Bootstrap Methods and Their Application

download Bootstrap Methods and Their Application

of 95

description

Bootstrap Methods and Their Application slides

Transcript of Bootstrap Methods and Their Application

  • Bootstrap Methods and theirApplication

    Anthony Davison

    c2006A short course based on the book

    Bootstrap Methods and their Application,by A. C. Davison and D. V. HinkleycCambridge University Press, 1997

    Anthony Davison: Bootstrap Methods and their Application, 1

  • Summary

    Bootstrap: simulation methods for frequentist inference.

    Useful when

    standard assumptions invalid (n small, data not normal,. . .);

    standard problem has non-standard twist; complex problem has no (reliable) theory; or (almost) anywhere else.

    Aim to describe

    basic ideas; confidence intervals; tests; some approaches for regression

    Anthony Davison: Bootstrap Methods and their Application, 2

  • Motivation

    Motivation

    Basic notions

    Confidence intervals

    Several samples

    Variance estimation

    Tests

    Regression

    Anthony Davison: Bootstrap Methods and their Application, 3

  • Motivation

    AIDS data

    UK AIDS diagnoses 19881992. Reporting delay up to several years! Problem: predict state of epidemic at end 1992, withrealistic statement of uncertainty.

    Simple model: number of reports in row j and column kPoisson, mean

    jk = exp(j + k).

    Unreported diagnoses in period j Poisson, meank unobs

    jk = exp(j)

    k unobs

    exp(k).

    Estimate total unreported diagnoses fromperiod j by replacing j and k by MLEs. How reliable are these predictions? How sensible is the Poisson model?

    Anthony Davison: Bootstrap Methods and their Application, 4

  • Motivation

    Diagnosis Reporting-delay interval (quarters): Totalperiod reports

    to end

    Year Quarter 0 1 2 3 4 5 6 14 of 19921988 1 31 80 16 9 3 2 8 6 174

    2 26 99 27 9 8 11 3 3 2113 31 95 35 13 18 4 6 3 2244 36 77 20 26 11 3 8 2 205

    1989 1 32 92 32 10 12 19 12 2 2242 15 92 14 27 22 21 12 1 2193 34 104 29 31 18 8 6 2534 38 101 34 18 9 15 6 233

    1990 1 31 124 47 24 11 15 8 2812 32 132 36 10 9 7 6 2453 49 107 51 17 15 8 9 2604 44 153 41 16 11 6 5 285

    1991 1 41 137 29 33 7 11 6 2712 56 124 39 14 12 7 10 2633 53 175 35 17 13 11 3064 63 135 24 23 12 258

    1992 1 71 161 48 25 3102 95 178 39 3183 76 181 2734 67 133

    Anthony Davison: Bootstrap Methods and their Application, 5

  • Motivation

    AIDS data

    Data (+), fits of simple model (solid), complex model(dots)

    Variance formulae could be derived painful! but useful? Effects of overdispersion, complex model, . . .?

    ++++++

    ++++

    +

    +++++

    +++

    +++++

    ++

    +

    +++++

    +

    +

    ++

    +

    +

    Time

    Dia

    gnos

    es

    1984 1986 1988 1990 1992

    010

    020

    030

    040

    050

    0

    Anthony Davison: Bootstrap Methods and their Application, 6

  • Motivation

    Goal

    Find reliable assessment of uncertainty when

    estimator complex

    data complex

    sample size small

    model non-standard

    Anthony Davison: Bootstrap Methods and their Application, 7

  • Basic notions

    Motivation

    Basic notions

    Confidence intervals

    Several samples

    Variance estimation

    Tests

    Regression

    Anthony Davison: Bootstrap Methods and their Application, 8

  • Basic notions

    Handedness data

    Table: Data from a study of handedness; hand is an integer measure

    of handedness, and dnan a genetic measure. Data due to Dr Gordon

    Claridge, University of Oxford.

    dnan hand dnan hand dnan hand dnan hand

    1 13 1 11 28 1 21 29 2 31 31 12 18 1 12 28 2 22 29 1 32 31 23 20 3 13 28 1 23 29 1 33 33 64 21 1 14 28 4 24 30 1 34 33 15 21 1 15 28 1 25 30 1 35 34 16 24 1 16 28 1 26 30 2 36 41 47 24 1 17 29 1 27 30 1 37 44 88 27 1 18 29 1 28 31 19 28 1 19 29 1 29 31 110 28 2 20 29 2 30 31 1

    Anthony Davison: Bootstrap Methods and their Application, 9

  • Basic notions

    Handedness data

    Figure: Scatter plot of handedness data. The numbers show the mul-

    tiplicities of the observations.

    15 20 25 30 35 40 45

    12

    34

    56

    78

    dnan

    hand

    1 1

    1

    2 2 1 5

    2

    1

    5

    2

    3

    1

    4

    1

    1

    1 1

    1

    1

    Anthony Davison: Bootstrap Methods and their Application, 10

  • Basic notions

    Handedness data

    Is there dependence between dnan and hand for thesen = 37 individuals?

    Sample product-moment correlation coefficient is = 0.509.

    Standard confidence interval (based on bivariate normalpopulation) gives 95% CI (0.221, 0.715).

    Data not bivariate normal!

    What is the status of the interval? Can we do better?

    Anthony Davison: Bootstrap Methods and their Application, 11

  • Basic notions

    Frequentist inference

    Estimator for unknown parameter .

    Statistical model: data y1, . . . , yniid F , unknown

    Handedness data

    y = (dnan, hand) F puts probability mass on subset of R2

    is correlation coefficient

    Key issue: what is variability of when samples arerepeatedly taken from F?

