Cellular Structures of Porpbyridium Cruentum

download Cellular Structures of Porpbyridium Cruentum

of 11

Transcript of Cellular Structures of Porpbyridium Cruentum

  • 7/28/2019 Cellular Structures of Porpbyridium Cruentum

    1/11

    Observa tions on C el lular Structures o f Porpbyridium cruentum*B y M A R C I A B R O D Y , P h .D . , an d A L B E R T E . V A T T E R , P h .D . ~

    (From the Photosynthesis Project, Department o f Botany, and the Electron Microscope Laboratory,University of Illinois, Urban a)PLATES 121 TO 123

    ( R e c e i v e d f o r p u b l i c a t i o n , A u g u s t 2 0 , 1 9 5 8 )ABSTRACT

    The ce l lular s truc ture of Porphyridium cruentum wa s s tudie d w i th both l igh tand e lec tron microscope . The photosynthet ic plas t id in this red a lga was foundto be s t ruc tura l ly s im i la r to th a t in the Chlorophyc e ae a nd h ighe r gre en p la n t s . Thephycobil ins , as well as the chlorophyll , seem to be associa ted with the lamellae ofthe plas t id.The pyrenoid, a region of low lamellar densi ty, conta ins no tubules , and doesnot app ear to function in synthesis or s torage of reserve mater ia l . G ra ins of f lo-r idean s tarch are loca ted in the cytoplasm, outs ide the plas t id. Ty pica l mitoc hon-dria l organelles were not observed.

    The nucleus is eccentr ic , and conta ins a nucleolus loca ted on the inner face ofthe nucleus , neares t the plas t id. The schedule for s ta ining the nucleus is given indeta i l . Other ce l l s truc tures (sheath, dic tyosomes, e tc . ) a re descr ibed.

    Growing ce l ls in l ight of intensi ty leads to disruption of the para l le l a rrange-ment of the lamellar charac ter is t ic of ce l ls grown in modera te l ight .

    I N T R O D U C T I O NT h i s i n v e s t i g a t i o n w a s u n d e r t a k e n p r i m a r i l y

    t o d e t e r m i n e t h e r e l a t i v e p o s i t i o n s o f t h e p h y c o -b i l i n s a n d c h l o r o p h y l l i n t h e c e l l s o f r e d a l g a e ,t h i s p r o b a b l y b e i n g o n e o f t h e f a c t o r s r e g u l a t i n gt h e e f fi c ie n c y o f e n e r g y t r a n s f e r b e t w e e n t h e s ep i g m e n t s . I t w a s a l s o c o n s i d e r e d d e s i r a b l e t os e e w h a t e f f e c t d i f f e r e n c e s i n l i g h t i n t e n s i t y p r o -d u c e d o n c e l l u l a r s t r u c t u r e . I n v e s t i g a t i o n s w i t hPorphyridium c e l l s w e r e m a d e w i t h b o t h e l e c t r o na n d l i g h t m i c r o s c o p e s .

    Materials and MethodsThe a lgae , grown as descr ibed by Brody and Emerso n

    (2), were fixed for electron microscopy according toPalade (10) , with modif ica t ions as descr ibed by Vatterand Wolfe (18); in addit ion, the f ixa t ive conta ined0.175 moles/liter of sucrose. The fixed cells were era-

    * This inve s t iga t ion was suppor te d in pa r t by theNational Science Foundation, Grant 1398, and in par tby the Research Board of the Graduate College of theUnivers i ty of I l l inois .

    :~ Pre se nt a ddre s s : Abbot t La bora tor ie s , Nor thChicago, Illinois.

    ]. BIOPHYSIC. AND BIOCHE~[. CYTOL., 1959, Vol. 5, No . 2

    be dde d in pre polym e r iz e d m e tha c ry la te , a nd c u t in tothin sec t ions (150 to 300 A).

    For e xa m ina t ion of the she a th w i th the l igh t m ic ro-scope, th e fol lowing schedule of polysaccharide s ta iningwas used: Cells were centr ifuged, the pe l le t was re-suspended for 5 to 10 minutes in a f reshly preparedfi l tered solut ion of 0.01 per cent c ry sta l viole t mad e upin 0.45 ~ NaC1, washed once in 0.05 per cent copper sul-fa te m ade u p in 0.45 per cent NaCI, resuspended in cul-ture medium, an d examined.

