Calcs_4

19
Sample Vessel 4 PVE-Sample4 Pressure Vessel Calculations June 3, 2002 XYZ Vessel Inc. 123 Anytown Ontario, Canada H0H 0H0 Laurence Brundrett P. Eng. Charles Liu M.Eng. Pressure Vessel Engineering Ltd. PVE-Sample4 1 of 19

description

calculate

Transcript of Calcs_4

Page 1: Calcs_4

Sample Vessel 4PVE-Sample4

Pressure Vessel Calculations

June 3, 2002

XYZ Vessel Inc.123 Anytown

Ontario, Canada H0H 0H0

Laurence Brundrett P. Eng.Charles Liu M.Eng.

Pressure Vessel Engineering Ltd.PVE-Sample4

1 of 19

Page 2: Calcs_4

Table of Contents 3-Jun-02 Page 2 of 19

Contents PageCover 1Table of Contents 2Summary 3Material Properties 4Rolled Shell 5F&D Head 6Manway 12x16 A In Head 74" SCH 160 Pipe B In Shell 8 - 94" SCH 160 Pipe C In Head 104" Class 150 RFSO Flange B&C 111" Class 3000 Coupling D 122" Flange pad E & F 13Manway 12x16 G In Shell 14Weight and Volume 15Lifting Lug 16Seismic - Vessel on Beams 17 - 19

Page 3: Calcs_4

Pressure Vessel Design Summary 3-Jun-02 Page 3 of 19

CustomerVesselPart NumberDrawingJob

60 Outside Diameter [inch]120 straight Shell (not including straight flange on heads)213 Volume [cuft]

Water Fluid5360 Weight Empty [lbs.]

18656 Weight Full18656 Weight Under Test

Maximum Internal pressure, psi Maximum External Pressure, psi At Temperature, ºF

150 0 120Maximum Temperature, ºF Minimum Temperature, ºF At Pressure, psi

120 -20 150Test Pressure, psi At a Minimum Temperature of: ºF For a Minimum Duration of:

195 60 30 min.

0.75 Seismic Ss, IBC-20000.3 Seismic S1, IBC-2000

SA-516 70 Primary Material of Construction20,000 Allowable Stress0.063 Minimum allowed thickness per UG-16(b)

no Material Normalizedno Material Impact Tested (not required per UG-20(f))

none Radiography required0.125 Corrosion Allowance

ASME VIII-1 Code2001 Editionnone Addenda

IID Materialsnone Code Cases Required

UG-22 Loadings ConsideredYes (a) Internal pressure - (a) External pressure

Yes (b) Vessel weight full, empty and at hydro test - (c) Weight of attached equipment and piping - (d)(1) Attachment of internals

Yes (d)(2) Attachment of vessel supports - (d) Cyclic or dynamic reactions - (f) Wind - (f) Snow

Yes (f) Seismic - (g) Fluid impact shock reactions - (h) Temperature gradients - (h) Differential thermal expansion - (i) Abnormal pressures like deflagration

Hydrostatic Test

Maximum Allowed Working Pressure

XYZ Vessel Inc.

PVE-Sample4PVE-Sample4PVE-Sample4

Sample Vessel 4

Maximum Design Metal Temperature

Page 4: Calcs_4

1 Material Properties ver 1.28 www.pveng.com 3-Jun-02 Page 4 of 192 ASME VIII, IID 2001 edition 2002 addenda3 Sample Vessel 4 <- vessel4

5 Design Pressure UG-22(a)6 150.0 <- P, internal operating pressure at top of vessel (psig)7 0.0 <- mPa, external operation pressure8 Water <- Operating Fluid9 12 <- h, fluid height (ft) 10 1.00 <- rho, fluid density (1.0 for water) 11 Design Pressure = P + 0.4331*rho*h = 150 + 0.4331 * 1 * 12 mDp = 155.212

13 Hydro Test (UG-99(b)) pressure measured at top of vessel14 Test Press = P * 1.3 * MR = 150 * 1.3 * 1 mTp = 195.015

16 Material Properties (ASME IID)17 120 <- mTemp, design temp ºF Test at ambient temp

18

Where Used Ambient Strength

Design Strength

Strength Ratio

Max ºF Ext Graph

19 Shell and Heads 20000 20000 1.000 1000 CS-220 Flange Pads 20000 20000 1.000 1500 HA-221 Legs 17100 17100 1.000 650 CS-222 Flanges & Couplings 20000 20000 1.000 1000 CS-223 Nozzles & Manway 17100 17100 1.000 1000 CS-224

25

26

27

28

29

30

31

32

33 34 35 36 37 38 39 40 41 42 43 44 Min Ratio (MR) = 1.00045

46

47

48

SA-240 316 Plate

Material

SA-516 70 Plate

SA/CSA-G40.21 44WSA-105 ForgingSA-106 B Seamless Pipe

Page 5: Calcs_4

12 Pipe and Shell ver 2.33 3-Jun-02 Page 5 of 1913 ASME Code VIII Div I 2001 edition 2002 addenda 14 <- Vessel15 <- Description16

17 Dimensions:18 60.000 <- Do - Outside Diameter19 0.500 <- t - Nominal Wall Thickness21 120.000 <- Length for volume and weight22 0.125 <- Corr, Corrosion Allowance23

24 Material and Conditions:25 SA-516 70 <- Material26 20,000 <- S, Allowable Stress Level (psi)27 0.7 <- El - Longitudinal Efficiency (circ. stress)28 0.7 <- Ec - Circ. Connecting Efficiency (longitudinal stress)29 0.0% <- UTP, Undertolerance allowance (%) 189.86 <- Volume (cubic ft)30 0.000 <- UTI, Undertolerance allowance (inch) 3,180.8 <- Material Weight (lbs cs)31

32 155.2 <- P, Interior Pressure33 0.0 <- Pa, Exterior Pressure36

37 Variables:38 UT = t*UTP+UTI = 0.5*0+0 undertollerance UT = 0.00039 nt = t-Corr-UT = 0.5-0.125-0 nominal thick nt = 0.37540 Ri = Do/2-nt = 60/2-0.375 effective inside radius Ri = 29.62541 LDo = Le/Do = 120/60 LDo = 2.00042

43 Interior Pressure UG-27 (c) (1,2)44 ta = P*Ri/(S*El-0.6*P) = 155.197*29.625/(20000*0.7-0.6*155.197 ta = 0.33145 tb = P*Ri/(2*S*Ec+0.4*P) = 155.197*29.625/(2*20000*0.7+0.4*155.1 tb = 0.16446 tmin = Max(ta,tb) <= nt Acceptable tmin = 0.33147 PMaxA = PMaxA = 175.948 PMaxB = PMaxB = 356.249 PMax = Min(PMaxA,PMaxB) Acceptable PMax = 175.950 tr1 = P*Ri/(S*1-0.6*P) = 155.197*29.625/(20000*1-0.6*155.197) tr1 = 0.23151

