Catalogue Sisvar en V4

download Catalogue Sisvar en V4

of 82

Transcript of Catalogue Sisvar en V4

  • 7/30/2019 Catalogue Sisvar en V4

    1/82

    Low Voltage oerPower Factor Correction and harmonic fltering

    Catalog2009

  • 7/30/2019 Catalogue Sisvar en V4

    2/82

    Contents

    Chapter 1

    Discover Energy Efciency p. 1

    Chapter 2

    Reactive energy p. 2

    The basis p. 3

    Energy Eficiency wit Power Factor Correction p. 5

    Practical calculation of an installation p. 6

    Reactive energy correction in an electrical installation p. 8

    Power Factor Correction type: xed or automatic p. 10

    Chapter 3

    How to select power actor correction devices p. 15

    General information about armonics p. 16

    Causes and effects of armonics p. 18

    Coosing power factor correction devices p. 20

    Coosing te frequency of detuned reactors p. 22

    Chapter 4

    Capactors p. 24

    Chapter 5

    Detuned reactors p. 40

    Chapter 6

    Power actor controllers p. 45

    Chapter 7Power actor correction modules p. 50

    Chapter 8

    Power actor correction solutions p. 60

    Chapter 9

    Filtering solutions p. 78

  • 7/30/2019 Catalogue Sisvar en V4

    3/82

    What do we call Energy Efciency ?

    P.1

    >

    Energy Efciency: a common concern!

    As electricity is te major contributor to greenouse gases, Energy Efciency is now a common concern for of allactors in te market.Reduce electricity consumption and costs and improve power quality and availability are now growing demands, moreparticularly due to: te commitment of many industrialised countries to reduce teir collective emissions of greenouse gases as wellas te implementation of local regulations and incentive scemes te increasing use of electronic devices leading to power quality issues and energy consumption rise

    Energy Efciency thanks to power actor correction

    Implementing power factor correction and armonic ltering solutions enable to: reduce your electricity bill increase available power reduce te impacts of armonics

    Moreover, energy savings produced by power factor correction elp protecting te environment by reducing CO2emissions related to power generation.

    Achieve more with a successul optimization

    Tere are tree steps for a successful optimization of your installation: measure and/or gater te electrical network data understand, establis diagnostic and decide te corrective action to be taken act, clean up, correct power factor, install backup networks

    In any case, te most important factor is to correct and monitor over time te effectiveness of te solution.

    Reduction o energy consumption

    CO2

    emissions savings

    Improvement o power quality

    1

  • 7/30/2019 Catalogue Sisvar en V4

    4/82

    Reactive energy

    The basis p. 3

    Energy Eficiency with Power Factor Correction p. 5

    Practical calculation o an installation p. 6

    Reactive energy correction in an electrical installation p. 8

    Power Factor Correction type: fxed or automatic p. 10

  • 7/30/2019 Catalogue Sisvar en V4

    5/82

    PM

    V

    I

    P

    Fig. 2a: power ow in an installation where

    cosine = 0.78

    Fig. 2b: power ow in an installation where

    cosine = 0.98

    P.3

    PM

    V

    I

    P

    Fig. 1: reactive energy is consumed between

    the inductive loads and the source

    Fig. 3: cosine as a representation of the

    electrical efciency of an installation

    The basis

    The nature o energy

    Active energyAll electrical devices powered by AC current convert te electrical energy supplied intomecanical work and eat.Tis energy is measured in kW and is called active energy. Te loads absorbing onlytis type of energy are called resistive loads.

    Reactive energy

    Some loads require magnetic fields to operate (motors, transformers, etc.) andconsume anoter type of energy called reactive energy.Tis can be explained as follows: tese loads (called inductive loads) absorb energyfrom te network wen te magnetic fields required to operate tem are generated andtey discarge it wen tese fields are destroyed.Tis transfer of energy between te loads and te source (fig. 1) causes voltage lossesand drops in conductors and terefore consumption of extra energy tat cannot bedirectly used by loads.

    Power low in an installation

    Te available power output of an installation increases indirectly as cosine increases.Te instantaneous power of an installation consists of two components: te oscillatingpower wose frequency is twice te fundamental frequency and te average power(Pm = VI cos ), wic represents te output or active power of te installation andwic is constant.Fig. 2 sows tat te more te cos of an installation increases (and te closer it is to1), te greater te average power of te installation.

    Power actor (Cosine)

    The presence of inductive loads in an installation causes a pase sift between tecurrent wave and te voltage.Te angle represents tis pase sift and gives te ratio between te reactive current(inductive) of an installation and its active current.Te same ratio exists between te active and reactive energies or powers.Te cosine terefore indicates te ratio between te active and apparent power ofte installation (te maximum number of kVA tat it can use).Tat is wy cosine indicates te electrical efficiency of an installation (fig. 3).

    S

    Q

    P

    cosj = P/S

    j

    2

    Q (kVAr)

    S = P + Q

    (kVA)

    P (kW)

    M M A

  • 7/30/2019 Catalogue Sisvar en V4

    6/82

    The basis (continued)

    Practical calculation of reactive power

    Calculations in te tree-pase example were as follows: Pn = power supplied to te rotary axis = 51 kW P = active consumed power = Pn/ = 56 kW

    S = apparent power = P/cos = P/0.86 = 65 kVAence:Q = (S2 + P2) = (652 +562)6 = 33 kVAr

    Te average power factor values for various loads are given below.

    Power factor of te most common loads

    P. 4

    Type of circuit Apparent power S (kVA) Active power P (kW) Reactive power Q (kVAr)

    Single-pase (P + N)Single-pase (P + P)

    S = V x IS = U x I

    P = V x I x cos P = U x I x cos

    P = V x I x sin P = U x I x sin

    Example:5 kW loadCos = 0.5

    10 kVA 5 kW 8,7 kVAr

    Tree-pase (3 P or 3 P+ N)

    S = 3 x U x I P = 3 U I cos Q = 3 U I sin

    Device Load Cos Tan

    Ordinary asyncronous motor 0 % 0.17 5.8

    25 % 0.55 1.52

    50 % 0.73 0.94

    75 % 0.8 0.75

    100 % 0.85 0.62

    Incandescent lamps 1 0

    Fluorescent lamps 0.5 1.73

    Discarge lamps 0.4 0.6 2.29 1.33

    Resistance furnaces 1 0

    Induction furnaces 0.85 0.62

    Dielectric eating furnaces 0.85 0.62

    Resistance welding macine 0.8 0.9 0.75 0.48

    Single-pase static arc-welding centres 0.5 1.73

    Rotary arc-welding sets 0.7 0.9 1.02

    Arc-welding transformers/rectiers 0.7 0.9 1.02 0.75Arc furnaces 0.8 0.75

    Fig. 4: cos of the most commonly-used devices

  • 7/30/2019 Catalogue Sisvar en V4

    7/82

    Increased available power

    A ig power factor optimises te components of an electrical installation by increasing

    teir electrical efficiency.Installing capacitors reduces reactive energy consumption between te source and teloads.Te capacitors supply reactive energy by discarging into te installation from teirupstream connection point.Te power available at te secondary of an MV/LV transformer can terefore beincreased by fitting a power factor correction device in te low voltage part.Te table in figure 5 sows te increased active power (kW) tat can be supplied by atransformer by correcting te power factor up to cos = 1.

    P.5

    Fig.5: increase in the power available at a

    transformer secondary according to the cos ofthe load

    Fig. 6: multiplying factor for the conductor cross-

    section according to the cos of the installation

    Fig. 7: loss reduction due to the Joule effect.

    Initial cos Increased availablepower

    1 0 %

    0.98 + 2.0 %

    0.95 + 5.2 %

    0.90 + 11.1 %

    0.85 + 17.6 %

    0.80 + 25 %

    0.70 + 42.8 %

    0.65 + 53.8 %

    0.50 + 100 %

    Initial cos Cable cross-sectionmultiplying factor

    1 1

    0.80 1.25

    0.60 1.67

    0.40 2.50

    Smaller conductor cross-section

    Installing a power factor correction device in an installation allows te cross-section

    of te conductors to be reduced, as less current is output from te compensatedinstallation for te same active power.Te table in figure 6 sows te multiplying factor for te cross-section of te conductoraccording to te cos of te installation.

    Reduced losses

    Reduced Joule effect lossesInstalling capacitors allows te Joule effect losses to be reduced (temperature rise) inte conductors and transformers.Te meter records tese losses as consumed energy (kW).Te losses are proportional to te square of te current.

    Te following formula can be used to determine te loss reduction according to te cos of te installation:

    Final losses = (initial cos )Initial losses final cos

    Example:Loss reduction in a 630 kVA transformer, Pcu = 6,500 W wit an initial cos of 0.7.Wen by power factor correction, we obtain final cos = 0.98, te new losses become:3.316 W.

    Reduced voltage drops

    Installing capacitors allows te voltage drops to be reduced upstream of te pointwere te power factor correction device is connected.

    0 %

    10 %

    20 %

    30 %

    40 %

    50 %

    60 %

    70 %

    80 %

    0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1

    REDUCTION DES PERTES QUAND COS = 1

    RED

    UCTIONDESPERTES(%)

    COS INITIAL

    2Energy efciency with Power Factor Correction

    LOSSES REDUCTON WhEN COS = 1

    LO

    SSESREDUCTONWhENCOS=1

  • 7/30/2019 Catalogue Sisvar en V4

    8/82

    P.6

    Calculation or an electrical installation

    General metodFrom te data supplied by te manufacturers of te various loads, suc as te active power, load factor, cos , etc.and if te simultaneity factor of eac load in te installation is known, te levels of te active and reactive powerconsumed trougout te installation can be determined.

    Simplified metodA simplified metod of calculating te power factor correction requirements of an installation can be used providedtat te following data is known: te initial average cos , te cos required, te average active power of te installation.

    Tis data can be obtained: by calculation, as indicated for te general metod by estimation, according to te installed powerTey are used to perform te calculation wit te elp of te table.

    Calculation using te table

    Example:Calculation of te reactive power required to compensate te following installation: P = 500 kW, initial cos = 0.75, cos required = 0.98.From te table on te next page, we obtain a factor = 0.679.Multiplying tis factor by te active power of te installation (500 kW) gives te reactive power to be installed:Q = 500 x 0.679 = 340 kVAr

    Fig. 8: graphical representation of the calculation table (next page)

    From measurements

    Take several measurements downstream of te main circuit breaker wit te installation under normal loadconditions.Measure te following data: active power (kW), inductive power (kVAr), cos .From tis data, coose te average cos of te installation and ceck tis value in te most unfavourable situation.

    Cos cos to be obtained

    0,9 0,92 0,94 0,96 0,98 1

    0,4 1,805 1,861 1,924 1,998 2,085 2,288

    0,45 1,681 1,784 1,988

    0,5 1,248 1,529 1,732

    0,55 1,035 1,316 1,519

    0,6 0,849 1,131 1,334

    0,65 0,685 0,966 1,169

    0,7 0,536 0,811 1,020

    0,75 0,398 0,453 0,519 0,591 0,679 0,882

    0,8 0,266 0,321 0,387 0,459 0,541 0,750

    0,85 0,02 0,191 0,257 0,329 0,417 0,620

    0,9 0,058 0,121 0,192 0,281 0,484

    Q = P factorQ = P 0,679

  • 7/30/2019 Catalogue Sisvar en V4

    9/82

    Calculation or an electrical installation (continued)

    From te power in kW and te cos of te installation

    Te table gives a coefficient, according to te cos of te installation before and after power factor correction.

