BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE...

104
1 BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE TRANSITION MICROMECHANISMS André PINEAU Centre des Matériaux - Ecole des Mines de Paris. ParisTech UMR CNRS 7633 [email protected] I. INTRODUCTION : Various Scales / History of Fracture Mechaniscs II. BRITTLE CLEAVAGE FRACTURE – THEORY II.1. Main characteristics of Brittle Cleavage Fracture II.2. Weibull – Beremin Theory II.3. Multiple barrier models II.4. Effect of Deformation – Second Order approximation III. DUCTILE FRACTURE – THEORY (Introduction) III.1. Cavity initiation, growth & coalescence. GTN model III.2. Computational strategies to simulate ductile crack growth IV. DUCTILE TO BRITTLE TRANSITION IN STEELS IV-1. Qualitative explanations for the existence of DBT IV-2. Fracture toughness transition IV-3. Impact Charpy test V. CONCLUSIONS Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

Transcript of BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE...

  • 1

    BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE TRANSIT ION MICROMECHANISMS

    André PINEAUCentre des Matériaux - Ecole des Mines de Paris. ParisTech

    UMR CNRS [email protected]

    I. INTRODUCTION : Various Scales / History of Fracture Mechaniscs

    II. BRITTLE CLEAVAGE FRACTURE – THEORYII.1. Main characteristics of Brittle Cleavage FractureII.2. Weibull – Beremin TheoryII.3. Multiple barrier modelsII.4. Effect of Deformation – Second Order approximation

    III. DUCTILE FRACTURE – THEORY (Introduction)III.1. Cavity initiation, growth & coalescence. GTN modelIII.2. Computational strategies to simulate ductile crack growth

    IV. DUCTILE TO BRITTLE TRANSITION IN STEELSIV-1. Qualitative explanations for the existence of DBTIV-2. Fracture toughness transitionIV-3. Impact Charpy test

    V. CONCLUSIONS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 2

    BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE TRANSIT ION MICROMECHANISMS

    André PINEAUCentre des Matériaux - Ecole des Mines de Paris. ParisTech

    UMR CNRS [email protected]

    I. INTRODUCTION : Various Scales / History of Fracture Mechaniscs

    II. BRITTLE CLEAVAGE FRACTURE – THEORYII.1. Main characteristics of Brittle Cleavage FractureII.2. Weibull – Beremin TheoryII.3. Multiple barrier modelsII.4. Effect of Deformation – Second Order approximation

    III. DUCTILE FRACTURE – THEORY (Introduction)III.1. Cavity initiation, growth & coalescence. GTN modelIII.2. Computational strategies to simulate ductile crack growth

    IV. DUCTILE TO BRITTLE TRANSITION IN STEELSIV-1. Qualitative explanations for the existence of DBTIV-2. Fracture toughness transitionIV-3. Impact Charpy test

    V. CONCLUSIONS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 3

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    100(m)

    (µm)(nm)

    1

    10

    100

    1000

    10

    100

    1000

    First T

    alk

    Second

    Talk

    A. Pineau, IJF, 2008

    Y. Bréchet, Mat. Nuc., 2008Pareige, JNM, 2007

    2 ¼ Cr – E. Bouyne, 1998

  • 4

    Standard Fracture Toughness specimens and wide plate components linked with the equivalent CTOD ratio β

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

    2c

    a

    2a

    σσσσ∞∞∞∞

    t

    ca

    σσσσ∞∞∞∞c a

    a

    a

    σσσσ∞∞∞∞

    t

    σσσσ∞∞∞∞

    σσσσ∞∞∞∞

    t

    σσσσ∞∞∞∞σσσσ∞∞∞∞

    t

    σσσσ∞∞∞∞

    Standard fracture toughness specimens

    Equivalent CTOD ratio β

    Surface crack

    Surface crack

    Through-thickness crack

    Through-thickness crack

    Center surface crack panel (CSCP) Center through-thickness crack panel (CTCP)

    Edge surface crack panel (ESCP) Edge through-thickness crack panel (ETCP)

    B = t

    W a0= BH H

    S = 4W

    1.25W

    0.6W

    a0 = BW

    B = t

    0.6W

    Structural components

    (0.45 < a0 / W < 0.55)

    3-point bendCompact

  • 5

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    100(m)

    (µm)(nm)

    1

    10

    100

    1000

    10

    100

    1000

    Bouchard,(NH),1978, R.M. Pelloux

    Fe-3%Si- Qiao, Argon, 2003

    A. Lambert-Perlade, 2001

    A. Lambert-Perlade, 2001

  • 6

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    10

    100(m)

    (µm)(nm)

    1

    10

    100

    1000

    10

    100

    1000

    2IC m/J62G −=

    2GBIC

    GBIC

    m/J20020G

    mMPa62k

    −=

    −=

    23IC

    IC

    m/J10100G

    mMPa10050K

    ×=

    −=

    X 10X 1000

    23IC

    IC

    m/J1082G

    mMPa4020K

    ×−=

    −=

    X 0.10

    X 1000

  • 7

    ( )mma∆

    J(KJ/m2)

    ��

    ��

    DUCTILE TO BRITTLE TRANSITION - DEFINITION

    � T1

    T2 > T1OR DECREASING STRAIN RATE

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 8

    WARM-PRESTRESS EFFECT

    *

    LUCF

    *LCF

    T1TEMPERATURE

    FRACTURE

    TOUGHNESS

    ( )mMPa

    T2

    See also D.J. Smith, CSI 2003, pp. 289-345

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 9

    Crack

    εεεεσσσσ,

    x

    GLOBAL APPROACH

    Fieldεεεε−−−−σσσσSingle parameterK, J, CTOD

    K-T; J-QTwo parameters

    LOCAL APPROACH

    Crack Tip

    Fieldεεεε−−−−σσσσ+ Physically-basedFracture Criteria

    COMPUTATIONAL FRACTURE MECHANICS

    1960 1970 1980 1990 2000

    LEFM

    EPFM

    1981ICF5

    2010

    LAF

    1986

    1st Sem.1992AIME

    Sem.

    19962nd Sem.

    20063st Sem.

