.3.5lb3000

23psi120

23 max

=

=

=

dd

AV

allτ

Required beam depth is equal to the larger of the two. in.71.10=d

Page 46: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Shear Stresses in Beam of Circular Sectionφφ CosrxSinry ⋅=⋅=

yCosrdA δφ ⋅⋅⋅= 2

δφφδ ⋅⋅= Cosry

2

4

42

44

2

2

4224

rIIJrI

rCosSinrI

yxzy

x

⋅=+=

⋅=

⋅=⋅⋅⋅⋅= ∫−

ππ

πδφφφπ

π

( )( )

( )( )

( ) ( )3

23

22

2

.2

32

0

20

33

23

2

0

23

2

0

rurduurQ

dSinduCosudCosSinrQ

dCosrCosrSinrydAQ

Max

Max

Max

∫∫

=−=−=

−=⇒=⇒=

⋅⋅⋅⋅==

ππ

π

π

φφφφφφ

φφφφ

( )( )( ) A

VrV

rr

rV

IbVQ

Max 34

34

24

32

24 ====ππ

τ

Hollow Circular Cross Section( ) ( )12

31

32 23

2 rrbrrQMax −=⇒−

=

( )

( ) ( )( )⎟⎟⎠

⎞⎜⎜⎝

⎛+++

=−⎟

⎠⎞

⎜⎝⎛ −

⎟⎟⎠

⎞⎜⎜⎝

⎛ −

= 21

22

2112

22

12

41

42

31

32

34

24

32

rrrrrr

AV

rrrr

rrV

Max πτ

( )21

22 rrA −= π

Page 47: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Design of a post using solid wood or aluminum tube.

Solid wood: τAllowed=7.5MPa

Aluminum tube: τAllowed=25MPa

( )( )

mmd

mMPakNVd

dV

AV

Allowed

AllowedMax

1.52

1072.25.73

12163

16

43

434

1

2321

21

=

⋅===

=⎟⎠⎞

⎜⎝⎛

==

ππτ

τπ

τ

Solid wood:

Aluminum tube

( )( )

( )

mmd

mMPa

kNVr

r

r

r

Vrr

rrrrAV

Allowed

Max

5.52

10689.025

12436.1436.1

1625

1637

167

13

434

2

322

22

22

22

21

22

2112

22

=

⋅==

⎟⎟

⎜⎜

⎟⎟⎟⎟

⎜⎜⎜⎜

=⎟⎟⎠

⎞⎜⎜⎝

⎛+++

=

τ

πτ

( ) 22

21

22 16

7 rrrA ππ =−=

Page 48: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object
Page 49: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Shearing Stresses in Thin-Walled Members

Consider a segment of a wide-flange beam subjected to the vertical shear V.

The longitudinal shear force on the element is

xI

VQH Δ=Δ

ItVQ

xtH

xzzx =ΔΔ

≈=ττ

The corresponding shear stress is

NOTE: 0≈xyτ

0≈xzτin the flanges

in the web

Previously found a similar expression for the shearing stress in the web

ItVQ

xy =τ

Page 50: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Shear Stresses in the Webs of Beams with Flanges

Page 51: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

The variation of shear flow across the section depends only on the variation of the first moment. I

VQtq ==τ

For a box beam, q grows smoothly from zero at A to a maximum at C and C’ and then decreases back to zero at E.

The sense of q in the horizontal portions of the section may be deduced from the sense in the vertical portions or the sense of the shear V.

For a wide-flange beam, the shear flow increases symmetrically from zero at A and A’, reaches a maximum at C and the decreases to zero at E and E’.

Shearing Stresses in Thin-Walled Members

The continuity of the variation in q and the merging of qfrom section branches suggests an analogy to fluid flow.

Page 52: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Knowing that the vertical shear is 50 kips in a W10x68 rolled-steel beam, determine the horizontal shearing stress in the top flange at the point a.