    Imagine F known could answer question by

    analytical (mathematical) calculation simulation

    Anthony Davison: Bootstrap Methods and their Application, 12

  • Basic notions

    Simulation with F known

    For r = 1, . . . , R:

    generate random sample y1 , . . . , y

    niid F ;

    compute r using y

    1 , . . . , y

    n;

    Output after R iterations:

    1,

    2, . . . ,

    R

    Use 1,

    2, . . . ,

    R to estimate sampling distribution of (histogram, density estimate, . . .)

    If R, then get perfect match to theoretical calculation(if available): Monte Carlo error disappears completely

    In practice R is finite, so some error remains

    Anthony Davison: Bootstrap Methods and their Application, 13

  • Basic notions

    Handedness data: Fitted bivariate normal model

    Figure: Contours of bivariate normal distribution fitted to handedness data;

    parameter estimates are b1 = 28.5, b2 = 1.7, b1 = 5.4, b2 = 1.5, b = 0.509.

    The data are also shown.

    0.000

    0.005

    0.010

    0.015

    0.020

    10 15 20 25 30 35 40 450

    2

    4

    6

    8

    10

    dnan

    hand

    1 1

    1

    2 2 1 5

    2

    1

    5

    2

    3

    1

    4

    1

    1

    1 1

    1

    1

    Anthony Davison: Bootstrap Methods and their Application, 14

  • Basic notions

    Handedness data: Parametric bootstrap samples

    Figure: Left: original data, with jittered vertical values. Centre and

    right: two samples generated from the fitted bivariate normal distribu-

    tion.

    0 10 20 30 40 50

    02

    46

    810

    dnan

    hand

    Correlation 0.509

    0 10 20 30 40 50

    02

    46

    810

    dnan

    hand

    Correlation 0.753

    0 10 20 30 40 50

    02

    46

    810

    dnanha

    nd

    Correlation 0.533

    Anthony Davison: Bootstrap Methods and their Application, 15

  • Basic notions

    Handedness data: Correlation coefficient

    Figure: Bootstrap distributions with R = 10000. Left: simulation from

    fitted bivariate normal distribution. Right: simulation from the data by

    bootstrap resampling. The lines show the theoretical probability density

    function of the correlation coefficient under sampling from a fitted bivariate

    normal distribution.

    Correlation coefficient

    Prob

    abilit

    y de

    nsity

    0.5 0.0 0.5 1.0

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Correlation coefficient

    Prob

    abilit

    y de

    nsity

    0.5 0.0 0.5 1.0

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Anthony Davison: Bootstrap Methods and their Application, 16

  • Basic notions

    F unknown

    Replace unknown F by estimate F obtained

    parametrically e.g. maximum likelihood or robust fit ofdistribution F (y) = F (y;) (normal, exponential, bivariatenormal, . . .)

    nonparametrically using empirical distribution function(EDF) of original data y1, . . . , yn, which puts mass 1/n oneach of the yj

    Algorithm: For r = 1, . . . , R:

    generate random sample y1 , . . . , y

    niid F ;

    compute r using y

    1 , . . . , y

    n;

    Output after R iterations:

    1,

    2, . . . ,

    R

    Anthony Davison: Bootstrap Methods and their Application, 17

  • Basic notions

    Nonparametric bootstrap

    Bootstrap (re)sample y1, . . . , y

    niid F , where F is EDF of

    y1, . . . , yn Repetitions will occur!

    Compute bootstrap using y1, . . . , y

    n.

    For handedness data take n = 37 pairs y = (dnan, hand)

    with equal probabilities 1/37 and replacement from originalpairs (dnan, hand)

    Repeat this R times, to get 1, . . . ,

    R

    See picture

    Results quite different from parametric simulation why?

    Anthony Davison: Bootstrap Methods and their Application, 18

  • Basic notions

    Handedness data: Bootstrap samples

    Figure: Left: original data, with jittered vertical values. Centre and

    right: two bootstrap samples, with jittered vertical values.

    10 15 20 25 30 35 40 45

    12

    34

    56

    78

    dnan

    hand

    Correlation 0.509

    10 15 20 25 30 35 40 45

    12

    34

    56

    78

    dnan

    hand

    Correlation 0.733

    10 15 20 25 30 35 40 45

    12

    34

    56

    78

    dnan

    hand

    Correlation 0.491

    Anthony Davison: Bootstrap Methods and their Application, 19

  • Basic notions

    Using the

    Bootstrap replicates r used to estimate properties of .

    Write = (F ) to emphasize dependence on F

    Bias of as estimator of is

    (F ) = E( | y1, . . . , yniid F ) (F )

    estimated by replacing unknown F by known estimate F :

    (F ) = E( | y1, . . . , yniid F ) (F )

    Replace theoretical expectation E() by empirical average:

    (F ) b = = R1Rr=1

    r

    Anthony Davison: Bootstrap Methods and their Application, 20

  • Basic notions

    Estimate variance (F ) = var( | F ) by

    v =1

    R 1

    Rr=1

    (r

    )2 Estimate quantiles of by taking empirical quantiles of

    1, . . . ,

    R

    For handedness data, 10,000 replicates shown earlier give

    b = 0.046, v = 0.043 = 0.2052

    Anthony Davison: Bootstrap Methods and their Application, 21

  • Basic notions

    Handedness data

    Figure: Summaries of the b. Left: histogram, with vertical line showing b.

    Right: normal QQ plot of b.

    Histogram of t

    t*

    Den

    sity

    0.5 0.0 0.5 1.0

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    4 2 0 2 4

    0.

    50.

    00.

    5

    Quantiles of Standard Normal

    t*

    Anthony Davison: Bootstrap Methods and their Application, 22

  • Basic notions

    How many bootstraps?