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 10

    I - EXPERIMENTS

    • Mechanical Tests

    • Microstructural Observations

    • Micromechanisms

    II - MODELS

    • Constitutive Equations

    • Damage Modelling

    III - IDENTIFICATION

    • Tuning of Models Parameters

    IV - SIMULATION

    • Laboratory Tests

    V - SIMULATION

    • Industrial Components

    • Complex Loading Conditions

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 11

    MECHANICAL TESTS OBSERVATIONS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 12

    (((( )))) (((( ))))(((( )))) (((( ))))(((( ))))(((( ))))

    2,1i;K

    R11F1

    p

    1

    RFp

    pbexp1Qpbexp1QRT,pR

    EQUATIONSVECONSTITUTI

    in

    ii

    21

    22110

    ====−−−−σσσσ====εεεεεεεε

    ++++εεεε

    ========

    −−−−σσσσ====

    −−−−−−−−++++−−−−−−−−++++====

    ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

    ⋅⋅⋅⋅

    elsmodCoupled

    elsmodUncoupled

    RUPTUREDUCTILE

    dVV1

    exp1P

    STRESSWEIBULL

    FRACTURECLEAVAGE

    MODELLINGDAMAGE

    m/1mI

    uw

    m

    u

    wR

    −−−−−−−−••••

    σσσσ====σσσσ

    σσσσσσσσ−−−−−−−−====

    ••••

    ∫∫∫∫

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 13

    CLEAVAGE FRACTURE

    Probabilistic Model

    Weibull Stress

    DUCTILE RUPTURE

    Coupled Models

    • Gurson-Tvergaard-NeedlemanPotential with an acceleratingfunction

    • Rousselier Potential

    • Statistical models in DuplexStainless Steels

    Charlotte Bouchet

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 14

    NS (AE)

    CT

    CHARPY V NOTCH

    SIMULATION

    B. Tanguy & J. Besson

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 15

    SIMULATIONPRESSURE VESSEL

    ALOHA, 1988

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 16

    BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE TRANSIT ION MICROMECHANISMS

    André PINEAUCentre des Matériaux - Ecole des Mines de Paris. ParisTech

    UMR CNRS [email protected]

    I. INTRODUCTION : Various Scales / History of Fracture Mechaniscs

    II. BRITTLE CLEAVAGE FRACTURE – THEORYII.1. Main characteristics of Brittle Cleavage FractureII.2. Weibull – Beremin TheoryII.3. Multiple barrier modelsII.4. Effect of Deformation – Second Order approximation

    III. DUCTILE FRACTURE – THEORY (Introduction)III.1. Cavity initiation, growth & coalescence. GTN modelIII.2. Computational strategies to simulate ductile crack growth

    IV. DUCTILE TO BRITTLE TRANSITION IN STEELSIV-1. Qualitative explanations for the existence of DBTIV-2. Fracture toughness transitionIV-3. Impact Charpy test

    V. CONCLUSIONS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 17

    BRITTLE FRACTUREMAIN CHARACTERISTICS

    • SCATTER

    • SIZE EFFECT

    • GEOMETRICAL DEPENDENCE

    • LOADING RATE EFFECT

    • EFFECT OF METALLURGICAL

    VARIABLES & INHOMOGENEITIES

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 18

    0

    50

    100

    150

    200

    250

    300

    350

    400

    -200 -150 -100 -50 0 50

    KIC (NS)

    KIC (S)

    KJ (NS)

    KJ-Kcpm(S)

    Kcpm (NS)

    DIDR

    Code RCC-M

    Fra

    ctur

    e T

    ough

    ness

    (MP

    am1

    /2)

    T - RTNDT (°C)

    C. Naudin, A. Pineau and J.M. Frund (2001), 10th Conf. on environmental degradation

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 19

    Size Effect

    I. Iwadate et al., Nucl. Eng. Design (1985), Vol. 85, pp. 89-99

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 20

    Short

    Crack

    Effect

    CONSTRAINT EFFECT- W.A. Sorem et al. Int. J. Fracture, (1991), 47, 105-126- D. Tigges et al. ECF 10, (1994), 1, 637-646

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 21

    E36 Steel (-50°C)

    0

    50

    100

    150

    200

    250

    300

    0,00 0,20 0,40 0,60 0,80

    a/W

    J IC

    (KJ/

    m²)

    SENB 0.03 < a/W < 0.77CCP 0.63 < a/W < 0.77

    Sumpter 1993

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

    CONSTRAINT EFFECT

  • 22

    0

    50

    100

    150

    200

    250

    300

    350

    -220 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 20

    TEMPERATURE (°C)

    FR

    AC

    TU

    RE

    TO

    UG

    HN

    ES

    S (

    MP

    am1/

    2 )

    Pr=90%

    Pr=10% Pr=90%

    Pr=10%

    .K

    MPam1/2/s

    4102

    2

    . •o Theoretical curves for failure

    Probabilities of 10% and 90% (Beremin model)

    Henry et al., 1985A 508 Steel

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 23

    Weld structure Correspondingthermal cycles

    CorrespondingHAZ microstructures

    Run #1

    Run #2

    Run #3

    A

    BC

    D

    Coarse gained HAZ(CG HAZ)

    Intercritically reheatedCG HAZ

    Supercritically reheatedCG HAZ(fine grains)

    ~ CG HAZ

    A

    B

    C

    D

    METALLURGICAL

    INHOMOGENEITIES

    A. Lambert-Perlade et al., Metall. And Mater. Trans. A (2004), Vol. 35A, pp. 1039-1053

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 24

    10µm

    10µm10µm

    30 µmtransverse direction

    short transversedirection

    E 450BASE METAL CGHAZ-25

    ICCGHAZ-25 CGHAZ-120

    A. Lambert-Perlade et al., Metall and Mater. Trans. A, (2004), Vol. 35A, pp. 1039-1053

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 25

    martensite

    austenite

    5 µm

    1 µm

    martensite

    austenite

    1 µm

    martensite

    austenite

    MARTENSITE - AUSTENITECONSTITUENTS

    E 450 STEEL

    A. Lambert-Perlade et al., Metall. and Mater. Trans. A, (2004), Vol. 35 A, pp. 1039-1053

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 26

    0

    50

    100

    150

    200

    250

    300

    -200 -150 -100 -50

    Base metal

    KJc (MPa.m1/2)

    T (°C)

    base metal

    0

    50

    100

    150

    200

    250

    300

    -200 -150 -100 -50 0 50

    CGHAZ-25

    KJc (MPa.m1/2)

    T (°C)

