Cantilever Wall

Click here to load reader

  • date post

    15-Dec-2015
  • Category

    Documents

  • view

    240
  • download

    4

Embed Size (px)

Transcript of Cantilever Wall

Menu

STRUCTURAL CALCULATIONOFINVERTED T-SHAPE TYPE RETAINING WALL

priceconcrete=23x400,000=9,150,00048%reinforcement=1,315x7,500=9,864,71752%Rp19,014,717,-/m'

reinforcement=57.50kg/m3-concrete

10.000.0020.001.0031.001.5041.0011.5051.5011.5062.501.50710.001.00810.000.0090.000.00

10.002.0021.002.00

11.007.50210.007.50

10.006.5021.006.50

InputLocation:

Top wall level=79.00mD1 - HuluRiver bed level=69.50mGround water level=75.00mRiver water level=74.00mFoundation level=67.50mDimension(unit length)H=11.50 mB=10.00 mL=1.00 mab11=1.00 mb12=0.50 mb13=0.00 mb21=7.50 mb22=1.50 mb23=1.00 m

h1=11.50 mh31=1.00 mh32=0.50mh4=2.00 mhw1=7.50 mhw2=6.50m

q=0.50 t/m2Kh=0.18Backfill soilgc=2.40 t/m3gw=1.00 t/m3gsoil=1.80 t/m3gsat=2.00 t/m3a=0.00o(for stability analysis)f=30.0oa=5.71o(for structural analysis)c=0.00 t/m2b=0.00oSection of Retaining wallFoundation soilgs'=1.00 t/m3Safety factor(normal)(seismic)fB=30.0oOverturning|e|2.001.25Friction coefficientReaction of foundation soilm=0.50qmax>qa=qu/3qae=qu/2Uplift coefficientAllowable stressUm=1.00Compressivesca=6090 kg/cm2Cover of barTensilessa=18502775 kg/cm2WallShearta=5.58.25 kg/cm2d back=7 cmYoung's modulus ratiod front=7 cm2416Footingd upper=7 cmd lower=7 cm

&F-&D

Check-stabSTABILITY:D1 - HuluS

Normal ConditionSeismic Condition

a) Stability against overturninga) Stability against overturning

|e|=0.69m< B/6=1.67mOK!|e|=1.09m< B/3=3.33mOK!

b) Stability against slidingb) Stability against sliding

Fs=2.02>2.00OK!Fs=1.26>1.25OK!

c) Reaction of foundation soilc) Reaction of foundation soil

q1=26.72t/m2 0 and e < B/6in case, e > 0 and B/6 < e < B/3(applicable)(not applicable)

-t/m2

-t/m2-t/m2

in case, e < 0 and |e| < B/6in case, e < 0 and B/6 < |e| < B/3(not applicable)(not applicable)

Reaction of Foundation Soil in Case 3

2.4 Bearing Capacity of soil

(1) Design DatafB=30.00ocB=0.00t/m2gs'=1.00t/m3(=gsat-gw)Ref. from table, bearing capacity coefficient of Ohsaki, are given :

B=10.00mz=2.00mL=1.00m(unit length)Table OhsakifNcNqNg(2) Ultimate Bearing Capacity of soil, (qu)20.07.93.92.025.09.95.63.3 Calculation of ultimate bearing capacity will be obtained by applying the following28.011.47.14.4 Terzaghi's formula :30.016.510.67.532.020.914.110.6qu= (a x c x Nc) + (gsoil' x z x Nq) + (b x gsoil x B x Ng)36.042.231.630.540.095.781.3115.7Shape factor (Table 2.5 of KP-06)45.0172.3173.3325.8

a=1.00b=0.50

Shape of footing:1(strip)

Shape of footingab1strip1.000.502square1.300.403rectangular, B x L1.110.40(B < L)(= 1.09 + 0.21 B/L)(B > L)(= 1.09 + 0.21 L/B)4circular, diameter = B1.300.30

Bearing capacity factor (Figure 2.3 of KP-06, by Capper)

Nc=36.0Nq=23.0Ng=20.0

fNcNqNg05.70.00.057.01.40.0109.02.70.21512.04.52.32017.07.54.72524.013.09.53036.023.020.03557.044.041.03770.050.055.039>82.050.073.0

(a x c x Nc)=0.000

(gsoil x z x Nq)=46.000

(b x gsoil x B x Ng) =100.000

qu=146.000t/m2

(3) Allowable Bearing Capacity of soil, (qa)

qa=qu / 3=48.667t/m2(safety factor =3, normal condition)

qae=qu / 2=73.000t/m2(safety factor =2, seismic condition)