    Multiplying tis figure by te active power gives te reactive power to be installed.

    P.7

    Avant la Puissance du condensateur en kVAr installer pa kW de charge, pour lever le facteur de puissance

    compensation (cos ou tg) une valeur donne

    tg cos tg 0,75 0,59 0,48 0,45 0,42 0,39 0,36 0,32 0,29 0,25 0,14 0,00

    cos 0,8 0,86 0,9 0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,99 1

    2,29 0,40 1,541 1,698 1,807 1,836 1,865 1,896 1,928 1,963 2,000 2,041 2,149 2,291

    2,22 0,40 1,475 1,631 1,740 1,769 1,799 1,829 1,862 1,896 1,933 1,974 2,082 2,225

    2,16 0,42 1,41 1 1,567 1,676 1,705 1735 1,766 1,798 1,832 1,869 1,910 2,018 2,161

    2,10 0,43 1,350 1,506 1,615 1,644 1,674 1,704 1,737 1,771 1,808 1,849 1,957 2,100

    2,04 0,44 1,291 1,448 1,557 1,585 1,615 1,646 1,678 1,712 1,749 1,790 1,898 2,041

    1,98 0,45 1,235 1,391 1,500 1,529 1,559 1,589 1,622 1,656 1,693 1,734 1,842 1,985

    1,93 0,46 1,180 1,337 1,446 1,475 1,504 1,535 1,567 1,602 1,639 1,680 1,788 1,930

    1,88 0,47 1,128 1,285 1,394 1,422 1,452 1,483 1,515 1,549 1,586 1,627 1,736 1,878

    1,83 0,48 1,078 1,234 1,343 1,372 1,402 1,432 1,465 1,499 1,536 1,577 1,685 1,8281,78 0,49 1,029 1,186 1,295 1,323 1,353 1,384 1,416 1,450 1,487 1,528 1,637 1,779

    1,73 0,5 0,982 1,139 1,248 1,276 1,306 1,337 1,369 1,403 1,440 1,481 1,590 1,732

    1,69 0,51 0,937 1,093 1,202 1,231 1,261 1,291 1,324 1,358 1,395 1,436 1,544 1,687

    1,64 0,52 0,893 1,049 1,158 1,187 1,217 1,247 1,280 1,314 1,351 1,392 1,500 1,643

    1,60 0,53 0,850 1,007 1,116 1,144 1,174 1,205 1,237 1,271 1,308 1,349 1,458 1,600

    1,56 0,54 0,809 0,965 1,074 1,103 1,133 1,163 1,196 1,230 1,267 1,308 1,416 1,559

    1,52 0,55 0,768 0,925 1,034 1,063 1,092 1,123 1,156 1,190 1,227 1,268 1,376 1,518

    1,48 0,56 0,729 0,886 0,995 1,024 1,053 1,084 1,116 1,151 1,188 1,229 1,337 1,479

    1,44 0,57 0,691 0,848 0,957 0,986 1,015 1,046 1,079 1,113 1,150 1,191 1,299 1,441

    1,40 0,58 0,655 0,81 1 0,920 0,949 0,969 1,009 1,042 1,076 1,113 1,154 1,262 1,405

    1,37 0,59 0,618 0,775 0,884 0,913 0,942 0,973 1,006 1,040 1,077 1,118 1,226 1,368

    1,33 0,6 0,583 0,740 0,849 0,878 0,907 0,938 0,970 1,005 1,042 1,083 1,191 1,333

    1,30 0,61 0,549 0,706 0,815 0,843 0,873 0,904 0,936 0,970 1,007 1,048 1,157 1,299

    1,27 0,62 0,515 0,672 0,781 0,810 0,839 0,870 0,903 0,937 0,974 1,015 1,123 1,265

    1,23 0,63 0,483 0,639 0,748 0,777 0,807 0,837 0,873 0,904 0,941 1,982 1,090 1,233

    1,20 0,64 0,451 0,607 0,716 0,745 0,775 0,805 0,838 0,872 0,909 0,950 1,058 1,201

    1,17 0,65 0,419 0,672 0,685 0,714 0,743 0,774 0,806 0,840 0,877 0,919 1,027 1,169

    1,14 0,66 0,388 0,639 0,654 0,683 0,712 0,743 0,775 0,810 0,847 0,888 0,996 1,138

    1,11 0,67 0,358 0,607 0,624 0,652 0,682 0,713 0,745 0,779 0,816 0,857 0,996 1,108

    1,08 0,68 0,328 0,576 0,594 0,623 0,652 0,683 0,715 0,750 0,878 0,828 0,936 1,078

    1,05 0,69 0,299 0,545 0,565 0,593 0,623 0,654 0,686 0,720 0,757 0,798 0,907 1,049

    1,02 0,7 0,270 0,515 0,536 0,565 0,594 0,625 0,657 0,692 0,729 0,770 0,878 1,020

    0,99 0,71 0,242 0,485 0,508 0,536 0,566 0,597 0,629 0,663 0,700 0,741 0,849 0,992

    0,96 0,72 0,214 0,456 0,480 0,508 0,538 0,569 0,601 0,665 0,672 0,713 0,821 0,964

    0,94 0,73 0,186 0,427 0,452 0,481 0,510 0,541 0,573 0,608 0,645 0,686 0,733 0,794 0,936

    0,91 0,74 0,159 0,398 0,425 0,453 0,483 0,514 0,546 0,580 0,617 0,658 0,706 0,766 0,909

    0,88 0,75 0,739 0,882

    0,86 0,76 0,105 0,343 0,371 0,400 0,429 0,460 0,492 0,526 0,563 0,605 0,652 0,713 0,855

    0,83 0,77 0,079 0,316 0,344 0,373 0,403 0,433 0,466 0,500 0,537 0,578 0,626 0,686 0,829

    0,80 0,78 0,052 0,289 0,318 0,347 0,376 0,407 0,439 0,574 0,51 1 0,552 0,559 0,660 0,802

    0,78 0,79 0,026 0,262 0,292 0,320 0,350 0,381 0,413 0,447 0,484 0,525 0,573 0,634 0,776

    0,75 0,8 0,235 0,266 0,294 0,324 0,355 0,387 0,421 0,458 0,449 0,547 0,608 0,750

    0,72 0,81 0,209 0,240 0,268 0,298 0,329 0,361 0,395 0,432 0,473 0,521 0,581 0,724

    0,70 0,82 0,183 0,214 0,242 0,272 0,303 0,335 0,369 0,406 0,447 0,495 0,556 0,698

    0,67 0,83 0,157 0,188 0,216 0,246 0,277 0,309 0,343 0,380 0,421 0,469 0,530 0,672

    0,65 0,84 0,131 0,162 0,190 0,220 0,251 0,283 0,317 0,354 0,395 0,443 0,503 0,646

    0,62 0,85 0,105 0,135 0,164 0,194 0,225 0,257 0,291 0,328 0,369 0,417 0,477 0,620

    0,59 0,86 0,079 0,109 0,138 0,167 0,198 0,230 0,265 0,302 0,343 0,390 0,451 0,593

    0,56 0,87 0,053 0,082 0,111 0,141 0,172 0,204 0,238 0,275 0,316 0,364 0,424 0,567

    0,53 0,88 0,029 0,055 0,084 0,114 0,145 0,177 0,21 1 0,248 0,289 0,337 0,397 0,5400,51 0,89 0,028 0,057 0,086 0,117 0,149 0,184 0,221 0,262 0,309 0,370 0,512

    0,48 0,90 0,029 0,058 0,089 0,121 0,156 0,193 0,234 0,281 0,342 0,484

    0,132 0,370 0,398 0,426 0,456 0,487 0,519 0,553 0,590 0,631 0,679

    0,20

    0,98

    2,088

    2,022

    1,958

    1,897

    1,838

    1,781

    1,727

    1,675

    1,625

    1,576

    1,529

    1,484

    1,440

    1,397

    1,356

    1,315

    1,276

    1,238

    1,201

    1,165

    1,130

    1,096

    1,062

    1,030

    0,998

    0,966

    0,935

    0,905

    0,875

    0,846

    0,817

    0,789

    0,761

    2

  • 7/30/2019 Catalogue Sisvar en V4

    10/82

    P.8

    Reactive energy correction in an electrical installation

    Were sould te capacitors be installed?

    Te location of te capacitors in an electrical network is determined according to: te required objective: eliminate penalties, discarge lines and transformers, increase end-of-line voltage, te metod of electrical power distribution, te load rating, te estimated effect of te capacitors on te network, te cost of te installation.

    Te reactive energy compensation can be: a ig-voltage capacitor bank on te ig-voltage distribution network (1), a medium-voltage capacitor bank, regulated or fixed for te medium-voltage subscriber (2), a low-voltage capacitor bank, regulated or fixed for te low-voltage subscriber (3), fixed power factor correction for a medium-voltage motor (4), fixed power factor correction for a low-voltage motor (5).

    Example:

    Customers can coose te location of te power factor correction devices according to te caracteristics of teirinstallation and te objectives tey require it to meet.Type 2 equipment can, for example, be used to compensate te consumption of te lift station on a wind turbine farm;anoter example is to compensate a motor control centre, for wic automatic equipment is recommended.Type 1 equipment can be used to compensate te power transport line of an electrical company.

    Compensated network

  • 7/30/2019 Catalogue Sisvar en V4

    11/82

    On te LV outputs (MGDB)Position no. 1Global power factor correctionAdvantages: eliminates penalties for te excessive use of reactiveenergy

    adapts te apparent power (S) in kVA to te actual needsof te installation discarges te transformation centre (available power inkW)Comments: te reactive current (Ir) is present in te installation fromlevel 1 to te loads tere is no reduction in te Joule effect losses in te

    P.9

    At te input to eac worksopPosition no. 2Partial power factor correctionAdvantages: eliminates penalties for te excessive use of reactiveenergy

    optimises part of te installation, te reactive current is notcarried between levels 1 and 2 discarges te transformation centre (available power inkW)Comments: te reactive current (Ir) is present in te installation fromlevel 2 to te loads Joule effect losses are reduced in te cables.

    At te terminals of eac inductive-type loadPosition no. 3Individual power factor correctionAdvantages: eliminates penalties for te excessive use of reactiveenergy

    optimises te entire electrical installation: te reactive

    current Ir is supplied at te very place were it is consumed discarges te transformation centre (available power inkW)Comments: tere is no reactive current in te cables in te installation te Joule effect losses are completely eliminated from tecables

    Reactive energy correction in an electrical installation (continued)

    Te capacitors can be installed at tree different levels:

    2

    Fig. 11: individual power factor correction

    Fig. 9: global power factor correction Fig. 10: local power factor correction

  • 7/30/2019 Catalogue Sisvar en V4

    12/82

    When should ixed power actor correction be used?

    Fixed transformer power factor correction

    A transformer consumes a reactive power tat can be determined approximately by adding: a fixed part tat depends on te magnetising off-load current lo:

    Qo = I0 x Un x 3

    a part tat is proportional to te square of te apparent power tat it conveys:

    Q = Usc S/Sn

    Usc: sort-circuit voltage of te transformer in p.u.S: apparent power conveyed by te transformerSn: apparent nominal power of te transformerUn: nominal pase-to-pase voltage

    Te total reactive power consumed by te transformer is: Qt = Qo + Q.

