Carbon Nanotube Field-Effect Transistors: An Evaluation

47
Carbon Nanotube Field-Effect Transistors: An Evaluation D.L. Pulfrey, L.C. Castro, D.L. John Department of Electrical and Computer Engineering University of British Columbia Vancouver, B.C. V6T1Z4, Canada [email protected]

description

Carbon Nanotube Field-Effect Transistors: An Evaluation. D.L. Pulfrey, L.C. Castro, D.L. John. Department of Electrical and Computer Engineering University of British Columbia Vancouver, B.C. V6T1Z4, Canada [email protected]. S.Iijima, Nature 354 (1991) 56. - PowerPoint PPT Presentation

Transcript of Carbon Nanotube Field-Effect Transistors: An Evaluation

Page 1: Carbon Nanotube Field-Effect Transistors: An Evaluation

Carbon Nanotube Field-Effect Transistors:An Evaluation

D.L. Pulfrey, L.C. Castro, D.L. John

Department of Electrical and Computer Engineering

University of British Columbia

Vancouver, B.C. V6T1Z4, Canada

[email protected]

Page 2: Carbon Nanotube Field-Effect Transistors: An Evaluation

S.Iijima, Nature 354 (1991) 56

Single-wall and multi-wall NANOTUBES

Compare: flaxen hair - 20,000 nm

Page 3: Carbon Nanotube Field-Effect Transistors: An Evaluation

J.Kong et al., Nature, 395, 878, 1998

CNT formation by catalytic CVD

5m islands in PMMApatterned by EBL

LPD of Fe/Mo/Al catalyst

Lift-off PMMA

CVD from methane at 1000C

2000nm

No field

Growth in field (1V/micron)A. Ural et al., Appl. Phys. Lett., 81, 3464, 2002

Page 4: Carbon Nanotube Field-Effect Transistors: An Evaluation

Single-Walled Carbon Nanotube

2p orbital, 1e-

(-bonds)

Hybridized carbon atom graphene monolayer carbon nanotube

Page 5: Carbon Nanotube Field-Effect Transistors: An Evaluation

Chiral tubeChiral tube

a2

a1

(5,2) Tube(5,2) Tube

Structure (n,m):Structure (n,m):

VECTOR NOTATION FOR NANOTUBESVECTOR NOTATION FOR NANOTUBES

Adapted from Richard Martel

Page 6: Carbon Nanotube Field-Effect Transistors: An Evaluation

E-EF (eV) vs. k|| (1/nm)

(5,0) semiconducting (5,5) metallic

Eg/2

eV (nm)

80

2

d

.

d

aE CC

g

Page 7: Carbon Nanotube Field-Effect Transistors: An Evaluation

Doping

• Substitutional unlikely •Adsorbed possiblee.g., K, O

• Interior possibleTubes are naturally intrinsic

Page 8: Carbon Nanotube Field-Effect Transistors: An Evaluation

Phonons

• Acoustic phonons (twistons) mfp 300 nm

Ballistic

transport

possible

• Optical phonons

mfp 15 nm

Page 9: Carbon Nanotube Field-Effect Transistors: An Evaluation

Fabricated Carbon Nanotube FETs

• Few prototypes

– [Tans98]: 1st published device

– [Wind02]: Top-gated CNFET

– [Rosenblatt02]: Electrolyte-gated

Nanotube

Page 10: Carbon Nanotube Field-Effect Transistors: An Evaluation

CLOSED COAXIAL NANOTUBE FET STRUCTURE

chirality: (16,0)

radius: 0.62 nm

bandgap: 0.63 eV

length: 15 - 100 nm

oxide thickness: (RG-RT): 2 - 6 nmq

VLV

qV

qVzRV

DDS

S

GGSG

),(

)0,(

),(

:ConditionsBoundary

Page 11: Carbon Nanotube Field-Effect Transistors: An Evaluation

kx

kx

kz

E

METAL (many modes)

CNT (few modes)