    CG HAZ 1

    0

    50

    100

    150

    200

    250

    300

    -200 -150 -100 -50 0 50

    ICCGHAZ-25

    KJc (MPa.m1/2)

    T (°C)

    IC CG HAZ 1

    0

    50

    100

    150

    200

    250

    300

    -200 -150 -100 -50 0 50

    CGHAZ-120

    KJc (MPa.m1/2)

    T (°C)

    CG HAZ 2

    ductile stable crack propagation over > 0.2 mmA. Lambert-Perlade et al., Metall. Mater. Trans. A, (2004), Vol. 35A, pp. 1039-1053

    T0 = - 130°C T0 = - 45°C

    T0 = - 12°C T0 = - 6°C

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 27

    BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE TRANSIT ION MICROMECHANISMS

    André PINEAUCentre des Matériaux - Ecole des Mines de Paris. ParisTech

    UMR CNRS [email protected]

    I. INTRODUCTION : Various Scales / History of Fracture Mechaniscs

    II. BRITTLE CLEAVAGE FRACTURE – THEORYII.1. Main characteristics of Brittle Cleavage FractureII.2. Weibull – Beremin TheoryII.3. Multiple barrier modelsII.4. Effect of Deformation – Second Order approximation

    III. DUCTILE FRACTURE – THEORY (Introduction)III.1. Cavity initiation, growth & coalescence. GTN modelIII.2. Computational strategies to simulate ductile crack growth

    IV. DUCTILE TO BRITTLE TRANSITION IN STEELSIV-1. Qualitative explanations for the existence of DBTIV-2. Fracture toughness transitionIV-3. Impact Charpy test

    V. CONCLUSIONS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 28

    V

    V0

    WEAKEST LINK THEORY. WEIBULL-BEREMIN MODEL

    (((( )))) (((( )))) (((( ))))

    (((( ))))

    σσσσ∫∫∫∫−−−−−−−−====

    σσσσαααα====→→→→

    ∫∫∫∫====σσσσ→→→→ ∞∞∞∞

    0PZR

    2c

    00l000

    VdV

    pexp1P:V

    lGriffith

    dllppdllp:Vc

    (((( ))))

    22m

    VdV

    ;exp1P

    VdV

    exp1P

    l/lp

    LawPower

    m/1

    0

    m1PZw

    m

    u

    wR

    0

    m

    u

    1PZR

    00

    −−−−ββββ====

    σσσσ====σσσσ

    σσσσσσσσ−−−−−−−−====

    σσσσσσσσ−−−−−−−−====

    γγγγ====

    ∫∫∫∫

    ∫∫∫∫

    ββββ

    (((( ))))

    σσσσσσσσ−−−−σσσσ−−−−−−−−−−−−====

    −−−−−−−−====>>>>

    ∫∫∫∫0

    n

    20

    2u

    21

    decohR

    n

    0

    u

    VdV

    /1

    /1/1expexp1P

    lll

    explSizep

    LawlExponentia

    See also Kroon & Faleskog in Inter. Journal of Fract. Vol. 118, (2002), pp.99-118 & Eng. Fract. Mechanics,

    Vol. 71, (2004), pp. 57-79.

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 29

    BEREMIN MODEL (83) (S.S.Y.)

    CRACK

    HRR Field0

    σ

    ( ) ( )020 /J/x;/K/x σσ

    HRR ( )

    σσ=

    σσ=σ

    002

    00YY /J

    xg

    /K

    xf

    B : Specimen Thickness

    Cm (n) : constant

    σ

    σ−−=

    mu0

    mCB4m

    04IC

    RV

    Kexp1P

    −= ν22IC

    IC 1E

    KJ

    ( )2 2 4

    022

    0

    1 exp1

    mIC m

    Rmu

    J E BCP

    V

    σν σ

    − = − − −

    yyσ

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 30

    A533 SteelServer & Wullaert

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 50 100 150 200 250 300TEMPERATURE (K)

    FR

    AC

    TU

    RE

    TO

    UG

    HN

    ES

    S, K

    IC

    (MP

    am1/

    2 )

    Experimental Results 1T to 11T

    Theory, ICF5, Cannes, 1981m = 21 ; σσσσu = 2530 MPa ; Vo = 60 µm

    3

    PR = 0.90

    0.50

    PR = 0.10

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 31

    J∆ LARGE SCALE YIELDING

    T1 T2 T3

    2

    Ln (J/σσσσ0)

    Ln (

    σσ σσ w/ σσ σσ

    u)m

    = L

    n [L

    n (1

    /1-P

    R)]

    T1< T2< T3

    SMALL SCALE YIELDING (SSY)

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 32

    BEREMIN MODEL & MASTER CURVE

    σσσσσσσσ−−−−−−−−====

    −−−−

    muu

    m4m4

    ICR V

    CBKexp1P

    MODELBEREMIN

    (((( )))) (((( ))))[[[[ ]]]](((( ))))

    (((( ))))mm25Bfor

    mMPa100medianKT

    CinT;mMPainK

    TT019.0exp7030mediumK

    63.0PK

    mMPa20minK

    minKKminKK

    BB

    exp1P

    CURVEMASTER

    JCo

    oJC

    Ro

    I

    4

    Io

    IIC

    oR

    ========→→→→

    °°°°

    −−−−++++====−−−−====⇒⇒⇒⇒−−−−

    ≈≈≈≈−−−−

    −−−−−−−−−−−−−−−−====

    (((( )))) (((( ))))(((( )))) CstT/mediumKwhen

    minKK,Kif

    DEPENDENCE ETEMPERATUR

    SAME THE PREDICT MODELS BOTH

    4/m1oJC

    IJCIC

    ====σσσσ−−−−

    >>>>>>>>−−−−

    −−−−

    A. Lambert-Perlade, PhD Thesis, 2001

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 33

    COMPARISON OF BEREMIN ( ) & MASTER CURVE ( ) (PR = 0.10 - 0.90)

    m = 27σσσσu = 2158 MPa

    m = 20σσσσu = 2351 MPa

    m = 20σσσσu = 2670 MPa

    m = 20σσσσu = 2085 MPa

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 34

    BEREMIN MODEL - LIMITATIONS

    (1) � THRESHOLD WEIBULL STRESS ?

