Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the...

39
Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Sciences New York University, 100 Washington Sq. East New York, NY 10003 Image: news.softpedia.com

Transcript of Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the...

Page 1: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces

Mark E. Tuckerman

Dept. of Chemistry

and Courant Institute of Mathematical Sciences

New York University, 100 Washington Sq. East

New York, NY 10003

Image: news.softpedia.com

Page 2: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

1808: “We are perhaps not far removed from the time when we shall be able to submit the bulk of chemical phenomena to calculation.”

Joseph Louis Gay-Lussac (1778-1850)

Page 3: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

“The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact solution of these laws leads to equations much to complicated to be soluble.”

Paul Dirac on Quantum Mechanics (1929).

BG/L@RPI

Page 4: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Why study water?

Most important liquid on EarthOne of the most mysterious substances known

“Science Journal: The structure of water isn’t certain after all” -- from the Wall Street Journal March 10, 2006

Biology Atmospheric Chemistry

Image source: www.cbs.cnrs.fr

Energy Technology

From Petersen and Voth, JPCB 110 (2006)

Wernet, et al. Science (2004)

Page 5: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Some of water’s anomalous properties

Density maximum at 4 oC

Many stable crystalline phases

High surface tension

Anomalously high transport of protons (H+) and hydroxide (OH-) ions

Page 6: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

PEM vs. AAEM fuel cells(AAEM=Alkali-anion exchange membrane)

3 2 2

2 2

3 2 2 2

3Cathode: O 6e 6

Anode: CH OH H O 6

3Over

H 6e C

all: CH OH O 2H

O

H 3

C2

H

O O

O2

2

3

3 2 2 2

2

2 2A

3Cathode: O 3H O 6e 6OH

3Ove

node: CH OH 6OH CO 5

rall: CH

H

OH O 2H O CO

O

2

6e

2

From Varcoe and Slade,Fuel Cells 5, 198 (2005)

Page 7: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

1806:

Page 8: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Structures of the excess proton in water

H9O4+

H5O2+

H3O+

Page 9: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

+ + +

Grotthuss Mechanism (1806)

Vehicle Mechanism

Page 10: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.
Page 11: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Chemistry in the “Virtual Laboratory”

On the “shelf”:

• Nuclei of the chemical elements• Unlimited supply of electrons

Instrumentation:

Fundamental laws of physics:

Nuclei: Newton’s second law mF a

Electrons: Schrödinger equation H E

ˆ ˆ ˆ ˆ ˆ ˆN e ee NN eNH T T V V V

Page 12: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Nuclei

Electrons

Start with nuclei Compute F

Propagate nuclei ashort time Δt with F

Add electrons

Add electrons

The Algorithm

Page 13: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

NucleiElectrons

Ab initio molecular dynamics (AIMD)

Kohn-Sham density functional theory:

2

2

1 1 ( ) ( )[{ },{ }] [ ] [ ,{ }] ( )

2 2 '

( ) ( )

i i xc ext nni

i i j iji

n nE d d E n E n E

n

r rR r r R R

r r

r r

Nuclear evolution2

02

II

I

EdM

dt

R

R0

{ }({ }) min [{ },{ }]E E

R R

Page 14: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.
Page 15: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Feynman path integrals

. ... . . .......

1

2

3

P-1

P

MET, et al. JCP 99, 2796 (1993); Marx and Parrinello, JCP 104, 4077 (1996); MET, et al. JCP 104, 5579 (1996)

Feynman path integrals

lim PP

Z

Near perfect parallel scaling with increasing P

Page 16: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Basis Sets

Plane-waves (momentum eigenfunctions):

2

, cut

1 2 1( )

2i

i iC e ELV

g rg

g

nr g g

Discrete-variable representations [Light, et al. JCP 82, 1400 (1982)]: Begin with a set of N square-integrable orthonormal functions φi(x)