For the shaded area, ( )( )( )3in98.15

in815.4in770.0in31.4=

=

QQ

The shear stress at a, ( )( )( )( )in770.0in394

in98.15kips504

3==

ItVQτ

ksi63.2=τ

Page 53: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Shear Stresses in the Webs of Beams with Flanges

( )( ) ( )[ ]

( )( )[ ] ( )( )[ ]

( )( )

( )⎥⎥⎥

⎢⎢⎢

⎟⎟⎟

⎜⎜⎜

⎛ −=

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +

=

+=+=

+−+=⇒=

fw

Web

fw

Web

fw

fw

Web

ww

Web

Ahh

ItV

hhAItV

hhbtItVthhb

ItV

thhhhbItVhyFor

222

222

8

28

28

082

_

1

1

11

111

1

τ

τ

τ

τ

Page 54: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

( )( ) ( )[ ]

( )( ) ( )( )[ ]

( ) ( )

( ) ( ) ⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛ +⎟⎠⎞

⎜⎝⎛=

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛ +=

++=

+−+=⇒=

221

221

222

2222

8

28

80_

11

11

111

21111

hAhhAItV

hAhhAItV

hhtthhbItV

hthhhhbItVyFor

wfw

Web

wfw

wfw

Web

ww

Web

τ

τ

τ

Page 55: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

A cantilever beam with T cross section is loaded at the tip by a vertical force. Determine at the section n-n: (a) Maximum compressive stress. (b) Maximum tensile stress. (c) Maximum shear stress.

Calculation of the centroid using bb as reference

( )( )( ) ( )( )( )( )( ) ( )( ) in

AAy

y 1667.05.025.04

15.0225.05.04=

++−

==∑∑

Calculation of the moment of inertia about the centroid

( )( ) ( )( )( ) ( )( ) ( )( )( )

4

23

23

417.1

1667.0125.012

25.01667.025.05.0412

5.04

inI

I

z

z

=

⎥⎦

⎤⎢⎣

⎡−++⎥

⎤⎢⎣

⎡++=

Page 56: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Calculating the bending stresses ( ) inlbPxM z −=== 18000121500

Compressive Stress

Tensile Stress

( )

( ) psiyI

M

psiyI

M

topz

ztopx

bottomz

zbottomx

8.8472667.0417.1

18000

23300833.1417.1

18000

,

,

=−−=−=

−=−=−=

σ

σ

Calculating Q:To determine Q, cut the cross section horizontally at the NA and choose either the top or the bottom portion, it doesn't matter which because the same answer will result using either portion.

( )[ ] 384.02833.15.0833.1 inyAQz =⎟

⎠⎞

⎜⎝⎛==

( )( )( )( ) psi

tIQV

z

zyMaxxy 1778

5.0417.184.01500

, ===τ

Calculating the maximum shear stress

Page 57: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

A beam shown is loaded by a 3 kN force. For points A and B located at section n-n, (0.5m from the support) shown in the figure below, determine the average shear stress.

Calculation of the centroid using the bottom as reference

( )( )( ) ( )( )( ) ( )( )( )( )( ) ( )( ) ( )( )

mmAAy

y

AAy

y

33.684800

328000

206020802010010206060208011020100

===

++++

==

∑∑∑∑

Page 58: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Calculation of the moment of inertia about the centroid( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )

46

23

23

23

1063.8

33.58206012

206033.8802012

8020667.412010012

20100

mI

I

z

z

−×=

⎥⎦

⎤⎢⎣

⎡−++⎥

⎤⎢⎣

⎡−++⎥

⎤⎢⎣

⎡+=

Calculating the bending stresses ( ) mNPxM z −=== 7505.01500

( )

( ) MPayI

M

MPayI

M

topz

ztopx

bottomz

zbottomx

49.40517.01063.8

750

93.50683.01063.8

750

6,

6,

−=−×

−=−=

=−×

−=−=

σ

σ

Calculating Q for point A and B:

( )( )[ ]( ) 351067.4005.00517.001.01.0 myAQz−×=−==

( )( )[ ]( ) 37100.7202.00683.002.006.0 myAQz

−×=−==

( )( )( )( ) MPaAverage 608.0

02.01063.81071500

6

7

×= −

τ( )( )( )( ) MPa

ItVQ

Average 081.01.01063.8

1067.415006

5

×== −

τ

Page 59: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

A beam 12in long is to support a load of 488lb as shown. Basing the design only on a bending stress, the designer has selected a 3in column channel as shown. The direct shear has been neglected.