62 Shell stress relief -UCS-79(d), UNF-79(d), UHA-44(d)63 Rf = (do-t)/2 = (60-0.5)/2 29.7564 % elong = (50*t/Rf)*(1-0) = (50*0.5/29.75)*(1-0) % elongation = 0.865 5.0% <- Max Elongation66 Yes <- Cold formed 0.8% <- Elongation Required no67 no <- Vessel carries lethal substances (Yes/no) no no68 no <- Impact testing is required (Yes/no) no no69 no <- Greater than 10% reduction in thickness no no70 no <- Formed between 250 and 900 Degrees F no no71 no <- Shell is greater than 5/8" thick before forming no no72 Stress Relieve ? no

www.pveng.com

(2*S*Ec*nt)/(Ri-0.4*nt)(S*El*nt)/(Ri+0.6*nt) = (20000*0.7*0.375)/(29.625+0.6*0.375)

= (2*20000*0.7*0.375)/(29.625-0.4*0.375)

Sample Vessel 4Rolled Plate Shell

t

Do

Leng

th

Long

Sea

m

Page 6: Calcs_4

1 Flanged and Dished Head ver 2.16 3-Jun-02 Page 6 of 192 ASME Code VIII Div I 2001 edition 2002 addenda3 <- Vessel4 <- Component5

6 Dimensions:7 60.000 <- Do, outside diameter8 60.000 <- L, inside crown radius9 3.600 <- IKR, inside knuckle radius10 0.750 <- tb, thickness before forming11 0.675 <- tf, thickness after forming12 0.125 <- Corr, corrosion allowance13 1.500 <- Skirt, straight skirt length14

15 Material and Conditions: 54.574 <- Spherical Limit16 SA-516 70 <- material 11.66 <- Volume (cuft, includes skirt)17 20,000 <- S, allowable stress level 68.7 <- Approx. blank dia (inch)18 0.85 <- E, efficiency 789.5 <- Approx. weight (lbs, steel)19

20 155.2 <- P, interior pressure21 0.0 <- Pa, exterior Pressure24

25 Variables:26 t = tf - corr = 0.675 - 0.125 t = 0.5527 D = Do-2*t = 60-2*0.55 D = 58.928 L /r = L/IKR = 60/3.6 L /r = 16.66729 M = = 0.25*(3+sqrt(60/3.6)) M = 1.77130 Ro = L + tb = 60 + 0.75 Ro = 60.75031

32 Interior Pressure App 1-4(d), UG-37 1(a):33 TminI = (P*L*M)/(2*S*E - 0.2*P) <= t Okay TminI = 0.48534 = (155.197*60*1.771)/(2*20000*0.85 - 0.2*155.197) <= 0.5535 PMax = (2*S*E*t)/(L*M + 0.2*t) >= P Okay PMax = 175.836 = (2*20000*0.85*0.55)/(60*1.771 + 0.2*0.55) >= 155.19737 Tsp = (P*L*1)/(2*S*1 - 0.2*P) Tsp = 0.23338 = (155.197*60*1)/(2*20000*1 - 0.2*155.197)39

48 Head stress relief UCS-79(d), UNF-79(d), UHA-44(d)49 Rf = IKR+tb/2 = 3.6+0.75/2 Rf = 3.97550 % elong = ((75*t)/Rf)*(1-Rf/Ro) = ((75*0.55)/3.975)*(1) % elongation = 14.251 5.0% <- Max Elongation52 Yes <- Cold formed? 14.2% <- Elongation Required Yes ?53 no <- Vessel carries lethal substances(Yes/no) no no54 no <- Impact testing is required (Yes/no) no no55 no <- Formed between 250 and 900 Degrees F no no56 no <- Greater than 10% reduction in thickness no no57 Yes <- Head is greater than 5/8" thick before forming Yes ? YES58 Stress Relieve ? YES

www.pveng.com

0.25*(3+sqrt(L/ikr))

Sample Vessel 4F & D Head

Page 7: Calcs_4

26 Nozzle Reinforcement ver 3.54 UW16(c)mod 3-Jun-02 Page 7 of 1927 ASME Code VIII Div I 2001 edition 2002 addenda Automatic dh - not hillside22 <- Vessel Manually enter Limit Diameter29 <- Desc Curved Shell or Head Section30 Shell:31 SA-516 70 <- Shell material32 20,000 <- Sv, shell allowable stress level, PSI33 1.00 <- Eone, efficiency of shell at nozzle34

35 0.675 <- Vt, shell wall thick, uncorroded, UT removed36 0.233 <- tr, required shell wall thickness int. press.37 0.000 <- trE, required shell wall thickness ext. press.38 0.125 <- sca, shell corrosion allowance39 0.063 <- tmin16b, Min allowed wall per UG-16(b) 40 Nozzle:41 SA-106B <- Nozzle material42 17,100 <- Sn, allowable stress level (Sn)44 1.00 <- E nozzle 45

46 155.2 <- P, internal design pressure47 0.0 <- Pa, external design pressure48

49 17.500 <- Do, outside diameter51 9.500 <- dLr, Limit radius <= d52 0.750 <- Nt, wall thick, uncorroded53 12.5% <- UTp, undertolerance (%)55 0.125 <- nca, nozzle corrosion allowance56

57 0.500 <- L, exterior Projection58 0.500 <- Ip, interior projection60

61 Reinforcing:71 0.375 <- Leg41, size of weld fillet73 0.375 <- Leg43, size of weld fillet74 1.000 <- F77 Variables:78 UT = Nt*UTp = 0.75 * 0.125 Undertolerance UT = 0.09479 Rn = Do/2 - (Nt-nca) + UT = 17.5/2 - (0.75-0.125) + 0.094 Effective Radius Rn = 8.21984 t = Vt-sca = 0.675 - 0.125 Effective Shell Thickness t = 0.55085 ti = Nt-2*nca = 0.75 - 2 * 0.125 Nom Thick of Int. Proj. ti = 0.50090 tn = Nt-nca = 0.75-0.125 Avail. Nozzle Thick. No UT tn = 0.62593 d = Do-2*tn = 17.5 - 2*0.625 Opening Dia. d = 16.25099 fr1 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr1 = 0.855102 fr2 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr2 = 0.855112 h = MIN(Ip-sca,2.5*t,2.5*ti) = MIN(0.5-0.125,2.5*0.55,2.5*0.5) h = 0.375113 tcLeg41 = Min(0.25,0.7*Min(0.75,tn,t)) = Min(0.25,0.7*Min(0.75,0.625,0.55)) tc41 = 0.250117 tcLeg43 = Min(0.25,0.7*Min(0.75,t,tn)) = Min(0.25,0.7*Min(0.75,0.55,0.625)) tc43 = 0.250119 F = Min(Fenterered, 1) F = 1.000127

128 Pipe Required Wall Thickness - trn from internal, trnE from external pressure129 LDo = L/Do LDo = 0.029 Dot = Do/trnE Dot = 0.000130 trn = (P*Rn)/(Sn*E - 0.6*P) <= tn-UT trn = 0.075 Acceptable131 trnE = (3*Do*Pa)/(4*B) <= tn-ut trnE = 0.000 Acceptable132

133 Geometry Constraints:135 0.7*Leg41 >= tc41 0.7*0.375 >= 0.25 0.263 >= 0.250 Acceptable144 0.7*Leg43 >= tc43 0.7*0.375 >= 0.25 0.263 >= 0.250 Acceptable153 UG45 = Long form calculations are not shown in this view UG45 = 0.358 Acceptable154159