Doubly degenerate lowest mode

MODE CONSTRICTIONand

TRANSMISSION

T

Page 12: Carbon Nanotube Field-Effect Transistors: An Evaluation

gate

insulator

nanotube

Cins

CQ

Quantum Capacitance Limit

)/( qEd

dQC

b

zQ

Eb

source!CNFETs!in 1

1

Q

QCSGS

ins

QCSGS

CSGCGS

m

mdVdV

C

CdVdV

dVdVV

Page 13: Carbon Nanotube Field-Effect Transistors: An Evaluation

Quantum Capacitance and Sub-threshold Slope

High k dielectrics:zirconia - 25water - 80

mV/decade 60loglog

exp1010

QD

CSQ

D

GSCSsubT m

Id

dVm

Id

dVS

kT

qVI

70 mV/decade ! - Javey et al., Nature Materials, 1, 241, 2002

Page 14: Carbon Nanotube Field-Effect Transistors: An Evaluation

AMBIPOLAR CONDUCTION

Experimental data:M. Radosavljevic et al., arXiv: cond-mat/0305570 v1

Vds= - 0.4VVgs= -0.15+0.05+0.30

Page 15: Carbon Nanotube Field-Effect Transistors: An Evaluation

Minimize the OFF Current

G = 4.2 eVIncreasing S,D 3.9, 4.2, 4.5 eV

S,D = 3.9 eVIncreasing G 3.0, 4.37 eV

ON/OFF 103

Page 16: Carbon Nanotube Field-Effect Transistors: An Evaluation

General non-equilibrium case

E

f(E)

EFS

0.5

E

f(E)

EFD

0.5

g(E)

E

1D DOS

Non-equilib f(E)

Q(z,E)=qf(E)g(E)

Solve Poisson iteratively

Page 17: Carbon Nanotube Field-Effect Transistors: An Evaluation

CURRENT in 1-D SYSTEMS

E DSeeee

zz

z

E eSee

dEEfEfETh

qIII

dk

dE

hv

dE

dk

dE

dNEg

dEEvEgETEfEMqvqnI

)}(- )(){(4

)modes 2(

2

modes) 2 ng(consideri m.eV / states 2

)( DOS

)()()()()()1D()1D(

Page 18: Carbon Nanotube Field-Effect Transistors: An Evaluation

Quantized Conductance

E DSee dEEfEfETM

h

qI )}(- )(){(

2

In the low-temperature limit:

Mh

qG

T

qVdEEfEfE DSSDS

2

D

2

1 if

- )}(- )({

Interfacial G: even when transport is ballistic in CNT

155 S for M=2

Page 19: Carbon Nanotube Field-Effect Transistors: An Evaluation

Measured Conductance

A. Javey et al., Nature, 424, 654, 2003

• No tunneling barriers• Low R contacts (Pd)

G 0.4 Gmax

at 280K !!

Page 20: Carbon Nanotube Field-Effect Transistors: An Evaluation

Drain Saturation Current

E DSee dEEfEfETM

h

qI )}(- )(){(

2

bE

SMAX

SATeE SeSATe dEEfh

qIdEEfETM

h

qI )(

4 )()(

2,,

If T=1Get BJT behaviour!

VGS

Eb

EF

Zero-height Schottky barrier

Page 21: Carbon Nanotube Field-Effect Transistors: An Evaluation

Present world record

Javey et al., Nature, 424, 654, 2003

ON Current: Measured and Possible

S,D= 3.9eVG = 4.37eV

CQ limit

80% ofQC limit!

Page 22: Carbon Nanotube Field-Effect Transistors: An Evaluation

Predicted Drain Current

0 0.2 0.4 0.6 0.80

5

10

15

20

25

30

35

40

45

50Varying drain work function, gate: 4.2, Vgs=0.4

VDS

(V)

0 0.2 0.4 0.6 0.80

10

20

30

40

50

60

70

80

90Varying gate work function, D/S: 3.9, Vgs=0.4

VDS

(V)

4.54.23.9

4.54.23.9

Dra

in c

urre

nt ( A

)

Dra

in c

urre

nt ( A

)

-ve

0

+ve

-5 0 5 10 15 20 25-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

z [nm]

Ene

rgy

[eV

]

4.5 eV

4.2

3.9

Vgs=Vds=0.4V

70mA/m !!