    Must estimate moments and quantiles of and derivedquantities. Nowadays often feasible to take R 5000

    Need R 100 to estimate bias, variance, etc. Need R 100, prefer R 1000 to estimate quantilesneeded for 95% confidence intervals

    4 2 0 2 4

    4

    2

    02

    4

    R=199

    Theoretical Quantiles

    Z*

    4 2 0 2 4

    4

    2

    02

    4

    R=999

    Theoretical Quantiles

    Z*

    Anthony Davison: Bootstrap Methods and their Application, 23

  • Basic notions

    Key points

    Estimator is algorithm

    applied to original data y1, . . . , yn gives original applied to simulated data y1 , . . . , y

    n gives

    can be of (almost) any complexity

    for more sophisticated ideas (later) to work, must often besmooth function of data

    Sample is used to estimate F F F heroic assumption

    Simulation replaces theoretical calculation

    removes need for mathematical skill does not remove need for thought check code very carefully garbage in, garbage out!

    Two sources of error

    statistical (F 6= F ) reduce by thought simulation (R 6=) reduce by taking R large (enough)

    Anthony Davison: Bootstrap Methods and their Application, 24

  • Confidence intervals

    Motivation

    Basic notions

    Confidence intervals

    Several samples

    Variance estimation

    Tests

    Regression

    Anthony Davison: Bootstrap Methods and their Application, 25

  • Confidence intervals

    Normal confidence intervals

    If approximately normal, then . N( + , ), where

    has bias = (F ) and variance = (F ) If , known, (1 2) confidence interval for would be(D1)

    z1/2,

    where (z) = . Replace , by estimates:

    (F ).= (F )

    .= b =

    (F ).= (F )

    .= v = (R 1)1

    r

    (r )2,

    giving (1 2) interval b zv1/2.

    Handedness data: R = 10, 000, b = 0.046, v = 0.2052, = 0.025, z = 1.96, so 95% CI is (0.147, 0.963)

    Anthony Davison: Bootstrap Methods and their Application, 26

  • Confidence intervals

    Normal confidence intervals

    Normal approximation reliable? Transformation needed?

    Here are plots for = 12 log{(1 + )/(1 )}:

    Transformed correlation coefficient

    Den

    sity

    0.5 0.0 0.5 1.0 1.5

    0.0

    0.5

    1.0

    1.5

    4 2 0 2 4

    0.

    50.

    00.

    51.

    01.

    5

    Quantiles of Standard Normal

    Tran

    sfor

    med

    cor

    rela

    tion

    coef

    ficie

    nt

    Anthony Davison: Bootstrap Methods and their Application, 27

  • Confidence intervals

    Normal confidence intervals

    Correlation coefficient: try Fishers z transformation:

    = () = 12 log{(1 + )/(1 )}

    for which compute

    b = R1

    Rr=1

    r , v =1

    R 1

    Rr=1

    (r

    )2,

    (1 2) confidence interval for is

    1{ b z1v

    1/2

    }, 1

    { b zv

    1/2

    } For handedness data, get (0.074, 0.804)

    But how do we choose a transformation in general?

    Anthony Davison: Bootstrap Methods and their Application, 28

  • Confidence intervals

    Pivots

    Hope properties of 1, . . . ,

    R mimic effect of sampling fromoriginal model.

    Amounts to faith in substitution principle: may replaceunknown F with known F false in general, but oftenmore nearly true for pivots.

    Pivot is combination of data and parameter whosedistribution is independent of underlying model.

    Canonical example: Y1, . . . , Yniid N(, 2). Then

    Z =Y

    (S2/n)1/2 tn1,

    for all , 2 so independent of the underlyingdistribution, provided this is normal

    Exact pivot generally unavailable in nonparametric case.

    Anthony Davison: Bootstrap Methods and their Application, 29

  • Confidence intervals

    Studentized statistic

    Idea: generalize Student t statistic to bootstrap setting Requires variance V for computed from y1, . . . , yn Analogue of Student t statistic:

    Z =

    V 1/2

    If the quantiles z of Z known, then

    Pr (z Z z1) = Pr

    (z

    V 1/2 z1

    )= 1 2

    (z no longer denotes a normal quantile!) implies that

    Pr( V 1/2z1 V

    1/2z

    )= 1 2

    so (1 2) confidence interval is ( V 1/2z1, V1/2z)

    Anthony Davison: Bootstrap Methods and their Application, 30

  • Confidence intervals

    Bootstrap sample gives (, V ) and hence

    Z =

    V 1/2

    R bootstrap copies of (, V ):

    (1, V

    1 ), (

    2, V

    2 ), . . . , (

    R, V

    R)

    and corresponding

    z1 =1

    V1/21

    , z2 =2

    V1/22

    , . . . , zR =R

    V1/2R

    .

    Use z1 , . . . , z

    R to estimate distribution of Z for example,order statistics z(1) < < z

    (R) used to estimate quantiles

    Get (1 2) confidence interval

    V 1/2z((1)(R+1)) , V1/2z((R+1))

    Anthony Davison: Bootstrap Methods and their Application, 31

  • Confidence intervals

    Why Studentize?

    Studentize, so ZD N(0, 1) as n. Edgeworth series:

    Pr(Z z | F ) = (z) + n1/2a(z)(z) +O(n1);

    a() even quadratic polynomial.

    Corresponding expansion for Z is

    Pr(Z z | F ) = (z) + n1/2a(z)(z) +Op(n1).

    Typically a(z) = a(z) +Op(n1/2), so

    Pr(Z z | F ) Pr(Z z | F ) = Op(n1).