    The schedule followed to achieve a successful Feulgensta in of this organ ism is given below. The f ixa t ive usedgave bet ter resul ts than others , and offered an addi-t iona l a dva nta ge in tha t i t d id not e x t r a c t c h lorophyl lduring f ixa t ion.

    A 0.1 ml. pellet of freshly harvested cells was re-suspended in 5 ml. of Palade 's modif ied f ixa t ive (18)for i0 to 20 minutes , and then centr ifuged. The pel le tsof fixed cells were washed twice for 10 minutes in dis-t i l led water , again centr ifuged, and then resuspendedin about twice the ir volume of 50 per cent Mayer 's eggalbumin (9) . Thin smears were prepared by spreadinga drop of the suspension on one microscope s l ide withthe edge of another s l ide . The smears were dr ied in adesicca tor for 4 to 8 hours a t 20C., and the egg a lbuminhardened by f looding the s l ides for 30 seconds with 1-to-8 formalin in 95 per cent a lcohol . The s l ides were

    28 9

  • 7/28/2019 Cellular Structures of Porpbyridium Cruentum

    2/11

    290 CELLULAR STRUCTURES OF PORPHYRIDIUMthen bathed in 70 per cent alcohol for 5 minutes, rinsedin distilled water for 1 minute, then placed in normalHC1 at 20C. for another minute, and incubated in pre-heated 60C. normal HCI for 8 to 10 minutes.

    The smears were then placed in normal HC1 at 20C.for 1 minute and again washed in distilled water for 1minute. They were then immersed in Schiff's reagent inthe dark at 20C. for 3 to 5 hours, and subsequentlyrinsed in three changes of H2SOa (Swift, 16) for 3 to 5minutes each. Following another 5-minute wash in dis-tilled water, the samples were dehydrated for 5 minuteseach in 30, 50, 70, and 80 per cent alcohol, and 10 min-utes each in 95 per cent and absolute alcohol. The slideswere thereafter cleared for about i0 minutes in xyleneand mounted in "clarite."OBSERVATIONS

    An electron micrograph of a median sectionthrough a typical cell, from a culture grown inwhite light of low intens ity, is shown in Fig. 1.The sheath that envelops the cell is not clearlydefined in this figure, but it can be seen quiteclearly in Fig. 2, which is a light micrographof cells grown in light of high int ensi ty and stai nedaccording to the method described above specifi-cally to demonstrate the sheath. The electronmicrograph reveals the gelatinous sheath to be arelatively thick layer with a fine fibrillar texture(Fig. 3). The sheath structure appears uniform,rather than differentiated into a firm, thin innerlayer and an outer gelatinous layer, as describedfor red algae (Smith, 15). The thickness of thesheath varies with culture conditions. The innersurface of the sheath is in contact with a distinctcell membrane about 100 A thick (Fig. 1).

    The cytoplasm (exclusive of the single plastid)is peripheral and forms a layer of from < 0.1 to> 0.5 # in thickness. Where the pla stid is highlyinvoluted, the cytoplasm is thicker. Vesicular,lamellar, and granular elements are contained inthe cytoplasmic matrix. Multilamellar structures(Figs. 4 and 5), referred to as dictyosomes (Sagerand Palade, 13), or cisternae (Hodge et al., 6), orGolgi elements (Dalton and Felix, 3) are sur-rounded by small vesicles. In addition to thedictyosomes and nu merous vesicles, the cyto-plasm contains other membranous or lamellarsystems, described as the "endoplasmic reticulum"by Palade and Porter (11) and Porter (12), andfound in most animal and plant cells so far investi-gated (Figs. 1 and 4).

    Organelles with typical mitochondrial structure

    have not been observed in Porphyridium; theyare also missing in blue green algae (Vatter andBannister, unpublished) as well as in photo-synthetic bacteria (Vatter an d Wolfe, 18). How-ever, in more highly differentiated algae--Euglena(Wolken and Palade, 19) and Chlamydomonas(Sager and Palade, 13)--such organelles havebeen reported.