Page 23: Carbon Nanotube Field-Effect Transistors: An Evaluation

Transconductance

!! 4

)/exp(14

1T and high At

)}(- )(){(2

2

12

h

qg

kTqVh

q

dV

dIg

V

dEEfEfETMh

qI

m

GSGS

em

DS

E DSee

Low VDS: modulate for G

High VDS: modulate VGS for gm

Page 24: Carbon Nanotube Field-Effect Transistors: An Evaluation

Transconductance: Measured and Possible

Highest measured:Rosenblatt et al.Nano. Lett., 2, 869, 2002

CQ limit

S,D= 3.9eVG = 4.37eV

80% ofQC limit!

Page 25: Carbon Nanotube Field-Effect Transistors: An Evaluation

CNFET Logic A.Javey et al., Nature Materials, 1, 241, 2002

Gain=60

1st OR-gate

0,0

Page 26: Carbon Nanotube Field-Effect Transistors: An Evaluation

Williams, Veenhuizen, de la Torre, Eritja and Dekker Nature, 420, 761, 2002.

CNTs Functionalized with DNA

Recognition-based assembly

Page 27: Carbon Nanotube Field-Effect Transistors: An Evaluation

Self-assembly of DNA-templated CNFETs K.Keren et al., Technion.

Page 28: Carbon Nanotube Field-Effect Transistors: An Evaluation

Self-assembly of DNA-templated CNFETs K.Keren et al., Technion.

Page 29: Carbon Nanotube Field-Effect Transistors: An Evaluation

CONCLUSIONS

• Schottky barriers play a crucial role in determining the drain

current.

• Negative barrier devices enable:

• control of ambipolarity,

• high ON/OFF ratios,

• near ultimate-limit S, G, ID, gm.

• CNFETs can be self-assembled via biological recognition.

• CNs have excellent thermal and mechanical properties.

• CNFETs deserve serious study as molecular transistors.

Page 30: Carbon Nanotube Field-Effect Transistors: An Evaluation

Extra Slides

Page 31: Carbon Nanotube Field-Effect Transistors: An Evaluation

• Nanoscale

•Bandgap tunability

• Metals and semiconductors

• Ballistic transport

• Strong covalent bonding:

-- strength and stability of graphite

-- reduced electromigration (high current operation)

-- no surface states (less scattering, compatibility with many insulators)

• High thermal conductivity

-- almost as high as diamond (dense circuits)

• Let’s make transistors!

Compelling Properties of Carbon Nanotubes

Page 32: Carbon Nanotube Field-Effect Transistors: An Evaluation

From: Dresselhaus, Dresselhaus & Eklund. 1996 Science of Fullerenesand Carbon Nanotubes. San Diego, Academic Press. Adapted from Richard Martel.

Armchair

Zig-Zag

Chiral

CHIRAL NANOTUBES

Page 33: Carbon Nanotube Field-Effect Transistors: An Evaluation
Page 34: Carbon Nanotube Field-Effect Transistors: An Evaluation

Carbon Nanotube Properties

• Graphene sheet 2D E(k//,k)

– Quantization of transverse wavevectors

k (along tube circumference)

Nanotube 1D E(k//)

• Nanotube 1D density-of-states derived from [E(k//)/k]-1

• Get E(k//) vs. k(k//,k) from Tight-Binding Approximation

Page 35: Carbon Nanotube Field-Effect Transistors: An Evaluation

Density of States

bandeach for 21

)( )(2

1

2

eV / nm / states 1

eunit volumper )( DOS

spin)for (allowing states 2

2 are therein

space in volume2

occupies state One

22

CC

z

z

zz

z

EE

m

hEg

EEm

m

dE

dk

m

kE

dE

dk

dE

dNEg

dkL

dNdk

kL

k|| or kz

L

2

Page 36: Carbon Nanotube Field-Effect Transistors: An Evaluation

Tight Binding

rrrRr

Rk

dU

iEE

atomic

V

atomicR

RRatomic

)( )( )(

)exp(

*

David John, UBC

Wolfe et al., “Physical Properties of Semiconductors”

