Biological syntesis of nanoparticles from plants and microorganisms.pdf

download Biological syntesis of nanoparticles from plants and microorganisms.pdf

of 12

Transcript of Biological syntesis of nanoparticles from plants and microorganisms.pdf

  • 8/15/2019 Biological syntesis of nanoparticles from plants and microorganisms.pdf

    1/12

    Review 

    Biological Synthesis of Nanoparticles from Plants andMicroorganismsPriyanka Singh,1  Y u-Jin Kim,1,2,* Dabing Zhang,2 and

    Deok-Chun Yang1,*

    Nanotechnology has become one of the most promising technologies applied in

    all areas of science. Metal nanoparticles produced by nanotechnology have

    received global attention due to their extensive applications in the biomedicaland physiochemical   elds. Recently, synthesizing metal nanoparticles using

    microorganisms and plants has been extensively studied and has been recog-

    nized as a green and ef cient way for further exploiting microorganisms as

    convenient nanofactories. Here, we explore and detail the potential uses of 

    various biological sources for nanoparticle synthesis and the application of 

    those nanoparticles. Furthermore, we highlight recent milestones achieved for 

    the biogenic synthesis of nanoparticles by controlling critical parameters,

    including the choice of biological source, incubation period, pH, and

    temperature.

    Nanoparticles and their Applications

    Nanotechnology   (see  Glossary ) has become one of the most important technologies in all

    areas of science. It relies on the synthesis and modulation of  nanoparticles, which requires

    signicant modications of the properties of metals [1]. Nanomaterials have in fact been used

    unknowingly for thousands of years; for example, gold nanoparticles that were used to stain

    drinking glasses also cured certain diseases. Scientists have been progressively able to observe

    the shape- and size-dependent physiochemical properties of nanoparticles by using advanced

    techniques. Recently, the diverse applications of metal nanoparticles have been explored in

    biomedical, agricultural, environmental, and physiochemical areas (Figure 1 ) [1–5]. For instance,

    gold nanoparticles have been applied for the specic delivery of drugs, such as paclitaxel,

    methotrexate, and doxorubicin [2]. Gold nanoparticles have been also used for tumor detection,

    angiogenesis, genetic disease and genetic disorder diagnosis, photoimaging, and  photother-

    mal therapy. Iron oxide nanoparticles have been applied forcancer therapy, hyperthermia, drug

    delivery, tissue repair, cell labeling, targeting and immunoassays, detoxication of biologicaluids, magnetic resonance imaging, and  magnetically responsive drug delivery  therapy [6–

    8]. Silver nanoparticles have been used for many antimicrobial purposes, as well as in anticancer,

    anti-inammatory, and wound treatment applications [9]. Due to their biocompatible, nontoxic,

    self-cleansing, skin-compatible, antimicrobial, and dermatological behaviors, zinc and titanium

    nanoparticles have been used in biomedical, cosmetic, ultraviolet (UV)-blocking agents, and

    various cutting-edge processing applications [10,11]. Copper and palladium nanoparticles have

    been applied in batteries, polymers, plastics plasmonic wave guides, and optical limiting devices

    [12,13]. Moreover, they were found to be antimicrobial in nature against many pathogenic

    microorganisms. Additionally, metal nanoparticles have been used in the spatial analysis of 

    various biomolecules, including several metabolites, peptides, nucleic acids, lipids, fatty acids,

     Trends

     The biological synthesis of nanoparti-

    cles is increasingly regarded as a rapid,ecofriendly, and easily scaled-up

    technology.

    Metal nanoparticles produced using

    microorganisms and plant extracts

    are stable and can be monodispersed

    by controlling synthetic parameters,

    such as pH, temperature, incubation

    period, and mixing ratio.

    Recently, biological nanoparticles were

    found to be more pharmacologically

    active than physicochemically synthe-

    sized nanoparticles.

     Among the various biological nanopar-

    ticles, those produced by medicinal

    plants have been found to be the most

    pharmacologically active, possibly due

    to the attachment of several pharma-

    cologically active residues.

    1Department of Oriental Medicine

    Biotechnology, College of Life

    Science, Kyung Hee University,

    Yongin 446-701, Korea2

    Joint International ResearchLaboratory of Metabolic & 

    Developmental Sciences, Shanghai

    Jiao Tong University–University of 

     Adelaide Joint Centre for Agriculture

    and Health, State Key Laboratory of 

    Hybrid Rice, School of Life Sciences

    and Biotechnology, Shanghai Jiao

    Tong University, Shanghai, China

    *Correspondence: [email protected] 

    (Y.-J. Kim) and [email protected] 

    (D.-C. Yang).

    TIBTEC 1353 No. of Pages 12

    Trends in Biotechnology, Month Year, Vol. xx, No. yy   http://dx.doi.org/10.1016/j.tibtech.2016.02.006   1© 2016 Elsevier Ltd. All rights reserved.

    mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.tibtech.2016.02.006http://dx.doi.org/10.1016/j.tibtech.2016.02.006mailto:[email protected]:[email protected]

  • 8/15/2019 Biological syntesis of nanoparticles from plants and microorganisms.pdf

    2/12

    TIBTEC 1353 No. of Pages 12

    glycosphingolipids, and drug molecules, to visualize these molecules with higher sensitivity and

    spatial resolution [14].

    In addition, the unique properties of nanoparticles make them well suited for designing electro-chemical sensors and biosensors [15]. For example, nanosensors have been developed for the

    detection of algal toxins, mycobacteria, and mercury present in drinking water [16]. Researchers

    also developed nanosensors by utilizing nanomaterials for hormonal regulation and for detecting

    crop pests, viruses, soil nutrient levels, and stress factors. For instance, nanosensors for sensing

    auxin and oxygen distribution have been developed [17].

     To date, due to the physiochemical properties and many applications of nanoparticles, the

    scientic community has dedicated extensive efforts to develop suitable synthetic techniques for

    producing nanoparticles. However, various physiochemical approaches for the synthesis of 

    metal nanoparticles are limited by the environmental pollution caused by heavy metals. Thus,

    synthesizing nanoparticles by biological means, which has the advantages of nontoxicity,

    reproducibility in production, easy scaling-up, and well-dened morphology, has become a

    new trend in nanoparticle production. In particular, microorganisms and plants have beendemonstrated as new resources with considerable potential for synthesizing nanoparticles.