    If tis correction is of te individual type, it can be performed at te actual terminals of tetransformer.

    If tis correction is performed globally wit load correction on te busbar of te main switcboard,it can be of te fixed type provided tat total power does not exceed15% of transformer nominalpower(oterwise use banks wit automatic regulation).

    Te individual correction values specific to te transformer, depending on transformer nominalpower, are listed in te table below.

    Fig. 12: power ow in an installation

    with an uncompensated transformer

    Fig. 13: power ow in an

    installation where the transformer is

    compensated by a xed power factor

    correction device

    P.10

    Transformer Oil bat Dry

    S (kVA) Usc (%) No-load Load No-load Load

    100 4 2.5 5.9 2.5 8.2

    160 4 3.7 9.6 3.7 12.9250 4 5.3 14.7 5.0 19.5

    315 4 6.3 18.3 5.7 24

    400 4 7.6 22.9 6.0 29.4

    500 4 9.5 28.7 7.5 36.8

    630 4 11.3 35.7 8.2 45.2

    800 4 20.0 66.8 10.4 57.5

    1000 6 24.0 82.6 12 71

    1250 5.5 27.5 100.8 15 88.8

    1600 6 32 126 19.2 113.9

    2000 7 38 155.3 22 140.6

    2500 7 45 191.5 30 178.2

  • 7/30/2019 Catalogue Sisvar en V4

    13/82

    Case of parallel-mounting of capacitors with separate operating

    mechanism

    To avoid dangerous overvoltages due to self-excitation or in casesin wic te motor starts by means of special switcgear (resistors,reactors,autotransformers), te capacitors will only be switced afterstarting.Likewise, te capacitors must be disconnected before te motor is

    de-energised. In tis case, motor reactive power can be fully correctedon full load.Caution: if several banks of tis type are connected in te samenetwork, inrus current limiting reactors sould be tted.

    2

    P.11

    When should ixed power actor correction be used? (continued)

    Correction of asyncronous motors

    Te cos of motors is normally very poor off-load and wen sligtly loaded, and poor in normal operating conditions. Installationof capacitorsis terefore recommended for tis type of load.Te table opposite gives, by way of an example, te values for capacitor bank power in kvar tobe installed according to motor power.

    Ratedpower

    Number of revolutions per minute

    Reactive power in kVAr

    kW hP 3000 1500 1000 750

    11 15 2.5 2.5 2.5 5

    18 25 5 5 7.5 7.5

    30 40 7.5 10 11 12.5

    45 60 11 13 14 17

    55 75 13 17 18 21

    75 100 17 22 25 2890 125 20 25 27 30

    110 150 24 29 33 37

    132 180 31 36 38 43

    160 218 35 41 44 52

    200 274 43 47 53 61

    250 340 52 57 63 71

    280 380 57 63 70 79

    355 485 67 76 86 98

    400 544 78 82 97 106

    450 610 87 93 107 117

    Wen a motor drives a ig inertia load, it may, after breaking of supply voltage, continue to rotate using its kinetic energy and be self-excitedby a capacitor bank mounted at its terminals.Te capacitors supply te reactive energy required for it to operate in asyncronous generatormode. Suc self-excitation results in voltage olding and sometimes in ig overvoltages.

    Correction requirements of asyncronous motors Case of mounting capacitors at the motor terminals

    To avoid dangerous overvoltages caused by te self-excitation peno-menon, you must ensure tat capacitor bank power veries te followingequation:

    Qc 0,9 3 U

    nI0

    Io : motor off-load currentI o can be estimated by te following expres-

    sion: l0 = 2 In (l - cos n) l

    n: value of motor nominal current

    Cos n: cos of te motor at nominal power

    Un: nominal pase-to-pase voltage

    Parallel-mounting of capacitors with seperate opera-

    ting mechanism

    Mounting capacitors at motor terminals

  • 7/30/2019 Catalogue Sisvar en V4

    14/82

    Automatic power actor correction

    Automatic power factor correction equipment

    Internal componentsAn automatic power factor correction device must be adapt to te variations in reactive power of te installation inorder to maintain te target cos of te installation.

    An automatic power factor correction device consists of tree main components: Te controller:Its function is to measure te cos of te installation and send orders to te contactors to ensure tat te powerfactor is as close as possible to te target cos by linking te various reactive power steps. Besides tis function,Scneider Electrics Varlogic controllers incorporate additional functions to assist wit maintenance and installation.

    Capacitors:Capacitors are te components tat supply reactive energy to te installation.Capacitors are normally connected internally in a delta configuration.

    External components

    An automatic power factor correction device cannot work unless te installation data is collected; te externalcomponents ensure tat te device operates correctly:

    Current measurement:A current transformer tat can measure te consumption of te entire installation must be connected.

    Voltage measurement:Normally, tis device is built into te capacitor bank itself so tat tis value is generated by te power connection ofte capacitor bank.Tis information about te installation (voltage and current) allows te controller to calculate te cos of teinstallation at any time and to take te decision to activate or deactivate te power steps.

    Te 230 V supply is also required for te capacitor bank control circuit.

    Note: except for te Varset models, wic are fitted wit a transformer.

    P.12

    REGULATEUR

    Calcul du cos de

    linstallation

    CONTACTEUR

    LC1-D-K-

    Limitation

    Connexion ples principaux

    TI

    V

    2

  • 7/30/2019 Catalogue Sisvar en V4

    15/82

    2Automatic power actor correction (continued)

    Wat is control used for?

    Te Varlogic controllers continually measure te reactive power of te installation and switc te capacitor steps ONand OFF to obtain te required power factor.Teir ten step combinations allow tem to control capacitors of different powers.

    Step combination :1.1.1.1.1.1 1.2.3.3.3.31.1.2.2.2.2 1.2.3.4.4.41.1.2.3.3.3 1.2.3.6.6.61.1.2.4.4.4 1.2.4.4.4.41.2.2.2.2.2 1.2.4.8.8.8Tese combinations ensure accurate control, by reducing: te number of power factor correction modules labourOptimising control in tis way generates considerable financial savings.

    Explanations:

    Q1: power of te first stepQ2: power of te second stepQ3: power of te tird stepQ4: power of te fourt stepQn: power of te nt step (maximum 12)

    Examples:1.1.1.1.1.1 : Q2 = Q1, Q3 = Q1,..., Qn = Q11.1.2.2.2.2 : Q2 = Q1, Q3 = 2Q1,..., Qn = 2Q11.2.3.4.4.4 : Q2 = 2Q1, Q3 = 3Q1, Q4 = 4Q1,...., Qn = 4Q11.2.4.8.8.8 : Q2 = 2Q1, Q3 = 4Q1, Q4 = 8Q1,..., Qn = 8Q1

    Calculation of te number of electrical steps:Te number of electrical steps (e.g. 13) depends on: te number of controller outputs used (e.g. 7) te cosen combination, according to te power of te various steps (e.g. 1.2.2.2).

    P.13

    Combinations Number of controller outputs used

    1 2 3 4 5 6 7 8 9 10 11 12

    1.1.1.1.1.1... 1 2 3 4 5 6 7 8 9 10 11 12

    1.1.2.2.2.2... 1 2 4 6 8 10 12 14 16 18 20 22

    1.2.2.2.2.2... 1 3 5 7 9 11 13 15 17 19 21 23

    1.1.2.3.3.3... 1 2 4 7 10 13 16 19 22 25 28 31

    1.2.3.3.3.3... 1 3 6 9 12 15 18 21 24 27 30 33

    1.1.2.4.4.4... 1 2 4 8 12 16 20 24 28 32 36 40

    1.2.3.4.4.4... 1 3 6 10 14 18 22 26 30 34 38 421.2.4.4.4.4... 1 3 7 11 15 19 23 27 31 35 39 43

    1.2.3.6.6.6... 1 3 6 12 18 24 30 36 42 48 54 60

    1.2.4.8.8.8... 1 3 7 15 23 31 39 47 55 63 71 79

  • 7/30/2019 Catalogue Sisvar en V4

    16/82

    Automatic power actor correction (continued)

    Example:150 kVAr 400 V 50 hz

    Solution 1: pysical control 10 x 15 kVAr15 + 15 + 15 +15 +15 + 15 + 15 + 15 + 15 +15, combination: 1.1.1.1.1.1 10 pysical steps 10 contactors 12-step controllersLabour, ig cost: non-optimised solution

    Solution 2: electrical control 10 x 15 kVAr15 + 30 + 45 + 60 = 10 x 15 electrical kVAr, combination 1.2.3.4 4 pysical steps allowing for 10 different powers 4 contactors 6-step controllers

    Power factor correction cubicle optimisation

    Possible powers (kVAr) Pysical steps Pysical steps

    15 30 45 60

    15 x

    30 x

    45 x x (x)

    60 x x (x)

    75 (x) x x (x)

    90 x x (x) x (x)

    105 x x (x) x (x)

    135 x x x150 x x x x

    (x) Oter possible combinations.

    Oter solutions:10 x 15 electrical kVArCombination: 1.1.2.2.2: 15 + 15 + 30 + 30 + 30 kVArCombination: 1.1.2.3.3: 15 + 15 + 30 + 45 + 45 kVAr

    P.14

    2

  • 7/30/2019 Catalogue Sisvar en V4

    17/82

    How to select power actor correctiondevices?

    General inormation about harmonics p.16

    Causes and eects o harmonics p.18

    Choosing power actor correction devices p.20

    Choosing the requency o detuned reactors p.22

  • 7/30/2019 Catalogue Sisvar en V4

    18/82

    General inormation about harmonics

    Introduction

    In electrical systems, te voltage or current waves, wose frequency is an integral multiple of te fundamentalfrequency of te network (50 hz), are called armonics.Te waves of different orders tat make up a armonic spectrum and result in distorted waves are generally foundsimultaneously.Fig. 25 sows te breakdown of a distorted wave into a sinusoidal wave at te fundamental frequency (50 hz) and awave at anoter frequency.harmonics are usually defined by two main caracteristics: teir amplitude: value of te armonic voltage or current teir order: value of teir frequency wit respect to te fundamental frequency (50 hz).Under suc conditions, te frequency of a 5t order armonic is five times greater tan te fundamental frequency,i.e. 5 x 50 hz = 250 hz.

    Te root mean square value

    Te rms value of a distorted wave is obtained by calculating te quadratic sum of te different values of te wave forall te armonic orders tat exist for tis wave:Rms value of I:I(A) = I

    1 2+ I

    2 2+ + I

    n 2

    Te rms value of all te armonic components is deduced from tis calculation:I (A) = I

    2 2+ + I

    n 2

    Tis calculation sows one of te main effects of armonics, i.e. te increased rms current passing troug aninstallation, due to te armonic components wit wic a distorted wave is associated.Usually, te switcgear and cables or te busbar trunking of te installation is defined from te rated current at tefundamental frequency; all tese installation components are not designed to witstand excessive armonic current.

    Detecting te problem in te installation

    Instruments tat measure te true root mean square value (TRMS) must be used to detect any armonic problemstat may exist in te installations, since instruments tat measure te average value (AVG) only give te correctvalues wen te waves are perfectly sinusoidal.Wen te wave is distorted, te measurements can be as muc as 40% below te true rms value.

