c2gc16128a

download c2gc16128a

of 4

Transcript of c2gc16128a

  • 7/31/2019 c2gc16128a

    1/4

    Green Chemistry Dynamic Article Links

    Cite this: Green Chem., 2012, 14, 304

    www.rsc.org/greenchem COMMUNICATION

    Ionic liquids from renewable biomaterials: synthesis, characterization and

    application in the pretreatment of biomass

    Qiu-Ping Liu,a Xue-Dan Hou,a Ning Li*b and Min-Hua Zong*b

    Received 9th September 2011, Accepted 21st November 2011

    DOI: 10.1039/c2gc16128a

    A series of room temperature ionic liquids (ILs), in which

    cholinium acts as the cation and amino acids as the anions,

    were prepared via a simple and green chemical route, and

    characterized. Most of the ILs dissolved lignin efficiently

    and selectively (with solubilities of 140220 mg of lignin perg of IL). The solubility of xylan in these ILs (which ranged

    from

  • 7/31/2019 c2gc16128a

    2/4

    Fig. 1 DSC and TGA curves for several representative [Ch][AA] ILs.

    acid-based ILs reported previously.15 Nevertheless, they are

    thermally stable enough to meet the criterion of the minimum

    Td of 100C for chiral ILs proposed by Wasserscheid.19 Also,

    the Td showed a clear dependence on the anion structures. Of

    the ILs tested, [Ch][Gly] gave the lowest Td (150C). Similarly,

    elongation of the side chain and introduction of a hydroxyl or

    carboxylic acid group resulted in higher Td values, whilst the

    introduction of a phenyl ring exerted no effect on the Td (Table

    1, entry 11) since [Ch][Phe] has almost the same Td as [Ch][Ala]

    (160 vs. 159 C). The Td of [Ch][Pro], [Ch][Phe], [Ch][Gly] and

    [Ch][Thr] are consistent with the previous results, but [Ch][His]

    synthesized in the present work is much more stable than thatreported by Moriel (171 vs. 128 C).8,9 Andthe other basic amino

    acid-containing ILs have comparable Td (163165C).

    Viscosity is one of the most important factors affecting the

    applications of ILs, especially as the solvents for catalysis and

    extraction etc. As a result, great efforts have been made to

    design and synthesize ILs with low viscosity.2022 The viscosities

    of the ILs synthesized during this work are in the range of

    1215640 mPas at 25 C (Table 1). An increase in the size of

    the anion generally resulted in a higher viscosity, which might

    be ascribed to stronger van der Waals and/or hydrogen bond

    interactions.10 For example, [Ch][Gly], with the anion being the

    simplest amino acid, displayed the lowest viscosity (121 mPas).

    Table 1 Properties of the [Ch][AA] ILs

    Entry ILs Tg/Ca Td/

    Cb Viscosity/mPasc [a]20D

    d

    1 [Ch][Gly] -61 150 121 2 [Ch][Ala] -56 159 163 +1.003 [Ch][Ser] -55 182 402 -4.684 [Ch][Thr] -39 172 454 -1.335 [Ch][Val] -74 177 372 +8.39

    6 [Ch][Leu] -47 175 476 -1.217 [Ch][Ile] -47 175 480 +4.098 [Ch][Met] -61 178 330 -2.339 [Ch][Phe] -60 160 520 -9.6210 [Ch][Trp] -12 174 5640 -13.9911 [Ch][Pro] -44 163 500 -65.4912 [Ch][Asp] -22 202 2060 -31.6013 [Ch][Glu] -18 202 2308 -10.1914 [Ch][Asn] -14 187 1903 -15.6215 [Ch][Gln] -40 203 2589 -5.2516 [Ch][Lys] -48 165 460 +4.5017 [Ch][His] -40 171 980 -9.7418 [Ch][Arg] -10 163 1002 +8.33

    a Glass transition temperatures (Tg) were determined by DSC with aheating rate of 10 C min-1, after cooling samples to -70 C undernitrogen. b Decomposition temperatures (Td) were measured by TGAwith a heating rate of 5 C min-1 under nitrogen. c At 25 C. d Solutionin CH3OH (c = 2).