     To date, several microorganisms, including bacteria, fungi, and yeast, as well as plants, have

    been explored for the synthesis of metal nanoparticles. While the synthesis of nanoparticles has

    been extensively reviewed elsewhere [5,18–20], here we provide an update on recent advances

    in the synthesis of  biological nanoparticles, and describe prospects for their future develop-

    ment and applications.

    Nanoparticle Synthesis Using Microorganisms

    Microorganisms have been shown to be important nanofactories that hold immense potential as

    ecofriendly and cost-effective tools, avoiding toxic, harsh chemicals and the high energy

    demand required for physiochemical synthesis. Microorganisms have the ability to accumulate

    and detoxify heavy metals due to various reductase enzymes, which are able to reduce metal

    salts to metal nanoparticles with a narrow size distribution and, therefore, less polydispersity.

     The mechanism and experimental methods of synthesizing nanoparticles in microorganisms is

    described in   Box 1. Over the past few years, microorganisms, including bacteria (such as

    actinomycetes), fungi, and yeasts, have been studied extra- and intracellularly for the synthesis

    of metal nanoparticles ( Table 1 ). An array of biological protocols for nanoparticle synthesis has

    been reported using bacterial biomass, supernatant, and derived components. Among the

    various methodologies, extracellular synthesis has received much attention because it eliminates

    the downstream processing steps required for the recovery of nanoparticles in intracellular

    methodologies, including sonication to break down the cell wall, several centrifugation and

    washing steps required for nanoparticle purication, and others. Moreover, metal-resistant

    genes, proteins, peptides, enzymes, reducing cofactors, and organic materials have signicant

    roles by acting as reducing agents. Furthermore, these help in providing natural capping to

    synthesize nanoparticles, thereby preventing the aggregation of nanoparticles and helping themto remain stable for a long time, thus providing additional stability.

    In recent research, bacteria, including Pseudomonas deceptionensis [21], Weissella oryzae [22],

    Bacillus methylotrophicus   [23],   Brevibacterium frigoritolerans   [24], and   Bhargavaea indica

    [25,26], have been explored for silver and gold nanoparticle synthesis. Similar potential for

    producing nanoparticles has been showedby using several Bacillus and other species, including

    Bacillus licheniformis,   Bacillus amyloliquefaciens,   Rhodobacter sphaeroides   [27–29],   Listeria

     monocytogenes, Bacillus subtilis, and Streptomyces anulatus [29,30]. Various genera of micro-

    organisms have been reported for metal nanoparticle synthesis, including  Bacillus, Pseudomo-

     nas, Klebsiella, Escherichia, Enterobacter, Aeromonas,   Corynebacterium, Lactobacillus,

    Glossary

    Biocompatibility:  the compatibility

    and noninjurious effects of metal

    nanoparticles within the human body

    or healthy living cells.

    Biological nanofactories:  biological

    sources capable of synthesizing

    metal nanoparticles, including

    microorganisms and plants.

    Biological nanoparticles:

    nanoparticles obtaintend form

    biological sources, such as

    micoroganisms and plant extracts.

    Biological synthesis:  synthesis

    using natural sources, avoiding any

    toxic chemicals and hazardous by-

    products, usually with lower energy

    consumption.

    Magnetically responsive drug

    delivery: delivery of heavy drugs by

    magnetic nanoparticles under the

    inuence of an external magnetic

    eld.

    Mycosynthesis:  biological synthesis

    of metal nanoparticles from fungi.

    Nanoparticles:  small particles with

    all three dimensions measuring

  • 8/15/2019 Biological syntesis of nanoparticles from plants and microorganisms.pdf

    3/12

    TIBTEC 1353 No. of Pages 12

    Pseudomonas, Weissella, Rhodobacter, Rhodococcus, Brevibacterium, Streptomyces, Tricho-

    derma,  Desulfovibrio,   Sargassum,   Shewanella, Plectonemaboryanum,   Rhodopseudomonas,

    Pyrobaculum, and others[

    [31]. These investigations suggest that the main mechanism of the

    synthesis of nanoparticles using bacteria depends on enzymes   [32]; for instance, the nitrate

    reductase enzyme was found to be responsible for silver nanoparticle synthesis in   B.

     licheniformis.

    Rather than using bacteria,  mycosynthesis  is a straightforward approach for achieving stable

    and easy biological nanoparticle synthesis. Most fungi containing important metabolites with

    higher bioaccumulation ability and simple downstream processing are easy to culture for the

    ef cient, low-cost, production of nanoparticles  [33]. Moreover, compared with bacteria, fungi

    have higher tolerances to, and uptake competences for, metals, particularly in terms of the high

    wall-binding capability of metal salts with fungal biomass for the high-yield production of 

    nanoparticles [33,34]. Three possible mechanisms have been proposed to explain the mycosyn-

    thesis of metal nanoparticles: nitrate reductase action; electron shuttle quinones; or both  [33].

    Fungal enzymes, such as the reductase enzymes from   Penicillium   species and   Fusarium

    Acnomycetes

    Microorganisms

    Stem

    Root

    Fruit

    Leaves

    Peel

    Applicaons under clinical trial

    Most applicable area

    Second most-applicable area

    Flower

    Plant ssues

    Proteins,

    amino acids,

    vitamins,polysaccharides,

    polyphenols,

    terpenoids,

    organic acid

    Metal salts

    Metal nanoparcles (NPs)

    Magnecally

    responsive

    drug delivery

    Photoimaging

    NPs External

    magnec field

    Externalmagnec field

    Gene

    deliveryCell

    labelling

    Nanosensors detect

    biomolecules,environmental factorsBrain

    Skin

    Lung

    Colorectal

    Prostate

    Bladder

    Breast

    Various types of 

    human cancer

    Cosmecs

    and

    medical

    appliances

    Applicaons

         F    u    n   g    a     l 

       c   e     l     l

    N   I   R   

    D  e t    e c  t    o r  

    Detector

      C e  l  l s

      N  P sAnmicrobial,

    anpathogen,

    mosquitocidal uses

    Tumor

    cellNPs

    Photothermal

    therapy

    Biological synthesis

    of nanoparcles

    Fungi

    Enzymes

    (e.g., nitrate reductase)

    Enzymes

    (e.g., naphthoquinones/

    Anthraquinones)

    Bacteria

       Y  e  a  s

      t

    Figure 1. Biological Synthesis and Applications of Metal Nanoparticles in Biomedical and Environmental Fields. Silvernanoparticles aremostlyused in the

    medical eld due to their antimicrobial effect, and zinc and titanium nanoparticles are used in cosmetics. Silver, zinc, and other metal nanoparticles are also used in food

    packaging, wound dressings, catheters for drug delivery, and so on, due to the broad range of antimicrobial effects. The second application area of biological

    nanoparticles is the development of sensors for various biomolecules related to environmental factors and agriculture. Furthermore, nanoparticles are also used in gene

    delivery and cell labeling in plants and in medicine. Some applications of metal nanoparticles are still in development, such as photoimaging, photothermal therapy, and

    magnetically responsive drug delivery. The mechanisms of the antibacterial and anticancer activities are shown in Figure S1 in the supplemental information online.