    (2) � STRAIN and/or TEMPERATURE DEPENDENCE OF MODEL PARAMETERS

    (3) � EXISTENCE OF DIFFERENT MICROSTRUCTURAL BARRIERS FOR A PROPAGATING CRACKMULTIPLE BARRIER MODELS

    (((( ))))?andm uσσσσ

    ⇒⇒⇒⇒

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 35

    BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE TRANSIT ION MICROMECHANISMS

    André PINEAUCentre des Matériaux - Ecole des Mines de Paris. ParisTech

    UMR CNRS [email protected]

    I. INTRODUCTION : Various Scales / History of Fracture Mechaniscs

    II. BRITTLE CLEAVAGE FRACTURE – THEORYII.1. Main characteristics of Brittle Cleavage FractureII.2. Weibull – Beremin TheoryII.3. Multiple barrier modelsII.4. Effect of Deformation – Second Order approximation

    III. DUCTILE FRACTURE – THEORY (Introduction)III.1. Cavity initiation, growth & coalescence. GTN modelIII.2. Computational strategies to simulate ductile crack growth

    IV. DUCTILE TO BRITTLE TRANSITION IN STEELSIV-1. Qualitative explanations for the existence of DBTIV-2. Fracture toughness transitionIV-3. Impact Charpy test

    V. CONCLUSIONS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 36

    MULTIPLE BARRIER MODELS

    20 µm

    53°40° 58°

    18°23° 52°

    A. Lambert-Perlade & A.-F. Gourgues

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 37

    A DOUBLE BARRIER MODEL FOR CLEAVAGE FRACTURE

    A. Martin-Meizoso et al., Acta Metall. Mater. (1994), Vol. 42, pp. 2057-2068.

    • STEP 1 : Fracture Probability of a M-A constituent / Critical Stress Criterion.

    • STEP 2 : Probability of propagating a crack at the MA/Matrix Interface.

    • STEP 3 : Probability of crossing a packet boundary.

    dVCCFxNDCCFxNexp1P*

    ccv

    **g

    gvPZR

    〉+

    〈〈∫−−=

    Fg & F c Determined by Metallography2

    1

    g/cIa

    21

    2

    g/c* K

    1

    EC

    σβ=

    σ

    ν−

    γπ=

    2

    1

    g/gIa

    21

    2

    g/g* K

    1

    ED

    σβ=

    σ

    ν−

    γπ=C D

    2 31g/c

    IaK

    g/gIaK

    σ

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 38

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 39

    CRACKS AT GRAIN BOUNDARIES (1)

    Qiao, Argon, Mat. Letters, vol.54, 2008, pp.3156-3160

    See also Qiao , Argon, Mech. Materials, vol.35, 2003, pp.129-154 and pp.313-331

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 40

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 41

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 42

    CRACKS AT GRAIN BOUNDARIES (2)Qiao, Argon, Mat.

    Letters, vol.54, 2008,

    pp.3156-3160

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 43

    BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE TRANSIT ION MICROMECHANISMS

    André PINEAUCentre des Matériaux - Ecole des Mines de Paris. ParisTech

    UMR CNRS [email protected]

    I. INTRODUCTION : Various Scales / History of Fracture Mechaniscs

    II. BRITTLE CLEAVAGE FRACTURE – THEORYII.1. Main characteristics of Brittle Cleavage FractureII.2. Weibull – Beremin TheoryII.3. Multiple barrier modelsII.4. Effect of Deformation – Second Order approximation

    III. DUCTILE FRACTURE – THEORY (Introduction)III.1. Cavity initiation, growth & coalescence. GTN modelIII.2. Computational strategies to simulate ductile crack growth

    IV. DUCTILE TO BRITTLE TRANSITION IN STEELSIV-1. Qualitative explanations for the existence of DBTIV-2. Fracture toughness transitionIV-3. Impact Charpy test

    V. CONCLUSIONS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 44

    A SIMPLIFIED THEORY

    BEREMIN MODEL (1983)+

    S. BORDET (2005)

    Second Order Approximation

    • The cleavage stress depends on plastic strain

    • This dependence remains deterministic

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 45

    J.-J.Gilman, (1958)

    ZINC SINGLE CRYSTALS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 46

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 47

    S. Kotrechko, Theoretical & Applied Fracture Mechanics, 40, (2003), 271-277

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 48

    EFFECT OF PLASTIC STRAIN

    • Strong Effect in Zn single crystals

    • CLEAVAGE INITIATED FROM PARTICLESNucleation TiN in IN718 (F. Alexandre, 2005)

    Bordet et al. (2005) (EFM, Part I, 435-452; Part II, 453-474)

    ( ) ( )1981min,Bereexp1PNa

    uN

    0eq1nucl

    σ

    σ−σλ+σ−−=

    ( ) nuclt

    0 propcleavPPtP δ= ∫

    ( )

    εε

    σσ−−=⇒εσ−=δ

    0eq

    eq

    0Y

    0nucleq0nucl0nucl exp1PdP1NP

    [ ]

    σσ−−=δ−−= ∫ ∫

    m

    *u

    *w

    PZ

    t

    0 nuclpropRexp1dVNPexp1P

    ( ) ( ) ( )( )u

    PZ 00eq

    eqnucl

    mth

    m1

    0Y

    0m*

    w V

    dVdtP1eq∫ ∫

    εε

    −σ−σσσ=σ ε

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 49

    A SOPHISTICATED THEORY TO BE DEVELOPED !

    Third Order Approximation

    • The local stresses are no longer uniform

    - Random distribution due to elastic anisotropy(S. Kotrechko + S. Pommier)

    - Crystalline plasticity(Ecole des Mines)

    • "Self organisation" of the local stresses : Arching type effect(S. Pommier)

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 50

    INHOMOGENEITY IN LOCAL STRESS DISTRIBUTION (EL ASTICITY )

    • S. KOTRECHKO (Theoretical and Applied Fracture Mechanics, 47, (2007), 171-181)

    • See also: S. POMMIER (Fatigue & Fracture of Engineering Materials & Structures, 25, (2002), 331-348.