    The central region of the cell is occupied by amultilamellar structure similar to the chloroplastof the Chlorophyceae (Sager and Palade, 13),which Smith (15) designates as the chromato-phore in the red algae, and as a chloroplast in thegreen. Since both plastids contain chlorophylland since their structure is the same, irrespectiveof the presence or absence of phycobilins, a singleterm-- chlor oplast- -shoul d be used to describeboth (Figs. 1, 6, and 7).A second objection to the term chromatophoreis that it has been applied to the vesicular pig-ment-bearing bodies present in bacteria (Schach-man et al., 14, and Vatter and Wolfe, 18), andhas become associated with these non-lamellarstructures.

    The chloroplast membrane is about 100 A thick(Fig. 1). Sections through the lamellar chloroplastin any direction show it to be stellate or amoeboidin shape. Its surface becomes more irregular asthe amount of floridean starch increases. Thefloridean starch grains (each of which is sur-rounded by a membrane) are located in the cyto-plasm in proximity to the chloroplast. (Figs. 1,4, and 7). In the Chlorophyeeae, on the otherhand, the starch is within the matrix of the chloro-plast (between the lamellae), or is associated witha specialized region called the pyrenoid. Althoug hin size and general appearance the floridean starchbodies are comparable to the starch grains foundwithin the chloroplasts of green algae, they differin their location and in the presence of a mem-brane.

    The central region of the chloroplast in Por-phyridium contains fewer lamellae than the restof the plastid. Th is region is referred to as thepyrenoid by Smith (15), who describes it as being"naked" that is, not surrounded by starch plates(Figs. 1, 6, and 7). In additio n, the pyrenoid ofPorphyridium differs in other respects from thatof other algae. In Chlamydomonas (Sager andPalade, 13), and Chlorella (Albertsson and Leyon,1) the pyrenoid shows a network of tubules era-

  • 7/28/2019 Cellular Structures of Porpbyridium Cruentum

    3/11

    M A R C I A B R O D Y A N D A L B E R T E . V A T T E R 291b e d d e d i n a m a t r i x o f d e n s e g r a n u l a r m a t e r i a l( p o s s ib l y t r a n s l o c a t io n p a t h s - - S a g e r a n d P a l a d e ,1 3 ) , w h i l e n o s u c h t u b u l e s h a v e b e e n f o u n d i nPorphyridium.I n Porphyridium, as in Chlorella a n d Chlamy-domonas, t h e m a t r i x o f t h e p y r e n o i d i s c o n t i n u o u sw i t h t h a t o f t h e c h l o r o p la s t . B u t t h e p y r e n o i d s o fChlamydomonas a n d Chlorella a r e n o t t r a v e r s e db y l a m e l l a e w h e re a s i n Porphyridium a f e w l a m e l -l a e d o p e n e t r a t e t h i s r e g i o n . T h e p y r e n o i d s o fEuglena ( W o l k e n a n d P a l a d e , 1 9 ) , Spirogyraa n d Closterium ( L e y o n , 8 ) h a v e b e e n r e p o r t e d t oc o n t a i n l a m e l l a e , b u t t h e s e a r e n o t d i s t r i b u t e d a st h e y a r e i n Porphyridium.

    P y r e n o i d s i n a l g a e a n d f l a g e l l a t e s a r e r e g a r d e da s o r g a n e l l e s c o n c e r n e d w i t h s t a r c h o r l i p i d es y n t h e s i s o r s t o r a g e . T h e r e i s n o e v i d e n c e t h a ts u c h m a t e r i a l s a r e s y n t h e s i z e d o r s t o r e d i n t h ec e n t r a l p a r t o f Porphyridium.