Page 37: Carbon Nanotube Field-Effect Transistors: An Evaluation

Density of States(5,0) tube David John

E(eV) vs. k|| (1/nm) E(eV) vs. DOS (100/eV/nm)

Page 38: Carbon Nanotube Field-Effect Transistors: An Evaluation

Tuning the Bandgap

T. Odom et al., Nature, 391, 62, 1998

eV 8.2 2

d

aE CC

g

Eg < 0.1 eV for d > 7 nm

“zero bandgap” semiconductor

Page 39: Carbon Nanotube Field-Effect Transistors: An Evaluation

nanotube

oxidegate

Planar Coaxial

The Ideal Structure

Page 40: Carbon Nanotube Field-Effect Transistors: An Evaluation

J.Kong et al., Nature, 395, 878, 1998

CNT formation by catalytic CVD

5m islands in PMMApatterned by EBL

LPD of Fe/Mo/Al catalyst

Lift-off PMMA

CVD from methane at 1000C

1000nm

300nm

2000nm

Page 41: Carbon Nanotube Field-Effect Transistors: An Evaluation

CNT formation by E-field assisted CVD

A. Ural et al., Appl. Phys. Lett., 81, 3464, 2002

V applied between Mo electrodes.

CVD from catalytic islands.

No field

10V applied

Page 42: Carbon Nanotube Field-Effect Transistors: An Evaluation

Bottom-gated Nanotube FETsBottom-gated Nanotube FETs

A. Javey et al., Nature, 424, 654, 2003

Note very high ID

10mA/m

Nanotube

1st CNFET

S. Tans et al., Nature, 393, 49, 1998

Page 43: Carbon Nanotube Field-Effect Transistors: An Evaluation

Phenomenological treatment of metal/nanotube contacts

Evidence of work function-dependence of I-V: A. Javey et al., Nature, 424, 654, 2003

BngBp

CNTmBn

E

:pinning level-Fermi No

Zero hole barrier

Page 44: Carbon Nanotube Field-Effect Transistors: An Evaluation

Schrödinger-Poisson Model

• Need full QM treatment to compute:

-- Q(z) within positive barrier regions

-- Q in evanescent states (MIGS)

-- S D tunneling

-- resonance, coherence

-5 0 5 10 15 20 25-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

z [nm]

Ene

rgy

[eV

]

Page 45: Carbon Nanotube Field-Effect Transistors: An Evaluation

Schrödinger-Poisson ModelL.C. Castro, D.L. John

S DCNT

Unbounded plane waves

)()()(

2)(

:ILandauer and PDI equatingby J.m Find

),( :define Instead,

:ionnormalizat spatial doCannot

**

1-

2

*

Q(z,E)n(z,E)ETEfq

EI

zzi

m

qEI

Ezn

dz

SL

PD

z

Page 46: Carbon Nanotube Field-Effect Transistors: An Evaluation

Increasing the Drain Current

0 0.2 0.4 0.6 0.80

5

10

15

20

25

30

35

40

45

50Varying drain work function, gate: 4.2, Vgs=0.4

VDS

(V)

0 0.2 0.4 0.6 0.80

10

20

30

40

50

60

70

80

90Varying gate work function, D/S: 3.9, Vgs=0.4

VDS

(V)

4.54.23.9

4.54.23.9

Dra

in c

urre

nt ( A

)

Dra

in c

urre

nt ( A

)

-5 0 5 10 15 20 25-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

z [nm]

Ene

rgy

[eV

]

Varying gate work function: D/S=3.9, Vds=Vgs=0.4V

4.5

4.2

3.9

Vgs=Vds=0.4V

70mA/m !!

Page 47: Carbon Nanotube Field-Effect Transistors: An Evaluation

Array of vertically grown CNFETsW.B. Choi et al., Appl. Phys. Lett., 79, 3696, 2001.

2x1011 CNTs/cm2 !!