160 Area Replacement: Fig UG-37.1 Pressure From: Internal External161 A = 1.0*d*tr*F + 2*tn*tr*F*(1-frone) A Required (internal) = 3.828162 = 1.0*16.25*0.233*1 + 2*0.625*0.233*1*(1-0.855)165 Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-frone)) A Required (external) = 0.000166 = 169 A1 = max(dLr, 2*(t+tn)) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = 2.954170 = 174 A1e = max(dLr, 2*(t+tn)) * (Eone*t-F*trE)-2*tn*(Eone*t-F*trE)*(1-frone) A1e = 5.125175 = 181 A2 = min((tn-trn)*fr2*Min(5*t,2*L) , (tn-trn)*fr2*Min(5*tn,2*L)) A2 = 0.470182 = 186 A2e = min((tn-trnE)*frtwo*Min(5*t,2*L) , (tn-trnE)*frtwo*Min(5*tn,2*L)) A2e = 1.470187 = 189 A3 = Min(5*t*ti*frtwo, 5*ti*ti*frtwo, 2*h*ti*frtwo) A3 = 0.321 0.321190 = Min(5*0.55*0.5*0.855, 5*0.5*0.5*0.855, 2*0.375*0.5*0.855)196 A41 = Leg41^2*frTwo A41 = 0.375^2*0.855 A41 = 0.120 0.120203 A43 = (Leg43-nca)^2*frtwo A43 = (0.375-0.125)^2*0.855 A43 = 0.053 0.053205 Actual Area = 3.919 7.089206 Acceptable Actual-Required = 0.091 7.089

max(9.5, 2*(0.55+0.625)) * (1*0.55-1*0)-2*0.625*(1*0.55-1*0)*(1-0.855)

min((0.625-0.075)*0.855*Min(5*0.55,2*0.5) , (0.625-0.075)*0.855*Min(5*0.625,2*0.5))

www.pveng.com

= (155.2*8.219)/(17100*1 - 0.6*155.2)= (3*17.5*0)/(4*1)

Sample Vessel 4Manway 12x16 With 3x3/4 Ring Nozzle A

0.5*(16.25*0*1 + 2*0.625*0*1*(1-0.855))

min((0.625-0)*0.855*Min(5*0.55,2*0.5) , (0.625-0)*0.855*Min(5*0.625,2*0.5))

max(9.5, 2*(0.55+0.625)) * (1*0.55-1*0.233)-2*0.625*(1*0.55-1*0.233)*(1-0.855)

UW-16.1 (c) modified

Leg41

OD Nozzle

Nt

Leg41

Leg43

Leg43

Proj

Vt

Noz

zle

Shell

FullPenn.t

Page 8: Calcs_4

26 Nozzle Reinforcement ver 3.54 UW16(c) 3-Jun-02 Page 8 of 1927 ASME Code VIII Div I 2001 edition 2002 addenda Automatic dh - not hillside22 <- Vessel Automatic Limit Diameter29 <- Desc Curved Shell or Head Section30 Shell:31 SA-516 70 <- Shell material32 20,000 <- Sv, shell allowable stress level, PSI33 1.00 <- Eone, efficiency of shell at nozzle34

35 0.500 <- Vt, shell wall thick, uncorroded, UT removed36 0.231 <- tr, required shell wall thickness int. press.37 0.000 <- trE, required shell wall thickness ext. press.38 0.125 <- sca, shell corrosion allowance39 0.063 <- tmin16b, Min allowed wall per UG-16(b) 40 Nozzle:41 SA-106B <- Nozzle material42 17,100 <- Sn, allowable stress level (Sn)44 1.00 <- E nozzle 45

46 155.2 <- P, internal design pressure47 0.0 <- Pa, external design pressure48

49 4.500 <- Do, outside diameter52 0.531 <- Nt, wall thick, uncorroded53 12.5% <- UTp, undertolerance (%)55 0.125 <- nca, nozzle corrosion allowance56

57 2.000 <- L, exterior Projection60

61 Reinforcing:71 0.375 <- Leg41, size of weld fillet74 1.000 <- F77 Variables:78 UT = Nt*UTp = 0.531 * 0.125 Undertolerance UT = 0.06679 Rn = Do/2 - (Nt-nca) + UT = 4.5/2 - (0.531-0.125) + 0.066 Effective Radius Rn = 1.91084 t = Vt-sca = 0.5 - 0.125 Effective Shell Thickness t = 0.37590 tn = Nt-nca = 0.531-0.125 Avail. Nozzle Thick. No UT tn = 0.40693 d = Do-2*tn = 4.5 - 2*0.406 Opening Dia. d = 3.68899 fr1 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr1 = 0.855102 fr2 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr2 = 0.855113 tcLeg41 = Min(0.25,0.7*Min(0.75,tn,t)) = Min(0.25,0.7*Min(0.75,0.406,0.375)) tc41 = 0.250119 F = Min(Fenterered, 1) F = 1.000127

128 Pipe Required Wall Thickness - trn from internal, trnE from external pressure129 LDo = L/Do LDo = 0.444 Dot = Do/trnE Dot = 0.000130 trn = (P*Rn)/(Sn*E - 0.6*P) <= tn-UT trn = 0.017 Acceptable131 trnE = (3*Do*Pa)/(4*B) <= tn-ut trnE = 0.000 Acceptable132

133 Geometry Constraints:134 0.7*Leg41 >= tc41 0.7*0.375 >= 0.25 0.263 >= 0.250 Acceptable159

160 Area Replacement: Fig UG-37.1 Pressure From: Internal External161 A = 1.0*d*tr*F + 2*tn*tr*F*(1-frone) A Required (internal) = 0.879162 = 1.0*3.688*0.231*1 + 2*0.406*0.231*1*(1-0.855)165 Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-frone)) A Required (external) = 0.000166 = 169 A1 = max(d, 2*(t+tn)) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = 0.514170 = 174 A1e = max(d, 2*(t+tn)) * (Eone*t-F*trE)-2*tn*(Eone*t-F*trE)*(1-frone) A1e = 1.339175 = 181 A2 = min((tn-trn)*fr2*Min(5*t,2*L) , (tn-trn)*fr2*Min(5*tn,2*L)) A2 = 0.623182 = 186 A2e = min((tn-trnE)*frtwo*Min(5*t,2*L) , (tn-trnE)*frtwo*Min(5*tn,2*L)) A2e = 0.651187 = 196 A41 = Leg41^2*frTwo A41 = 0.375^2*0.855 A41 = 0.120 0.120205 Actual Area = 1.257 2.110206 Acceptable Actual-Required = 0.378 2.110

0.5*(3.688*0*1 + 2*0.406*0*1*(1-0.855))

min((0.406-0)*0.855*Min(5*0.375,2*2) , (0.406-0)*0.855*Min(5*0.406,2*2))

max(3.688, 2*(0.375+0.406)) * (1*0.375-1*0.231)-2*0.406*(1*0.375-1*0.231)*(1-0.855)

www.pveng.com

= (155.2*1.91)/(17100*1 - 0.6*155.2)= (3*4.5*0)/(4*1)

Sample Vessel 44" SCH 160 Pipe Nozzle B In Shell

max(3.688, 2*(0.375+0.406)) * (1*0.375-1*0)-2*0.406*(1*0.375-1*0)*(1-0.855)

min((0.406-0.017)*0.855*Min(5*0.375,2*2) , (0.406-0.017)*0.855*Min(5*0.406,2*2))

UW-16.1 (c)