    Anthony Davison: Bootstrap Methods and their Application, 32

  • Confidence intervals

    If dont studentize, Z = ( )D N(0, ). Then

    Pr(Z z | F ) = ( z1/2

    )+n1/2a

    ( z1/2

    )( z1/2

    )+O(n1)

    and

    Pr(Z z | F ) = ( z1/2

    )+n1/2a

    ( z1/2

    )( z1/2

    )+Op(n

    1).

    Typically = +Op(n1/2), giving

    Pr(Z z | F ) Pr(Z z | F ) = Op(n1/2).

    Thus use of Studentized Z reduces error from Op(n1/2) to

    Op(n1) better than using large-sample asymptotics, for

    which error is usually Op(n1/2).

    Anthony Davison: Bootstrap Methods and their Application, 33

  • Confidence intervals

    Other confidence intervals

    Problem for studentized intervals: must obtain V , intervalsnot scale-invariant

    Simpler approaches: Basic bootstrap interval: treat as pivot, get

    (((R+1)(1)) ), (

    ((R+1)) ).

    Percentile interval: use empirical quantiles of 1 , . . . ,

    R:

    ((R+1)),

    ((R+1)(1)).

    Improved percentile intervals (BCa, ABC, . . .) Replace percentile interval with

    ((R+1)),

    ((R+1)(1)),

    where , chosen to improve properties. Scale-invariant.

    Anthony Davison: Bootstrap Methods and their Application, 34

  • Confidence intervals

    Handedness data

    95% confidence intervals for correlation coefficient ,R = 10, 000:

    Normal 0.147 0.963Percentile 0.047 0.758Basic 0.262 1.043

    BCa ( = 0.0485, = 0.0085) 0.053 0.792

    Student 0.030 1.206

    Basic (transformed) 0.131 0.824Student (transformed) 0.277 0.868

    Transformation is essential here!

    Anthony Davison: Bootstrap Methods and their Application, 35

  • Confidence intervals

    General comparison

    Bootstrap confidence intervals usually too short leads tounder-coverage

    Normal and basic intervals depend on scale.

    Percentile interval often too short but is scale-invariant.

    Studentized intervals give best coverage overall, but

    depend on scale, can be sensitive to V length can be very variable best on transformed scale, where V is approximatelyconstant

    Improved percentile intervals have same error in principleas studentized intervals, but often shorter so lowercoverage

    Anthony Davison: Bootstrap Methods and their Application, 36

  • Confidence intervals

    Caution

    Edgeworth theory OK for smooth statistics bewarerough statistics: must check output.

    Bootstrap of median theoretically OK, but very sensitive tosample values in practice.

    Role for smoothing?

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ....

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    ...

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ....

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ....

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    ..

    .

    ...

    ..

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    Quantiles of Standard Normal

    T*-t

    for m

    edia

    ns

    -2 0 2

    -10

    -5

    05

    10

    Anthony Davison: Bootstrap Methods and their Application, 37

  • Confidence intervals

    Key points

    Numerous procedures available for automatic constructionof confidence intervals

    Computer does the work

    Need R 1000 in most cases

    Generally such intervals are a bit too short

    Must examine output to check if assumptions (e.g.smoothness of statistic) satisfied

    May need variance estimate V see later

    Anthony Davison: Bootstrap Methods and their Application, 38

  • Several samples

    Motivation

    Basic notions

    Confidence intervals

    Several samples

    Variance estimation

    Tests

    Regression

    Anthony Davison: Bootstrap Methods and their Application, 39

  • Several samples

    Gravity data

    Table: Measurements of the acceleration due to gravity, g, given as

    deviations from 980,000 103 cms2, in units of cms2 103.

    Series1 2 3 4 5 6 7 876 87 105 95 76 78 82 8482 95 83 90 76 78 79 8683 98 76 76 78 78 81 8554 100 75 76 79 86 79 8235 109 51 87 72 87 77 7746 109 76 79 68 81 79 7687 100 93 77 75 73 79 7768 81 75 71 78 67 78 80

    75 62 75 79 8368 82 82 8167 83 76 78

    73 7864 78

    Anthony Davison: Bootstrap Methods and their Application, 40

  • Several samples

    Gravity data

    Figure: Gravity series boxplots, showing a reduction in variance, a shift

    in location, and possible outliers.40

    6080

    100

    g

    1 2 3 4 5 6 7 8

    series

    Anthony Davison: Bootstrap Methods and their Application, 41

  • Several samples

    Gravity data

    Eight series of measurements of gravitational acceleration gmade May 1934 July 1935 in Washington DC

    Data are deviations from 9.8 m/s2 in units of 103 cm/s2

    Goal: Estimate g and provide confidence interval

    Weighted combination of series averages and its varianceestimate

    =

    8i=1 yi ni/s

    2i8

    i=1 ni/s2i

    , V =

    (8i=1

    ni/s2i

    )1,

    giving = 78.54, V = 0.592

    and 95% confidence interval of 1.96V 1/2 = (77.5, 79.8)

    Anthony Davison: Bootstrap Methods and their Application, 42

  • Several samples

    Gravity data: Bootstrap

    Apply stratified (re)sampling to series, taking each series asa separate stratum. Compute , V for simulated data

    Confidence interval based on

    Z =

    V 1/2,

    whose distribution is approximated by simulations

    z1 =1

    V1/21

    , . . . , zR =R

    V1/2R

    ,

    giving

    ( V 1/2z((R+1)(1)) , V1/2z((R+1)))

    For 95% limits set = 0.025, so with R = 999 usez(25), z

    (975), giving interval (77.1, 80.3).

    Anthony Davison: Bootstrap Methods and their Application, 43

  • Several samples

    Figure: Summary plots for 999 nonparametric bootstrap simulations.