( )( )

psiI

Mc

Max

Max

99266.1

5.11098

±=

±=±=

σ

σ

However, due to the combined bending and direct shear the stress should be maximum just before 3in and at the point where the web joints the flange

y1=1.5-0.273=1.227

( )( ) psiI

McMax 812

66.1227.11098

−=−=−=σ

( )( )( ) 3525.0273.0410.1227.15.121'' inAyQ =+== ( )( )

( )( ) psiIt

VQxy 681

170.066.1525.0366

−=−=τ

Page 60: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

y(in) Q(in3) σ(psi) τ(psi)1.5 0 992 0

1.227 0.525 812 6811.0 0.568 661 7370.75 0.605 496 7850.5 0.631 331 8180.25 0.648 165 840

0 0.653 0 847

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−−⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛=

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−−⎟

⎠⎞

⎜⎝⎛

⎟⎟⎠

⎞⎜⎜⎝

⎛−−+⎟

⎠⎞

⎜⎝⎛=

wf

f

fw

ff

tythhbtQ

ythty

thhbtQ

2

2221

2

2221

222

Page 61: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

For the simply supported W 10x45 beam (ABCD) determine the maximum bending stress at 6 ft from the left of the beam and the maximum horizontal shear stress at a point 4 in above the bottom of the beam.

Reactions( )( )

( )( ) ( )( )( ) ( )lbDlbB

BM

lbDBF

ftftlblbDBF

yy

yD

yy

yy

35009500

82420001250000

130000

4/200050000

@

=⇒=

+−−==

=+⇒=

−−+==

∑∑∑

psiinS

ftlbMMax 2688

1.4911000

3 −==

−−=σ

At 6 ft from the left:

D=10.10F=8.02Tf=0.62Tw=0.35

( )( )lbftM

lblbftMlbV

−−=+−−=

=

110002450020000

4500

6

6

6

Page 62: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

- - - Flange Flange Web Cross Section Info. Cross Section Info.

Designation Area Depth Width thick thick x-x axis x-x axis x-x axis y-y axis y-y axis y-y axis

- A d bf tf tw I S r I S r

- in2 in in in in in4 in3 in in4 in3 in

W 10x45 13.20 10.12 8.022 0.618 0.350 249.0 49.1 4.33 53.20 13.30 2.00

( )( )( ) psilbAV

webMax 9.1447

35.062.0212.104500

=−

==τ

At 4 in above the bottom of the beam

( ) ( )[ ]( )

( )( ) ( ) ( )( ) ( ) ( )( )[ ]

psiy

psihy

yin

lb

yhthhbIt

VIt

VQ

web

web

web

web

3.13940

8.12162

486.835.086.81.1002.835.02498

4500

48

max,1

min,1

1

21

2224

21

21

21

2

=⇒=

=⇒=

−+−=

−+−==

τ

τ

τ

τ

( )( )

( )( )( )( ) psi

ItVQ

ininQinb

inIlbV

Hor 138835.0249889.264500

37.4153.635.0

2494500

2

46

===⇒

⎥⎥⎥⎥

====

τ

At the centroid of the beam

( )( )( )( ) psi

ItVQ

inQinb

inIlbV

Max 1.139435.0249003.274500

003.2735.0

2494500

3

46

===⇒

⎥⎥⎥⎥

====

τ

D=10.10F=8.02Tf=0.62Tw=0.35

Page 63: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

For a WT 8 x 25 T-beam determine the maximum bending and shear stress in the beam. We will also determine the bending stress at 4 ft from the left end of the beam.