Leg41

Noz

zle

Shell

Leg41t

Nt

Vt

Do

Page 9: Calcs_4

300 Sample Vessel 4 4" SCH 160 Pipe Nozzle B In Shell 03-Jun-02 Page 9 of 19302 Nozzle303 Tstd = Standard pipe wall thickness from chart Tstd = 0.237304 Swre = tr * Pa / P = 0.231 * 0 / 155.197 Req. Exterior pressure Swre = 0.000305 Nact = Nt * (1-UTp) = 0.531 * (1-0.125) Actual Wall Thick. Nact = 0.465306 Tt = 0.8/Nth = 0.8/0 Ug-31(c)(2) threads Tt = 0.000309

310 UG-45315 UG45 = Max(UG45a, UG45b) <= Nact UG45 = 0.332316 = Max(0.142, 0.332) <= 0.465 Acceptable317

318 UG-45(a)323 UG45a = Max(trn,trnE) + Nca + Tt UG45a = 0.142324 Max(0.017,0) + 0.125 + 0325

326 UG-45(b)332 UB45b = Min(UG45b1, UG45b2, UG45b3, UG45b4) UB45b = 0.332333 = Min(0.356, , 0.356, 0.332)334

335 UG-45(b)(1)339 UG45b1 = Max(tr + Sca, Tmin16b + Sca) UG45b1 = 0.356340 Max(0.231 + 0.125, 0.063 + 0.125)341

342 UG-45(b)(2)347 UG45b2 = Max(Swre + Sca,Tmin + Sca) UG45b2 = 348 Max(0 + 0.125,0.063 + 0.125)349

350 UG-45(b)(3)353 UG45b3 = Max(UG45b1,UG45b2) = Max(0.356,) UG45b3 = 0.356354

355 UG-45(b)(4)359 UG45b4 = Tstd*0.875 + Nca = 0.237*0.875 + 0.125 UG45b4 = 0.332

Page 10: Calcs_4

26 Nozzle Reinforcement ver 3.54 UW16(c) 3-Jun-02 Page 10 of 1927 ASME Code VIII Div I 2001 edition 2002 addenda Automatic dh - not hillside22 <- Vessel Automatic Limit Diameter29 <- Desc Curved Shell or Head Section30 Shell:31 SA-516 70 <- Shell material32 20,000 <- Sv, shell allowable stress level, PSI33 1.00 <- Eone, efficiency of shell at nozzle34

35 0.675 <- Vt, shell wall thick, uncorroded, UT removed36 0.233 <- tr, required shell wall thickness int. press.37 0.000 <- trE, required shell wall thickness ext. press.38 0.125 <- sca, shell corrosion allowance39 0.063 <- tmin16b, Min allowed wall per UG-16(b) 40 Nozzle:41 SA-106B <- Nozzle material42 17,100 <- Sn, allowable stress level (Sn)44 1.00 <- E nozzle 45

46 155.2 <- P, internal design pressure47 0.0 <- Pa, external design pressure48

49 4.500 <- Do, outside diameter52 0.531 <- Nt, wall thick, uncorroded53 12.5% <- UTp, undertolerance (%)55 0.125 <- nca, nozzle corrosion allowance56

57 2.000 <- L, exterior Projection60

61 Reinforcing:71 0.375 <- Leg41, size of weld fillet74 1.000 <- F77 Variables:78 UT = Nt*UTp = 0.531 * 0.125 Undertolerance UT = 0.06679 Rn = Do/2 - (Nt-nca) + UT = 4.5/2 - (0.531-0.125) + 0.066 Effective Radius Rn = 1.91084 t = Vt-sca = 0.675 - 0.125 Effective Shell Thickness t = 0.55090 tn = Nt-nca = 0.531-0.125 Avail. Nozzle Thick. No UT tn = 0.40693 d = Do-2*tn = 4.5 - 2*0.406 Opening Dia. d = 3.68899 fr1 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr1 = 0.855102 fr2 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr2 = 0.855113 tcLeg41 = Min(0.25,0.7*Min(0.75,tn,t)) = Min(0.25,0.7*Min(0.75,0.406,0.55)) tc41 = 0.250119 F = Min(Fenterered, 1) F = 1.000127

128 Pipe Required Wall Thickness - trn from internal, trnE from external pressure129 LDo = L/Do LDo = 0.444 Dot = Do/trnE Dot = 0.000130 trn = (P*Rn)/(Sn*E - 0.6*P) <= tn-UT trn = 0.017 Acceptable131 trnE = (3*Do*Pa)/(4*B) <= tn-ut trnE = 0.000 Acceptable132

133 Geometry Constraints:134 0.7*Leg41 >= tc41 0.7*0.375 >= 0.25 0.263 >= 0.250 Acceptable153 UG45 = Long form calculations are not shown in this view UG45 = 0.332 Acceptable159

160 Area Replacement: Fig UG-37.1 Pressure From: Internal External161 A = 1.0*d*tr*F + 2*tn*tr*F*(1-frone) A Required (internal) = 0.887162 = 1.0*3.688*0.233*1 + 2*0.406*0.233*1*(1-0.855)165 Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-frone)) A Required (external) = 0.000166 = 169 A1 = max(d, 2*(t+tn)) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = 1.132170 = 174 A1e = max(d, 2*(t+tn)) * (Eone*t-F*trE)-2*tn*(Eone*t-F*trE)*(1-frone) A1e = 1.964175 = 181 A2 = min((tn-trn)*fr2*Min(5*t,2*L) , (tn-trn)*fr2*Min(5*tn,2*L)) A2 = 0.674182 = 186 A2e = min((tn-trnE)*frtwo*Min(5*t,2*L) , (tn-trnE)*frtwo*Min(5*tn,2*L)) A2e = 0.705187 = 196 A41 = Leg41^2*frTwo A41 = 0.375^2*0.855 A41 = 0.120 0.120205 Actual Area = 1.927 2.789206 Acceptable Actual-Required = 1.040 2.789

max(3.688, 2*(0.55+0.406)) * (1*0.55-1*0)-2*0.406*(1*0.55-1*0)*(1-0.855)

min((0.406-0.017)*0.855*Min(5*0.55,2*2) , (0.406-0.017)*0.855*Min(5*0.406,2*2))

www.pveng.com

= (155.2*1.91)/(17100*1 - 0.6*155.2)= (3*4.5*0)/(4*1)

Sample Vessel 44" SCH 160 Pipe Nozzle C In Head

0.5*(3.688*0*1 + 2*0.406*0*1*(1-0.855))

min((0.406-0)*0.855*Min(5*0.55,2*2) , (0.406-0)*0.855*Min(5*0.406,2*2))

max(3.688, 2*(0.55+0.406)) * (1*0.55-1*0.233)-2*0.406*(1*0.55-1*0.233)*(1-0.855)

UW-16.1 (c)

Leg41

Noz

zle

Shell

Leg41t

Nt

Vt

Do

Page 11: Calcs_4

12 B16.5 Slip On Flange Ver 1.35 www.pveng.com 3-Jun-02 Page 11 of 1913 ASME B16.5-1996 ASME VIII A2001 edition 2002 addenda14

15 <- Comments16 <- Description17

18 Select Flange19 SA <- Category20 Forged <- Material Type21 SA 105 <- Material22 150 <- Pressure Class23 4.00 <- Nominal Size24