    ( ) ( )[ ]( ) ( )[ ]( ) ( )[ ]21II2313I221II23I33

    31II3212I2

    31II22I22

    32II3121I2

    32II21I11

    µµ2DDD

    µµ2DDD

    µµ2DDD

    ΣΣ+ΣΣ+ΣΣ+Σ+Σ+Σ=σ

    ΣΣ+ΣΣ+ΣΣ+Σ+Σ+Σ=σ

    ΣΣ+ΣΣ+ΣΣ+Σ+Σ+Σ=σ

    ( )

    [ ][ ]113322

    1111

    2IIII

    2I

    2I

    IIIIII

    ii

    24.024.0and

    40.160.0.dev.St3forTensionUniaxial

    10x66.0µD;10x72.0µ;10x7.1D

    grainsofondistributiRandomFe:Ex

    anisotropyelastictheoffunctionstscoefficien:µ,µ,D,D

    stresseslocaltheofVariance:D

    Σ−Σ−σσΣ−Σσ

    ====

    σ

    −−−

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 51

    Analogy with Granular Materials[Dantu, Radjai, Roux, Evesque …]

    F

    Distribution of maximum principal stress (FEM)

    Characteristic length > grain = arch dimension

    sand = water + grains

    S. Pommier, FFEMS, (2002), 25, 331

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 52

    LOCAL STRESS HETEROGENEITY : 3D

    Max. principalstress

    Tensile loading Copper

    S. Pommier

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 53

    Distribution calculated from the results of 70 calculations

    Zirconium Titanium Zinc Copper Iron Aluminum

    Minimum value (MPa) Maximum value (MPa) Mean value (MPa)

    926 1046 976

    1058 1225 1141

    792 1269 1036

    679 1283 1018

    1379 2107 1799

    640 726 681

    Standard Deviation (MPa) 27 35 123 121 144 16

    3 times the standard deviation in percentage of the mean value

    8.5% 9.25% 35% 35% 24% 7%

    S. Pommier (FFEMS, 25, (2002, 331-348)

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 54

    F. Barbe, S. Forest, G. Cailletaud, Int. J. Plasticity, 17, (2001), 537-563

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 55

    F. Barbe, S. Forest, G. Cailletaud, Int. J. Plasticity, 17, (2001), 537-563

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 56

    BAINITIC STEEL N. OsipovG. Cailletaud

    A.F. Gourgues

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 57

    BAINITIC STEEL

    N. Osipov

    G. Cailletaud

    A.F. Gourgues

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 58

    ( )σ>σlocP

    ( )ififp σ=σi = 1 i = 2

    ( )locσ

    1

    0

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

    ( )ifσApplied local stress ; Local fracture stress

    Pro

    babi

    lity

    Den

    sity

    ( )ifp

    Cum

    ulat

    ive

    Pro

    babi

    lity,

    ( )σ>σlocP

    N. Osipov

    G. Cailletaud

    A.F. Gourgueslocσ

    ifσ

    ( ) ( ) σσσσσ dpPP ififo locR =×〉= ∫∞

  • 59

    STATISTICAL ASPECTS OF CLEAVAGE FRACTURE - CONCLUSIONS

    • Various sources of scatter for cleavage fracture

    • This scatter has strong practical implications. Threshold stress ? Size effect

    • Modelling. Three approximations :

    - Engineering purposes. 1st Order Approximation will remain largely usedHowever attempts made to consider that in the master curve approach, T0 is statistically distributed

    - Most urgent problem : Strain and Temperature dependence of

    • Many metallurgical means to develop microstructure with improved fracturetoughness

    A 508 steel / 2 1/4 - 1 Mo steel

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 60

    BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE TRANSIT ION MICROMECHANISMS

    André PINEAUCentre des Matériaux - Ecole des Mines de Paris. ParisTech

    UMR CNRS [email protected]

    I. INTRODUCTION : Various Scales / History of Fracture Mechaniscs

    II. BRITTLE CLEAVAGE FRACTURE – THEORYII.1. Main characteristics of Brittle Cleavage FractureII.2. Weibull – Beremin TheoryII.3. Multiple barrier modelsII.4. Effect of Deformation – Second Order approximation

    III. DUCTILE FRACTURE – THEORY (Introduction)III.1. Cavity initiation, growth & coalescence. GTN modelIII.2. Computational strategies to simulate ductile crack growth

    IV. DUCTILE TO BRITTLE TRANSITION IN STEELSIV-1. Qualitative explanations for the existence of DBTIV-2. Fracture toughness transitionIV-3. Impact Charpy test

    V. CONCLUSIONS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 61

    L. Devillers-Guerville, 1998DUPLEX STAINLESS STEEL

    Cavity nucleation & growth from embrittled ferrite

    DUCTILE FRACTURE MICROMECHANISMS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 62

    CAVITY COALESCENCE

    DUCTILE FRACTURE MICROMECHANISMS

    Steel C-Mn Aluminium 6156

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 63

    GTN Model (Growth)

    • Isotropic hardening + Elasticity

    • Comparison with calculations on elementary cells (cavity + matrix)See Koplik & Needleman, 1988

    • "New" Yield Surface

    Most often :

    But new calculations(Faleskog et al., 1998) showed thatq1 and q2 dependon and work hardening exponent, n

    ( )pyσ

    221

    y

    kk212

    y

    2eq fq1

    2

    qcoshfq2 −−

    σσ+

    σσ

    1q,2/3q 21 ==

    E/yσ

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 64

    GTN Model (Cavity Nucleation)

    ( ) ⋅⋅⋅ +ε−= pAtrf1f npGrowth Nucleation

    • Phenomelogical Approach- Fitting of An on macroscopic tests- See e.g. (Chu & Needleman, 1980)

    • Experimental Approach- See e.g. Duplex Stainless Steels (Devillers-Guerville et al., 1997)

    ( )

    ε−−π

    = 2n

    2n

    n

    nn

    s2

    pexp

    s2

    fA

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 65

    GTN Model (Coalescence)

    Definition of an effective cavity volume fraction, f*

    0fq12

    qcosh*fq2 2*21

    y

    kk212

    y

    2eq =−−

    σσ+

    σσ

    =*fwhere ( ) cccc

    ffiffff

    ffiff

    >−δ+<

    δ*f

    cf

    Not necessary to introduce accelerating factor, when statistical cavity distribution is taken into account(Devillers-Guerville et al., 1997; Decamp et al., 1997)

    δ

    cf

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 66

    GTN MODEL - EXTENSIONS

    • Plastic Anisotropy (Bron - Besson, 2004)

    • Cavity Shape (Gologanu - Leblond, 1993, 1997)

    • Thomason, (1985, 1990)

    • Pardoen and Hutchinson (2000)

    • Benzerga (2000)