    Trends in Biotechnology, Month Year, Vol. xx, No. yy   3

  • 8/15/2019 Biological syntesis of nanoparticles from plants and microorganisms.pdf

    4/12

    TIBTEC 1353 No. of Pages 12

    oxysporum, nitrate reductase, and   /-NADPH-dependent reductases, were found to have a

    signicant role in nanoparticle synthesis [35], similarly to the mechanism found in bacteria.

     The synthesis of nanoparticles using actinomycetes has not been well explored, even though

    actinomycetes-mediated nanoparticles have good monodispersity and stability and signicant

    biocidal activities against various pathogens  [36]. The synthesis of silver, copper, and zinc

    nanoparticles using   Streptomyces   sp. has demonstrated that the reductase enzyme from

    Streptomyces   sp. has a vital role in the reduction of metal salts   [37]. Similar to other micro-

    organisms, yeasts have also been widely investigated for the extracellular synthesis of the

    nanoparticles on a large scale, with straightforward downstream processing [38–41]. Further-

    more, virus-mediated synthesis of nanoparticles is also possible. Viruses can be used to

    synthesize nanowires with functional components that are assembled for various applications,

    such as battery electrodes, photovoltaic devices, and supercapacitors   [42]. However, most

    microorganism-based syntheses for nanoparticles are slow with low productivity, and therecovery of nanoparticles requires downstream processing. Furthermore, problems related

    to microorganism-based synthesis for nanoparticles also include the complex steps, such

    as microbial sampling, isolation, culturing, and maintenance.

    Nanoparticle Synthesis Using Plants

    Recently, phytonanotechnology  has provided new avenues for the synthesis of nanoparticles

    and is an ecofriendly, simple, rapid, stable, and cost-effective method. Phytonanotechnology

    has advantages, including biocompatibility, scalability, and the medical applicability of synthe-

    sizing nanoparticles using the universal solvent, water, as a reducing medium [43]. Thus, plant-

    derived nanoparticles produced by readily available plant materials and the nontoxic nature of 

    Box 1. Experimental and Mechanistic Steps for Producing Nanoparticles from Microorganisms and

    Plants

    Microorganisms are able to synthesize nanoparticles extracellularly or intracellularly. In extracellular synthesis, after

    culturing the microorganisms for 1–2 days in a rotating shaker under optimum conditions (including pH, temperature,

    medium components, etc.), the culture is centrifuged to remove the biomass. The obtained supernatant is used tosynthesizenanoparticles by adding a lter-sterilized metalsalt solution and is incubated again. The nanoparticle synthesis

    canbe monitored by observinga changein thecolor of theculture medium; forinstance, forsilver nanoparticles, thecolor

    changes to deep brown, whereas, for gold nanoparticles, it changes from ruby red to a deep purple color. After

    incubation, the reaction mixture can be centrifuged at different speeds to remove any medium components or large

    particles. Finally, the nanoparticles can be centrifuged at high speed or with a density gradient, washed thoroughly in

    water/solvent (ethanol/methanol) and collected in the form of a bottom pellet.

    In the intracellular synthesis of nanoparticles, after culturing the microorganism for a certain optimum growth period,

    biomass is collected by centrifugation and washed thoroughly with sterile water, then dissolved in sterile water with a

    lter-sterilized solution of metal salt. Similar to extracellular synthesis, the reaction mixture is monitored by visual

    inspection for a color change. After the incubation period, the biomass is removed by repeated cycles of ultrasonication,

    washing, and centrifugation. These steps help to break down the cell wall and enable the nanoparticles to be released.

     The mixture is then centrifuged, washed, and collected.

    For the synthesis of nanoparticles by plant extracts, the plant parts (root, leaf, bark, etc.) are washed thoroughly with

    distilled water and then cut into small pieces and boiled to perform the extraction. Next, the extract can be puri ed by

    ltration andcentrifugation.Different ratiosof plant extract, metal salt solution,and water (depending on theplantspecies

    and parts) are used for nanoparticle synthesis. This reaction mixture is incubated further to reduce the metal salt and

    monitored for a change in color. After synthesis, the nanoparticles are collected by similar methodologies as in

    microorganism-mediated synthesis.

    Inall ofthe synthesismethodologies, good monodispersity (i.e., a narrowsize distribution)can beachieved. bycontrolling

    the relevant critical parameters (Figure 2, main text).

     The mechanism underlying this biological synthesis is not yet fully elucidated, but is enzyme dependent for micro-

    organisms. For plants, it depends on the species and different phytochemical components. The exact mechanism and

    components should be resolved in the near future.

    4   Trends in Biotechnology, Month Year, Vol. xx, No. yy

  • 8/15/2019 Biological syntesis of nanoparticles from plants and microorganisms.pdf

    5/12

    TIBTEC 1353 No. of Pages 12

    plants are suitable for fullling the high demand for nanoparticles with applications in the

    biomedical and environmental areas. Recently, successfully synthesized gold and silver nano-

    particles using the leaf and root extract from the medicinal herbal plant  Panax ginseng [44–46]

    suggested the use of medicial plants as resources. Additionally, various plant parts, including

    leaves, fruits, stems, roots, and their extracts, have been used for the synthesis of metal

    nanoparticles ( Table 2 )   [47–61]. The exact mechanism and the components responsible for

    plant-mediated synthetic nanoparticles remain to be elucidated. It has been proposed that

    proteins, amino acids, organic acid, vitamins, as well as secondary metabolites, such as

    avonoids, alkaloids, polyphenols, terpenoids, heterocyclic compounds, and polysaccharides,

     Table 1. Synthesis and Applications of Biological Nanoparticles from Microorganisms