    Fig. 14 : decomposition of a distorted wave

    Fig.15 : Typical graph of the frequency spectrum

    The frequency spectrum, also known as the spectral

    analysis, indicates the types of harmonic generator

    present on the network

    P.16

    +

    1 2 3 4 5 6 7 8 9 10 11

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    3

  • 7/30/2019 Catalogue Sisvar en V4

    19/82

    Fig.17 : Harmonic spectrum for variable speed

    drives for asynchronous motors or direct currentmotors.

    General inormation about harmonics (continued)

    harmonic measurement: distortion

    Te presence of varying amounts of armonics on a network is called distortion. It is measured by te armonic

    distortion rates: T: individual distortion rateIt indicates, as a %, te magnitude of eac armonic wit respect to te value of te fundamental frequency:T (%) = A / A1wereA = te value of te voltage or current of te -order armonic.A1 = te value of te voltage or current at te fundamental frequency (50 hz).

    ThD: Total harmonic DistortionIt indicates, as a %, te magnitude of te total distortion wit respect to te fundamental frequency or wit respect tote total value of te wave.

    Te operating values used to find te true situation of te installations wit respect to te degree of armoniccontamination are: Te total armonic voltage distortion [ThD(U)] indicating te voltage wave distortion and te ratio of te sum of te

    armonic voltages to te fundamental frequency voltage, all expressed as a %. Te total armonic current distortion [ThD(I)] determining te current wave distortion and te ratio of te sum ofte armonic currents to te fundamental frequency current, expressed as a %.

    Te frequency spectrum (TFT) is a diagram tat gives te magnitude of eac armonic according to its order.By studying it, we can determine wic armonics are present and teir respective magnitude.

    Interarmonics

    Interarmonics are sinusoidal components wit frequencies tat are not integral multiples of te fundamentalfrequency (and terefore situated between te armonics). Tey are te result of periodic or random variations of tepower absorbed by different loads suc as arc furnaces, welding macines and frequency converters (variable speeddrives, cycloconvertors).

    Example :

    Fig.16 : Harmonic spectrum for industrial devices:

    arc furnaces, induction furnaces, weldingmachines, rectiers, etc.

    P.17

    2

    30

    8 8

    0

    20

    40

    60

    80

    100

    1 2 3 4 5 6 7 8 9 10 11

    %

    n

    100

    2

    30

    8 8

    0

    20

    40

    60

    80

    100

    1 2 3 4 5 6 7 8 9 10 11

    %

    n

    4

    0

    20

    40

    60

    80

    100

    1 2 3 4 5 6 7 8 11 10 13

    %

    4

    100

    52

    34

    4

    0

    20

    40

    60

    80

    100

    1 2 3 4 5 6 7 8 11 10 13

    %

    n

    4

    3

  • 7/30/2019 Catalogue Sisvar en V4

    20/82

    Causes and eects o harmonics

    harmonic generators

    harmonics are generally produced by non-linear loads wic, altoug powered by a sinusoidal voltage, absorb anon-sinusoidal current.In sort, non-linear loads are considered to beave as current sources tat inject armonics into te network.Te most common non-linear armonic loads are tose found in devices fed by power electronics, suc as variablespeed drives, rectifiers, converters, etc.Loads suc as saturable reactors, welding equipment, arc furnaces etc. also inject armonics.Oter loads ave a linear beaviour and do not generate armonics: inductors, resistors and capacitors.

    Main armonic sources

    We differentiate between tese loads, according to weter tey are used for industrial or residential applications: Industrial loads:

    power electronics devices: variable speed drives, rectifiers, UPS, etc. loads using an electric arc: arc furnaces, welding macines, ligting (fluorescent lamps, etc.); armonics(temporary) are also generated wen motors are started wit an electronic starter and wen power transformerscome into service.

    Residential loads: TVs, microwave ovens, induction plates, computers, printers, fluorescent lamps, etc.

    Type of load harmonics generated Comments

    Transformer Even and odd order DC component

    Asyncronous motors Odd order Interarmonics and subarmonics

    Discarge lamp 3. + odd Can reac 30% of l1

    Arc welding 3.

    AC arc furnaces Unstable variable spectrum Non linear asymmetric

    Inductive lter rectier = K x P 1l = l1/

    UPS - variable speed drives V

    Capacitive lter rectier = K x P 1l = l1/

    Electronic device power supply

    Cycloconvertor Variables Variable speed drives V

    PWM controllers Variables UPS - DC - AC converter

    Te following table is a guide to te various loads wit information on te injected armonic current spectrum.

    Fig.18 : linear loads such as inductors, capacitors

    and resistors do not generate harmonics

    Fig. 19 : non-linear loads are those that generate

    harmonics

    P.18

    3

  • 7/30/2019 Catalogue Sisvar en V4

    21/82

    3

    Effects of te armonics Causes Consequences

    On te conductors te armonic currents cause te Irms to

    increase te skin effect reduces te effective cross-section of te conductors as te frequencyincreases

    unwanted tripping of te protection devices

    overeated conductors

    On te neutral conductor a balanced tree-pase + neutral loadgenerates 3rd order multiple odd armonics

    closure of omopolar armonics on teneutral, causing overeating and overcurrents

    On te transformers increased IRMS Foucault losses are proportional to tefrequency

    increased overeating due to te Jouleeffect in te windings increased losses in iron

    On te motors similar to tose for te transformers andgeneration of a eld added to te main one

    analogues celles des transformateurs pluspertes de rendement

    Causes and eects o harmonics (continued)

    Te effects of armonics on loads

    Te following two types of effects appear in te main equipment: immediate or sort-term effects and long-termeffects.

    Immediate or sort-term effects: Unwanted tripping of protection devices, Induced interference from LV current systems (remote control, telecommunications), Abnormal vibrations and noise, Damage due to capacitor termal overload, Faulty operation of non-linear loads.

    Long-term effects associated wit current overload tat causes overeating and premature deterioration of teequipment.

    Affected devices and effects: Power capacitors:

    additional losses and overeating, fewer possibilities of use at full load, vibrations and mecanical wear, acoustic disComfort.

    Motors: additional losses and overeating, fewer possibilities of use at full load, vibrations and mecanical wear, acoustic disComfort.

    Transformers: additional losses and overeating, mecanical vibrations, acoustic disComfort.

    automatic switc: unwanted tripping due to te peak current being exceeded.

    Cables: additional dielectric and cemical losses, especially on te neutral, wen 3rd order armonics are present, overeating.

    Computers: functional disruptions causing data losses or faulty operation of control equipment.

    Power electronics: waveform interference: switcing, syncronisation, etc.

    Fig. 20: summary table of effects, causes and consequences of harmonics

    P.19

  • 7/30/2019 Catalogue Sisvar en V4

    22/82

    Choosing power actor correction devices

    Impact of armonics on capacitors

    Some loads (variable speed motors, static converters, welding macines, arc furnaces, uorescent lamps, etc.)pollute te electrical network by reinjecting armonics.

    To take account of te effects of te armonics on te capacitors, te type of compensation equipment must becorrectly determined:

    G / Sn < 15% 15% < x < 25 % 25% < x 50%

    range Classic Comfort harmony

    Coosing equipment according to te armonic pollution level

    Equipment can be cosen: Eiter teoretically from te G/Sn ratio if te data is available.G: apparent power of armonic-generating loads (variable speed motors, static converters, power electronics, etc).Sn: apparent power of te transformer.Te G/Sn rule is valid for a ThD(I) of all te armonic generators < 30% and for a pre-existing ThD(U) < 2%.If tese values are exceeded, a armonic analysis of te network or measurements are required.

    Example 1:U = 400 V, P = 300 kW, Sn = 800 kVA, G = 150 kVAG/Sn = 18.75 % Comfort equipment

    Example 2:U = 400 V, P = 100 kW, Sn = 800 kVA, G = 300 kVAG/Sn = 37.5 % harmony equipment

    Or from te total armonic current distortion ThD(I) measured at te transformer secondary, at full load and witoutcapacitors:

    ThD(I) % Classic Comfort harmony Filters

    5 %

    5 % < ... 10%

    10 % < ... 20%

    > 20 %

    Or from te total armonic voltage distortion ThD(U) measured at te transformer secondary, at full load and

    witout capacitors:

    ThD(U) % Classic Comfort harmony Filters

    3 %

    3 % < ... 4%

    4 % < ... 7 %

    > 7 %

    If bot ThD(I) and ThD(U) are measured and do not result in te same type of power factor correction, te mostrigorous solution must be cosen.

    For example, a measurement gives: ThD(I) = 15 % harmony solution ThD(U) = 3.5 % Comfort solutionTe harmony solution must be cosen.

    P.20

    3

  • 7/30/2019 Catalogue Sisvar en V4

    23/82

    3Choosing power actor correction devices (continued)

    Operating limits

    Te rules described below are for information only.Please contact us in case of doubt or if te values are iger tan tose indicated below.

    All te components and applications recommended in tis catalogue are only valid if te operating limits given beloware met, in order to prevent te detuned reactors and capacitors from being overloaded.

    Te ThD(U) must be measured at te transformer secondary wit te capacitor banks. Te lmp current must bemeasured in te capacitors.

    Operating limits ThD(U) max.%

    Order voltage measurement lmp/l1max.

    U3 U5 U7 U11 U13

    Classic power factor correction 5 % 1.3

    Comfort power factor correction 7 % 3 % 8 % 7 % 3.5 % 3 % 1.12

    harmony power factor correc-tion (tuning order 2.7)

    8 % 0.5 % 6 % 7 % 3.5 % 3 % 1.19

    P.21

  • 7/30/2019 Catalogue Sisvar en V4

    24/82

    Choosing the detuned reactor tuning requency

    General:

    Te purpose of te detuned reactors (DR) is to prevent te armonics present on te network from being ampliedand to protect te capacitors (tis corresponds to our harmony range).Tey must be connected in series wit te capacitors.Caution: as te detuned reactors generate an overvoltage at te capacitor terminals, capacitors of at least 480 Vmust be used for a 400 V network.

    Tecnical data:

    Coice of tuningTe tuning frequency fr corresponds to te resonance frequency of te L-C assembly.fr = 1/ (2LC)We also speak of tuning order n.For a 50 hz network, we ave:n = fr / 50 hz

    Te tuning order cosen must ensure tat te armonic current spectrum range is outside te resonancefrequency. It is also important to ensure tat no remote-control frequencies are disturbed.Te most common tuning orders are 3, 8 or 4.3 (2.7 is used for 3rd order armonics).

    DR, 400 V, 50 hz tuning frequency selection table

    harmonic generators (G) Remote control frequency

    None 165 < Ft 250 hz 250 < Ft 350 hz Ft > 350 hz

    Tree-pase Tuning frequencyVariable speed drives, rectiers, UPS, starters 135 hz 135 hz (1) 190 hz 215 hz

    Single-pase G > 10% Sn Tuning frequency

    Discarge lamps, electronic ballast lamp,uorescent lamps, UPS, variable speed drives,welding macines

    135 hz 135 hz 135 hz 135 hz

    Single-pase G: power of single-pase armonic generators in kVA.(1): a tuning frequency of 215 hz can be used in France wit a remote control frequency of 175 hz

    Concordance between tuning frequency and relative impedance (50 hznetwork)

    Tuning frequency (lr) Tuning order (n = fr/f) Relative impedance (P = 1/n2) asa %

    135 hz 2.7 13.7 %

    190 hz 3.8 6.92 %

    P.22

    3

  • 7/30/2019 Catalogue Sisvar en V4

    25/82

    3Typical solutions depending on applications

    Customer requirements

    Te table below sows te solutions most frequently used in different types ofapplications.