    COALESCENCE THOMASON MODEL

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 67

    BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE TRANSIT ION MICROMECHANISMS

    André PINEAUCentre des Matériaux - Ecole des Mines de Paris. ParisTech

    UMR CNRS [email protected]

    I. INTRODUCTION : Various Scales / History of Fracture Mechaniscs

    II. BRITTLE CLEAVAGE FRACTURE – THEORYII.1. Main characteristics of Brittle Cleavage FractureII.2. Weibull – Beremin TheoryII.3. Multiple barrier modelsII.4. Effect of Deformation – Second Order approximation

    III. DUCTILE FRACTURE – THEORY (Introduction)III.1. Cavity initiation, growth & coalescence. GTN modelIII.2. Computational strategies to simulate ductile crack growth

    IV. DUCTILE TO BRITTLE TRANSITION IN STEELSIV-1. Qualitative explanations for the existence of DBTIV-2. Fracture toughness transitionIV-3. Impact Charpy test

    V. CONCLUSIONS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 68

    COMPUTATIONAL STRATEGIES TO SIMULATE DUCTILE CRACK GROWTH

    STRATEGY 1 • Use of the void Nucleation, Growth and Coalescence laws

    • Integrate them using solutions of elastoplastic crack problems

    • Neglect coupling effects between mechanical fields and DamageSee e.g. d'Escatha and Devaux, 1979

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 69

    COMPUTATIONAL STRATEGIES TO SIMULATE DUCTILE CRACK GROWTH

    STRATEGY 2 • Explicit modeling of the cavities using refined finite element mesh

    • Requires a criterion for void coalescence

    • Limitation to small crack extension and simple void geometrySee e.g. Aravas, McMeeking, 1985. Tvergaard, Hutchinson, 2002

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 70

    COMPUTATIONAL STRATEGIES TO SIMULATE DUCTILE CRACK GROWTH

    STRATEGY 2STRATEGY 2STRATEGY 2

    STRATEGY 3 • Pursued mainly by groups in France, Germany, U.K. and U.S.

    • Constitutive model (Gurson or Rousselier) with damage-induced softening

    • Averaging over a critical distance

    • Introduction of an internal length (e.g. Mudry et al., 1989. Rivalin et al., 2001)

    COMPUTATIONAL CELLS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 71

    COMPUTATIONAL STRATEGIES TO SIMULATE DUCTILE CRACK GROWTH

    STRATEGY 2STRATEGY 2STRATEGY 2

    STRATEGY 4 • Introduction of the Cohesive Zone Model

    • CZM parameters depend on constraint effects

    • Crack path must be prescribed in advanceSee e.g. Tvergaard and Hutchinson, 1992. Brocks et al., 2003

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 72

    SIMULATION OF DUCTILE CRACK GROWTH RESISTANCE CURVES

    • Considerable success of the so-called "local approach" (Pineau, CSI, 2003)or "top-down" approach to ductile fracture (Hutchinson and Evans, 2000)

    • Assessment of the fracture integrity of structural components under large scale yielding conditions

    • Main interest : microstructural parameters(void volume fraction, void spacing,etc…) must be set such that the model reproduces experiments on specific specimens

    • 3D aspects of crack initiation and growth have been simulatedComparison with experiments scarce (Gao et al., 1998; Rivalin et al., 2001)

    Very much remains to be done : flat/slant fracture in these sheets

    SUMMARY

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 73

    BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE TRANSIT ION MICROMECHANISMS

    André PINEAUCentre des Matériaux - Ecole des Mines de Paris. ParisTech

    UMR CNRS [email protected]

    I. INTRODUCTION : Various Scales / History of Fracture Mechaniscs

    II. BRITTLE CLEAVAGE FRACTURE – THEORYII.1. Main characteristics of Brittle Cleavage FractureII.2. Weibull – Beremin TheoryII.3. Multiple barrier modelsII.4. Effect of Deformation – Second Order approximation

    III. DUCTILE FRACTURE – THEORY (Introduction)III.1. Cavity initiation, growth & coalescence. GTN modelIII.2. Computational strategies to simulate ductile crack growth

    IV. DUCTILE TO BRITTLE TRANSITION IN STEELSIV-1. Qualitative explanations for the existence of DBTIV-2. Fracture toughness transitionIV-3. Impact Charpy test

    V. CONCLUSIONS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 74

    WHY DOES A TRANSITION EXIST ?

    1 - PROBABILISTIC ASPECT

    Volume of sampled material increases with crack growth

    Sketch

    2 - MESO-MECHANICAL ASPECT

    Maximum stress increases with crack growth

    B. Tanguy

    3 - MICRO-MECHANICAL ASPECT

    Local stresses amplified by cavity growth

    (Petti & Dodds, IJSS (2005), p. 3655) J.C. Lautridou

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 75

    PROPAGATING CRACK

    CRACK CRACK

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 76

    WHY DOES A TRANSITION EXIST ?

    1 - PROBABILISTIC ASPECT

    Volume of sampled material increases with crack growth

    Sketch

    2 - MESO-MECHANICAL ASPECT

    Maximum stress increases with crack growth

    B. Tanguy

    3 - MICRO-MECHANICAL ASPECT

    Local stresses amplified by cavity growth

    (Petti & Dodds, IJSS (2005), p. 3655) J.C. Lautridou

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 77

    B. Tanguy, 2001

    MAXIMUM STRESS AHEAD OF A PROPAGATING CRACK

    CHARPY V SPECIMEN

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 78

    WHY DOES A TRANSITION EXIST ?