    T h e m u l t i l a m e l l a r s t ru c t u r e o f t h e Porphyri-dium c h l o r o p l a s t i s s i m i l a r t o t h a t f o u n d i n o t h e ra l g a e , a n d i n h i g h e r p l a n t s . T h e l a m e l l a e ( F i g . 1 )a r e s e p a r a t e d f r o m e a c h o t h e r b y a l e ss o p a q u em a t r i x o f f i n e g r a n u l a r t e x t u r e . I n t h e p r e s e n tw o r k t h e l a m e l l a e h a v e b e e n i n t e r p r e t e d a s c l o se dd o u b l e - m e m b r a n e s y s t e m s c o m p a r a b l e t o t h e" d i s c s " i n o t h e r a l g a e a n d h i g h e r p l a n t s ( c f .S a g e r a n d P a l a d e , 1 3 ). E a c h l a m e l l a i s c o m p o s e do f a p a i r o f o p a q u e m e m b r a n e s s e p a r a t e d b y al e s s o p a q u e r e g i o n a b o u t 5 0 A t h i c k , s o t h a t t h et o t a l t h i c k n e s s o f a l a m e l l a is a b o u t 1 50 A . T h ee n d s o f th e l a m e l l a e a r e n o t c o n t i n u o u s w i t h t h ec h l o r o p l a s t m e m b r a n e , a n d a d j a c e n t l a m e l l a e d on o t u n i t e t o f o r m a r e t i c u l u m , b u t g e n e r a l l y r e -m a i n e q u i d i s t a n t t h r o u g h o u t t h e i r l e n g t h . T h ee x t e n s i o n o f a l a m e l l a i n i ts p l a n e ( i t s " d i a m e t e r " )v a r i e s f r o m < 1 # t o > 3 # , b u t t h e l a m e l l a e a r en o t c i r c u l a r . I n a d d i t i o n t o b e i n g w a r p e d a n di n v o l u t e d i n t h e i r t h i r d d i m e n s i o n , t h e i r c i r c u m -f e r e n c e i s i r r e g u l a r .

    I n m a n y r e g i o n s o f t h e c h l o r o p l a s t t h e l a m e l l a ea r e s t a c k e d i n u n d i s t o r t e d p i l e s , w h e r e a s i n o t h e rr e g i o n s p o r t i o n s o f t h e s a m e l a m e l l a , o r o f o t h e rl a m e l l a e , a r e c o n t o r t e d , f r e q u e n t l y f o l l o w i n g t h eg e n e r a l s u r f a c e c o n f i g u r a t i o n o f t h e p l a s t i d .W i t h i n t h e c h l o r o p l a s t o f Porphyridium ( a n dm a n y o t h e r a l g a e - - S a g e r an d P a l a d e , 1 3) a r es m a l l o p a q u e s t r u c t u r e s ( F i g s . 1 a n d 6 ) a b o u t 0 . 1t o 0 .3 ~ i n d i a m e t e r t h a t l i e b e t w e e n , a n d a l s oo v e r l a p , t h e l a m e l l a e a n d t h a t , j u d g i n g f r o m t h e

    d a r k e n i n g e f f e c t o f f i x a t i o n , a r e p r e s u m a b l yl i p i d e i n n a t u r e .

    Th e nuc leu s (F igs . 4 , 5 , and 12) i s a sma l l ,i r r e g u l a r l y e l l i p s o i d a l b o d y r a n g i n g f r o m 1 .5 t o2 . 5 # i n d i a m e t e r a n d f r o m a b o u t 0 .7 5 t o 1 .5i n t h i c k n e s s . A s i n o t h e r c e l l s , t h e n u c l e u s i ss u r r o u n d e d b y a m e m b r a n e a n d c o n t a i n s a g r a n u -l a r n u c l e o p l a s m . I t i s e c c e n t r i c , u s u a l l y b o u n d e do n i t s i n n e r s id e b y t h e c h l o r o p l a s t a n d s e p a r a t e do n i t s o u t e r s i d e f r o m t h e c e l l m e m b r a n e b y at h i n l a y e r o f c y t o p l a s m , a n d i s e n c l o s e d i n ad i s t i n c t m e m b r a n e ( F i g . 4 ) a b o u t 1 00 A t h i c k .C h r o m o s o m e s h a v e n o t y e t b e e n i d e n t if i e d i n t h en u c l e u s , b u t t h e n u c l e o l u s i s c l e a r l y r e c o g n i z -a b l e a s e l l i p s o i d a l , a b o u t 0 . 5 ~ i n d i a m e t e r , m o r eo p a q u e t h a n t h e r e s t o f t h e n u c l e u s , a n d g e n e r a l l ya p p r e s s e d t o t h e i n n e r w a l l o f t h e n u c l e u s ( F i g s .4, 5 , and 12).T h e e c c e n t r i c i t y o f t h e n u c l e u s w a s c o n f i r m e db y l i g h t m i c r o s c o p y , u s i n g F e u l g e n t e c h n i q u e(cf. F i g . 8 a n d t h e s e c t i o n o n M a t e r i a l s a n dM e t h o d s ) . I n n o i n s t a n c e w e r e t h e s t a i n e d n u c l e ic e n t r a l l y l o c a t e d .