25 Nozzle26 0.531 <- tn, Nozzle Wall Thickness (inch)27 0.017 <- tnr, Required Nozzle Wall Thickness (inch)28

29 Operating Conditions30 120 <- T, temperature ºF Max press @100ºF [p1] 28531 155.2 <- P, pressure, psig Max press @120ºF [p2] 280

0.125 <- Corr, corrosion allowance Acceptable33

34 Flange Welds: VIII UW-15 (c)35 0.250 <- F1, pipe fillet size Nominal - C-Si36 0.250 <- Setback37 0.250 <- F2, flange fillet size F2 Table - 2-1.138 17100 <- Sp, allowable stress, pipe Max Temp ºF - 100039 20000 <- Sf, allowable stress, flange Pod, pipe OD - 4.50040

41 Geometry constraint: VIII UW-21 (b)42 c = Min(tn,tx) = Min(0.531,0.035) c = 0.03543 tx = 2*tnr = 2*0.017 tx = 0.03544 wtmin = 0.7*c = 0.7*0.035 wtmin = 0.02445 wt = 0.7*MIN(F1,F2) weld throat wt = 0.17546 = 0.7*MIN(0.25,0.25) Acceptable47

48 Maxsetback = c+0.25 = 0.035+0.25 Maxsetback = 0.28549 Setback = 0.250 Acceptable50

51 Weld Strength:52 Min Sa = MIN(Sp,Sf) = MIN(17100,20000) Min Sa = 17,10053 Max Weld Stress = Sa * 0.49 = 17100 * 0.49 Max S = 8,37954 Weld Load = Pod^2*pi*P/4 = 4.5^2*pi*155.197/4 Load = 2,46855 Weld Area = Pod*pi*(F1-corr + F2) Area = 5.30156 = 4.5*pi*(0.25-0.125 + 0.25)57 Weld Stress = Load/Area = 2468.305/5.301 Stress = 46658 Acceptable59

60

61

62

Sample Vessel 44" Class 150 RFSO Flange B&C

F1

F1F2

F2F1

F2

Page 12: Calcs_4

15 Coupling ver 2.03 UW16.1Z1M 3-Jun-02 Page 12 of 1916 ASME Code VIII Div I 2001 edition, 2002 addenda22 <- Vessel18 <- Description19

20 Shell:23 0.675 <- t, Shell Wall Thick (inch)25 0.063 <- tminst, UG-16(b) (inch)27 1.875 <- D, Shell Opening Diameter (inch)29 155.2 <- P,design Pressure (psi)30

31 Coupling:32 1 inch 3000# <- Coupling33 SA-105 <- Coupling Material34 20,000 <- Sn, Allowable Stress Level (Sn)36 0.250 <- F1, Weld Size39 0.125 <- Corrc, Coupling Corrosion Allowance (inch)40 1.750 <- COD - Coupling OD41 1.315 <- POD - Pipe OD43 11.500 <- n, Treads Per Inch45 0.250 <- pt, Corresponding sch160 Wall Thickness (inch)47 12.5% <- UT, Under Tolerence (%)48

50 Geometry Restrictions Fig. UW-16.151 tcp = (COD-POD)/2-CORRC = (1.75-1.315)/2-0.125 Tcp = 0.09352 Tmin = Min(0.75,tcp,t) = Min(0.75,0.093,0.675) Tmin = 0.09354 tcmin = Min(0.25,0.7*Tmin) = Min(0.25,0.7*0.093) tcmin = 0.06557 t1 = 0.7*F1 = 0.7*0.25 t1 = 0.17562 t1 > = tcMin = 0.175 >= 0.065 Acceptable79

80 Required Coupling Wall Thickness B16.11 - 2.1.1 and UG-31 (C) (2)81 Ro = POD/2-0.8/n = 1.315/2-0.8/11.5 Ro = 0.58882 tp = (1-UT)*pt-Corrc-0.8/n = (1-0.125)*0.25-0.125-0.8/11.5 tp = 0.02483 Min Thick = P*Ro/(Sn*1+0.4*P) = 155*0.588/(20000*1+0.4*155.1 Acceptable trn = 0.00584

85 Pressure Weld Stress UW-18(d) - Pressure Load only UW-16(f)(3)(a)(3)(b)86 Load = COD^2*(PI()/4)*P = 1.75^2*(PI()/4)*155.197 Load = 37387 Weld Area = pi()*((COD+F1)^2-COD^2)/4 Weld Area = 0.73688 = pi()*((1.75+0.25)^2-1.75^2)/493 Max Stress = Min(Sn,Sv) * 0.55 = Min(20000,20000) * 0.55 Max Stress = 1100094 Weld Stress = Load / Area = 373 / 0.736 Weld Stress = 50795 Acceptable100 UG-45101 Tstd = Standard pipe wall thickness from chart Tstd = 0.133102 Nact = Pt * (1-UT) Actual Wall Thick. Nact = 0.219103 Tt = 0.8/n Ug-31(c)(2) threads Tt = 0.070104 UG45 = Max(UG45a, UG45b) <= Nact UG45 = 0.218105 = Max(0.199, 0.218) <= 0.218 Acceptable106 UG45a = trn + corrc + Tt UG45a = 0.199107 = 108 UB45b = Min(UG45b1, UG45b4) UB45b = 0.218109 = Min(0.218, 0.241)110 UG45b1 = Max(tmin+ CORRC, Tmin16b + CORRC) UG45b1 = 0.218111 = Max(0.093 + 0.125, 0.063 + 0.125)112 UG45b4 = Tstd*0.875 + corrc = 0.133*0.875 + 0.125 UG45b4 = 0.241113

114

Sample Vessel 41" Class 3000 Coupling D

0.005 + 0.125 + 0.07

www.pveng.com

F1

Inside Vessel

Outside

t

D

COD

POD

UW-16.1 Z-1 (Modified) Coupling

t1

Page 13: Calcs_4

26 Nozzle Reinforcement ver 3.54 UG40(a-2) 3-Jun-02 Page 13 of 1927 ASME Code VIII Div I 2001 edition 2002 addenda Automatic dh - not hillside22 <- Vessel Automatic Limit Diameter29 <- Desc Curved Shell or Head Section30 Shell:31 SA-516 70 <- Shell material32 20,000 <- Sv, shell allowable stress level, PSI33 1.00 <- Eone, efficiency of shell at nozzle34

35 0.500 <- Vt, shell wall thick, uncorroded, UT removed36 0.231 <- tr, required shell wall thickness int. press.37 0.000 <- trE, required shell wall thickness ext. press.38 0.125 <- sca, shell corrosion allowance56

62 Flange Pad:64 SA-240 316 <- Flange Pad Material65 20,000 <- Sp, allowable stress level66 6.000 <- Dp, outside diameter67 2.440 <- di, inside (uncorroded)70 1.500 <- tp, pad thick72 0.375 <- Leg42, size of weld fillet74 1.000 <- F77 Variables:80 Dp = Min(2*d,DpEntered) = Min(2*2.44,6) Effective Reinforcing Dp = 4.88084 t = Vt-sca = 0.5 - 0.125 Effective Shell Thickness t = 0.37585 ti = Nt-2*nca = - 2 * Nom Thick of Int. Proj. ti = 0.00095 d = di+2*nca = 2.44 - 2 * 0 Finished Opening Dia. d = 2.440103 fr2 = MIN(Sp/Sv,1) = MIN(20000/20000, 1) fr2 = 1.000106 fr4 = MIN(Sp/Sv,1) = MIN(20000/20000,1) fr4 = 1.000110 Ro = Dp/2 = 4.88/2 Ro = 2.440116 tcLeg42 = Min(0.25,0.7*MIN(0.75,te,t)) = Min(0.25,0.7*MIN(0.75,1,0.375)) tc42 = 0.250119 F = Min(Fenterered, 1) F = 1.000132