    1 - PROBABILISTIC ASPECT

    Volume of sampled material increases with crack growth

    Sketch

    2 - MESO-MECHANICAL ASPECT

    Maximum stress increases with crack growth

    B. Tanguy

    3 - MICRO-MECHANICAL ASPECT

    Local stresses amplified by cavity growth

    (Petti & Dodds, IJSS (2005), p. 3655) J.C. Lautridou

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 79

    Steel 16 MND5

    J.C. Lautridou , 1980

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 80

    SAMPLING EFFECT DUE TO CRACK GROWTH

    ( )22IK• WALLIN (1989)

    - Assumes that the "effective" volume continues to grow as

    ( )( ) ( )( )

    ( )thicknessspecimenB;stresscleavage

    SSYundercalculatedeasilyKforvaluegnormalizinK;afK

    daafBK

    2

    K

    af

    P1

    1Ln

    f

    0I

    a

    0

    240

    2f

    40

    4

    R

    ==σ=∆=

    ∆σ+∆=− ∫

    • BRUCKNER & MUNZ (1984)- Assumes that the size of the active volume is constant during crack extension

    ( )( )

    volumeactivetheofsizethedescribingttancons:W;initiationcrackatKofvalueK

    daafWK

    1

    K

    K

    P1

    1Ln

    ii

    4a

    0i40

    4

    0

    i

    R

    =

    ∆+

    =

    − ∫∆

    ���� In both cases, or R curve must be known( )aK ∆

    ( ) sizezoneprocesscleavage/K/xwhereK

    a21

    K

    K

    P1

    1Ln

    )1993(WallinbyproposedcorrectionDCGtheofressionexpSimplified

    2fi2

    i

    2f

    0

    i

    4/1

    R

    σ≈β

    βσ∆+=

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 81

    ELIMINATION OF ELIGIBLE NUCLEATION SITES

    ( )( )

    elementiththeofVvolumethein

    particleafrommicrovoidanucleatetoobabilityPrP

    V

    VP1

    i

    ivoid

    m/1

    0

    ini

    Iivoid

    n1iw

    =

    σ−Σ=σ =

    See e.g. Koers et al. (1995)

    • Very few results in the literature

    • This effect is usually neglected

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 82

    MnS

    CLEAVAGE

    A 508 Steel Notched Specimen T = - 150°C

    CLEAVAGE INITIATED FROM MnS INCLUSIONSTanguy, 2007

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 83

    BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE TRANSIT ION MICROMECHANISMS

    André PINEAUCentre des Matériaux - Ecole des Mines de Paris. ParisTech

    UMR CNRS [email protected]

    I. INTRODUCTION : Various Scales / History of Fracture Mechaniscs

    II. BRITTLE CLEAVAGE FRACTURE – THEORYII.1. Main characteristics of Brittle Cleavage FractureII.2. Weibull – Beremin TheoryII.3. Multiple barrier modelsII.4. Effect of Deformation – Second Order approximation

    III. DUCTILE FRACTURE – THEORY (Introduction)III.1. Cavity initiation, growth & coalescence. GTN modelIII.2. Computational strategies to simulate ductile crack growth

    IV. DUCTILE TO BRITTLE TRANSITION IN STEELSIV-1. Qualitative explanations for the existence of DBTIV-2. Fracture toughness transitionIV-3. Impact Charpy test

    V. CONCLUSIONS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 84

    A SIMPLIFIED APPROACH TO DB TRANSITION

    • Based on the assumption that the stress-strain field is not modifiedby crack extension except the loading parameter, J

    See e.g. Amar, Pineau, 1987; Koers et al., 1995

    • Strong limitations to this approach

    Does not account for modifications in the stress field of a propagating crack

    Does not rely on a possible change in micromechanisms

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 85

    Amar & Pineau, 1987

    See also Koers et al., 1995. Fe 510 Nb

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 86

    MORE ADVANCED MODELS FOR DB TRANSITION

    OBJECTIVES

    (i) • Stress Profiles ahead of a growing crack

    Strongly dependent on geometry (bend vs tension)

    (ii) • Introduction of damage ahead of the crack tip produces a macroscopic reduction

    of the "local" stresses (GTN model). At metallurgical scales ductile damage

    amplify local stress(See Petti & Dodds, 2005)

    (iii) • Sampling effect due to crack growth

    (iv) • Elimination of eligible particles (or nucleation sites)

    (v) • Effect of plastic strain on cleavage stress

    (See above, Beremin, 1983, Bordet et al., 2005)

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 87

    Toyoda et al., 1991; Ruggieri & Dodds, 1996HSLA Steel

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 88

    Ruggieri & Dodds, 1996HSLA Steel

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 89

    Gao et al., 1999

    GTN Model f0 = 0.0045, fc = 0.20, D = 0.30 mm, m = 11.86, MPa2490u =σ

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 90

    BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE TRANSIT ION MICROMECHANISMS

    André PINEAUCentre des Matériaux - Ecole des Mines de Paris. ParisTech

    UMR CNRS [email protected]

    I. INTRODUCTION : Various Scales / History of Fracture Mechaniscs

    II. BRITTLE CLEAVAGE FRACTURE – THEORYII.1. Main characteristics of Brittle Cleavage FractureII.2. Weibull – Beremin TheoryII.3. Multiple barrier modelsII.4. Effect of Deformation – Second Order approximation

    III. DUCTILE FRACTURE – THEORY (Introduction)III.1. Cavity initiation, growth & coalescence. GTN modelIII.2. Computational strategies to simulate ductile crack growth

    IV. DUCTILE TO BRITTLE TRANSITION IN STEELSIV-1. Qualitative explanations for the existence of DBTIV-2. Fracture toughness transitionIV-3. Impact Charpy test

    V. CONCLUSIONS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 91

    APPLICATION OF THE LOCAL APPROACH TO DUCTILE-BRITTLE TRANSITION IN FERRITIC STEELS

    MODELING OF CHARPY IMPACT TEST

    • MATERIAL : PWR A 508 Steel

    • NUMERICAL MODELING- 3D- Viscoplastic Constitutive Laws- GTN & ROUSSELIER Models for Ductile Fracture- BEREMIN Model for Cleavage Fracture

    • COMPARISON EXPERIMENTS & NUMERICAL SIMULATIONS- Interrupted tests to measure ductile crack growth

    See : B. Tanguy et al., Eng. Fracture Mechanics (2005), Vol. 72. Part I : pp. 49-72. Part II : pp. 413-434.