    Microorganism Extracellular/ 

    Intracellular

     Types of 

    Nanoparticle

    Shapes Size (nm) Applications Refs

    Bacteria

    Pseudomonas

    deceptionensis

    Extracellular Silver Spherical 10–30 Antimicrobial

    and antibiolm

    [21]

    Weissella oryzae   Intracellular Silver Spherical 10–30 Antimicrobial

    and antibiolm

    [22]

    Bacillus

     methylotrophicus

    Extracellular Silver Spherical 10–30 Antimicrobial   [23]

    Brevibacterium

    frigoritolerans

    Extracellular Silver Spherical 10–30 Antimicrobial   [24]

    Bhargavaea indica   Extracellular Silver and

    gold

    Silver anisotropic;

    gold,  ower

    30–100 Anti microbial   [25,26]

    Bacillus

     amyloliquefaciens

    Extracellular Cadmium

    sulde

    Cubic/hexagonal 3–4   –   [27]

    Bacillus pumilus,

    Bacillus persicus,

    and  Bacillus

     licheniformis

    E xtra ce llular Si lv er T riang ular,

    hexagonal,

    and spherical

    77–92 Antiviral and

     Antibacterial

    [29]

    Listeria

     monocytogenes,

    Bacillus subtilis,

    and  Streptomyces

     anulatus

    –   Silver Anisotropic Varied

    shape

    and sizes

     Antimicrobial and

    mosquitocidal

    [30]

    Fungus

    Neurospora crassa   Intra- and

    extracellular

    Silver, gold,

    bimetallic

    silver and

    gold

    Quasi-spherical >100   –   [34]

     Actinomycetes

    Streptomyces

    sp. LK3

    –   Silver Spherical 5 Acaricidal   [37]

     Yeast

    Yarrowia lipolytica

    NCYC 789

    Extracellular Silver Spherical 15 Antibiolm   [38]

    Rhodosporidium

    diobovatum

    Intracellular Lead   –   2–5   –   [39]

    Extremophilic

    yeast

    Extracellular Silver and

    gold

    Irregular Silver, 20;

    gold,30–100

    –   [40]

    Candida utilis

    NCIM 3469

    Extracellular Silver Spherical 20–80 Antibacterial   [41]

    Trends in Biotechnology, Month Year, Vol. xx, No. yy   5

  • 8/15/2019 Biological syntesis of nanoparticles from plants and microorganisms.pdf

    6/12

    TIBTEC 1353 No. of Pages 12

    have signicant roles in metal salt reduction and, furthermore, act as capping and stabilizing

    agents for synthesized nanoparticles   [62]. For instance, El-Kassas   et al.   showed that the

    hydroxyl functional group from polyphenols and the carbonyl group from proteins of  Corallina

    of  cinalis   extract could assist in forming and stabilizing gold nanoparticles   [63]. Philip   et al.

    showed the synthesis and stabilization of silver and gold nanoparticles by biomolecule attach-

    ment in  Murraya koenigii  leaf extract [64]. Reports also suggest that different mechanisms for

    synthesizing nanoparticles exist in different plant species   [18]. For instance, specic

     Table 2. Synthesis and Applications of Biological Nanoparticles from Plants

    Plants Plant Tissues

    for Extraction

     Types of 

    Nanoparticle

    Shapes Size (nm) Applications Refs

    Euphorbia prostrata   Leaves Silver and

    titanium

    dioxide (TiO2 )

    Spher ical Si lver

    10–15;

     TiO2,

    81.7–84.7

    Leishmanicidal   [11]

    Sargassum algae Alga Palladium Octahedral 5   –1 0 Elec troc atalyt ic

    activities towards

    hydrogen peroxide

    [12]

    Ginkgo biloba   Leaves Copper Spherical 15–20 Catalytic   [13]

    Panax ginseng Root Silver and

    gold

    Spher ical Si lver ,

    10–30;

    gold,

    10–40

     Antibacterial   [44]

    Red ginseng Root Silver Spherical 10–3 0 A nt ib ac te rial   [46]

    Cymbopogon citratus   Leaves Gold Spherical,triangular,

    hexagonal

    and rod

    20–

    5 0 M os quitoc id al   [47]

     Azadirachta indica   Leaves Silver   –   41–6 0 B io la rv ic id al   [48]

    Nigella sativa   Leaves Silver Spherical 15 Cytotoxicity   [49]

    Cocos nucifera   Leaves Lead Spherical 47 Antibacterial and

    photocatalytic

    [50]

    Catharanthus roseus   Leaves Palladium Spherical 40 Catalytic activity in

    dye degradation

    [51]

    Pistacia atlantica   Seeds Silver Spherical 27 Antibacterial   [52]

    Banana Peel Cadmium

    sulde

    –   1.48   –   [53]

    Nyctanthes arbortristis   Flower Silver   – –   Antibacterial

    and cytotoxic

    [54]

     Anogeissus latifolia   Gum powder Silver Spherical 5.5–5.9 Antibacterial   [55]

     Abutilon indicum   Leaves Silver Spherical 5–25 Ant ibacterial   [56]

    Pinus densi  ora   Cones Silver Oval in shape,

    few triangular

    shaped

    30–8 0 A nt im icrobial   [57]

     Artocarpus gomezianus   Fruit Zinc Spherical > 20 Luminescence,

    photocatalytic

    and antioxidant

    [58]

    Citrus medica   Fruit Copper   –   20 Antimicrobial   [59]

    Orange and pineapple Fruits Silver Spherical 10–300   –   [60]

    Lawsonia inermis   Leaves Iron Hexagonal 21 Antibacterial   [61]

    Gardenia jasminoides   Leaves Iron Rock like

    appearance

    32 Antibacterial   [61]

    6   Trends in Biotechnology, Month Year, Vol. xx, No. yy

  • 8/15/2019 Biological syntesis of nanoparticles from plants and microorganisms.pdf

    7/12

    TIBTEC 1353 No. of Pages 12

    components, such as emodin, a purgative resin with quinone compounds that is present in

    xerophytes plants (plants adapted to survive in deserts or environments with little water) are

    responsible for silver nanoparticle synthesis; cyperoquinone, dietchequinone, and remirin in

    mesophytic plants (terrestrial plants adapted to neither a particularly dry nor particularly wetenvironment) are useful for metal nanoparticle synthesis. Eugenol, the main terpenoid of 

    Cinnamomum zeylanisum, was found to have a principal role in the synthesis of gold and silver

    nanoparticles   [19]. Notably, dicot plants contain many secondary metabolites that may be

    suitable for nanoparticle synthesis ( Table 2 ).