    Top: normal probability plots of t and z = (t t)/v1/2. Line on

    the top left has intercept t and slope v1/2, line on the top right has

    intercept zero and unit slope. Bottom: the smallest tr also has the

    smallest v, leading to an outlying value of z.

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    ..

    .

    ...

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    Quantiles of Standard Normal

    t*

    -2 0 2

    7778

    7980

    81

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ...

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    ...

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    ..

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    ..

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    ..

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    ..

    .

    ..

    .

    ...

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    ...

    ...

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    ..

    .

    .

    ..

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    ...

    .

    .

    ..

    .

    .

    ..

    .

    ..

    ..

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    ..

    ...

    .

    ..

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ...

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    ...

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    ....

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    ..

    .

    .

    .

    ..

    .

    ..

    ..

    ..

    ..

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    ..

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    ...

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    Quantiles of Standard Normalz*

    -2 0 2

    -15

    -10

    -5

    05

    .

    .

    ..

    .

    .

    . . .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    . .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .. .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .. .

    .

    .

    .

    .

    .

    . .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    . .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    ..

    . .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    t*

    sqrt(

    v*)

    77 78 79 80 81

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    .

    .

    ..

    .

    .

    . . .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ....

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .. .

    .

    .

    .

    .

    .

    . .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    ..

    . .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    z*

    sqrt(

    v*)

    -15 -10 -5 0 5

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Anthony Davison: Bootstrap Methods and their Application, 44

  • Several samples

    Key points

    For several independent samples, implement bootstrap bystratified sampling independently from each

    Same basic ideas apply for confidence intervals

    Anthony Davison: Bootstrap Methods and their Application, 45

  • Variance estimation

    Motivation

    Basic notions

    Confidence intervals

    Several samples

    Variance estimation

    Tests

    Regression

    Anthony Davison: Bootstrap Methods and their Application, 46

  • Variance estimation

    Variance estimation

    Variance estimate V needed for certain types of confidenceinterval (esp. studentized bootstrap)

    Ways to compute this:

    double bootstrap delta method nonparametric delta method jackknife

    Anthony Davison: Bootstrap Methods and their Application, 47

  • Variance estimation

    Double bootstrap

    Bootstrap sample y1, . . . , y

    n and corresponding estimate

    Take Q second-level bootstrap samples y1 , . . . , y

    n fromy1, . . . , y

    n, giving corresponding bootstrap estimates

    1 , . . . ,

    Q ,

    Compute variance estimate V as sample variance of1 , . . . ,

    Q

    Requires total R(Q+ 1) resamples, so could be expensive

    Often reasonable to take Q.= 50 for variance estimation, so

    need O(50 1000) resamples nowadays not infeasible

    Anthony Davison: Bootstrap Methods and their Application, 48

  • Variance estimation

    Delta method

    Computation of variance formulae for functions of averagesand other estimators

    Suppose = g() estimates = g(), and . N(, 2/n)

    Then provided g() 6= 0, have (D2)

    E() = g() +O(n1)

    var() = 2g()2/n+O(n3/2)

    Then var().= 2g()2/n = V

    Example (D3): = Y , = log

    Variance stabilisation (D4): if var().= S()2/n, find

    transformation h such that var{h()}.=constant

    Extends to multivariate estimators, and to = g(1, . . . , d)

    Anthony Davison: Bootstrap Methods and their Application, 49

  • Variance estimation

    Anthony Davison: Bootstrap Methods and their Application, 50

  • Variance estimation

    Nonparametric delta method

    Write parameter = t(F ) as functional of distribution F General approximation:

    V.= VL =

    1

    n2

    nj=1

    L(Yj;F )2.

    L(y;F ) is influence function value for for observation at ywhen distribution is F :

    L(y;F ) = lim0

    t {(1 )F + Hy} t(F )

    ,

    where Hy puts unit mass at y. Close link to robustness. Empirical versions of L(y;F ) and VL are

    lj = L(yj; F ), vL = n2

    l2j ,

    usually obtained by analytic/numerical differentation.

    Anthony Davison: Bootstrap Methods and their Application, 51

  • Variance estimation

    Computation of lj

    Write in weighted form, differentiate with respect to

    Sample average:

    = y =1

    n

    yj =

    wjyj

    wj1/n

    Change weights:

    wj 7 + (1 )1n , wi 7 (1 )

    1n , i 6= j

    so (D5)

    y 7 y = yj + (1 )y = (yj y) + y,

    giving lj = yj y and vL =1n2(yj y)

    2 = n1n n1s2

    Interpretation: lj is standardized change in y when increasemass on yj

    Anthony Davison: Bootstrap Methods and their Application, 52

  • Variance estimation

    Nonparametric delta method: Ratio

    Population F (u, x) with y = (u, x) and

    = t(F ) =

    x dF (u, x)/

    u dF (u, x),

    sample version is

    = t(F ) =

    x dF (u, x)/

    u dF (u, x) = x/u

    Then using chain rule of differentiation (D6),

    lj = (xj uj)/u,

    giving

    vL =1

    n2

    (xj uju

    )2

    Anthony Davison: Bootstrap Methods and their Application, 53

  • Variance estimation

    Handedness data: Correlation coefficient

    Correlation coefficient may be written as a function ofaverages xu = n1

    xjuj etc.:

    =xu xu{

    (x2 x2)(u2 u2)}1/2 ,

    from which empirical influence values lj can be derived

    In this example (and for others involving only averages),nonparametric delta method is equivalent to delta method

    GetvL = 0.029

    for comparison with v = 0.043 obtained by bootstrapping.

    vL typically underestimates var() as here!