Reactions( )( ) ( )( )

( )( )( ) ( )( )( ) ( )lbClbB

BM

lbCBF

ftftlbftftlbCBF

yy

yC

yy

yy

66703330

62415008410000

100000

4/15004/10000

@

=⇒=

++−==

=+⇒=

−−+==

∑∑∑

psiinS

ftlbMMax 21270

77.612000

3 ==

−=σ

( ) psiinI

inyftlbM

iny 94502.42

24.4289.113.88000

24.64

==

=−−=−=

At 4ft and 2in above the bottom of the beam

Page 64: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Designation Area of T Width thick thick - x-x axis x-x axis x-x axis x-x axis

- A d bf tf tw d/tw I S r y

- in2 in in in in - in4 in3 in in

WT8x25 7.36 8.13 7.073 0.628 0.380 21.40 42.20 6.770 2.400 1.890

D=8.13F=7.073Tf=0.628Tw=0.38

At the centroid of the beam

( )( )( )( ) psi

inlb

ItVQ

web 275638.02.42

367.760004 ===τ

Calculation of the centroid using bb as reference( )( )( ) ( )( )( )

( )( ) ( )( ) inA

Ayy 275.1

38.0502.7628.0073.7751.338.0502.7314.0628.0073.7

=++−

==∑∑

Calculating Q: To determine Q, cut the cross section horizontally at the NA and choose either the top or the bottom portion, it doesn't matter which because the same answer will result using either portion.

( )[ ] 3367.72227.638.0227.6 inyAQz =⎟

⎠⎞

⎜⎝⎛==

Page 65: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

We can obtain the normal and shear stresses from flexure and shear formulas:The normal stresses obtained from the flexure formula have their maximum values at the farthest distance from the neutral axis. The normal stresses are calculated at the cross section of maximum bending moment.

IMy

−=σ

Maximum Stresses in Beams

IbVQ

Normal stresses in a beam of linearly elastic material: (a) side view of beam showing distribution of normal stresses, and (b) cross section of beam showing the z axis as the neutral axis of the cross section.

The shear stress obtained from the shear formula usually have their highest value at the neutral axis. The shear stresses are calculated at the cross section of maximum shear force. In most circumstances, these are the only stresses that are needed for design purposes. However to obtain a more complete picture of the stresses, we will need to determine the principal stresses and maximum shear stresses at various points in the beam.

Page 66: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Points A and E are at the top and bottom of the beam. Point C is in the midheight of the beam and points B and D are in between.If Hooke’s law applies, the normal and shear stresses at each of these five points can be readily calculated from the flexure and shear formulas.All the elements of vertical and horizontal faces, are in plane stress, because there is no stresses acting perpendicular to the plane of the figure.

Beams of Rectangular Cross Section

Points A and E elements are in uniaxialcompressive and tensile stresses respectively.Point C (neutral axis) element is in pure shear.Points B and D elements have both normal and shear stresses.

Stresses in a beam of rectangular cross section: (a)simple beam with points A, B, C, D, and E on the side of the beam; (b)normal and shear stresses acting on stress elements at points A, B, C, D, and E; (c)principal stress; and (d)maximum shear stresses.

Page 67: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Stress trajectory: Gives the directions of the principal stresses.

Stress Contours: Curves connecting points of equal principal stress.

Principal-stress trajectories for beams of rectangular cross section: (a) cantilever beam, and (b) simple beam. (Solid lines represent tensile principal stresses and dashed

lines represent compressive principal stresses.)

Stress contours for a cantilever beam (tensile principal stresses only).

Page 68: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

As for a rectangular beam we identified the point A to E, where A and E are located at the top and bottom of the beam, point C at the neutral axis and points B and D are in the web where it meets the flange. The stresses at these points can be determined using the flexure and shear formulas. They have the same general appearance as in the rectangular beam section but the stresses are different.The largest principal stresses usually occur at the top or bottom of the beam (points A and E) where the stresses obtained from the flexure formula have their largest value.However, depending upon the relative magnitudes of the bending moment and shear force, the largest stresses sometimes occur in points B and D (in the web where it meets the flange).The maximum shear acting directly on a cross section of a wide flange beam stresses always occur at the neutral axis (point C). However, the maximum shear stresses acting on inclined planes usually occur either at the top and bottom of the beam (points A and E) or in the points B and D because of the presence of normal stresses.