    Critical Parameters for the Biological Synthesis of Nanoparticles

    Despite several advantages of a biological synthesis approach for nanoparticles, the poly-

    dispersity of the nanoparticles formed remains a challenge. Therefore, many recent studies

    have attempted to rationally establish a stable system for producing nanoparticles with

    homogenous size and morphology ( Tables 1 and 2 ). Control of the shape and size of metal

    nanoparticles has been shown by either constraining their environmental growth or altering

    the functional molecules   [26,65]. For instance, 20–nm monodispersed and biocompatible

    gold nanoparticles were synthesized using   Ganoderma   spp. by improving the reactionconditions, including pH, temperature, incubation period, salt concentration, aeration, redox

    conditions, mixing ratio, and irradiation   [66]. Growing microorganisms at the maximum

    possible temperature for optimal growth is recommended for the synthesis of nanoparticles

    using microorganisms, because, at high temperatures, the enzyme responsible for nano-

    particle synthesis is more active   [67]. pH is also one of the most inuential factors and

    different nanoparticles can be synthesized at different pH values. For instance, Gurunathan

    et al.  showed that most silver nanoparticles were synthesized at pH 10 in   Escherichia coli 

    [67]. Among fungi, alkaline pH (for  Isaria fumosorosea [68] ), p H 6.0 ( for  Penicillium fellutanum

    [67] ), and acidic pH (for  Fusarium acuminatum ) were shown to be optimal for nanoparticle

    synthesis. For plants, pH changes lead to changes in the charge of natural phytochemicals,

    which further affects their binding ability and the reduction of metal ions during nanoparticle

    synthesis. This in turn may affect the morphology and yield of nanoparticles. For instance, in

     Avena sativa   extract, at pH 3.0 and 4.0, numerous small-sized gold nanoparticles were

    formed, whereas, at pH 2.0, nanoparticle aggregation was observed. Therefore, it has been

    suggested that, at acidic pH values, nanoparticle aggregation is dominant over the process

    of reduction.

     This effect may be related to the fact that a larger number of functional groups that bind and

    nucleate metal ions become accessible at pH 3.0 and 4.0 compared with pH 2.0. At pH 2.0, the

    most accessible metal ions are involved in a smaller number of nucleation events, which leads to

    the agglomeration of the metal [69]. By contrast, it was demonstrated using extracts from pears

    that hexagonal and triangular gold nanoparticles are formed at alkaline pH values, whereas

    nanoparticles do not form at acidic pHs [70]. In the case of silver nanoparticle synthesis from the

    tuber powder of  Curcuma longa, at alkaline pHs, extracts may contain more negatively charged

    functional groups, which are capable of ef ciently binding and reducing silver ions and, thus,more nanoparticles were synthesized  [69]. Another example of size- and shape-controlled

    biological synthesis was shown by Kora et al., who demonstrated the size-controlled green

    synthesis of silver nanoparticles of 5.7    0.2 nm by   Anogeissus latifolia   [55]. Triangular gold

    nanoparticles were synthesized by  Cymbopogon    exuosus  extract   [71]. Similarly, other con-

    ditions, such as duration time, salt concentrations, and localizations for nanoparticles synthesis

    depend on species and extracts (Figure 2 )  [5].

     Advantage of Biological Nanoparticles

     The  biocompatibility   of nanoparticles, such as reduced metal cytotoxicity, is required for

    nanoparticles with biomedical applications. Compared with physicochemically derived

    Trends in Biotechnology, Month Year, Vol. xx, No. yy   7

  • 8/15/2019 Biological syntesis of nanoparticles from plants and microorganisms.pdf

    8/12

    TIBTEC 1353 No. of Pages 12

    nanoparticles, nanoparticles obtained from biogenic routes are free from toxic contamination of 

    by-products that become attached to the nanoparticles during physiochemical synthesis, which

    in turn limits the biomedical applications of the resulting nanoparticles  [18]. The biological

    synthesis of nanoparticles has several advantages, including rapid and ecofriendly production

    methodologies and the cost-effective and biocompatible nature of synthesized nanoparticles.

     Additionally, it does not require further stabilizing agents because plant and microorganism

    constituents themselves act as capping and stabilizing agents  [19]. Moreover, the surfaces of 

    biological nanoparticles progressively and selectively adsorb biomolecules when they contact

    complex biological  uids, forming a corona that interacts with biological systems. These corona

    layers provide additional ef cacy over bare biological nanoparticles [72]. Thus, biological nano-

    particles are more effective due to the attachment of biologically active components on the

    surface of synthesized nanoparticles from the biological sources, such as plants and micro-

    organisms. Especially in medicinal plants, there are abundant metabolites with pharmacological

    activity that are hypothesized to attach to the synthesized nanoparticles, providing additional

    benet by enhancing the ef cacies of the nanoparticles [19,73,74]. The additional advantage of 

    the biological synthesis of nanoparticles is that it can reduce the number of required steps,including the attachment of some functional groups to the nanoparticle surface to make them

    biologically active, an additional step required in physiochemical synthesis   [18].

    In addition, the time required for biosynthesizing nanoparticles is shorter than that for physi-

    ochemical approaches. Many researchers have developed rapid synthetic methodologies with

    high yields by utilizing various plant sources. For instance, silver nanoparticles have been

    synthesized using various plant extracts within 2 min   [75], 5 min   [76], 45 min   [44], 1 h   [46],

    and 2 h [45]. Gold nanoparticles have also been demonstrated to be synthesized within 3 min

    [44], 5 min [45], and 10 min [46], highlighting the simple and fast synthesis of nanoparticles using

    plant extracts [75].

    Biological synthesis

       O   p      m   i   z   a      o   n

    Processing parameters:

    1. Incubaon period2. Mixing rao

    3. Temperature4. pH

    5. Aeraon

    Stable producon ofhomogenous andcapped NPs with

    high yield

    Metal salts

    Metal nanoparcles (NPs)Modify processing parameters

    Controlled shape and morphology of NPs

    SphericalSquare HexagonalTriangular Rod

    Microorganism orplant extract

    Metal saltconcentraon

    Producon ofheterogeneous NPswith low yield

    Figure 2. Parameters for Producing Monodispersed, Stable, and High-Yield Biological Nanoparticles.   It is

    widely accepted that extracts of microorganisms and plants can be used to synthesize metal nanoparticles. However,

    controlling parameters, such as salt concentration, mixing ratio of biological extract and metal salt, pH value, temperature,

    incubation time, and aeration, still requires optimization for producing homogenous nanoparticles of a similar size and

    shape. Biological synthesis can also provide an additional capping layer on synthesized nanoparticles with the attachment

    of several biologically active groups, which can enhance the ef cacy of biological nanoparticles.