    Anthony Davison: Bootstrap Methods and their Application, 54

  • Variance estimation

    Delta methods: Comments

    Can be applied to many complex statistics

    Delta method variances often underestimate true variances:

    vL < var()

    Can be applied automatically (numerical differentation) ifalgorithm for written in weighted form, e.g.

    xw =

    wjxj, wj 1/n for x

    and vary weights successively for j = 1, . . . , n, setting

    wj = wi + , i 6= j,

    wi = 1

    for = 1/(100n) and using the definition as derivative

    Anthony Davison: Bootstrap Methods and their Application, 55

  • Variance estimation

    Jackknife

    Approximation to empirical influence values given by

    lj ljack,j = (n 1)( j),

    where j is value of computed from sample

    y1, . . . , yj1, yj+1, . . . , yn

    Jackknife bias and variance estimates are

    bjack = 1

    n

    ljack,j, vjack =

    1

    n(n 1)

    (l2jack,j nb

    2jack

    ) Requires n+ 1 calculations of

    Corresponds to numerical differentiation of , with = 1/(n 1)

    Anthony Davison: Bootstrap Methods and their Application, 56

  • Variance estimation

    Key points

    Several methods available for estimation of variances

    Needed for some types of confidence interval

    Most general method is double bootstrap: can be expensive

    Delta methods rely on linear expansion, can be appliednumerically or analytically

    Jackknife gives approximation to delta method, can fail forrough statistics

    Anthony Davison: Bootstrap Methods and their Application, 57

  • Tests

    Motivation

    Basic notions

    Confidence intervals

    Several samples

    Variance estimation

    Tests

    Regression

    Anthony Davison: Bootstrap Methods and their Application, 58

  • Tests

    Ingredients

    Ingredients for testing problems:

    data y1, . . . , yn; model M0 to be tested; test statistic t = t(y1, . . . , yn), with large values givingevidence against M0, and observed value tobs

    P-value, pobs = Pr(T tobs |M0) measures evidenceagainst M0 small pobs indicates evidence against M0.

    Difficulties:

    pobs may depend upon nuisance parameters, those of M0; pobs often hard to calculate.

    Anthony Davison: Bootstrap Methods and their Application, 59

  • Tests

    Examples

    Balsam-fir seedlings in 5 5 quadrats Poisson sample?

    0 1 2 3 4 3 4 2 2 10 2 0 2 4 2 3 3 4 21 1 1 1 4 1 5 2 2 34 1 2 5 2 0 3 2 1 13 1 4 3 1 0 0 2 7 0

    Two-way layout: row-column independence?

    1 2 2 1 1 0 12 0 0 2 3 0 00 1 1 1 2 7 31 1 2 0 0 0 10 1 1 1 1 0 0

    Anthony Davison: Bootstrap Methods and their Application, 60

  • Tests

    Estimation of pobs

    Estimate pobs by simulation from fitted null hypothesismodel M0.

    Algorithm: for r = 1, . . . , R:

    simulate data set y1 , . . . , y

    n from M0; calculate test statistic tr from y

    1 , . . . , y

    n.

    Calculate simulation estimate

    p =1 +#{tr tobs}

    1 +R

    ofpobs = Pr(T tobs | M0).

    Simulation and statstical errors:

    p pobs pobs

    Anthony Davison: Bootstrap Methods and their Application, 61

  • Tests

    Handedness data: Test of independence

    Are dnan and hand positively associated? Take T = (correlation coefficient), with tobs = 0.509; thisis large in case of positive association (one-sided test)

    Null hypothesis of independence: F (u, x) = F1(u)F2(x) Take bootstrap samples independently fromF1 (dnan1, . . . , dnann) and from F2 (hand1, . . . , handn),then put them together to get bootstrap data(dnan1, hand

    1), . . . , (dnan

    n, hand

    n).

    With R = 9, 999 get 18 values of , so

    p =1 + 18

    1 + 9999= 0.0019 :

    hand and dnan seem to be positively associated To test positive or negative association (two-sided test),take T = ||: gives p = 0.004.

    Anthony Davison: Bootstrap Methods and their Application, 62

  • Tests

    Handedness data: Bootstrap from M0

    15 20 25 30 35 40 45

    12

    34

    56

    78

    dnan

    hand

    310

    1

    32

    2

    4

    2

    1

    1

    1

    2 1

    2

    1

    1

    Test statistic

    Prob

    abilit

    y de

    nsity

    0.6 0.2 0.2 0.6

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Anthony Davison: Bootstrap Methods and their Application, 63

  • Tests

    Choice of R

    Take R big enough to get small standard error for p,typically 100, using binomial calculation:

    var(p) = var

    (1 + #{tr tobs}

    1 +R

    ).=

    1

    R2Rpobs(1 pobs) =

    pobs(1 pobs)

    R

    so if pobs.= 0.05 need R 1900 for 10% relative error (D7)

    Can choose R sequentially: e.g. if p.= 0.06 and R = 99, can

    augment R enough to diminish standard error.

    Taking R too small lowers power of test.