    Very frequently

    Usually

    Occasionally

    In all cases, it is strongly recommended tat measurements be carried out on site inorder to validate te solution.

    Classic type Comfort type harmony typeIndustry

    Food and drink

    Textiles

    Wood

    Paper

    Printing

    Cemicals - parmaceuticals

    Plastics

    Glass - ceramics

    Steel production

    MetallurgyAutomotive

    Cement works

    Mining

    Reneries

    Microelectronics

    Tertiary

    Banks - insurance

    Supermarkets

    hospitals

    Stadiums

    Amusement parks

    hotels - ofces

    Energy and infrastructure

    Substations

    Water distribution

    Internet

    Railway transport

    Airports

    Underground train systems

    Bridges

    Tunnels

    Wind turbines

    P.23

  • 7/30/2019 Catalogue Sisvar en V4

    26/82

    P.28

    Varplus2 presentation p. 25

    Our products according to network p. 27

    Varplus2 p. 28

    Dimensions p. 38

    Capacitors

  • 7/30/2019 Catalogue Sisvar en V4

    27/82

    Varplus2 presentation

    Wat are te advantages of Varplus?

    Easy installation: extensive coice of installation positions no assembly limitations no eart connection needed mounting oles allow capacitors to be xed easily and securely wit two M6 screws connection on top of te capacitor: very easy to access several capacitors can be assembled quickly and easily 360 cable connection on top of te capacitor.

    hig exibility: te total modularity of Varplus2 provides greater stock management exibility covers all te electrical steps tat may be required, according to te voltage and frequencyand te level of armonic pollution present in te network te total modularity of te capacitor provides greater stock management exibility.

    A unique tecnology: te discarge resistors are already mounted in te capacitors. Tey reduce te voltage to less tan 50 V in oneminute and can be used in an automatic power factor correction cubicle witout an additional discarge system. ig re resistance ig quality protection system. Varplus are te only capacitors using tis tecnology tat can prevent 100% of allpossible faults tanks to te disconnection system wit its suppressor and hBC fuses

    Tey can be installed in several positions

    P.25

    Recommended installation

    Acceptable

    Recommended installationRecommended installation

    Wrong Wrong

    4

    Air owAir ow

    Air ow Air ow

    Air ow

  • 7/30/2019 Catalogue Sisvar en V4

    28/82

    Varplus2 presentation (continued)

    Tecnical data

    hQ protection system built into eac single pase element : ig current fault protection by hRC cartridge fuse low current fault protection by combination of single pase internal overpressure devicewit te hRC fuse

    A fully modular offer wit only one size for installation and connection

    Maximum power per unit: 20 kvar for 400V-50 hz network.

    Possibility of wiring connection at 360.

    Tree pase connection

    Wit internally tted discarge resistors: residual voltage less tan 50 V in 1 minute.

    Total losses (discarge resistor included) : 0,5 W/kvar

    Capacitance value tolerance : -5 %, +10 %.

    Voltage test : 2,15 Un (rated voltage) for 10 s.

    Maximum permissible overloads at service voltage network as per IEC 60831 1/2: current: 30 % permanently voltage: 10 % (8 ours over 24 ours).

    Temperature class D (+55C): Maximum temperature: 55C Average temperature over 24 : 45C Average temperature over a year: 35C Minimum temperature: - 25C.

    Colour : elements: RAL 9005 base and cover: RAL 7030.

    Execution: indoor.

    Protection : IP00 witout cover (option) IP20 or 42 see accossories.

    Standards : IEC 60831 1/2, CSA 22-2 No190, UL810

    P.26

    Installation

    All positions are convenient except vertical one wit connecting terminals upside down.Fixing oles for M6 screwsavec des vis M6.

    Accessories pour Varplus References

    1 set of tree pase copper bars forconnection and assembly of 2 and 3capacitors

    51459

    1 set of protective cover (IP20) and cableglands (IP42) for 1,2 and 3 capacitors

    51461

    1 protective cover (IP20) 51299

    Accessories

    Varplus

    Varplus accesso-

    4

  • 7/30/2019 Catalogue Sisvar en V4

    29/82

    4

    P.27

    Our products according to network

    Find te page corresponding to your network tanks to te table below.

    50 hz network

    230 V network voltage p.28

    400/415 V network voltage p.29 et p.30

    525 V network voltage p.31

    690 V network voltage p.32

    60 hz network

    230/240 V network voltage p.33

    400/415 V network voltage p.34

    440 V network voltage p.35

    480 V network voltage p.36600 V network voltage p.37

  • 7/30/2019 Catalogue Sisvar en V4

    30/82

    Varplus2

    230 V - 50 hz network

    Classic & Comfort range

    Useful power (kvar) References

    2,5 51301

    5 51303

    6,5 51305

    7,5 51307

    10 51309

    Advised assembly

    15 2 x 51307

    20 2 x 51309

    30 3 x 51309

    40 4 x 51309

    Maximum mecanical assembly: 4 capacitors and 40 kVAr.Assembly > 40 kvar : see conditions to respect in Varplus user manual.

    Harmony rangeSame capacitors can be used wit detuned reactors.

    P.28

    4

  • 7/30/2019 Catalogue Sisvar en V4

    31/82

    4Varplus2

    400/415 V - 50 hz network

    Classic range

    Useful power (kvar) References

    400 V 415 V

    5 5,5 51311

    6,25 6,5 51313

    7,5 7,75 51315

    10 10,75 51317

    12,5 13,5 51319

    15 15,5 51321

    20 21,5 51323

    Advised assembly

    25 27 2 x 51319

    30 31 2 x 51321

    40 43 2 x 51323

    50 53,5 2 x 51321 + 51323

    55 58,5 2 x 51323 + 51321

    60 64,5 3 x 51323

    65 3 x 51323 + 51311

    Maximum mecanical assembly: 4 capacitors and 65 kVAr.Assembly > 65 kvar : see conditions to respect in Varplus user manual.

    Comfort range

    Capacitors rated voltage: 480 V.

    Useful power References

    400 V (kvar) 415 V (kvar)

    5 5,5 51325

    6,25 6,5 51327

    7,5 8 51329

    10 11 51331

    12,5 13,5 51333

    15 16,5 51335

    Advised assembly

    20 23 2 x 51331

    25 25 2 x 51333

    30 34 2 x 51335

    45 51 3 x 51335

    60 68 4 x 51335

    Maximum mecanical assembly: 4 capacitors and 60/68 kVAr for 400/415V - 50 hz network.Assembly > 60 kvar : see conditions to respect in Varplus user manual.

    P.29

  • 7/30/2019 Catalogue Sisvar en V4

    32/82

    Varplus2

    400/415 V - 50 hz network

    Harmony range

    Tis range corresponds to te association of 480 V rated capacitors wit detuned reactors.

    Tuning order Useful power (kvar) References

    400 V (kvar) 415 V (kvar)

    2,7 (135 hz - 13,7 % )6,5 7 51337

    12,5 13,5 51331

    Advised assembly

    25 27 2 x 51331

    50 54 2 x 51335 + 51333Maximum mecanical assembly: 4 capacitors and 50/54 kVAr 400/415 V.Assembly > 50 kvar : see conditions to respect in Varplus user manual.

    3,8 (190 hz - 6,92 % )ou

    4,3 (215 hz - 5,4 % )

    6,5 7 51327

    7,75 8,25 51329

    10 11 51345

    12,5 13,5 51333

    16,5 17,75 51335

    Advised assembly

    25 27 2 x 51333

    30 31,25 51333 + 51335

    50 53,25 3 x 51335

    Maximum mecanical assembly: 4 capacitors and 65 kVAr.Assembly > 65 kvar : see conditions to respect in Varplus user manual.

    P.30

    4

  • 7/30/2019 Catalogue Sisvar en V4

    33/82

    4

    Example of Varplus IP00assembly

    Varplus2

    525 V - 50 hz network

    Classic range

    Useful power (kvar) References

    11 51351

    13 51353

    17 51357

    Advised assembly

    22 2 x 51351

    26 2 x 51353

    34 2 x 51357

    51 3 x 51357

    62 3 x 51357 + 1 x 51351

    68 4 x 51357

    Maximum mecanical assembly: 4 capacitors and 68 kVAr.Assembly > 68 kvar : see conditions to respect in Varplus user manual.

    Comfort range

    Capacitor rated voltage: 690V

    Useful power (kvar) References

    6 51359

    8 51361

    10 51363

    Advised assembly

    20 2 x 51363

    30 3 x 51363

    40 4 x 51363

    Maximum mecanical assembly: 4 capacitors and 40 kVAr.Assembly > 40 kvar : see conditions to respect in Varplus user manual.

    harmony range

    Capacitors rated 690 V will be used wit detuned reactors 190/215 hz, 135 hz on request.

    P.31

  • 7/30/2019 Catalogue Sisvar en V4

    34/82

    Varplus2

    690 V - 50 hz network

    Classic range

    Useful power (kvar) References

    11 51359

    15 51361

    17 51363

    Advised assembly

    22 2 x 51359

    34 2 x 51363

    45 3 x 51361

    60 4 x 51361

    68 4 x 51363

    Maximum mecanical assembly: 4 capacitors and 68 kVAr.Assembly > 68 kvar : see conditions to respect in Varplus user manual.

    Comfort & Harmony range

    On request

    P.32

    4

  • 7/30/2019 Catalogue Sisvar en V4

    35/82

    4Varplus2

    230/240 V - 60 hz network

    Classic & Comfort range

    Useful power (kvar) References

    230 V (kvar) 240 V (kvar)

    3 3 51301

    6 6,5 51303

    8 8,5 51305

    9 10 51307

    12 13 51309

    Advised assembly18 20 2 x 51307

    24 26 2 x 51309

    36 39 3 x 51309

    Maximum mecanical assembly: 4 capacitors and 40 kVAr.Assembly > 40 kvar : see conditions to respect in Varplus user manual.

    Harmony range

    Same capacitors can be used wit detuned reactors.

    P.33

  • 7/30/2019 Catalogue Sisvar en V4

    36/82

    Varplus2

    400/415 V - 60 hz network

    Classic range

    Useful power (kvar) References

    400 V (kvar) 415 V (kvar)

    6 6,25 51311

    7,5 8 51313

    9 9 51315

    12 13 51317

    15 16 51319

    18 19 51321

    Advised assembly24 26 2 x 51317

    30 32 2 x 51319

    36 38 2 x 51321

    45 48 3 x 51319

    54 57 3 x 51321

    60 64 4 x 51319

    Maximum mecanical assembly: 4 capacitors and 65 kVAr.Assembly > 65 kvar : see conditions to respect in Varplus user manual.

    Comfort range

    Capacitors rated 480 V are necessary.

    Useful power (kvar) References

    400 V (kvar) 415 V ( kvar)

    6 6,25 51325

    7,5 8 51327

    9 9 51329

    12,75 13,5 51331

    14 15 51333

    18,5 51335

    Advised assembly

    25,5 27 2 x 51331

    32,5 51333 + 51335

    37 2 x 51335

    42 45 3 x 51333

    51 2 x 51335 + 51333

    55 3 x 51335

    61 3 x 51335 + 51325

    Maximum mecanical assembly: 4 capacitors and 61 kVAr.Assembly > 61 kvar : see conditions to respect in Varplus user manual.