    8   Trends in Biotechnology, Month Year, Vol. xx, No. yy

  • 8/15/2019 Biological syntesis of nanoparticles from plants and microorganisms.pdf

    9/12

    TIBTEC 1353 No. of Pages 12

    Biological nanoparticles have been applied in many biomedical contexts, including anticancer

    and antimicrobial applications because of the higher ef cacy of biological nanoparticles com-

    pared with physiochemical nanoparticles for biomedical applications. For instance, Mukherjee

    et al. showedthe better ef 

    cacy of biologicalsilvernanoparticles derived from Olax scandens leaf in terms of anticancer activity, biocompatibility for drug delivery, and imaging facilitator activity

    compared with chemically synthesized silver nanoparticles  [77]. Furthermore, biological nano-

    particles showed high anticancer activity in the cancer cell lines A549 (human lung cancer), B16

    (mouse melanoma), and MCF7 (human breast cancer) [77]. Additionally, biological nanoparticles

    are more biocompatible with the rat cardiomyoblast normal cell line (H9C2), human umbilical vein

    endothelial cells (HUVEC), and Chinese hamster ovary cells (CHO), than chemically synthesized

    nanoparticles, which further supports the future applications of biological nanoparticles as drug

    delivery carriers. Moreover, biological nanoparticles show bright-red   uorescence inside cells,

    which could be utilized to detect the localization of drug molecules inside cancer cells (a

    diagnostic approach)  [77].

    El-Kassas et al. showed the cytotoxic activity of biological gold nanoparticles with an extract of 

    the red seaweed Corallina of  cinalis on the MCF7 human breast cancer cell line [63]. Nethi et al.developed novel proangiogenic biosynthesized gold nanoconjugates to accelerate the growth of 

    new blood vessels through redox signaling [78]. Wang et al. showed the in vivo self-bioimaging

    of tumors through   uorescent gold nanoclusters that were spontaneously biosynthesized by

    cancerous cells [i.e., HepG2 (a human hepatocarcinoma cell line) and K562 (a leukemia cell line)]

    [79]. Mukherjee  et al.  demonstrated a biosynthetic approach for the fabrication of gold nano-

    bioconjugates using Olax scandens leaf extract and applied to lung (A549), breast (MCF-7) and

    colon (COLO 205) cancer cell lines. These results showed the signicant inhibition of cancer cell

    proliferation and  uorescence imaging in A549 cancer cells [80]. Patra et al.  demonstrated the

    better biocompatibility of biological gold and silver nanoparticles in the HUVEC and ECV-304 cell

    lines compared with chemically synthesized nanoparticles. Furthermore, biological nanopar-

    ticles combined with a drug, doxorubicin, were shown to have a higher anticancer effect in the

    B16F10 cell line compared with the same drug combined with chemical nanoparticles   [81].

    Other examples includes gold and silver nanoparticles derived from the leaf extract of the

    medicinal plant, Butea monosperma, which were found to be stable and biocompatible towards

    normal endothelial cells (HUVEC, ECV-304) as well as cancer cell lines (B16F10, MCF-7,

    HNGC2, and A549). In addition, by combining with doxorubicin, the gold and silver nano-

    particles showed signicant inhibition of cancer cell proliferation (B16F10, MCF-7) compared

    with that of chemically synthesized nanoparticles and isolated drug [64]. The possible anticancer

    mechanism of nanoparticles is related to their size and shape, which are associated with the

    generation of reactive oxygen species (ROS), causing damage to cellular components   [82].

     Additionally, nanoparticles may result in apoptosis via mitochondria-dependent and caspase-

    dependent pathways [76] (Figure S1 in the supplemental information online).

    For antimicrobial applications, investigations also showed the higher antimicrobial activity of 

    biologically synthesized nanoparticles compared with physicochemically mediated nanopar-ticles. Mukherjee et al. demonstrated that biological nanoparticles showed 96.67% antibacterial

    activity at 30 mM, whereas the chemically synthesized nanoparticles did not show any signicant

    ef cacy at the same concentration. Sudhasree  et al. proposed that the biological nanoparticles

    from Desmodium gangeticum   are more monodispersed and have higher antioxidant, antibac-

    terial, and biocompatible activities in LLC PK1 (epithelial cell lines) compared with chemically

    synthesized nickel nanoparticles [83]. Mohammed  et al.  also described how biologically syn-

    thesized zinc nanoparticles have more antimicrobial potential against  Salmonella typhimurium

     ATCC 14028,  B. subtilis   ATCC 6633, and   Micrococcus luteus   ATCC 9341 compared with

    chemically synthesized zinc nanoparticles [84]. The exact antimicrobial mechanism is still under

    debate, although there are various proposed mechanisms of action for nanoparticles, including

    Trends in Biotechnology, Month Year, Vol. xx, No. yy   9

  • 8/15/2019 Biological syntesis of nanoparticles from plants and microorganisms.pdf

    10/12

    TIBTEC 1353 No. of Pages 12

    disturbance of the cell membrane; alteration of cellular DNA and proteins, electron transport,

    nutrient uptake, protein oxidation, or membrane potential; or the generation of ROS, which lead

    to cell death (Figure S1 in the supplemental information online).

    In addition to their anticancer and antimicrobial activities, biological nanoparticles have also been

    proven to be more effective in designing sensors. For example, biogenic silver nanoparticles

    were successfully used in the fabrication of an optical  ber-based sensor for the detection of 

    H2O2 that is cost effective and portable and can be used in various industrial applications  [85].

    Furthermore, based on the higher ef cacy and biocompatable nature of biological metal nano-

    particles, it has been hypothesized that biological nanoparticles may improve the action of a

    typical anticancer drug by facilitating drug delivery to specic cells, which reduces the required

    drug dosage and avoids the adverse effects of a high amount of drug. Moreover, biological

    nanoparticles can replace physicochemically synthesized gold and iron nanoparticles in photo-

    imaging and thermal therapies. Furthermore, biological nanoparticles could be used in cosmetic

    and medical appliances (Figure 1 ).