Wide-Flange Beams

Page 69: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object
Page 70: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

A beam AB with a span length L = 6ft supports a concentrated load P = 10800lbacting a distance c = 2ft from the right-hand support (see figure below). The beam is made of steel and has a rectangular cross section (width b=2in and height h = 6in).

Determine the principal stresses and maximum shear stresses at cross section mn located at a distance x = 9in from the end A of the beam. (Consider only the in-plane stresses)

Solution

( ) ( )lbRlbR

RM

RRF

BA

AB

BA

7200 3600

021080060

0108000

@

==

=−⇒=

=−+⇒=

∑∑

xMlbV

x

x

x

36003600

40

==

≤≤( )

( ) ( ) inlbMlbV

inx

−==

==

32400936003600

9

9

9

Page 71: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Where y has units in inches and σx has units in psi. The stresses calculated are positive when in tension. Note that a positive value of y (upper half of the beam) gives a negative stress, as expected.

( )( )( )( )

yinin

yinlbbh

MyI

MyX 900

623240012

1233 −=

−−=−=−=σBending stresses:

Shear stresses:Ib

VQ=τ

4222

22

2

⎟⎟⎠

⎞⎜⎜⎝

⎛−=⎟

⎜⎜

⎛ −+⎟

⎠⎞

⎜⎝⎛ −= yhbyh

yyhbQ

The figure shows a stress element cut from the side of the beam at cross section mn. The normal stress σx and the shear stress τxy are shown acting in their positive directions.

( )( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−=⎟⎟

⎞⎜⎜⎝

⎛−⎟

⎠⎞

⎜⎝⎛== 2

2

32

2

3 46

4212 yh

bhVyhb

bbhV

IbVQτ

The shear stresses τxy acting on the x face of the stress element are positive upwards, whereas the actual shear stresses τ act downward. Therefore

In which y has units of inches and τxy has units of psi

( )( )( )

( ) ( )222

3 9504

662

36006 yyinininlbτ XY −−=⎟⎟

⎞⎜⎜⎝

⎛−=

Page 72: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Point y (in) σx (psi) τxy (psi)A 3 -2700 0B 2 -1800 -250C 1 -900 -400D 0 0 -450E -1 900 -400F -2 1800 -250G -3 2700 0

The normal stresses vary linearly from a compressive stress of -2700psi at the top of the beam (point A) to a tensile stress of 2700psi at the bottom of the beam (point G). The shear stresses have a parabolic distribution with a maximum stress at the neutral axis (point D).

Calculation of stresses on cross section mnWe divide the height of the beam into six equal intervals and label the corresponding points from A to G.

Page 73: Centroid of Area (Center of Gravity of an area): Point ...academic.uprm.edu/pcaceres/Courses/MMII/IMoM-4B.pdf · Centroid Centroid or center of gravity is the point within an object

Principal Stresses and Maximum Shear Stresses

The principal stresses and maximum shear stresses at each of the seven points A through G may be determined from the following equations:

( )22

2,1 22 xyyxyx τ

σσσσσ +⎟⎟

⎞⎜⎜⎝

⎛ −±⎟⎟

⎞⎜⎜⎝

⎛ +=

( )22

2 xyyx

MAX τσσ

τ +⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

Point y (in) σx (psi) τxy (psi) σ1 (psi) σ2 (psi) τmax (psi)-2700 1350

934602450602934

1350

-1834-1052-450-152-340

034

152450

105218342700

A 3 -2700 0B 2 -1800 -250C 1 -900 -400D 0 0 -450E -1 900 -400F -2 1800 -250G -3 2700 0