    P.34

    4

  • 7/30/2019 Catalogue Sisvar en V4

    37/82

    4

    P.35

    Varplus2

    400/415 V - 60 hz network (continued)

    Harmony range

    Capacitors rated 480 V will be used wit detuned reactors.

    Tuning order Useful power (kvar) References

    400 V (kvar) 415 V (kvar)

    2,7 (135 hz - 13,7 % )7,75 8,25 51337

    15 16,25 51331

    Maximum mecanical assembly: 4 capacitors and 60/65 kVAr 400/415 V.Assembly > 60 kvar : see conditions to respect in Varplus user manual.

    Tuning order Useful power (kvar) References

    400 V (kvar) 415 V (kvar)

    3,8 (190 hz - 6,92 % )ou

    4,3 (215 hz - 5,4 % )

    7,75 8,3 51327

    9,25 10 51329

    12 13 51345

    15 16 51333

    20 51335

    Maximum mecanical assembly: 4 capacitors and 60/65 kVAr 400/415 V.Assembly > 60 kvar : see conditions to respect in Varplus user manual.

  • 7/30/2019 Catalogue Sisvar en V4

    38/82

    P.36

    4 Varplus2

    440 V - 60 hz network

    Classic range

    Useful power (kvar) References

    7.5 51325

    9 51327

    11 51329

    15 51331

    17 51333

    22 51335

    Advised assembly

    30 2 x 5133144 2 x 51335

    51 3 x 51333

    59 2 x 51335 + 51331

    66 3 x 51335

    75 3 x 51335 + 51327

    Maximum mecanical assembly: 4 capacitors and 76 kVAr.Assembly > 76 kvar : see conditions to respect in Varplus user manual.

    Comfort range

    Capacitors rated 550V are necessary.

    Useful power (kvar) References

    9 51351

    11 51353

    12.5 51383

    14 51357

    Advised assembly

    28 2 x 51357

    42 3 x 51357

    56 4 x 51357

    Harmony range

    Capacitors rated 550 V will be used wit detuned reactors.

  • 7/30/2019 Catalogue Sisvar en V4

    39/82

    4Varplus2

    480 V - 60 hz network

    Classic range

    Useful power (kvar) References

    9 51325

    11 51327

    13 51329

    18 51331

    20 51333

    Advised assembly

    36 2 x 51331

    54 3 x 51331

    72 4 x 51331

    Maximum mecanical assembly: 4 capacitors and 72 kVAr.Assembly > 72 kvar : see conditions to respect in Varplus user manual.

    Comfort range

    Capacitor rated 550V are necessary

    Useful power (kvar) References

    10 51351

    12.5 51353

    15 51383

    17 51357

    Advised assembly

    20 2 x 51351

    25 2 x 51353

    34 2 x 51357

    44 2 x 51353 + 1 x 51351

    51 3 x 51357

    68 4 x 51357

    Maximum mecanical assembly: 4 capacitors and 68 kVAr.Assembly > 68kvar : see conditions to respect in Varplus user manual.

    Harmony range

    Capacitors rated 550 V will be used wit detuned reactors.

    P.37

  • 7/30/2019 Catalogue Sisvar en V4

    40/82

    P.38

    4 Varplus2

    600 V - 60 hz network

    Classic & Comfort range

    Useful power (kvar) References

    600 V (kvar)

    10 51359

    13,5 51361

    15 51363

    Advised assembly

    20 2 x 51359

    30 2 x 51363

    45 3 x 51363

    60 4 x 51363

    Maximum mecanical assembly: 4 capacitors and 60 kVAr.Assembly > 60 kvar : see conditions to respect in Varplus user manual.

    Harmony range

    On request for association wit detuned reactors

  • 7/30/2019 Catalogue Sisvar en V4

    41/82

    Dimensions

    from 5 to 15 kvar 20 kvar 50 kvar 60 kvar

    Weigt 219 219 219 219

    Widt 220 220 220 220

    Lengt 114,7 114,7 308,7 308,7

    Tree conditions are to be respected for assembly: adapted busbar section is expected to connect capacitors assembly minimum space of 25mm is expected between 2 groups of capacitors specic precautions must be taken in order not to exceed temperature category of -25C/D inside te cubicle.

    P.39

    4

  • 7/30/2019 Catalogue Sisvar en V4

    42/82

    Detuned reactors

    Presentation p. 41

    Our range p. 42

    Dimensions p. 43

    Detuned reactor / capacitor / contactor combination tables p. 44

  • 7/30/2019 Catalogue Sisvar en V4

    43/82

    Presentation

    General information

    Detuned reactors (DR) are designed to protect capacitors and prevent amplication of armonics existing on tenetwork.

    Tecnical data

    Tree pase, dry, magnetic circuit, impregnated Cooling: natural Degree of protection: IP00 Inslation class : h Standards : IEC 60289, EN 60289 Rated voltage: 400/415 V, tripas 50 hz Tuning order (relative impedance) : 4,3 (5,4 %), 3,8 (6,9 %), 2,7 (13,7 %) Inductance tolerance per pase : -5, +5 %

    harmonic current spectrum:As a % of te current of tefundamental (l

    1)

    4,3 tuning order 3,8 tuning order 2,7 tuning order

    Courant l3

    2 % 3 % 6 %

    Courant l5

    69 % 44 % 17 %

    Courant l7

    19 % 13 % 6 %

    Courant l11

    6 % 5 % 2 %

    Insulation level: 1.1 kV Termal witstand Isc: 25 x le, 2 x 0,5 second Dynamic witstand: 2,2 lcc (peak value) Dielectric test 50 hz between windings and windings/eart: 3,3 kV, 1 mn Termal protection restored on terminal block 250 V AC, 2 A.

    Operating conditions

    Use: indoor Storage temperature: - 40C, + 60C Relative umidity in operation: 20 80 % Saline mist witstand: 250 oursOperating temperature / Altitude:

    Altitude Minimun Maximun higest average over any period of

    m C C 1 year 24 ours

    1000 0 55 40 50

    > 1000, 2000 0 50 35 45

    Installation

    Forced ventilation required Vertical detuned reactor winding for better eat dissipation Electrical connection:

    to a screw terminal block for 6.25 and 12.5 kvar detuned reactors to a drilled pad for 25, 50 and 100 kvar detuned reactors

    480 V capacitors must be used wit te detuned reactors in case of a 400/415 V - 50 hz network.

    As te detuned reactor is tted wit termal protection, te normally closed dry contact must be used to disconnectte step in te event of overeating.

    5

    P.41

  • 7/30/2019 Catalogue Sisvar en V4

    44/82

    P.42

    5 Our range

    Tuning order: 4,3 (215 hz)

    Power restored by te DR/capacitor assembly Power losses References

    L (mh) l1

    (A) (W)

    6,25 kvar/400 V - 50 hz 4,71 9 100 51573

    12,5 kvar/400 V - 50 hz 2,37 17,9 150 52404

    25 kvar/400 V - 50 hz 1,18 35,8 200 52405

    50 kvar/400 V - 50 hz 0,592 71,7 320 52406

    100 kvar/400 V - 50 hz 0,296 143,3 480 52407

    Tuning order: 3,8 (180 hz)

    Power restored by te DR/capacitor assembly Power losses ReferencesL (mh) l

    1(A) (W)

    6,25 kvar/400 V - 50 hz 6,03 9,1 100 51568

    12,5 kvar/400 V - 50 hz 3 18,2 150 52352

    25 kvar/400 V - 50 hz 1,5 36,4 200 52353

    50 kvar/400 V - 50 hz 0,75 72,8 300 52354

    100 kvar/400 V - 50 hz 0,37 145,5 450 51569

    Tuning order: 2,7 (135 hz)

    Power restored by te DR/capacitor assembly Power losses References

    L (mh) l1 (A) (W)6,25 kvar/400 V - 50 hz 12,56 9,3 100 51563

    12,5 kvar/400 V - 50 hz 6,63 17,6 150 51564

    25 kvar/400 V - 50 hz 3,14 37,2 200 51565

    50 kvar/400 V - 50 hz 1,57 74,5 400 51566

    100 kvar/400 V - 50 hz 0,78 149 600 51567

    For oter voltages and/or frequancy, please contact us.

  • 7/30/2019 Catalogue Sisvar en V4

    45/82

    5Dimensions

    Tuning order: 4,3 (215 hz)Power restored by te DR/ capacitors assembly

    Fixing centredistance (mm)

    Maximum dimensions (mm) Weigt (kg)

    h W D

    6,25 kvar/400 V - 50 hz 110 x 87 230 200 140 8,6

    12,5 kvar/400 V - 50 hz 205 x 110 230 245 140 12

    25 kvar/400 V - 50 hz 205 x 110 230 240 140 18,5

    50 kvar/400 V - 50 hz 205 x 120ou

    205 x 130

    270 260 160 25

    100 kvar/400 V - 50 hz 205 x 120 330 380 220 42

    Tuning order: 3,8 (190 hz)

    Power restored by te DR/ capacitors assembly

    Fixing centredistance (mm)

    Maximum dimensions (mm) Weigt (kg)

    h W D

    6,25 kvar/400 V - 50 hz 110 x 87 230 200 140 8,5

    12,5 kvar/400 V - 50 hz 205 x 110 230 245 140 10

    25 kvar/400 V - 50 hz 205 x 110 230 240 140 18

    50 kvar/400 V - 50 hz 205 x 120or

    205 x 130

    270 260 160 27

    100 kvar/400 V - 50 hz 205 x 120 330 380 220 42

    Tuning order: 2,7 (135 hz)

    Power restored by te DR/ capacitors assembly

    Fixing centredistance (mm)