(4) Distribution vertical load to wooden pile, (Vp)(Not applicable for this Project)

a) Normal condition

qa x BWs==393ton( 1 + (6 x e)/B )

Vp= W - Ws=-177ton(Wooden pile: not necessary)

b) Seismic condition

qae x BWs==516ton( 1 + (6 x e)/B )

Vp= W - Ws=-300ton(Wooden pile: not necessary)

&A&P/&N

&F-&D

2Cos2(f -a)Cos2a x Cos(a+d) x1+Sin(f+d) x SinfCos(a+d) x Cosa 2Cos2(f+a)Cos2a x Cos(a -d) x1 -Sin(f+d) x SinfCos(a -d) x Cosa 2Cos2(f-F-a)CosF x Cos2a x Cos(a+d+F) x1+Sin(f+d) x Sin(f-b-F)Cos(a+d+F) x Cos(a-b) Cos2a x Cos(a+d) xPw1Pa4Pa2Pa1qa2qa3qw1qa4Pa3O

Pp1qa1qp1712923568411Pw2qw2Pw1Pa4Pa2Pa1qa2qa3qw1qa4Pa3O

9Pp1qa1qp171223568411Pw2qw2Pa1qa1qa2qa3qw1Pa2Pa3Pw1O

712923568411Pw2qw2Pp1qp12Cos2(f-F+a)CosF x Cos2a x Cos(a+d-F) x1-Sin(f-d) x Sin(f+b-F)Cos(a+d-F) x Cos(a-b) qu2Pu1Pu2qu1qu2Pu2qu1Pu1Pu1qu2Pu2qu1

Structure3. Structure Calculation

3.1 Normal Condition

(1) Wall1.00q=0.50t/m20.500.00

10.00

0.9

6.005.00

0.501.001.00

7.501.501.00

Load Diagram on Wall in Normal ConditionKa =0.341a=5.711od=20.00ocos (a+d)=0.901Kha=Ka x cos (a+d)=0.307

a) Section A - A

h =4.00mqa1 = Kha x q=0.153 ton/mqa2 = Kha x h x gsoil=2.210 ton/m

No.DescriptionHaY (from A-A)Ha x YPa10.153x4.000.6142.0001.228Pa22.210x4.00x0.504.4201.3335.894 T o t a l5.0347.122

Sa=5.034 tonMa =7.122ton m

b) Section B - B

h =4.00mhw1 =6.00mhw2 =5.00mqa1 = Kha x q=0.153 ton/mqa2 = Kha x h x gsoil=2.210 ton/mqa3 = qa1 + qa2=2.364 ton/mqa4 = Kha x hw2 x (gsat - gw)=1.842 ton/mqw1= hw1 x gw=6.000 ton/mqw2= hw2 x gw=5.000 ton/m

No.DescriptionHbY (from B-B)Ha x YPa10.153x4.000.6148.0004.911Pa22.210x4.00x0.504.4207.33332.416Pa32.364x6.0014.1823.00042.546Pa41.842x6.00x0.505.5252.00011.051Pw16.000x6.00x0.5018.0002.00036.000Pw2-5.000x5.00x0.50-12.5001.667(20.833) T o t a l30.242106.090

Sb=30.242 tonMb=106.090ton m

(2) FootingCase 1 (with vertical live load)Case 2 (without vertical live load)q=0.50t/m2q=0.50t/m2

4.004.00

6.006.000.500.501.001.00

7.501.501.007.501.501.00

in case, e > 0in case, e > 0

10.26024.92516.460t/m215.844t/m224.155t/m223.826t/m225.694t/m225.422t/m226.720t/m226.486t/m2

in case, e < 0in case, e < 0

-t/m2-t/m2-t/m2-t/m2

-t/m2-t/m2-t/m2-t/m2

Load Diagram on Footing in Normal Case

a) Section C - C

Case 1 (with vertical live load)No.DescriptionHcX (from C-C)Hc x X11.000x1.00x2.402.4000.5001.2000.500x1.00x2.40x0.500.6000.3330.2002-25.694x1.00-25.6940.500-12.847-1.026x1.00x0.50-0.5130.667-0.342 T o t a l-23.207-11.789

Case 2 (without vertical live load)No.DescriptionHcX (from C-C)Hc x X11.000x1.00x2.402.4000.5001.2000.500x1.00x2.40x0.500.6000.3330.2002-25.422x1.00-25.4220.500-12.711-1.064x1.00x0.50-0.5320.667-0.355 T o t a l-22.954-11.666