    L a r g e , o p a q u e , s p h e r i c a l i n c l u s i o n s , 0 . 5 t o 1 #i n d i a m e t e r , a r e l o c a t e d p e r i p h e r a l l y i n t h e c y t o -p l a s m ( F i g s . 4 a n d 6 ) a n d a r e e n c l o s e d b y t h i nm e m b r a n e s . T h e y m a y b e s t o r a g e s t r u c t u r e sc o n t a i n i n g p r o t e i n s o r o t h e r s u b s t a n c e s .

    F r o m o b s e r v a t i o n s i n t h e l i g h t m i c r o s c o p e w i t hw h i t e l i g h t ( F i g . 9 ) , n o c o n c l u s i o n s c o u l d b ed r a w n c o n c e r n i n g t h e r e l a t i v e l o c a t i o n o f t h ep h y c o b i l i n s a n d c h l o r o p h y l l . H o w e v e r , s i n c e t h ea b s o r p t i o n m a x i m a o f c h l o r o p h y l l a n d p h y c o -e r y t h r i n a r e s o w i d e l y s e p a r a t e d - - 6 8 0 a n d 5 45m / a, r e s p e c t i v e l y - - i n t e r f e r e n c e f i l te r s c a n b e u s e dt o s h o w t h e i r l o c a t i o n i n t h e c e l l . S p e c t r a l b a n d si n t h e r e g i o n o f t h e m a x i m a w e r e i s o l a t e d f r o mt u n g s t e n l a m p l i g h t u s in g p a r a l l e l r a y s a n d a p -p r o p r i a t e F a r r a n d i n t e r f e r e n c e f i l t e r s , a n d F i g s .9 t o 1 1 s h o w t h e s a m e f i e ld o f ce l l s p h o t o g r a p h e di n w h i t e , g r e e n , a n d r e d l i g h t r e s p e c t i v e l y .

    P r o p e r l y c o r r e l a t e d , d e t e r m i n a t i o n s m a d e i nt h e l i g h t m i c r o s c o p e o f t h e s h a p e a n d p o s i t i o no f t h e c h l o r o p l a s t c o r r e s p o n d t o t h o s e m a d e i nt h e e l e c t r o n m i c r o s c o p e . I n t h e l i g h t m i c r o s c o p et h e p y r e n o i d a p p e a r e d a s a r e g i o n o f l e s s e r p i g -m e n t a t i o n t h a n t h e b o d y o f t h e c h l o r o p l a s te n c l o s i n g i t . W h e n e q u a t o r i a l s e c t i o n s o f c e l l sw e r e e x a m i n e d i n t h e e l e c t r o n m i c r o s c o p e , t h ep y r e n o i d w a s s h o w n t o b e a r e g i o n o f l o w l a m e l -l a r d e n s i t y , w h i l e t h e r e m a i n d e r o f t h e c h l o r o p l a s t

  • 7/28/2019 Cellular Structures of Porpbyridium Cruentum

    4/11

    2 9 2 C E L L U L A R S T R U C T U R E S O F P O R P H Y R I D I U Mw a s d e n s e l y f i l l e d w i t h l a m e l l a e . S i n c e t h e l i g h tm i c r o s c o p e s h o w s t h e l a t t e r t o b e a r e g i o n o fh i g h p i g m e n t a t i o n i n b o t h g r e e n a n d r e d l i g h t , i ti s i n f e r r e d t h a t t h e w a t e r - s o l u b l e , a s w e l l a s f a t -s o l u b le p i g m e n t s , a r e l o c a t e d i n t h e l a m e l l a r p a r to f t h e c h l o r o p l a s t .

    L a m e l l a r s t r u c t u r e h a s l o n g b e e n a s s o c i a t e dw i t h t h e p r e s e n c e o f c h l o r o p h y l l i n a l l i n v e s t i g a t e da l g a e a n d h i g h e r p l a n t s ( H u b e r t , 7 ; W o l k e n a n dS c h w e r t z , 2 0 ; H o d g e , et al . , 6 ) . R e c e n t l y G o e d -h e e r ( 5 ) c o n c l u d e d f r o m h i s e x p e r i m e n t s o nd i c h r o i s m , a n o m a l o u s d i s p e r s i o n o f b i r e f r i n g e n c e ,a n d f l u o r e s c e n c e p o l a r i z a t i o n , t h a t c h l o r o p h y l lf o r m s a m o n o l a y e r a b o u t 4 A t h i c k a t t h e l a m e l l a rsu r face .