    In addition to the molecular size of the anion, the introduction

    of extra carboxylic acid or amide group substantially increased

    theviscosity of theILs (Table 1, entries 1215), possiblyowing to

    strong hydrogen bond interactions. For instance, high viscosities

    (19032589 mPas) were recorded for [Ch][Asp], [Ch][Glu] and

    their amide analogs. The ILs with basic amino acids as the

    anions displayed relatively high viscosities (9801002 mPas),

    with theexception of [Ch][Lys] (460 mPas). Surprisingly, among

    the eighteen [Ch][AA] ILs, [Ch][Trp] was the most viscous (5640

    mPas). The rheological behaviors of the ILs including shear

    rate and temperature dependence of the viscosity were studied

    (Fig. 1S, available as supplementary materials). The apparent

    viscosity of highly viscous ILs was substantially reduced with

    the increase of shear rate and temperature, whereas the apparent

    viscosity of less viscous ILs like [Ch][Gly] was independent on

    shear rate and temperature. High viscosity ILs, such as [Ch][Trp],

    and [Ch][Asp], showed shear thinning property, suggesting the

    formation of cross-linked hydrogen bond network in the ILs

    or aggregation of ions with different forms, such as anion

    stacking and tail aggregation.23 The increase of shear rate

    and temperature disrupted the ions aggregation and cross-

    linked network, thus leading to the reduction of the viscosity.24

    In addition, larger anion size and stronger intermolecularforces such as van der Waals, hydrogen bond, and p-stacking

    interactions also might contribute to the high viscosity.

    The optical rotations, [a]20D

    , were measured in methanol

    solutions (Table 1). The optical rotations of some ILs were

    different from those of amino acids they contained. A similar

    phenomenon was reported previously by Allen et al.25

    Cellulose and lignin are, respectively, the first and second

    most abundant renewable organic polymers on earth; and

    combined with hemicellulose, they constitute the structural

    components of plants.26 Recently, cellulose and hemicellulose

    have received increasing interest as feedstocks for the production

    of biofuel and many platform chemicals, to combat the gradual

    This journal is The Royal Society of Chemistry 2012 GreenChem., 2012, 14, 304307 | 305

    View Online

    http://dx.doi.org/10.1039/c2gc16128a
  • 7/31/2019 c2gc16128a

    3/4

    Table 2 The solubility of lignin, xylan and cellulose in [Ch][AA] ILs at90 C

    Entry ILsLignin(mg g-1)

    Xylan(mg g-1)

    Cellulose(mg g-1)

    pH(5 mM)

    1 [Ch][Gly] 220 76

  • 7/31/2019 c2gc16128a

    4/4

    sincethey are synthesizedfrom environmentally friendly starting

    materials. Studies to investigate these properties are ongoing in

    our laboratory.

    This study was supported by the National Natural Science

    Foundation of China (20876059, 20906032 and 21072065), and

    the Major State Basic Research Development Program 973

    (2010CB732201). We are grateful to Prof. Thomas J. Smith

    in Sheffield Hallam University for the helpful suggestions andhelp in language improvement, and to Prof. Jinzhu Chen in

    GuangzhouInstitute of EnergyConversion for thehelp in NMR

    signal assignment.

    Notes and references

    1 R. D. Rogers and K. R. Seddon, Science, 2003, 302, 792793.2 M. Mora-Pale, L. Meli, T. V. Doherty, R. J. Linhardt and J. S.

    Dordick, Biotechnol. Bioeng., 2011, 108, 12291245.3 J. P. Hallett and T. Welton, Chem. Rev., 2011, 111, 35083576.4 M. Petkovic, K. R. Seddon, L. P. N. Rebelo and C. Silva Pereira,

    Chem. Soc. Rev., 2011, 40, 13831403.5 Y. Fukaya, Y. Iizuka, K. Sekikawa and H. Ohno, Green Chem., 2007,

    9, 11551157.6 M. Petkovic, J. L. Ferguson, H. Q. N. Gunaratne, R. Ferreira, M.

    C. Leitao, K. R. Seddon, L. P. N. Rebelo and C. S. Pereira, GreenChem., 2010, 12, 643649.

    7 J. K. Blusztajn, Science, 1998, 281, 794.8 S. Hu, T. Jiang, Z. Zhang, A. Zhu, B. Han, J. Song, Y. Xie and W.

    Li, Tetrahedron Lett., 2007, 48, 56135617.9 P. Moriel, E. J. Garca-Suarez, M. Martnez, A. B. Garca, M. A.

    Montes-Moran, V. Calvino-Casilda and M. A. Banares, TetrahedronLett., 2010, 51, 48774881.