    Maximum dimensions (mm) Weigt (kg)

    h W D

    6,25 kvar/400 V - 50 hz 110 x 87 230 200 140 9

    12,5 kvar/400 V - 50 hz 205 x 110 230 245 145 13

    25 kvar/400 V - 50 hz 205 x 110 230 240 140 22

    50 kvar/400 V - 50 hz 205 x 120or205 x 130

    270 260 160 32

    100 kvar/400 V - 50 hz 205 x 120 330 380 220 57

    P.43

  • 7/30/2019 Catalogue Sisvar en V4

    46/82

    5 Detuned reactors / capacitor / contactor combination tables

    Maximum temperature 40C et maximum altitude 2000 m, for 400 V - 50 hz network

    480 V capacitors fr =135 hz

    Qc = 400 V Qc = 480V

    Capacitorreference

    DR reference Speciccontactors

    Standardcontactor

    6,25 kvar 8 kvar 51337 x 1 51563 x 1 LC1-DFK11M7 x1 LC1D12 x1

    12,5 kvar 15,5 kvar 51331 x1 51564 x 1 LC1-DFK11M7 x 1 LC1D25 x 1

    25 kvar 31 kvar 51331 x 2 51565 x 1 LC1-DMK11M7 x 7 LC1D38 x 1

    50 kvar 62 kvar 51335 x 2 + 51333 51566 x 1 LC1-DWK12M7 x 1 LC1D95 x 1

    100 kvar 124 kvar 51335 x 4 + 51333 x 2 51567 x 1 LC1D115 x 1

    480 V capacitors fr =215hz fr = 190 hz

    Qc = 400V

    Qc = 480V

    Capacitorreference

    DR

    referenceDR

    referenceSpeciccontactors

    Standardcontactor

    6,25 kvar 9 kvar 51327 x 1 51573 x 1 51568 x 1 LC1-DFK11M7 x1 LC1D12 x1

    12,5 kvar 17 kvar 5133 x 1 52404 x 1 52352 x 1 LC1-DFK11M7 x 1 LC1D25 x 1

    25 kvar 34 kvar 51333 x 2 52405 x 1 52353 x 1 LC1-DMK11M7 x 7 LC1D38 x 1

    50 kvar 68 kvar 51335 x 3 52406 x 1 52354 x 1 LC1-DWK12M7 x 1 LC1D95 x 1

    100 kvar 136 kvar 51335 x 6 52407 x 1 51569 x 1 LC1D115 x 1

    Maximum temperature 50C et maximum altitude 1000 m, for 400 V - 50 hz network

    550 V capacitors fr =135 hz

    Qc = 400 V Qc = 550 V Capacitorreference

    DR reference Speciccontactors

    Standardcontactor

    6,25 kvar 10,5 kvar 51363 x 1 51563 x 1 LC1-DFK11M7 x1 LC1D12 x1

    12,5 kvar 21 kvar 51363 x 2 51564 x 1 LC1-DGK11M7 x 1 LC1D25 x 1

    25 kvar 40,5 kvar 51353 x 3 51565 x 1 LC1-DPK11M7 x 7 LC1D40x 1

    50 kvar 81 kvar 51357 x 3 + 51353 x 2 51566 x 1 LC1-DWK12M7 x 1 LC1D95 x 1

    100 kvar 162 kvar 51357 x 9 51567 x 1 LC1F185 x 1

    550 V capacitors fr =215hz fr = 190 hz

    Qc = 400 V Qc = 550 V Capacitorreference

    DR

    referenceDR

    referenceSpeciccontactors

    Standardcontactor

    6,25 kvar 11,5 kvar 51351 x 1 51573 x 1 51568 x 1 LC1-DFK11M7 x1 LC1D12 x1

    12,5 kvar 23 kvar 51351 x 2 52404 x 1 52352 x 1 LC1-DGK11M7 x 1 LC1D25 x 1

    25 kvar 46 kvar 51357 x 1 + 51353 x 2 52405 x 1 52353 x 1 LC1-DPK11M7 x 7 LC1D40 x 1

    50 kvar 90 kvar 51357 x 5 52406 x 1 52354 x 1 LC1-DWK12M7 x 1 LC1D95 x 1

    100 kvar 180 kvar 51357 x 10 52407 x 1 51569 x 1 LC1F185 x 1

    P.44

  • 7/30/2019 Catalogue Sisvar en V4

    47/82

    Varlogic power actor

    Presentation p. 46

    Our range p. 48

    Dimensions p. 49

  • 7/30/2019 Catalogue Sisvar en V4

    48/82

    P.46

    6 Presentation

    General information

    Varlogic N power factor controller: analyses and provides information on network caracteristics controls te reactive power required to obtain te target power factor monitors and provides information on equipment status communicates on te Modbus network (Varlogic NRC12 only)

    Varlogic NR6 and NR12

    User-friendly interfaceTe backlignted display allows: direct viewing of installation electrical information and capacitor stage condition direct reading of set-up configuration intuitive browsing in te various menus (indication, commisioning, configuration) alarm indication

    Performance access to a wealt of network and capacitor bank data new control algoritm designed to reduce te number of switcing operations andquickly attain te required power factor

    Simplified installation and set-up quick and simple mounting and wiring insensitive to current transformer polarity and pase rotation polarity a special menu allows controller self-configuration

    Varlogic NRC12

    An even greater level of information and controlIn addition to te functions of Varlogic NR6/NR12, te Varlogic NRC12 provides te following features: measurement of total current armonic distortion spectral analysis of network armonic currents and voltages immediate display of networks main parameters possibility of a dual target power factor possible configuration wit fixed step step condition monitoring (capacitance loss)

  • 7/30/2019 Catalogue Sisvar en V4

    49/82

    Presentation

    Tecnical data

    General data

    Operating temperature: 0...60 C Storage temperature : - 20C...60C Colour: RAL 7016 Standards: EMC : IEC 61326 electrical: IEC/EN 61010-1 Panel mounting Mounting on 35 mm DIN rail (EN 50022) Protection class in panel mounting: Front face: IP41 rear face: IP20 Display : NR6, NR12: backligted screen 65 x 21 mm NRC12: backligted grapic screen 55 x 28 mm langues : allemand, anglais, espagnol, franais et portugais Alarm contact Temperature internal probe Seperate contact to control fan inside te power factor correction bank Access to istory of alarms

    Inputs

    Pase to pase or neutral to pase connection Insensitive to CT polarity Insensitive to pase rotation polarity Current input: NR6, NR12: CT...X/5 A NRC12: CT...X/5 A and X/1 A

    Outputs Potential free output contacts: AC : 1 A/400 V, 2 A/250 V, 5 A/120 V DC : 0,3 A/110 V, 0,6 A/60 V, 2 A/24 V

    Settings and parameters

    Target cos : 0,85 ind...0,9 cap Possibility of dual target cos (NRC12) Manual or automatic parameter setting of power factor controller Coice of different stepping programs: linear normal circular

    optimal Main step sequences: 1.1.1.1.1 1.2.2.2.2 1.2.3.4.4 1.1.2.2.2 1.2.3.3.3 1.2.4.4.4 1.1.2.3.3 1.2.4.8.8 Customized sequences for NRC12 type Delay between 2 successive switc on of a same step: NR6, NR12 : 10...600 s NRC12 : 10...900 s Step conguration programming (xed/automatic/disconnected) (NRC12) 4 quadrant operation for generator application (NRC12)

    Manual control for operating test

    P.47

    6

  • 7/30/2019 Catalogue Sisvar en V4

    50/82

    P.48

    6 Our rangeType Number of step output

    contactsSupply voltage (V)network 50-60 hz

    Measuring voltage (V) References

    NR6 6 110-220/240-380/415 110/220/240-380/415 52448

    NR12 12 110-220/240-380/415 110-220/240-380/415 52449

    NRC12 12 110-220/240-380/415 110-220/240-380/415-690 52450

    Varlogic NRC12 accessories

    Communication RS485 Modbus set for NRC12 52451

    Temperature external probe for NRC12 type. In addition to internal probe, allows measurement at te lowest pointinside te capacitor bank. Better tuning of alarm and/or disconnection level.

    52452

    Information supplied NR6/NR12 NRC12

    Cos X X

    Connected steps X X

    Switcing cycles and connecting time counter X XStep conguration (xed step, automatic, disconnected) X

    Step output contacts X

    Network tecnical data: load and reactive currents, voltages, powers (S, P, Q) X X

    Ambiant temperature inside te cubicle X X

    Total voltage armonic distortion ThD (U) X X

    Total current armonic distortion ThD (I) X

    Capacitor current overload Irms

    /I1

    X

    Voltage and curretn armonic spectrum (orders 3, 5, 7, 11, 13) X

    history of alarms X X

    Alarms Tresold Actions NR6/NR12 NRC12

    Low power factor message and alarmcontact

    X X

    hunting (unstable regu-lation)

    message and alarmcontact disconnection (2)

    X X

    Abnormal cos < 0,5 ind. or 0,8 cap. message and alarmcontact

    X X

    Overcompensation message and alarmcontact

    X X

    Overcurrent > 115 % I1

    message and alarmcontact

    X X

    Low voltage < 80 % U0

    witin 1 s message and alarmcontact disconnection (2)

    X X

    Overvoltage > 110 % U0 message and alarmcontact disconnection (2) X X

    Overtemperature o (o = 50C max) (1) message and alarmcontactdisconnection (2)

    X X

    o- 15C contact ventilateur disconnection (2)

    X X

    Total armonic distorsion > 7 % (1) message and alarmcontactdisconnection (2)

    X X

    Capacitor current overload(Irms/I

    1)

    > 1,5 (1) message and alarmcontactdisconnection (2)

    X

    Capacitor capacitance loss - 25 % message and alarmcontactdisconnection (2)

    X

    Low current < 25 % message X X

  • 7/30/2019 Catalogue Sisvar en V4

    51/82

    Dimensions

    Varlogic N heigt (h) Widt (W) Dept 1 (P1) Dept 2 (P2)

    Varlogic NR6/NR12 150 150 70 60

    Varlogic NRC12 150 150 80 70

    6

    P.48

  • 7/30/2019 Catalogue Sisvar en V4

    52/82

    Power actor correction

    modules

    Varpact presentation p. 51

    Our range according to the network p. 53

    Varpact p. 54

    Accessories or Varpact power actor correction modules p. 58

  • 7/30/2019 Catalogue Sisvar en V4

    53/82

    Varpact presentation

    General information

    Varpact power factor correction modules form a prewired automatic compensation subassembly designedfor xing in stand-alone cubicles or inside Main Low Voltage Switcboard.

    Wat are te advantages of Varpact?

    Time saving tanks to a simple installation: Connection points are reduced Busbar option easier installation Only 1 product to order instead of many (capacitors, contactors, wires, protection...) Fastening crosspieces to install Varpact in te cubicle

    Tecnical data

    Available voltage and frequency: 50 hz : 400 V, 415 V Oter networks on request

    Capacitance value tolerance : - 5, +10 %

    Insulation level: 0,69 kV witstand 50 hz, 1 min : 2,5 kV.

    Maximum permissible overloads: current :

    Varpact Classic range: 30 % max. (400 V)Varpact Comfort range: 50 % max. (400 V)Varpact harmony range: - accord 2,7 : 12 % max. (400 V)

    - accord 3,8 : 19 % max. (400 V)- accord 4,3 : 30 % max. (400 V). voltage : 10 %

    Ambient temperature around te capacitor bank (electrical room): Maximum temperature: 40C Average temperature over 24 ours: 35C Average annual temperature: 25C Minimum temperature: -5C.

    Losses : Varpact Classic : - wit cable connection: < 1,9 W / kvar

    - wit busbar connection: < 2 W / kvar Varpact Comfort : - wit cable connection: < 2,3 W / kvar

    - wit busbar connection: < 2,4 W / kvar Varpact harmony : < 8 W / kvar

    Protection degree: accidentals front face direct contact protection device

    Busbar witstand Isc

    : 35 kA.

    Colour : RAL 7016

    Standards : IEC 60439-1 EN 60439-1 IEC 61921

    P.51

    7

  • 7/30/2019 Catalogue Sisvar en V4

    54/82

    P.52

    7 Varpact presentation (continued)

    Installation

    Varpact modules can be installed in te following type of cubicles: Prisma, Prisma plus Universal

    horizontal xing in functional and universal cubicles, 400 and 500 mm deep: in cubicle W = 650, 700, 800 using fastening crosspieces ans extension pieces en cubicles de largeur L = 600 mm using fastening crosspieces

    Vertical fastening every 300 mm (maximum 5 modules) directly to cubicle uprigtsusing sliding crosspieces or to intermediate uprigt support

    Control circuit power supply: 230 V 50 hz.