133 Geometry Constraints:142 0.7*Leg42 >= tc42 0.7*0.375 >= 0.25 0.263 >= 0.250 Acceptable159

160 Area Replacement: Fig UG-37.1 Pressure From: Internal External163 A = 1.0*d*tr*F = 1.0*2.44*0.231*1 A Required (internal) = 0.564167 Ae = 0.5*d*trE*1 = 0.5*2.44*0*1 A Required (external) = 0.000171 A1 = max(d, 2*t) * (E1*t-F*tr) A1 = 0.351172 = max(2.44, 2*0.38) * (1*0.38-1*0.23)176 A1e = max(d, 2*t) * (Eone*t-F*trE) A1e = 0.915177 = max(2.44, 2*0.375) * (1*0.375-1*0)193 A5 = (Dp - d)te*fr4 = (4.88 - 2.44)*1*1 A5 = 2.440 2.440201 A42 = Leg42^2*frtwo = 0.375^2*1 A42 = 0.141 0.141205 Actual Area = 2.932 3.496206 Acceptable Actual-Required = 2.369 3.496

www.pveng.com

Sample Vessel 42" Double Sided Flange Pad E & F

UG-40 (a-2)

Leg42 Shell

FuPe

Leg42t

ditp

Dp

Vt

Page 14: Calcs_4

26 Nozzle Reinforcement ver 3.54 UW16(c)mod 3-Jun-02 Page 14 of 1927 ASME Code VIII Div I 2001 edition 2002 addenda Automatic dh - not hillside22 <- Vessel Automatic Limit Diameter29 <- Desc Curved Shell or Head Section30 Shell:31 SA-516 70 <- Shell material32 20,000 <- Sv, shell allowable stress level, PSI33 1.00 <- Eone, efficiency of shell at nozzle34

35 0.500 <- Vt, shell wall thick, uncorroded, UT removed36 0.231 <- tr, required shell wall thickness int. press.37 0.000 <- trE, required shell wall thickness ext. press.38 0.125 <- sca, shell corrosion allowance39 0.063 <- tmin16b, Min allowed wall per UG-16(b) 40 Nozzle:41 SA-106B <- Nozzle material42 17,100 <- Sn, allowable stress level (Sn)44 1.00 <- E nozzle 45

46 155.2 <- P, internal design pressure47 0.0 <- Pa, external design pressure48

49 17.500 <- Do, outside diameter52 0.750 <- Nt, wall thick, uncorroded53 12.5% <- UTp, undertolerance (%)55 0.125 <- nca, nozzle corrosion allowance56

57 1.000 <- L, exterior Projection58 0.875 <- Ip, interior projection60

61 Reinforcing:71 0.375 <- Leg41, size of weld fillet73 0.375 <- Leg43, size of weld fillet74 1.000 <- F77 Variables:78 UT = Nt*UTp = 0.75 * 0.125 Undertolerance UT = 0.09479 Rn = Do/2 - (Nt-nca) + UT = 17.5/2 - (0.75-0.125) + 0.094 Effective Radius Rn = 8.21984 t = Vt-sca = 0.5 - 0.125 Effective Shell Thickness t = 0.37585 ti = Nt-2*nca = 0.75 - 2 * 0.125 Nom Thick of Int. Proj. ti = 0.50090 tn = Nt-nca = 0.75-0.125 Avail. Nozzle Thick. No UT tn = 0.62593 d = Do-2*tn = 17.5 - 2*0.625 Opening Dia. d = 16.25099 fr1 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr1 = 0.855102 fr2 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr2 = 0.855112 h = MIN(Ip-sca,2.5*t,2.5*ti) = MIN(0.875-0.125,2.5*0.375,2.5*0.5) h = 0.750113 tcLeg41 = Min(0.25,0.7*Min(0.75,tn,t)) = Min(0.25,0.7*Min(0.75,0.625,0.375)) tc41 = 0.250117 tcLeg43 = Min(0.25,0.7*Min(0.75,t,tn)) = Min(0.25,0.7*Min(0.75,0.375,0.625)) tc43 = 0.250119 F = Min(Fenterered, 1) F = 1.000127

128 Pipe Required Wall Thickness - trn from internal, trnE from external pressure129 LDo = L/Do LDo = 0.057 Dot = Do/trnE Dot = 0.000130 trn = (P*Rn)/(Sn*E - 0.6*P) <= tn-UT trn = 0.075 Acceptable131 trnE = (3*Do*Pa)/(4*B) <= tn-ut trnE = 0.000 Acceptable132

133 Geometry Constraints:135 0.7*Leg41 >= tc41 0.7*0.375 >= 0.25 0.263 >= 0.250 Acceptable144 0.7*Leg43 >= tc43 0.7*0.375 >= 0.25 0.263 >= 0.250 Acceptable153 UG45 = Long form calculations are not shown in this view UG45 = 0.356 Acceptable154159

160 Area Replacement: Fig UG-37.1 Pressure From: Internal External161 A = 1.0*d*tr*F + 2*tn*tr*F*(1-frone) A Required (internal) = 3.795162 = 1.0*16.25*0.231*1 + 2*0.625*0.231*1*(1-0.855)165 Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-frone)) A Required (external) = 0.000166 = 169 A1 = max(d, 2*(t+tn)) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = 2.315170 = 174 A1e = max(d, 2*(t+tn)) * (Eone*t-F*trE)-2*tn*(Eone*t-F*trE)*(1-frone) A1e = 6.026175 = 181 A2 = min((tn-trn)*fr2*Min(5*t,2*L) , (tn-trn)*fr2*Min(5*tn,2*L)) A2 = 0.882182 = 186 A2e = min((tn-trnE)*frtwo*Min(5*t,2*L) , (tn-trnE)*frtwo*Min(5*tn,2*L)) A2e = 1.002187 = 189 A3 = Min(5*t*ti*frtwo, 5*ti*ti*frtwo, 2*h*ti*frtwo) A3 = 0.641 0.641190 = Min(5*0.375*0.5*0.855, 5*0.5*0.5*0.855, 2*0.75*0.5*0.855)196 A41 = Leg41^2*frTwo A41 = 0.375^2*0.855 A41 = 0.120 0.120203 A43 = (Leg43-nca)^2*frtwo A43 = (0.375-0.125)^2*0.855 A43 = 0.053 0.053205 Actual Area = 4.011 7.843206 Acceptable Actual-Required = 0.216 7.843

0.5*(16.25*0*1 + 2*0.625*0*1*(1-0.855))

min((0.625-0)*0.855*Min(5*0.375,2*1) , (0.625-0)*0.855*Min(5*0.625,2*1))

max(16.25, 2*(0.375+0.625)) * (1*0.375-1*0.231)-2*0.625*(1*0.375-1*0.231)*(1-0.855)

www.pveng.com

= (155.2*8.219)/(17100*1 - 0.6*155.2)= (3*17.5*0)/(4*1)