    I n o r d e r f o r r e s o n a n c e t r a n s f e r o f e x c i t a t i o ne n e r g y b e t w e e n t h e f a t - a n d w a t e r - s o l u b l e p i g -m e n t s t o b e e f f i c i e n t , t h e i r s e p a r a t i o n m u s t b e o ft h e o r d e r o f 5 0 A - - a b o u t 0 . 0 1 o f a w a v e l e n g t h( F o r s t e r , 4 ) , s o t h a t t h e d i s t r i b u t i o n o f t h e p h y c o -b i l i n s i s l i m i t e d t o t h e l a m e l l a r o r t h e a d j a c e n ti n t e r l a m e l l a r m a t r i x . S i n ce t h e m a t r i x o f t h ep y r e n o i d a n d t h e i n t e r l a m e l l a r m a t r i x a p p e a r st o b e c o n t i n u o u s , t h e r e l a t i v e l y l o w c o n c e n t r a -t i o n o f p h y c o b i l i n s i n t h e p y r e n o i d ( c o m p a r e d t ot h e h i g h e r c o n c e n t r a t i o n i n t h e r e m a i n d e r o f t h ep l a s t i d ) s u g g e s t s t h a t t h e p h y c o b i l i n s a r e a s s o -c i a t e d w i t h t h e l a m e l l a e . I n s t u d i e s o f t h e e f f e c to f h i g h i n t e n s i t y l i g h t o n P o r p h y r i d i u m cells ,i t w a s f o u n d t h a t t h e p a r a l l e l a r r a n g e m e n t o f t h el a m e l l a e w a s n o l o n g e r e v i d e n t , d u e t o t h e f o r m a -t i o n o f v a r i o u s v a c u o l e s i n t h e i n t e r l a m e l l a rm a t r i x ( F i g . 1 2 ). T h e s e n s i t i z a t i o n t o p h o t o -s y n t h e s i s b y e i t h e r c h l o r o p h y l l o r p h y c o b i l i n swas a s e f f ic ien t in these ce l l s , where the pa ra l le la r r a n g e m e n t o f t h e l a m e l l a e w a s d i s r u p t e d , a si t w a s i n c e l l s g r o w n i n l i g h t o f l o w e r i n t e n s i t i e s ,i n w h i c h t h e l a m e l l a e w e re p a r a l l e l l y a r r a n g e d .T h e s e p o i n t s s u g g e s t t h a t t h e p h y c o b i l i n s , a sw e l l a s c h l o r o p h y l l , a r e p o s i t i o n e d i n t h e l a m e l l a e ,r a t h e r t h a n b e i n g l o c a t e d i n t h e i n t e r l a m e l l a rm a t r i x .

    C e l l s g r o w n i n h i g h i n t e n s i t y l i g h t ( F i g . 1 2 )c o n t a i n g r e a t e r n u m b e r s o f s t a r c h g r a i n s a n ds h o w a h i g h d e g r e e o f v a c u o l i z a t i o n i n t h e i n t e r -l a m e l l a r m a t r i x ; v a c u o l i z a t i o n a l s o s e e m s t oa f f e c t t h e d i sc s , b u t t o a l e s s e r e x t e n t . T h e n u m -

    b e r o f l a m e l l a e ( p e r s e c t i o n ) i s l o w e r t h a n i nc e l ls g r o w n i n l o w i n t e n s i t y l i g h t . T o d e t e r m i n ew i t h c e r t a i n t y i f p i g m e n t c o n c e n t r a t i o n i s a l s or e d u c e d r e q u i r e s s p e c i a l s t u d i e s s u c h a s t h e w o r ko f T h o m a s et al. (17).

    I n " h i g h l i g h t " c e l l s , t h e p y r e n o i d r e g i o n r e -m a i n s r e l a t i v e l y i n t a c t ; t h e n u c l e u s a n d c e r t a ino t h e r c o m p o n e n t s a r e n o t g r o s s l y a f f e c t e d ; t h ec y t o p l a s m o u t s i d e t h e c h l o r o p l a s t b e c o m e s ar e t i c u l u m s e p a r a t i n g t h e n u m e r o u s s t a r c h g r a i n sa n d v a c u o l e s .