    Concluding Remarks and Prospects The potential of using metal nanoparticles in various  elds increases the need to produce them

    on an industrial scale and in stable formulations with environmentally friendly processes.

     Therefore, much effort is being made  [

    towards exploiting natural resources and implementing

    biological synthesis methods with proven advantages, such as being environmentally friendly,

    easy to scale up, and cost-effective; thus, the green production of nanoparticles using biological

    resources has great potential. The biological route of synthesizing nanoparticles has many

    advantages, such as the stable production of nanoparticles with controlled sizes and shapes,

    the lack of subsequent complex chemical synthesis, the lack of toxic contaminants, and the

    ability for rapid synthesis using numerous medicinal plants and microorganisms.

    Importantly, the yield of synthesized nanoparticles corresponding to the metal salt concentration

    and the available biological resources remains to be elucidated, and the parameters that can

    overcome the problems of polydispersity of biological nanoparticles still require optimization in

    various biological systems. Furthermore, the lack of knowledge of the chemical components

    responsible and the underlying mechanisms for the synthesis, action, and stabilization of 

    biological nanoparticles, remain open challenges in taking advantage of plants and micro-

    organisms for nanoparticle synthesis. Especially in terms of biocompatibility, it is important

    to understand how active groups from biological sources attach to the nanoparticle surface, and

    which active groups are involved, to produce nanoparticles with higher ef cacy. Thus, the

    plethora of microorganisms and plants that have been successfully used for the biological

    synthesis of metal nanoparticles prompts the deeper exploration of  biological nanofactories

    to meet the need for nanoproducts in various   elds (see Outstanding Questions). However,

    issues relating to the biomedical applications of biological nanoparticles, including the distribu-

    tion prole, excretion, and clearance of nanoparticles in   in vivo  trials, need to be addressed.

     Additionally, investigations into the biocompatibility and bioavailability of nanoparticles are still atearly stages, and considerable research is needed in this direction.

     Acknowledgments

     This work was supported by funds from the Ministry of Science and Technology (MOST), The People's Republic of China

    (2015DFG32560), and BasicScience Research Program through the National Research Foundation(NRF) from the Ministry

    of Education (2013R1A1A2064430), Republic of Korea(Y-J.K.); and KoreaInstitute of Planning & Evaluationfor Technology

    in Food, Agriculture, and Forestry & Fisheries (KIPET NO: 313038-03-2-SB020) (D-C.Y.).

    Supplementary Information

    Supplementary information associated with this article can be found[

    online[

    at  [

    http://dx.doi[

    .org/10.1016/j.tibtech.2016.02.

    006.

    Outstanding Questions

     Although many reports demonstrate

    the advantages of producing nanopar-

    ticles using biological sources, several

    unresolved issues remain, with regardto optimization yield of biological syn-

    thesis and their ef cacy.

     The ef cient production of nanopar-

    ticles using various microorganisms

    and plants needs to be optimized, par-

    ticularly for industrial production. Is

    there any limitation to using biological

    sources?

    How does the nanoparticle yield differ

    with different biological sources and

    the same metal salt concentration?

    Is there anystrategyby which theprob-

    lem of polydispersed nanoparticles

    during biological synthesis can be eas-

    ily avoided?

    Why does the ef cacy of biologically

    active metal nanoparticles depend on

    the size and shape of nanoparticles?

    What is the exact mechanism behind

    the biological ef cacy of nanoparticles,

    particularly the higher ef cacy of bio-

    logical nanoparticles?

    Even though biological nanoparticles

    are more biocompatible than physico-

    chemically synthesized nanoparticles,

    what are the future applications of bio-

    logical nanoparticles in humans?

     Although biological nanoparticles have

    been found to be more pharmacologi-

    cally active, which active groups from

    biological sources attach to nanopar-

    ticles and enhance their pharmacologi-

    cal activity?

    What determines the cytotoxicity, bio-

    distribution, and excretion of nanopar-

    ticles   in vivo?

    10   Trends in Biotechnology, Month Year, Vol. xx, No. yy

    http://dx.doi.org/10.1016/j.tibtech.2016.02.006http://dx.doi.org/10.1016/j.tibtech.2016.02.006http://dx.doi.org/10.1016/j.tibtech.2016.02.006http://dx.doi.org/10.1016/j.tibtech.2016.02.006http://dx.doi.org/10.1016/j.tibtech.2016.02.006http://dx.doi.org/10.1016/j.tibtech.2016.02.006http://dx.doi.org/10.1016/j.tibtech.2016.02.006

  • 8/15/2019 Biological syntesis of nanoparticles from plants and microorganisms.pdf

    11/12

    TIBTEC 1353 No. of Pages 12

    References1.   Rao, P.V.   et al.   (2015) Recent advances in nanotechnology-

    based diagnosis and treatments of diabetes. Curr. Drug Metab.

    16, 371–375

    2.   Rai, M.  et al.   (2015) Strategic role of selected noble metal nano-

    particles in medicine.   Crit. Rev. Microbiol.  1–

    243. Abbasi, E. et al.   (2014) Silver nanoparticles: synthesis methods,

    bio-applications and properties.  Crit. Rev. Microbiol.   Published

    online June 19, 2015.   http://dx.doi.org/10.3109/1040841X.

    2015.1018131

    4.   Giljohann, D.A.   et al.   (2010) Gold nanoparticles for biology and

    medicine. Angew. Chem. Int. Ed. Engl.  49, 3280–3294

    5.   Pereira, L. et al. (2015) Metallic nanoparticles: microbial synthesis

    and unique properties for biotechnological applications, bioavail-

    ability and biotransformation.  Crit. Rev. Biotechnol.  35, 114–128

    6.   Khlebtsov, N.   et al.  (2011) Biodistribution and toxicity of engi-

    neered gold nanoparticles: a review of  in vitro  and  in vivo  studies.

    Chem. Soc. Rev.  40, 1647–1671

    7.   Huang, X.   et al.  (2007) Gold nanoparticles: interesting optical

    properties and recent applications in cancer diagnostics and

    therapy. Nanomedicine (Lond)  2, 681–693

    8.   Iv, M. et al. (2015) Clinical applications of iron oxide nanoparticles

    for magnetic resonance imaging of brain tumors.  Nanomedicine

    (Lond) 10, 993–1018

    9.   Ahamed, M.   et al.  (2010) Silver nanoparticle applications and

    human health.   Clin. Chim. Acta  411, 1841–1848

    10. Ambika, S. et al.  (2015) Green biosynthesis of ZnO nanoparticles

    using   Vitex negundo  L. extract: spectroscopic investigation of 

    interaction between ZnO nanoparticles and human serum albu-

    min.   J. Photochem. Photobiol. B  149, 143–148

    11. Zahir, A.A.   et al.   (2015) Green synthesis of silver and titanium

    dioxide nanoparticles using   Euphorbia prostrata  extract shows

    shift from apoptosis to G0/G1 arrest followed by necrotic cell

    death in   Leishmania donovani .   Antimicrob. Agents Chemother.