Sample Vessel 4Manway 12x16 With 4x3/4 Ring Nozzle G

max(16.25, 2*(0.375+0.625)) * (1*0.375-1*0)-2*0.625*(1*0.375-1*0)*(1-0.855)

min((0.625-0.075)*0.855*Min(5*0.375,2*1) , (0.625-0.075)*0.855*Min(5*0.625,2*1))

UW-16.1 (c) modified

Leg41

OD Nozzle

Nt

Leg41

Leg43

Leg43

Proj

Vt

Noz

zle

Shell

FullPenn.t

Page 15: Calcs_4

Vessel Weight and Volume 3-Jun-02 Page 15 of 19

<- Vessel

Volume:1.00 <- Fluid Specific Gravity

11.66 <- Head each (cuft) 23.32 2 heads189.86 <- Shell (cuft) 189.86

======213.18 <- cuft

1327.91 <- Imp Gallons1594.71 <- US Gallons13,296 <- fluid wt 13,296

Construction:789 <- Head (ea, lbs) 1579 2 heads

3181 <- Shell 3181600 <- Misc 600

=======5,360 <- lbs 5,360

======Total 18,656 lbs

Sample Vessel 4

Page 16: Calcs_4

1 Lifting Lugs ver 1.3 3-Jun-02 Page 16 of 192

3 <- Vessel4 <- Description5

6 Dimensions (all units inch and lb):7 5,360 <- Load, vessel weight empty8 8.000 <- W, width9 0.500 <- Thick, lug thickness10 2.500 <- H, hole height11 1.500 <- Dia, hole diameter12 2.500 <- OR, outside radius13 0.250 <- Weld, leg size14

15 SA-516 70 <- Material16 20,000 <- SA, allowed stress in tension17

18 All of load assumed carried by one lug19 All load cases analyzed independently20 Never load lug perpendicular to face21 Contour lug to fit vessel22 Do not move or support vessel with this lug when full or pressurized23

24 SB = SA * 1.5 = 20000 * 1.5 Max bending stress SB = 30,00025 SS = SA * 0.8 = 20000 * 0.8 Max Shear Stress SS = 16,00026 SSw = SA * 0.49 = 20000 * 0.49 UW-15 Max Weld Shear SSw = 9,80027

28 Tensile Stress (case 1)29 A1 = Thick*(OR-Dia/2) = 0.5*(2.5-1.5/2) A1 = 0.87530 A = A1 * 2 = 0.875 * 2 A = 1.75031 Stress = Load / A <= SA = 5359.828 / 1.75 <= 20000 Acceptable Stress = 3,06332

33 Pin Bearing Stress (case 1 and 2)34 Area = Dia * Thick = 1.5 * 0.5 Area = 0.75035 Stress = Load / Area <= SA = 5359.828 / 0.75 <= 20000 Acceptable Stress = 7,14636

37 Bending Stress (case 2)38 Moment = Load * H = 5359.828 * 2.5 Moment = 13,40039 I = Thick * W^3 / 12 = 0.5 * 8^3 / 12 I = 21.33340 c = W/2 = 8/2 c = 4.00041 Stress = M*c/I <= SB = 13399.57*4/21.333 <= 30000 Acceptable Stress = 2,51242

43 Shear Stress (case 2)44 Area = W*Thick = 8*0.5 Area = 4.00045 Stress = Load/Area <= SS = 5359.828/4 <= 16000 Acceptable Stress = 1,34046

47 Weld Stress (case 1)48 Circ = W*2+Thick*2+Weld*4 = 8*2+0.5*2+0.25*4 Circ = 1849 Area = Circ * Weld = 18 * 0.25 Area = 4.50050 Stress = Load / Area <= SSw = 5359.828 / 0.75 <= 9800 Acceptable Stress = 1,19151

52 Weld Stress (case 2)53 Moment = Load * H = 5359.828 * 2.5 Moment = 13,40054 I = (Thick +2*weld)* (W+2*Weld)^3 / 12 - I2 I = 29.84455 = (0.5 +2*0.25)* (8+2*0.25)^3 / 12 - 21.33356 c = W/2 + Weld = 8/2 + 0.25 c = 4.25057 Stress = M*c/I <= SSw Acceptable Stress = 1,90858

59

60

www.pveng.com

Lifting LugsSample Vessel 4

= 13399.57*4.25/29.844 <= 9800

H

Load Case 1

Load Case 2

OR

Dia

WeldW

Page 17: Calcs_4

15 Vessel On Beams Ver 2.16 3-Jun-02 Page 17 of 1916

17 <- Vessel IBC-200018

19 Vessel Dimensions (Inch and Lbs):20 162.000 <- H, height21 90.000 <- L, center of gravity22 27.000 <- ls, leg free length23 60.000 <- D, shell outside diameter24 60.500 <- ds, leg pitch diameter25 0.500 <- t, shell corroded thickness26 0.250 <- ws - leg weld size27 18.000 <- lw - length of leg to shell weld28 35.000 <- lwf - length of weld on foot29 18,656 <- W, Weight lbs30

31 Site Specific Seismic Information per IBC-2000:34 1.000 <- I, occupation importance factor37 E <- Site Class38 0.750 <- Ss, Acceleration at Short Periods39 0.300 <- S1, Acceleration at a period of one second40 1.200 <- Fa, Site Coefficient41 2.800 <- Fv, Site Coefficient42 4.000 <- R, Response Modification Factor50

51 Leg Supports:52 W6x15 <- Structural Description53 4 <- n, number of legs54 29.100 <- Ix, for one leg55 9.320 <- Iy, for one leg56 1.460 <- fFactor, Least radius of Gyration57 4.430 <- A, Leg Cross Sectional Area58 6.000 <- 2cx, Beam Depth 59 6.000 <- 2cy, Beam Width60 0.800 <- K1, Leg Anchor Factor <- bc, leg Boundary Condition factor61

62 Material Properties:63 17,100 <- maximum leg bending stress (Sb)64 20,000 <- maximum shell stress (Smax)65 11,359 <- Maximum shell compressive stress (Fcmax) based on A A = 0.0020866

67 Static Deflection68 E = 30,000,00069 bc = 12.0 leg boundary condition based on fixed or loose leg70 y = (2*W*ls^3)/(bc*n*E*(Ix + Iy)) y = 0.01371 = (2*18655.946*27^3)/(12*4*30000000*(29.1 + 9.32))72

73 Period of Vibration74 g = 38675 T = 2*pi*sqrt(y/g) =2 * 3.14 * sqrt(0.01/386) T = 0.03776

80 Base Shear89 Sms = Fa*Ss = 1.2*0.75 Sms = 0.990 Sm1 = Fv*S1 = 2.8*0.3 Sm1 = 0.8491 Sds = 2/(3*Sms) = 2/(3*0.9) Sds = 0.74192 Sd1 = 2/(3*Sm1) = 2/(3*0.84) Sd1 = 0.79493 Cs = Sds/(R/I) = 0.741/(4/1) Cs = 0.18594 CsMAX = Sd1/(T*R/I) = 0.794/(0.037*4/1) CsMAX = 5.38595 CsMIN = 0.044*Sds*I = 0.044*0.741*1 CsMIN = 0.03396 Csfinal = if(cs<=csmax, if(cs>csmin, cs, csmin), csmax) Csfinal = 0.18597 V = Csfinal*W = 0.185*18655.946 V = 3455107