    BIBLIOGRAPHY1. Albertsson, P., and Leyon, H., Exp . Cal l Research,1954, 7, 288.2 . Brody, M., and Emerson, R. , in preparation.3 . Dalton, A. , and Felix , M., J . Biophysic. and Bio-

    chem. Cytol., 1956, 2, 79.4. Forster, T., Fluoreszenz Organisher Verbindungen,Gott ingen , Vandenhoeck and R uprech t, 1951, 83.5 . Goedheer, J , C. , Optical Propert ies and in VivoOrientation of Photosynthetic Pigments , Thesis ,Universi ty of Utrecht, 1957.6 . Hodge, A. , Branster , M. , Martin , E. , Morton, R. ,McLean, J . , and Mercer, F., J . B iophysic. andBiochem. Cytol . , 1956, $, 597.7 . Hubert , B., Rec. tray. bot. need., 1936, 32, 323 .8. Leyon, H., Exp . Cel l Research, 1936, 6, 497.9 . Mayer, A. , Internat. Monatschr. Anat., 1887, 4, 42.10. Palade, G. E . , J . E xp . M ed . , 1952, 95, 285.11. Palade, G. E. , and Porter , K. R . , J . E xp . M ed . ,1954, 100, 641.

    12. Porter, K. R . , J . E xp . M ed . , 1953, 97, 727.13. Sager, G., and Palade, G. E ., J . B iophysic. andBiochem. Cytol . , 1957, 3, 463.14. Schachman, H. K. , Pardee, A. B. , and Stainier , R. ,Arch. Biochem., 1952, 38, 245.15. Smith , G. , The F resh Wa ter A lgae of the UnitedStates, New York, M cGraw -Hill, 1950, 493.16. Swift, H., N ucleic Acids, (E. C hargaff and J.Davidson, ed itors) , New York, Academic Press ,Inc., 1955, 2, 91.17. Thomas, J . B. , Minnaert , K. , and Elbers , P . F . ,A cta B o t . Need . , 1956, 5, No. 4, 315.18. Vatter , A. E. , and W olfe , R. S., J. Bacteriol., 1958,75, No. 4, 480.19. Wolken, J . , and Palade, G. , A nn . New York A cad .Sc., 1953, 56, 873.20. Wolken, J., and Schwertz, F., J. Gen. Physiol., 1953,37 , 111.

  • 7/28/2019 Cellular Structures of Porpbyridium Cruentum

    5/11

    M A R C I A B R O D Y A N D A L B E R T E . V A T T E R 29 3

    c m , c e l l me mb ra n e .d , d i c t y o so me .er , e n d o p l a smi c re t i c u l u m.f s , f lo ridean s tarch .I n , l a rge opaque inc lusion , p robably funct ion ing as a

    p ro t e i n s t o ra g e s t ru c t u re .l , l amel la .n , nucleus.

    EXPLANATION OP PLATESA b b r e v i a t i o n s

    r i m , n u c l e a r me mb ra n e .n u , nucleolus.o , smal l opaqu e inclusions, p roba bly l ip ide in nature .p , ch loroplast .p m , c h l o ro p l a s t me mb ra n e .p y , p y re n o i d .s h , sheath .

  • 7/28/2019 Cellular Structures of Porpbyridium Cruentum

    6/11

    294 C E L L U L A R S T R U C T U R E S O F P O R P H Y R I D I U 1 V [

    P L A T E 1 2 1F I G . i . E l e c t r o n m i c r o g r a p h o f a m e d i a n s e c t i o n t h r o u g h a c e l l g r o w n i n w h i t e l i g h t o f l o w i n t e ns i t y , c m , c e l l

    m e m b r a n e ; er , e n d o p l a s m i c r e t i c u l um ; f s , f l o r i d e a n s t a r c h ; l , l a m e l l a ; o , s m a l l o p a q u e i n c l u s i o n s , p r o b a b l y l i p i d ei n n a t u r e ; p , c h l o r o p l a s t ; p r o , c h l or o p la s t m e m b r a n e ; p y , p y r e n o i d ; s h , s h e a t h . X 3 0 , 0 0 0 .