    10 Y. H. Yu, X. M. Lu, Q. Zhou, K. Dong, H. W. Yao and S. J. Zhang,Chem.Eur. J., 2008, 14, 1117411182.

    11 K. D. Weaver, H. J. Kim, J. Sun, D. R. MacFarlane and G. D. Elliott,Green Chem., 2010, 12, 507513.

    12 P. Nockemann, B. Thijs, K. Driesen, C. R. Janssen, K. Van Hecke,L. Van Meervelt, S. Kossmann, B. Kirchner and K. Binnemans, J.Phys. Chem. B, 2007, 111, 52545263.

    13 J. C. Plaquevent, J. Levillain, F. Guillen, C. Malhiac and A. C.Gaumont, Chem. Rev., 2008, 108, 50355060.

    14 K. Fukumoto, M. Yoshizawa and H. Ohno, J. Am.Chem. Soc., 2005,127, 23982399.

    15 G. H. Tao, L. He, N. Sun and Y. Kou, Chem. Commun., 2005, 35623564.

    16 G. H. Tao, L. He, W. S. Liu, L. Xu, W. Xiong, T. Wang and Y. Kou,Green Chem., 2006, 8, 639646.

    17 L. He, G. H. Tao, D. A. Parrish and J. n. M. Shreeve, J. Phys. Chem.B, 2009, 113, 1516215169.

    18 C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. V. K. Aki and J.F. Brennecke, J. Chem. Eng. Data, 2004, 49, 954964.

    19 P. Wasserscheid, A. Bosmann and C. Bolm, Chem. Commun., 2002,

    200201.20 Y. Fukaya, A. Sugimoto and H. Ohno, Biomacromolecules, 2006, 7,

    32953297.21 H. Yu, Y. T. Wu, Y. Y. Jiang,Z. Zhou andZ. B. Zhang, New J. Chem.,

    2009, 33, 23852390.22 T. Peppel, M. Kockerling, M. Geppert-Rybczynska, R. V. Ralys, J.

    K. Lehmann, S. P. Verevkin and A. Heintz, Angew. Chem., Int. Ed.,2010, 49, 71167119.

    23 N. V. Pogodina, M. Nowak, J. Lauger, C. O. Klein, M. Wilhelm andC. Friedrich, J. Rheol., 2011, 55, 241256.

    24 T. G. Metzger, The rheology handbook, Vincentz Network GmbH &Co, Hannover, 2006.

    25 C. R. Allen, P. L. Richard, A. J. Ward, L. G. A. van de Water, A. F.Masters andT. Maschmeyer, Tetrahedron Lett., 2006, 47, 73677370.

    26 M. McNeil, A. G. Darvill, S. C. Fry and P. Albersheim, Annu. Rev.Biochem., 1984, 53, 625663.

    27 J. Zaldivar, J. Nielsen and L. Olsson, Appl. Microbiol. Biotechnol.,2001, 56, 1734.

    28 A. Aristidou and M. Penttila, Curr. Opin. Biotechnol., 2000, 11, 187198.

    29 C. Bonini, M. DAuria, L. Emanuele, R. Ferri, R. Pucciariello andA. R. Sabia, J. Appl. Polym. Sci., 2005, 98, 14511456.

    30 J. F. Kadla, S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compereand W. Griffith, Carbon, 2002, 40, 29132920.

    31 S. S.Y. Tan, D.R. MacFarlane, J. Upfal, L. A. Edye, W. O.S. Doherty,A. F. Patti, J. M. Pringle and J. L. Scott, Green Chem., 2009, 11, 339345.

    32 S. H. Lee, T. V. Doherty, R. J. Linhardt and J. S. Dordick, Biotechnol.Bioeng., 2009, 102, 13681376.

    33 D. Fu, G. Mazza and Y. Tamaki, J. Agric. Food Chem., 2010, 58,29152922.

    34 J. G. Huddleston and R. D. Rogers, Chem. Commun., 1998, 17651766.

    35 S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, Y. Ding and G. Wu,Green Chem., 2006, 8, 325327.

    36 H. Wu, M. Mora-Pale, J. Miao, T. V. Doherty, R. J. Linhardt and J.S. Dordick, Biotechnol. Bioeng., 2011, 108, 28652875.

    This journal is The Royal Society of Chemistry 2012 GreenChem., 2012, 14, 304307 | 307

    View Online

    http://dx.doi.org/10.1039/c2gc16128a