*

1

( ) ( ) ( )N

i i l i ll

u x a x x

On an appropriately chosen quadrature grid {x1,…,xN}

( ) iji j

i

u xa

(position eigenfunctions!). Expand orbitals as:

( ) ( ) ( ) ( )ii lmn l m n

lmn

C u x u y u z r

Y. Liu, D. Yarne and MET, PRB 68, 125110 (2003); H. –S. Lee and MET, JPCA 110, 5549 (2006)

Basis set size determined by # grid points. Core electrons replaced by atomic pseudopotentials

Page 17: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Radial distribution functions for BLYP Water

DVR

Neutron

X-ray

H. –S. Lee and MET, JPCA 110, 549 (2006)H. –S. Lee and MET JCP 125, 154507 (2006).H. –S. Lee and MET JCP 126, 164501 (2007).Neutron: Soper, et. al. JCP 106, 247 (1997)X-ray: Hura, et. al. Chem. Phys. 113, 9140 (2000)

Grid = 753, t =60 ps

Ensemble: NVT, 300 K, μ = 500 au

r(Å) 0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 2.5 3 3.5 4 4.5 5 5.5 6

DZVPDZVP+BSSE-BLYPSCP-BLYP

gO

O(R

)

R [Å]

When basis sets are too small!from C. J. Mundy (2008)

Page 18: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.
Page 19: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.
Page 20: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

The Grotthuss mechanism in water

MET, et al,JPC, 99, 5749 (1995); JCP 103, 150 (1995)D. Marx, MET, J. Hutter, M. Parrinello, Nature 397, 601 (1999).N. Agmon, Chem. Phys. Lett. 244, 456 (1995)T. J. F. Day, et al. J. Am. Chem. Soc. 122, 12027 (2000)

Solvent coordinate view:

P. M. Kiefer, J. T. HynesJ. Phys. Chem. A 108, 11793 (2004)

Page 21: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

The Grotthuss mechanism in water

Second solvation shell H-bond breaking followedby formation of intermediate Zundel complex:

P

Presolvation Concept:Proton-receiving species must be“pre-solvated” like the species into which it will be transformed in theproton-transfer reaction.

MET, et al ,Nature 417, 925 (2002)

Page 22: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

The Grotthuss mechanism in water

Computed transfer time τ = 1.5 ps

NMR: 1.3 ps

Transfer of proton resulting in “diffusion’’ ofsolvation structure:

A. Chandra, MET, D. Marx Phys. Rev. Lett. 99, 145901 (2007)

Page 23: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Quantum delocalization of structural defectD. Marx, MET, J. Hutter and M. Parrinello Nature 397, 601 (1999)

Page 24: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Ultrafast pump-probe experimentsWoutersen and Bakker, Phys. Rev. Lett. 96, 138305 (2006)

Eigen/Zundel exchange time ≈ 100 fs

Page 25: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

1

1

2

A B

B C

k

k

k

A Chemical Master Equation Theory of PT kinetics

O*

O*

O* O*

1 1

2 1 1

[A][A] [B]

[B][B] [A]

dk k

dtd

k k kdt

A. Chandra, MET, D. Marx Phys. Rev. Lett. 99, 145901 (2007)

( ) 1h t

( ) 0h t

( ) 0h t

( ) 1h t

[A]( ) (0) ( )

[B]( ) (0)[1 ( )] ( )

t h h t

t h h t g t

Population correlation functions:

Rate equations:

( ) 1 g t in all configurations above

Page 26: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Chemical Master Equation Theory

( ) (0) ( )cC t h H t

Exchange time: exch 0 ( )cdt C t

1 1

slow fast

/ 2 / 21 1

/ /slow fast

2

1 1 1 2 1

1[A]( )

2

4

k K t k K t

t t

t k K e k K e

a e a e

k K k k K k k

O*

H

H

H O O*

H

H

H O

t = 0 t

fast

exch

50 fs (Bakker: 100 fs)

1.52 ps (NMR: 1.3 ps)

Page 27: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Liquid/vapor interface of acidic solutions