    F I G . 2 . L i g h t m i c r o g r a p h o f ce l ls r o w n i n w h i t e l i g h t o f h i g h i n t e ns i t y, t a i n e d to s h o w t h e s h e a t h, s h . X 1 , 0 0 0 .F i o . 3. E l e ct r o n m i c r o g r a p h o f c e ll s r o w n i n w h i t e l i g h t o f m e d i u m i n t en s i ty . N o t e t h e f ib ri ll ar a t u r e o f t h e

    s h e a t h , s h . > 1 8 , 0 0 0 .

  • 7/28/2019 Cellular Structures of Porpbyridium Cruentum

    7/11

    THE JOURNAL OFBIOPHYSIC~ AND BIOCHEMIC~CYTOLOGY

    PLATE 121VOL. 5

    (Brody and Vatter: Cellular structures of Porphyridium)

  • 7/28/2019 Cellular Structures of Porpbyridium Cruentum

    8/11

    PLATE 122FIG. 4. Elec tron micrograph of par t of a ce ll , f rom a culture grown in white l ight of low intensi ty. Note nucleus ,

    n, with dis t inc t nuclear membrane , nm ; nucleolus, nu ; dic tyosome, d; endoplasmic re t iculum, er; f lor idean s tarchj 's ; large opaque inc lus ion, probably functioning as a pro te in s torage s truc ture , In . X 35,000.

    FIG. 5. Elec tron micrograph of a port ion of a ce l l , f rom a culture grown in white l ight of medium intensi ty.Note prominent dic tyosome, d; f lor idean s tarch, fs ; nucleus , n; and nucleolus , nu . X 35,000.

    FIG. 6 . Elec tron micrograph of ce l l grown in white l ight of medium intensi ty. Note la rge opaque inc lus ion,In , which is probably prote inaceous in na ture ; f lor idean s tarch, fs ; and small opaque inc lus ion, probably l ipidein na ture , o. Compare densely lamellar chloroplas t , p, with centra l ly loca ted pyrenoid, py , which has few lamellae.X 21,000.

    FIG. 7. Elec tron micrograph of ce l l grown in white l ight of medium intensi ty. Note especia l ly the membranearound the gra in of f lor idean s tarch, fs ; chloroplas t , p; pyrenoid, py . X 21,000.

  • 7/28/2019 Cellular Structures of Porpbyridium Cruentum

    9/11

    THE JOURNAL OFB I O P H Y S I C A L A N D B I O C H E M I C A L

    CYTOLOGYPLATE 122VOL. 5

    (Brody and Vatter: Cellular structures of Porphyridito~z)

  • 7/28/2019 Cellular Structures of Porpbyridium Cruentum

    10/11

    PLATE 123FIG. 8. Light micro graph of Feulgen-s ta ined cel ls . Two of the ce l ls show the eccentr ic nucleus , n; th e thir d ce l l

    is rota ted so tha t i ts nucleus is hidden. 2,000.FI 6 . 9 to 11. Light micrograph of ce l ls grown in white l ight of low intensi ty. Each of the three f igures show the

    same f ie ld of ce l ls . The photograph in Fig. 9 was taken with white l ight f rom a tungsten source ; tha t in Fig. 10,was taken with a narrow band of green l ight , t ransmit ted by an interference f i l te r , and absorbed pr imari ly byphyc oe ry thr in ; the photogra ph in F ig . 11 was t a ke n w i th a na r row ba nd of re d l igh t, t r a nsm i t t e d by a n in te r -ference f i l te r , and absorbed pr imari ly by chlorophyll . Note tha t the phycoerythr in and chlorophyll a re both re-s tr ic ted to the chloroplas t , p. 1,800.

    FIG. 12. Elec tron micrograp h of ce lls grown in wh ite l ight of high intensi ty. N ote high degree of vacuoliza t ion,many gra ins of f lor idean s tarch, f s , and especia l ly, lack of para l le l a rrangement of lamellae in the chloroplas t , p.n, nucleus; nu , nucleolus. X 10,000.

  • 7/28/2019 Cellular Structures of Porpbyridium Cruentum

    11/11

    THE JOURNAL OFBIOPHYSICAL AND BIOCHEMICALCYTOLOGY

    PLATE 123VOL. 5

    (Brody and Vatter: Cellular structures of Porphyridium)