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 92

    CHARPY TEST SIMULATIONB. Tanguy

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 93

    Fracture at –60°C under dynamic

    conditions :

    a) Experimental fracture surface,

    b) Simulation of ductile crack

    propagation

    (contour plots indicate )Iσ

    A 508 Steel• No Inertial Effect

    • Strain Rate Effect (Viscoplasticity)

    • Ductile Damage (Rousselier & Gurson)

    • Adiabatic Heating

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 94

    A 508 STEEL

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 95

    MODELING CHARPY-V TEST - CONCLUSIONS

    1 - Accurate Description of Load-Displacement Curves

    and Ductile Crack Growth Provided that 3D Modeling is Used

    2 - Good Description of Tunnelling Effect for Ductile Crack Growth

    3 - Necessity of Using a Viscoplastic Constitutive Equation and to account

    for Adiabatic Heating

    4 - Temperature Increase as Large as 150°C

    5 - Easy Prediction of Index Temperatures TK28 and TK68

    6 - Above 100 Joules, appears to be an Increasing Function of Temperatureuσ≈≈≈≈

    CHARPY TESTS TUNING DAMAGE MODEL PARAME TERS FRACTURE TOUGHNESS PREDICTION

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 96

    CONCLUSIONS and ADDITIONAL COMMENTS

    • Illustration of the benefit of the micromechanical modeling of fracture

    • More complex but rewarding : size effect; non-isothermal loading; mixed mode etc…

    • Many research areas to be explored :

    (1) Cleavage Stress or See Kotrechko et al.

    (2) Ductile Fracture Models (too) sophisticated ?

    (3) New experimental techniques (X-ray 3D Tomography) : Nucleation of cavities

    (4) Existing models based on CSM. How far ? Crystallographic aspects

    (5) Development of simulation tools : more complex situations (Welds etc…)

    (6) Extension of ductile cracks over long distances remains a real challenge

    ( )?T,fu ε=σ

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 97

    BRITTLE FRACTURE & BRITTLE to DUCTILE FRACTURE TRANSIT ION MICROMECHANISMS

    André PINEAUCentre des Matériaux - Ecole des Mines de Paris. ParisTech

    UMR CNRS [email protected]

    I. INTRODUCTION : Various Scales / History of Fracture Mechaniscs

    II. BRITTLE CLEAVAGE FRACTURE – THEORYII.1. Main characteristics of Brittle Cleavage FractureII.2. Weibull – Beremin TheoryII.3. Multiple barrier modelsII.4. Effect of Deformation – Second Order approximation

    III. DUCTILE FRACTURE – THEORY (Introduction)III.1. Cavity initiation, growth & coalescence. GTN modelIII.2. Computational strategies to simulate ductile crack growth

    IV. DUCTILE TO BRITTLE TRANSITION IN STEELSIV-1. Qualitative explanations for the existence of DBTIV-2. Fracture toughness transitionIV-3. Impact Charpy test

    V. CONCLUSIONS

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 98

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

    CONCLUSIONS

    • Illustration of the benefit of micromechanical modelling of fracture

    • LAF more complex but rewarding : size effect , non-isothermal loading , etc…

    • Many research areas remain to be explored :

    - Cleavage stress σu (temperature)

    - Ductile fracture models ( too) sophisticated

    - Shear dominated ductile fracture

    - New experimental techniques ( Tomography )- Cavity nucleation

    - Existing models based on C.M.- How far ? Crystallographic aspects?

    - Development of simulation tools

    - Extension of ductile cracks over long distances remainsa real challenge

  • 99

    THANK YOU FOR YOUR ATTENTION

    For further information

    [email protected]

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 100

    LIMITATION (1) : THRESHOLD WEIBULL STRESS

    Actually, existence of a threshold stress in Beremin model since plastic deformation over a critical distance (Xc) is a prerequisite to initiate cleavage fracture

    cominI X3~K ππππσσσσ

    Increasing Temperature

    Ln

    KIC

    (MP

    am1/

    2 )

    for

    PR

    = C

    ons t

    ant

    (((( ))))TLn oσσσσ

    Centre des Matériaux - Ecole des Mines de Paris ICF Moscow 7-12 July 2007 A. Pineau

  • 101

    Experimental Results (Soehmaker - Rolfe.1971)

    (-177°)

    (-144°)

    (-196°)

    (-128°)

    (-137°)

    (-196°)(-147°)

    (- 84°)

    (- 73°)

    (-104°)

    (- 36°)

    (-125°)

    (-116°)

    (- 83°)

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    6 6.25 6.5 6.75 7Ln σσσσ0 (σσσσ0 in MPa)

    Ln K

    I C (

    KI C

    in M

    Pa

    m1/

    2)

    ABS - C Mild Steel(σσσσ y at R.T. = 280 MPa)

    ( )Cin °−

    −−•

    −−•

    θεεε

    1

    11

    15

    sec20

    sec10

    sec10.5

    Centre des Matériaux - Ecole des Mines de Paris ICF Moscow 7-12 July 2007 A. Pineau

  • 102

    0

    50

    100

    150

    200

    -200 -150 -100 -50 0 50

    ICCGHAZ-25

    Results of the “double barrier” model with TPB specimens.Open circles denote microcrack events, solid circles are for final fracture of the specimens.Solid (resp. dotted) lines represent 10%, 50% and 90% probabilities for the specimen to fracture (resp. for a cleavage microcrack to propagate across a particle/matrix boundary) as given by the DB model.

    TEMPERATURE (°C)

    TO

    UG

    HN

    ESS

    (M

    Pa √√ √√

    m)

    ( )

    ( )25CGHAZmMPa28K

    25ICCGHAZ

    mMPa18K

    mMPa8.7K

    MPa2112

    g/gIC

    g/gIC

    g/cIC

    CAM

    −=

    −=

    =

    =σ −

    E 450

    Centre des Matériaux - Ecole des Mines de Paris ICF Moscow 7-12 July 2007 A. Pineau

  • 103

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

  • 104

    Standard Fracture Toughness specimens and wide plate components linked with the equivalent CTOD ratio β

    Summer School on Fracture, CARGESE, 07-19 June 2010 A. Pineau

    2c

    a

    2a

    σσσσ∞∞∞∞

    t

    ca

    σσσσ∞∞∞∞c a

    a

    a

    σσσσ∞∞∞∞

    t

    σσσσ∞∞∞∞

    σσσσ∞∞∞∞

    t

    σσσσ∞∞∞∞σσσσ∞∞∞∞

    t

    σσσσ∞∞∞∞

    Standard fracture toughness specimens

    Equivalent CTOD ratio β

    Surface crack

    Surface crack

    Through-thickness crack

    Through-thickness crack

    Center surface crack panel (CSCP) Center through-thickness crack panel (CTCP)

    Edge surface crack panel (ESCP) Edge through-thickness crack panel (ETCP)

    B = t

    W a0= BH H

    S = 4W

    1.25W

    0.6W

    a0 = BW

    B = t

    0.6W

    Structural components

    (0.45 < a0 / W < 0.55)

    3-point bendCompact