    Anthony Davison: Bootstrap Methods and their Application, 64

  • Tests

    Duality with confidence interval

    Often unclear how to impose null hypothesis on samplingscheme

    General approach based on duality between confidenceinterval I1 = (,) and test of null hypothesis = 0

    Reject null hypothesis at level in favour of alternative > 0, if 0 <

    Handedness data: 0 = 0 6 I0.95, but 0 = 0 I0.99, soestimated significance level 0.01 < p < 0.05: weakerevidence than before

    Extends to tests of = 0 against other alternatives:

    if 0 6 I1 = (, ), have evidence that < 0

    if 0 6 I12 = (, ), have evidence that 6= 0

    Anthony Davison: Bootstrap Methods and their Application, 65

  • Tests

    Pivot tests

    Equivalent to use of confidence intervals Idea: use (approximate) pivot such as Z = ( )/V 1/2 asstatistic to test = 0

    Observed value of pivot is zobs = ( 0)/V1/2

    Significance level is

    Pr

    (

    V 1/2 zobs |M0

    )= Pr(Z zobs |M0)

    = Pr(Z zobs | F ).= Pr(Z zobs | F )

    Compare observed zobs with simulated distribution ofZ = ( )/V 1/2, without needing to construct null

    hypothesis model M0 Use of (approximate) pivot is essential for success

    Anthony Davison: Bootstrap Methods and their Application, 66

  • Tests

    Example: Handedness data

    Test zero correlation (0 = 0), not independence; = 0.509,V = 0.1702:

    zobs = 0

    V 1/2=

    0.509 0

    0.170= 2.99

    Observed significance level is

    p =1 +#{zr zobs}

    1 +R=

    1 + 215

    1 + 9999= 0.0216

    Test statistic

    Prob

    abilit

    y de

    nsity

    6 4 2 0 2 4 6

    0.0

    0.1

    0.2

    0.3

    Anthony Davison: Bootstrap Methods and their Application, 67

  • Tests

    Exact tests

    Problem: bootstrap estimate is

    pobs = Pr(T tobs | M0) 6= Pr(T t |M0) = pobs,

    so estimate the wrong thing

    In some cases can eliminate parameters from nullhypothesis distribution by conditioning on sufficientstatistic

    Then simulate from conditional distribution

    More generally, can use MetropolisHastings algorithm tosimulate from conditional distribution (below)

    Anthony Davison: Bootstrap Methods and their Application, 68

  • Tests

    Example: Fir data

    Data Y1, . . . , Yniid Pois(), with unknown

    Poisson model has E(Y ) = var(Y ) = : base test ofoverdispersion on

    T =

    (Yj Y )2/Y

    . 2n1;

    observed value is tobs = 55.15 Unconditional significance level:

    Pr(T tobs | M0, )

    Condition on value w of sufficient statistic W =

    Yj:

    pobs = Pr(T tobs | M0,W = w),

    independent of , owing to sufficiency of W Exact test: simulate from multinomial distribution ofY1, . . . , Yn given W =

    Yj = 107.

    Anthony Davison: Bootstrap Methods and their Application, 69

  • Tests

    Example: Fir data

    Figure: Simulation results for dispersion test. Left panel: R = 999 val-

    ues of the dispersion statistic t obtained under multinomial sampling:

    the data value is tobs = 55.15 and p = 0.25. Right panel: chi-squared

    plot of ordered values of t, dotted line shows 249 approximation to

    null conditional distribution.

    20 40 60 80

    0.0

    0.01

    0.02

    0.03

    0.04

    t*

    .

    ..

    .

    ..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    .

    ...

    .

    .

    chi-squared quantiles

    disp

    ersio

    n st

    atist

    ic t*

    30 40 50 60 70 80

    2040

    6080

    Anthony Davison: Bootstrap Methods and their Application, 70

  • Tests

    Handedness data: Permutation test

    Are dnan and hand related?

    Take T = (correlation coefficient) again

    Impose null hypothesis of independence:F (u, x) = F1(u)F2(x), but condition so that marginaldistributions F1 and F2 are held fixed under resamplingplan permutation test

    Take resamples of form

    (dnan1, hand1), . . . , (dnann, handn)

    where (1, . . . , n) is random permutation of (1, . . . , n)

    Doing this with R = 9, 999 gives one- and two-sidedsignificance probabilities of 0.002, 0.003

    Typically values of p very similar to those forcorresponding bootstrap test

    Anthony Davison: Bootstrap Methods and their Application, 71

  • Tests

    Handedness data: Permutation resample

    15 20 25 30 35 40 45

    12

    34

    56

    78

    dnan

    hand

    Test statistic

    Prob

    abilit

    y de

    nsity

    0.6 0.2 0.2 0.6

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    Anthony Davison: Bootstrap Methods and their Application, 72

  • Tests

    Contingency table

    1 2 2 1 1 0 12 0 0 2 3 0 00 1 1 1 2 7 31 1 2 0 0 0 10 1 1 1 1 0 0

    Are row and column classifications independent:

    Pr(row i, column j) = Pr(row i) Pr(column j)?

    Standard test statistic for independence is

    T =i,j

    (yij yij)2

    yij, yij =

    yiyjy

    Get Pr(224 38.53) = 0.048, but is T. 224?

    Anthony Davison: Bootstrap Methods and their Application, 73

  • Tests

    Exact tests: Contingency table

    For exact test, need to simulate distribution of Tconditional on sufficient statistics row and column totals

    Algorithm (D8) for conditional simulation:

    1. choose two rows j1 < j2 and two columns k1 < k2 atrandom

    2. generate new values from hypergeometric distributionof yj1k1 conditional on margins of 2 2 table

    yj1k1 yj1k2yj2k1 yj2k2

    3. compute test statistic T every I = 100 iterations, say

    Compare observed value tobs = 38.53 with simulated T

    get p.= 0.08

    Anthony Davison: Bootstrap Methods and their Application, 74

  • Tests

    Key points

    Tests can be performed using resampling/simulation

    Must take account of null hypothesis, by

    modifying sampling scheme to satisfy null hypothesis inverting confidence interval (pivot test)

    Can use Monte Carlo simulation to get approximations toexact tests simulate from null distribution of data,conditional on observed value of sufficient statistic