“acceptor only”

hydrogen bonded

dangling

Mucha, et al. JPCB 109, 7617 (2005) Baldelli, et al. CPL 302, 157 (1999)

Tian, et al. JACS 130, 13033 (2008)

Page 28: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Simulations of an HCl interface (96 waters + 1 HCl)

Petersen, et al. JPCB 108, 14804 (2004)

H. S. Lee and MET JPCA (submitted)

Page 29: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

“Proton hole” or mirror image mechanism of hydroxide mobility

H. Daneel, Z. Elektrochem. 16, 249 (1905)E. Hückel, Z. Elektrochem. 34, 546 (1928)N. Agmon, Chem. Phys. Lett. 319, 247 (2000); Asthagiri, et al. PNAS (2004)M. L. Huggins, J. Phys. Chem. 40, 723 (1936).

OH-

H+

Page 30: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Spectra of 14 M KOH

IR

Raman

Librovich and Maiorov, Russian J. Phys. Chem. 56, 624 (1982)

Page 31: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Identified in neutron scattering of concentrated NaOH and KOH solutions: A. K. Soper and coworkers, JCP 120, 10154 (2004); JCP122, 194509 (2005).Also in other CPMD studies: B. Chen, et al. JPCB 106, 8009 (2002); JACS 124, 8534 (2002).And in X-ray absorption spectroscopy: C. D. Cappa, et al. J. Phys. Chem. A 111, 4776 (2007)

Page 32: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Weak H-bond donated by hydroxide also identified in neutron scattering of concentrated NaOH and KOH solutions: A. K. Soper and coworkers, JCP 120, 10154 (2004); JCP122, 194509 (2005).M. Smiechowski and J. Stangret, JPCA 111, 2889 (2007).T. Megyes, et al. JCP 128, 044501 (2008).B. Winter, et al. Nature (2008)

Page 33: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.
Page 34: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Hydronium:

Page 35: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Water:

Page 36: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Hydroxide:

Page 37: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

MET, et al.Nature, 417 (2002)

Follows “presolvation” picture:

Proton-receiving species must be coordinated likethe species into which itwill be transformed beforethe proton can transfer.

Page 38: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Comparing IR spectra

Expt.: Bertie, et al. J. Phys. Chem. 93, 2210 (1989) (ν >700 cm-1) Zelsmann, J. Mol. Spect. 350, 95 (1995). (ν < 600 cm-1)

Z. Zhu and MET, J. Phys. Chem. B 106, 8009 (2002)

Expt.: Librovich and Maiorov, Russian J. Phys. Chem. 56, 624 (1982)

Pure water KOH solution

O

D*D

D’

O*

Expt (KOH): Librovich and Maiorov, Russian J. Phys. Chem. 56, 624 (1982)

Page 39: Calculating water’s anomalous properties from first principles: Mechanisms of ion transport in the bulk and at interfaces Mark E. Tuckerman Dept. of Chemistry.

Acknowledgments

• NSF• Alexander von Humboldt Foundation• Camille and Henry Dreyfus Foundation• ACS PRF

Postdocs

• Yi Liu (Merrill-Lynch)• Hee-Seung Lee (UNC, Wilmington)• Dawn A. Yarne (Goldman-Sachs)• Radu Iftimie (U. de Montréal)• Anatole von Lilienfeld (Sandia)• Robin L. Hayes

Funding

Students

• Yi Liu (Merrill-Lynch)• Tim Berkelbach• Zhongwei Zhu (Goldman-Sachs)• Joseph A. Morrone (Princeton)• Lula Rosso (Imperial College, London)• Peter Minary (Stanford University)• Rachel Chasin• David Krisiloff

External

• Dominik Marx (Ruhr-Universität Bochum)• Amalendu Chandra (IIT Kampur)•Alan Soper (Rutherford Appleton Lab)• Teresa Head-Gordon (UCB, LBL)• Feng Wang (BU)• Chris Mundy (PNNL)• Doug Tobias (UCI)