108 Horizontal Seismic Force at Top of Vessel109 Ftmax = 0.25*V = 0.25 * 3455 Ftmax = 864110 Ft = 0.07 * T * V = 0.07 * 0.037 * 3455 Ft = 8.91 Ft = 9111 Ft = 0 if T < 0.7 Ft = 0112

113 Horizontal Seismic Force at cg114 Fh = V - Ft = 3455 - 0 Fh = 3,455115

116 Vertical force at cg117 Fv = W Fv = 18,656

Sample Vessel 4

www.pveng.com

ls

L

H

ds

f2 f2

f3

V

f1 f1

t

D

Fv

Fv

Fh Fh

c.g.

y

2cy2cx

Page 18: Calcs_4

121 Sample Vessel 4 Vessel On Beams 3-Jun-02 Page 18 of 19122

123 Overturning Moment at Base124 Mb = L*Fh + H*Ft = 90 * 3455 + 162 * 0 Mb = 310,932125

126 Overturning Moment at Bottom Tangent Line127 Mt = (L-ls)*Fh + (H-ls)*Ft = (90 - 27) * 3455 + (162 - 27) * 0 Mt = 217,653128

129 Maximum eccentric load130 f1 = Fv/n + 4*Mt/(n*D) = 18655.946247724/4 + 4*217653/(4 * 60) f1 = 8,292131

132 Axial Load133 f2 = Fv/n + 4*Mb/(n*ds) = 18655.946247724/4 + 4*310932/(4 * 60.5) f2 = 9,803134

135 Leg Loads136 f3x = 0.5*V*Ix/(Ix+Iy) =0.5* 3455*29.1 /( 29.1+9.32) f3x = 1,308137 f3y = 0.5*V*Iy/(Ix+Iy) =0.5* 3455*9.32 /( 29.1+9.32) f3y = 419138

139 Leg Bending Moments140 e = (ds-D)/2 =(60.5-60)/2 e = 0.25141 Mx = f1*e + f3x*ls =8292*0.25 + 1308*27 Mx = 37,399142 My = f1*e + f3y*ls =8292*0.25 + 419*27 My = 13,387143

144 Leg Bending Stress145 Sbmax = Sb * 1.25 =17100 * 1.25 Sbmax = 21,375146 fx = Mx*cx/Ix =37399 * 3 / 29.1 Acceptable fx = 3,856147 fy = My*cy/Iy =13387 * 3 / 9.32 Acceptable fy = 4,309148

149 Leg axial stress150 K1*ls/r = =0.8 * 27 / 1.46 K1*ls/r = 14.79452151 Fa max = AISC code lookup based on K1*ls/r Fa max = 25,675152 fa = f2/A =9803 / 4.43 Acceptable fa = 2,213153

154 Maximum Euler Stress155 Fe = 12*pi^2*E/(23*(K1*L/r)^2)156 = 12*pi^2*30000000/(23*14.795^2) Fe = 705,785157

158 Combined Stress159 Fc1 = fa/Famax + 0.85*fx/((1-fa/Fe)*Sbmax) Acceptable160 = 2213/25675 + 0.85*3856/((1-2213/705785)*21375) Fc1 = 0.24161 Fc2 = fa/Famax + 0.85*fy/((1-fa/Fe)*Sbmax) Acceptable162 = 2213/25675 + 0.85*4309/((1-2213/705785)*21375) Fc2 = 0.26163

164 Maximum shell compressive stress - above leg165 L1 = 2*cy + 2*sqrt(D/2*t) =6 + 2*sqrt(30 * 0.5) L1 = 13.75166 A = 0.125*t/R =0.125 * 0.5 / 30 A = 0.002083167 fc = f1/(L1*t) =8292 / (13.75 * 0.5) Acceptable fc = 1,206168

169 Maximum shell compressive stress - general170 fcg = Fv/(pi*D*t) + 4*Mt/(pi*D^2*t) Acceptable171 fcg = 18655.946247724 / ( pi * 60 * 0.5 ) + 4 * 217653 / ( pi * 60^2 * 0.5 ) fcg = 352

Page 19: Calcs_4

175 Sample Vessel 4 Vessel On Beams 3-Jun-02 Page 19 of 19176

177 Beam to Shell Attachment Stresses178

179 Beam Dimensions180 cx = 2cx/2 cx = 3.000181 cy = 2cy/2 cy = 3.000182

183184

185 C dimensions for weld stress186 weld area = ws*lw wa = 4.500187 wcx = lw/2 wcx = 9.000188 wcz = cy + ws wcz = 3.250189 wcy = sqrt(wcx^2 + wcy^2) = sqrt(9^2 + 9.569^2) wcy = 9.569190

191 Shear Force Distribution192 Vx = (V*Ix)/(2*(Ix+Iy)) = (3454.805*29.1)/(2*(29.1+9.32)) Vx = 1,308193 Vy = (V*Iy)/(2*(Ix+Iy)) = (3454.805*9.32)/(2*(29.1+9.32)) Vy = 419194 Vg = W/n gravity = 18655.946/4 Vg = 4,664195

196 Weld Moments of Inertias197 Iwx = (ws*lw^3/12)*2 = (0.25*18^3/12)*2 Iwx = 243.0198 Iwz = (lw*ws^3/12 + wa*(cy+ws/2)^2)*2 Iwz = 87.9199 = (18*0.25^3/12 + 4.5*(3+0.25/2)^2)*2200 Iwy = Iwx + Iwz = 243 + 88 Iwy = 330.9201

202 Weld Moments203 Mx = Vx*(ls+lw/2) + Vg*(ds-D)/2 Mx = 48,267204 = 1308*(27+18/2) + 4663.987*(60.5-60)/2205 My1 = Vy*(ls+lw/2) = 419*(27+18/2) My1 = 15,085206 Mz = Vy*(ds-D)/2 = 419*(60.5-60)/2 Mz = 105207

208 Weld Stresses209 Sx = Mx*wcx/Iwx Twisting = 37399*9/243 Sx = 1,385210 Sy = My1*wcy/Iwy Twisting = 15085*9.569/330.9 Sy = 436211 Sz = Mz*wcz/Iwz Torision = 105*3.25/87.9 Sz = 4212 Sg = Vg/(wa*2) Gravity = 4664/(4.5*2) Sg = 518213

214 Stress Limits and Ratios215 Slim = min(Sb,Smax)*0.49 = min(17100,20000)*0.49 Slim = 8,379216

217 SxR = Sx/Slim = 1385/8379 SxR = 0.165218 SyR = Sy/Slim = 436/8379 SyR = 0.052219 SzR = Sz/Slim = 4/8379 SzR = 0.000220 SgR = Sg/Slim = 518/8379 SgR = 0.062221 Acceptable total (<1) 0.280222 Foot Plate Attachment Stresses223 waf = ws*lwf weld area in foot = 0.25*35 waf = 8.750224 Vv = V/n = 3455/4 Vv = 864225

226 Sv = Vv/waf = 864/8.75 Sv = 99227 Sgf = Vg/waf = 4663.987/8.75 Sgf = 533228

229 SvRf = Sv/Slim = 99/8379 SvRf = 0.012230 SgRf = Sgf/Slim = 533.027/8379 SgRf = 0.064231 Acceptable total (<1) 0.075232

233

ls

lw

ws

Vx Vy

Mz

MyMx

ws