    Sometimes obtain permutation tests very similar tobootstrap tests

    Anthony Davison: Bootstrap Methods and their Application, 75

  • Regression

    Motivation

    Basic notions

    Confidence intervals

    Several samples

    Variance estimation

    Tests

    Regression

    Anthony Davison: Bootstrap Methods and their Application, 76

  • Regression

    Linear regression

    Independent data (x1, y1), . . ., (xn, yn) with

    yj = xTj + j , j (0,

    2)

    Least squares estimates , leverages hj, residuals

    ej =yj x

    Tj

    (1 hj)1/2. (0, 2)

    Design matrix X is experimental ancillary should beheld fixed if possible, as

    var() = 2(XTX)1

    if model y = X + correct

    Anthony Davison: Bootstrap Methods and their Application, 77

  • Regression

    Linear regression: Resampling schemes

    Two main resampling schemes

    Model-based resampling:

    yj = xTj +

    j ,

    j EDF(e1 e, . . . , en e)

    Fixes design but not robust to model failure Assumes j sampled from population

    Case resampling:

    (xj , yj) EDF{(x1, y1), . . . , (xn, yn)}

    Varying design X but robust Assumes (xj , yj) sampled from population Usually design variation no problem; can prove awkward indesigned experiments and when design sensitive.

    Anthony Davison: Bootstrap Methods and their Application, 78

  • Regression

    Cement data

    Table: Cement data: y is the heat (calories per gram of cement) evolved

    while samples of cement set. The covariates are percentages by weight

    of four constituents, tricalciumaluminate x1, tricalcium silicate x2, tet-

    racalcium alumino ferrite x3 and dicalcium silicate x4.

    x1 x2 x3 x4 y

    1 7 26 6 60 78.52 1 29 15 52 74.33 11 56 8 20 104.34 11 31 8 47 87.65 7 52 6 33 95.96 11 55 9 22 109.27 3 71 17 6 102.78 1 31 22 44 72.59 2 54 18 22 93.110 21 47 4 26 115.911 1 40 23 34 83.812 11 66 9 12 113.313 10 68 8 12 109.4

    Anthony Davison: Bootstrap Methods and their Application, 79

  • Regression

    Cement data

    Fit linear model

    y = 0 + 1x1 + 2x2 + 3x3 + 4x4 +

    and apply case resampling

    Covariates compositional: x1 + + x4.= 100% so X

    almost collinear smallest eigenvalue of XTX isl5 = 0.0012

    Plot of 1 against smallest eigenvalue of XTX reveals

    that var(1) strongly variable

    Relevant subset for case resampling post-stratification ofoutput based on l5?

    Anthony Davison: Bootstrap Methods and their Application, 80

  • Regression

    Cement data

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    ..

    ...

    . ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    . ..

    ... .

    .

    .

    .

    . ..

    .

    ..

    ..

    .

    .

    . ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    ...

    ..

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    ..

    .. .

    .

    ..

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . ..

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    ...

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ....

    .

    .

    .. ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    ..

    ..

    .

    .

    .

    ..

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    ...

    ..

    .

    .

    .

    .

    ..

    ...

    .

    .

    .

    .

    .

    .

    .

    ..

    . ..

    .

    .

    ...

    . .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    ...

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ... .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    ...

    .

    . .

    .

    ....

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .. .

    .. ..

    ..

    .

    ..

    .

    .

    .

    ..

    . .

    .

    . .

    .

    .

    .

    .

    .

    ...

    .

    ...

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    ..

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .. ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ... .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    .

    .. .

    ..

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    ..

    . .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    . .

    ..

    .

    ..

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    . .

    .

    . ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ....

    ..

    .

    .

    ..

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    ..

    .

    .

    .

    ...

    . ..

    .

    .

    .

    .

    ..

    . .

    .

    ...

    .

    .

    ..

    .

    .

    . .

    .

    .

    .

    ...

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .. .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    ..

    .

    ..

    .

    ..

    .. .

    .

    .

    . .

    .

    .

    . . .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . ..

    ..

    ... .

    .

    ....

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    ..

    . . .

    ..

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .. ..

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    .

    .

    .

    smallest eigenvalue

    beta

    1hat

    *

    1 5 10 50 500

    -10

    -5

    05

    10

    .

    .

    .

    .

    .

    .

    .. .

    .

    .

    .

    .

    .

    .

    .

    . .

    .

    . .

    .

    .

    .

    ...

    . ..

    .

    .

    .

    .

    .

    .

    . .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    . ..

    .

    .

    ..

    .

    . .

    . .

    ..

    ..

    ..

    .

    .

    . . ..

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    ...

    ..

    .. .. .

    .

    .

    ..

    .

    ..

    .

    .

    ..

    .

    ..

    .. .

    ...

    .

    . ....

    .

    .

    ..

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .. .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    . ...

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .. .

    .

    .

    .

    .

    ...

    . ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    . .

    .

    ..

    .

    .

    .

    ........

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    . ...

    . ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    . ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    ..

    .

    ..

    ..

    . .

    .

    ..

    .

    ..

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    . .. .

    .. ..

    .

    .

    .

    ..

    .

    .

    ...

    ...

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    . ..

    .

    .

    ..

    .

    ..

    .

    .

    ..

    .

    ....

    ..

    .

    .

    .

    .

    ....

    ..

    .

    ..

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    ...

    .

    ..

    ...

    ..

    ..

    ..

    ..

    .

    .

    .

    .

    .

    . .

    .

    .

    ...

    .

    .

    .

    .

    .

    ..

    .

    .

    ...

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    . ..

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    ..

    .. ..

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    ...

    .

    .

    .

    .

    .

    ...

    ..

    . .

    ..

    ...

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    . .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    ..

    . ..

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .. ..

    .

    .

    .

    .

    .

    .

    .

    . ..

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    . ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    ..