Case 1Sc=-23.207tonMc=-11.789ton mCase 2Sc=-22.954tonMc=-11.666ton m

b) Section D - D

Case 1 (with vertical live load)No.DescriptionHdX (from D-D)Hd x Y31.000x7.50x2.4018.0003.75067.5000.500x7.50x2.40x0.504.5002.50011.25044.000x7.50x1.8054.0003.750202.5006.000x7.50x2.0090.0003.750337.5000.500x7.50x2.00x0.503.7505.00018.75050.500x7.503.7503.75014.0636-16.460x7.50-123.4503.750-462.938-7.695x7.50x0.50-28.8562.500-72.141 T o t a l21.694116.484

Case 2 (without vertical live load)No.DescriptionHdX (from D-D)Hd x Y31.000x7.50x2.4018.0003.75067.5000.500x7.50x2.40x0.504.5002.50011.25044.000x7.50x1.8054.0003.750202.5006.000x7.50x2.0090.0003.750337.5000.500x7.50x2.00x0.503.7505.00018.7506-15.844x7.50-118.8303.750-445.613-7.982x7.50x0.50-29.9312.500-74.827 T o t a l21.489117.061

Case 1Sd=21.694tonMd=116.484ton mcase 2Sd=21.489tonMd=117.061ton m

3.2 Seismic Condition

(1) Wall1.000.500.00

10.0010.50

6.005.00

0.501.001.00

7.501.501.00

Load diagram on Wall for Seismic caseKae =0.481a=5.711od=15.00ocos (a+d)=0.935Khea=Kae x cos (a+d)=0.450Kh =0.18

a) Section A - A

h =4.00mqa1 = Khae x h x gsoil=3.239 t/mNo.DescriptionHaeY (from A-A)Hae x Y10.500x4.000x0.400x2.400x0.1800.3461.3330.46124.000x0.500x2.400x0.1800.8642.0001.72830.500x4.000x0.000x2.400x0.1800.0001.3330.000Pa13.239x4.000x0.5006.4791.3338.638 T o t a l7.68810.827

Sae=7.688 tonMae=10.827ton mb) Section B - B

h =4.00mhw1 =6.00mhw2 =5.00mqa1 = Khae x h x gsoil=3.463 t/mqa2 = qa1=3.463 t/mqa3 = Khae x hw1 x ( gsat - gw)=2.699 t/mqw1= hw1 x gw=6.000 ton/mqw2= hw2 x gw=5.000 ton/m

No.DescriptionHbeY (from B-B)Hbe x YPa13.463x4.00x0.506.9267.33350.794Pa23.463x6.0020.7793.00062.338Pa32.699x6.00x0.508.0982.00016.197Pw16.000x6.00x0.5018.0002.00036.000Pw2-5.000x5.00x0.50-12.5001.667-20.83310.500x10.00x1.00x2.40x0.182.1603.3337.200210.000x0.50x2.40x0.182.1605.00010.80030.500x10.00x0.00x2.40x0.180.0003.3330.000 T o t a l45.624162.495

Sbe=45.624tonMbe=162.495ton m

(2) Footingin case, e < B/6in case, B/6 < e < B/3

4.004.00

6.006.000.500.501.001.00

7.501.501.007.501.501.00

in case, e > 0 ande < B/6in case, e > 0 and B/6 < e < B/3

12.403t/m2-t/m225.546t/m228.175t/m2-t/m229.927t/m2-t/m2

in case, e < 0 and |e| < B/6in case, e < 0 and B/6 < |e| < B/3

-t/m2-t/m2-t/m2-t/m2

-t/m2-t/m2-t/m2

Load Diagram on Footing in Seismic Case

a) Section C - C

No.DescriptionHceX (from C-C)Hce x X11.000x1.00x2.402.4000.5001.2000.500x1.00x2.40x0.500.6000.3330.2002-28.175x1.00-28.1750.500-14.087-1.752x1.00x0.50-0.8760.667-0.584 T o t a l-26.051-13.271

Sce=-26.051tonMce=-13.271ton m

b) Section D - D

No.DescriptionHdeX (from D-D)Hde x X31.000x7.50x2.4018.0003.75067.5000.500x7.50x2.40x0.504.5002.50011.250410.000x7.50x1.92144.0003.750540.0000.500x7.50x2.00x0.503.7505.00018.7505-12.403x7.50-93.0233.750-348.834-13.143x7.50x0.50-49.2862.500-123.216 T o t a l27.941165.450

Sde=27.941tonMde=165.450ton m

3.3 Design Bending Moment and Shear Force

(1) Bending moment and shear force in each case

DescriptionBending MomentShear ForceNormalSeismicNormalSeismicCase 1Case 2Case 3Case 1Case 2Case 3 Section A - A7.1227.12210.8275.0345.0347.688 Section B - B106.090106.090162.49530.24230.24245.624 Section C - C11.78911.66613.27123.20722.95426.051 Section D - D116.484117.06116