    Accessories

    Accessories for Varpact Maximum reactive power References

    Connection module wit xing kit (600,650, 700, 800 wide cubicle)

    52800

    Fastening crosspieces*: set of 2 cross-pieces

    51670

    Extension pieces* : for Prisma Plus cubicle W = 650 mm for universal cubicle W = 700 mm for universal cubicle W = 800 mm

    516355163751639

    Circuit breaker (CB) protection* :

    Additional CB 60/63 A protection kit Additional CB 100 A protection kit Additional CB 160 A protection kit Additional CB 250 A protection kit

    until 30 kvarfrom 31 to 50 kvarfrom 51 to 80 kvarfrom 81 to 120 kvar

    51626516275162851629

  • 7/30/2019 Catalogue Sisvar en V4

    55/82

    Our range according to the network

    Classic range Comfort range harmony range

    50 hz network

    400/415 V network p.49 p.51 p.52

    Find te page corresponding to your network tanks to te table below.

    Oter voltages / frequency: on request.

    7

    P.53

  • 7/30/2019 Catalogue Sisvar en V4

    56/82

    P.54

    7 Varpact

    400 V - 50 hz network

    Varpact Classic with cable connection

    Power (kvar) Step References

    12,5 single 51775

    25 single 51776

    30 single 51777

    40 single 51778

    45 single 51779

    50 single 51780

    60 single 51781

    80 single 51719

    90 single 51782

    100 single 51783

    120 single 51784

    6,25 + 12,5 double 51785

    12,5 + 12,5 double 51786

    10 + 20 double 51787

    15 + 15 double 51788

    20 + 20 double 51789

    15 + 30 double 51790

    30 + 30 double 51791

    20 + 40 double 51792

    25 + 50 double 51793

    30 + 60 double 51794

    40 + 40 double 51795

    45 + 45 double 51729

    50 + 50 double 51796

    40 + 80 double 51797

    60 + 60 double 51798

    Varpact Classic wit cable connection

  • 7/30/2019 Catalogue Sisvar en V4

    57/82

    Varpact Classic wit busbar connection

    Varpact (continued)

    400 V - 50 hz network

    Varpact Classic with busbar connection

    Power (kvar) Step References

    12,5 single 51950

    25 single 51951

    30 single 51952

    40 single 51953

    45 single 51954

    50 single 51977

    60 single 51978

    80 single 51967

    90 single 51979

    100 single 51980

    120 single 51981

    6,25 + 12,5 double 51982

    12,5 + 12,5 double 51983

    10 + 20 double 51984

    15 + 15 double 51985

    20 + 20 double 51986

    15 + 30 double 51987

    30 + 30 double 51988

    20 + 40 double 5198925 + 50 double 51990

    30 + 60 double 51991

    40 + 40 double 51992

    45 + 45 double 51970

    50 + 50 double 51993

    40 + 80 double 51994

    60 + 60 double 51995

    7

    P.55

  • 7/30/2019 Catalogue Sisvar en V4

    58/82

    P.56

    7 Varpact (continued)

    400 V - 50 hz network

    Varpact Comfort with cable connection

    Power (kvar) Step References

    15 single 51801

    20 single 51803

    25 single 51805

    30 single 51807

    35 single 51809

    45 single 51811

    60 single 51813

    70 single 51816

    90 single 51817

    15 + 15 double 51818

    15 + 30 double 51819

    15 + 45 double 51820

    30 + 30 double 51821

    30 + 60 double 51822

    45 + 45 double 51823

    Varpact Comfort with busbar connection

    Power (kvar) Step References

    15 single 51740

    20 single 51741

    25 single 51742

    30 single 51743

    35 single 51744

    45 single 51745

    60 single 51746

    70 single 51747

    90 single 51748

    15 + 15 double 51749

    15 + 30 double 51750

    15 + 45 double 51751

    30 + 30 double 51752

    30 + 60 double 51753

    45 + 45 double 51754

    Varpact Comfort wit cable connection

    Varpact Comfort wit busbar connection

  • 7/30/2019 Catalogue Sisvar en V4

    59/82

    Varpact (continued)

    400 V - 50 hz network

    Varpact Harmony with cable connection

    Rang daccord Power (kvar) Step References

    2,7 (135 hz) 6,25 + 6,25 double 51916

    6,25 + 12,5 double 51917

    12,5 + 12,5 double 51918

    12,5 single 51919

    25 single 51920

    50 single 51921

    3,8 (190 hz) 6,25 + 6,25 double 51925

    6,25 + 12,5 double 51926

    12,5 + 12,5 double 51927

    12,5 single 51928

    25 single 51929

    50 single 51930

    4,3 (215 hz) 6,25 + 6,25 double 51934

    6,25 + 12,5 double 51935

    12,5 + 12,5 double 51936

    12,5 single 51937

    25 single 51938

    50 single 51939

    Varpact Harmony with busbar connection

    Rang daccord Power (kvar) Step References

    2,7 (135 hz) 6,25 + 6,25 double 51757

    6,25 + 12,5 double 51759

    12,5 + 12,5 double 51761

    12,5 single 51763

    25 single 51765

    50 single 51767

    3,8 (190 hz) 6,25 + 6,25 double 51653

    6,25 + 12,5 double 51654

    12,5 + 12,5 double 51655

    12,5 single 51656

    25 single 51657

    50 single 51658

    4,3 (215 hz) 6,25 + 6,25 double 51501

    6,25 + 12,5 double 51503

    12,5 + 12,5 double 51505

    12,5 single 51509

    25 single 5151150 single 51512

    Varpact harmony wit cable connection

    7

    P.57

  • 7/30/2019 Catalogue Sisvar en V4

    60/82

    P.58

    7 Accessories or Varpact modules

    Connection moduleRef. 52800

    It is used to connect: te power and control cables for te power factor correction module contactors (maximum 5 power factor correction modules)te cubicle supply cables

    a cubicle W = 600b cubicle W = 650 ou 700c cubicle W = 800

    O 3 power connection bars (800 A max.) marked L1, L2, L3P Voltage transformer supplying te contactor coils 400/230 V, 250 VAQ Control circuit safety fusesR Contactor control distribution terminal block

    S Sliding crosspieces for mounting in cubicles 400 et 500 mm deepT Extension pieces for mounting in cubicles 650, 700 ou 800 mm wideU Power factor correction module connection: 5 oles 10 per paseV Customers incoming cable connection: 2 x M12 bolts per pase

    To make it easier to connect te supply cables, we recommended tat te connectionmodule be installed at least 20 cm from te ground.

    It is supplied wit: 4 crosspieces 2extension pieces

    Fastening crosspieces for Varpact Classic et ComfortRef. 51670

    Specially designed orizontal crosspieces allow easy installation of power factorcorrection modules in all types of functional and universal cubicles 400 or 500 mmdeep.Crosspoieces automatically ensure tat te module is correctly positioned at te rigtdept and maintain a distance of 55 mm between modules. Crosspieces are sold inpairs and must be ordered separately.

    Extension pieces for cubicles W = 700 et W = 800 wit VarpactClassic and ComfortRef. 51637 and 51639

    Tey are used to extend power factor correction modules for use in cubicle of 700 and800 mm wide.Extension pieces are supplied wit te 4 screws required to attac tem to te module.

    Extension pieces for Prisma Plus cubicle W = 650 wit Varpact

    Classic and ComfortRef. 51635

    It allows module to be attaced directly to Prisma Plus cubicle uprigts.Extension piece is supplied wit te 4 screws required to attac it to te module.

    2 fastening crosspieces (ref. 51670)

    Extension pieces for cubiclesW = 650 (ref. 51635)W = 700 (ref. 51637)W =800 (ref. 51639)

  • 7/30/2019 Catalogue Sisvar en V4

    61/82

    Accessories or Varpact modules

    Circuit breaker kit for Varpact Classic and Comfort

    Ref. 51626, 51627, 51628, 51629It enables to ensures individual and visible circuit breaking of eac capacitor step.

    Retrot kit

    Ref. 51617, 51619, 51633Set of pieces using for installation and connection of Varpact in functional and universalexisting cubicles. It is necessary to coose a Varpact module and to order separatelyassociated retrofit kit

    Retrot kit References

    For P400 power factor correction module 51617

    For P400 DR power factor correction module 51619

    For L600 power factor correction modules on request

    For Rectimat 2 capacitor bank in cubicle Standard and h type 51633

    Circuit breaker kitRetrot kit

    7

    P.59

  • 7/30/2019 Catalogue Sisvar en V4

    62/82

    Power actor correction

    Varset presentation p. 61

    Our range according to the network p. 63

    Varset Direct p. 64

    Varset p. 68

    Varset ast p. 76

    Dimensions p. 77

  • 7/30/2019 Catalogue Sisvar en V4

    63/82

    Varset presentation

    Varset is a capacitor bank composed of Varplus capacitors protected or not by an

    incoming circuit breaker. It is presented in enclosures or cubicles wit different eigt.It is available in Classic, Comfort and harmony range.

    Wat are te advantages of Varset?

    An easy installation: complete solution ready to be connected and used on site no additional power supply needed

    A safe tecnology: protection against direct contacts tanks to te protection plate eac capacitor bank is 100% tested in te manufacturing plant (following IECstandard)

    A specic solution according to your need: xed power factor correction Varset direct automatic power factor correction Varset fast automatic power factor correction Varset fast

    Tecnical data

    Capacitance value tolerance : -5, +10 % Maximum permissible overcurrent:30 % under 400 V for Classic, Comfort and harmony 4.3 ranges19 % under 400 V for harmony 3.8 range12 % under 400 V for harmony 2.7 range

    Maximum permissible over voltage (8 over 24 according to IEC 60831) : 10 % Insulation level : 0.69 kV witstand 50 hz 1 min : 2.5 kV Ambient temperature around te equipment (electrical room): maximum temperature: 40C Average temperature over 24 ours : 35C Average annual temperature: 25C Minimum temperature: -5C Degree of protection: IP31 (except on outlet fan: IP21D)Protection against direct contacts (opened door) Load sedding (main-standby) Transformer 400/230 V included Colour : RAL 9001 Standards : IEC 60439-1, EN 60439-1, IEC 61921

    P.61

    8

  • 7/30/2019 Catalogue Sisvar en V4

    64/82

    P.62

    8 Varset presentation (continued)

    Installation

    Enclosure: wall mounting or by free standing plint (accessory) wit top connection of power cables Cubicle: free standing cubicle wit bottom connection of power cables to te busbar pads Te CT (not supplied) as to be placed upstream from te capacitor bank and loads It is not necessary to provide a 230 V - 50hz power supply to supply te contactor coils.

    Options

    Top connection Extension Fixed base compensation (for automatic capacitor banks) Please consult us for oter options

    Accessoires pour Varset Rfrences

    Socle pour xation au sol des enclosures C1 et C2 65980

  • 7/30/2019 Catalogue Sisvar en V4

    65/82

    Fixed power factor correction Automatic power factor correction Fast power factor correc-

    tion

    Varset DirectClassic

    Varset DirectComfort

    Varset Directharmony

    Varset Classic Varset Com-fort

    Varsetharmony

    Varset Fast

    Rseau 50 hz

    230 V network p.59

    400/415 V network p.60 p.61 p.62 p.63 p.65 p.67 p.71

    Our products according to the network

    Find te page corresponding to your network tanks to te table below.

    8

    P.63

  • 7/30/2019 Catalogue Sisvar en V4

    66/82

    P.64

    8 Varset Direct

    230 V -