    59, 4782–4799

    12.  Momeni, S.   et al.  (2015) A simple green synthesis of palladium

    nanoparticles with Sargassum algaand theirelectrocatalytic activ-

    itiestowards hydrogenperoxide. Appl. Biochem. Biotechnol. 176,

    1937–1949

    13. Nasrollahzadeh, M. et al. (2015) Green synthesis of copper nano-

    particles using   Ginkgo biloba   L. leaf extract and their catalyticactivity for the Huisgen [3+2] cycloaddition of azides and alkynes

    at room temperature.   J. Colloid Interface Sci.  457, 141–147

    14. Waki, M. etal. (2015)Nanoparticle-assistedlaser desorption/ioniza-

    tion for metabolite imaging.  Methods Mol. Biol. 1203, 159–173

    15. Peng, H.I.   et al.   (2011) Recent advancements in optical DNA 

    biosensors: exploiting the plasmonic effects of metal nanopar-

    ticles. Analyst  136, 436–447

    16.  Selid, P.D.   et al.   (2009) Sensing mercury for biomedical and

    environmental monitoring.   Sensors (Basel) 9, 5446–5459

    17. Koren, K.  et al.   (2015) Optical sensor nanoparticles in articial

    sediments–a new tool to visualize O2   dynamics around the

    rhizome and roots of seagrasses.  Environ. Sci. Technol.   49,

    2286–2292

    18. Baker, S. et al. (2013) Plants: emerging as nanofactories towards

    facile route in synthesis of nanoparticles. Bioimpacts 3, 111–117

    19. Makarov,V.V. etal. (2014) “Green” nanotechnologies: synthesis of 

    metal nanoparticles using plants.  Acta Nat.  6, 35–44

    20.  Thakkar, K.N.  et al.   (2010) Biological synthesis of metallic nano-

    particles. Nanomedicine  6, 257–262

    21. Jo, J.H.  et al.  (2015)   Pseudomonas deceptionensis  DC5-medi-

    ated synthesis of extracellular silver nanoparticles.  Artif. Cells

    Nanomed. Biotechnol.   Published online July 31, 2015.  http:// 

    dx.doi.org/10.3109/21691401.2015.1068792

    22. Singh, P.   et al.   (2015)   Weissella oryzae   DC6-facilitated green

    synthesis of silver nanoparticles and their antimicrobial potential.

     Artif. Cells Nanomed. Biotechnol. Published online July 27, 2015.

    http://dx.doi.org/10.3109/21691401.2015.1064937

    23. Wang, C.  et al.  (2015) Green synthesis of silver nanoparticles by

    Bacillus methylotrophicus, and their antimicrobial activity.   Artif.

    Cells Nanomed. Biotechnol.   Published online March 6, 2015.

    http://dx.doi.org/10.3109/21691401.2015.1011805

    24. Singh, P.  et al.  (2015) Biosynthesis, characterization, and antimi-

    crobial applications of silver nanoparticles.  Int. J. Nanomed.  10,

    2567–2577

    25. Singh, P.   et al.  (2015) Biosynthesis of anisotropic silver nano-

    particles by Bhargavaea indica and their synergistic effect withantibiotics against pathogenic microorganisms. J. Nanomaterials

    2015, 10

    26. Singh, P.  et al.   (2015) Microbial synthesis of   ower-shaped gold

    nanoparticles.  Artif. Cells Nanomed. Biotechnol.  Published online

    May 6, 2015.  http://dx.doi.org/10.3109/21691401.2015.1041640

    27. Singh, B.R.   et al.   (2011) Synthesis of stable cadmium sulde

    nanoparticles using surfactin produced by  Bacillus amyloliquifa-

    ciens strain KSU-109. Colloids Surf. B Biointerfaces 85, 207–213

    28. Bai, H.   et al.   (2009) Biological synthesis of size-controlled cad-

    mium sulde nanoparticles using immobilized   Rhodobacter 

     sphaeroides.   Nanoscale Res. Lett.  4, 717–723

    29. Elbeshehy, E.K.  et al. (2015) Silver nanoparticles synthesis medi-

    ated bynew isolatesof Bacillus spp., nanoparticle characterization

    and their activity against bean yellow mosaic virus and human

    pathogens. Front. Microbiol.  6, 453

    30. Soni, N.  et al.   (2015) Antimicrobial and mosquitocidal activity of 

    microbial synthesised silver nanoparticles.  Parasitol. Res.   114,

    1023–1030

    31. Li,X. etal. (2011) Biosynthesisof nanoparticles bymicroorganisms

    and their applications.  J. Nanomaterials  2011, 16

    32. Zhang, X. et al.  (2011) Synthesis of nanoparticles by microorgan-

    isms and their application in enhancing microbiological reaction

    rates.  Chemosphere 82, 489–494

    33. Alghuthaymi, M.A. et al. (2015) Myconanoparticles: synthesis and

    theirrole in phytopathogensmanagement. Biotechnol. Biotechnol.

    Equip. 29, 221–236

    34. Castro-Longoria, E.  et al.   (2011) Biosynthesis of silver, gold and

    bimetallic nanoparticles using the   lamentous fungus Neurospora

    crassa.   Colloids Surf. B Biointerfaces  83, 42–48

    35. Anil Kumar, S. et al.  (2007) Nitrate reductase-mediated synthesis

    of silver nanoparticles from AgNO3. Biotechnol. Lett. 29, 439–445

    36. Golinska, P. etal. (2014) Biogenic synthesis of metalnanoparticles

    from actinomycetes: biomedical applications and cytotoxicity.

     Appl. Microbiol. Biotechnol. 98, 8083–8097

    37. Karthik, L. et al. (2014) Streptomyces sp. LK3 mediated synthesisof silver nanoparticles and its biomedical application. Bioprocess

    Biosyst. Eng. 37, 261–267

    38.  Apte, M.   et al.   (2013) Psychrotrophic yeast   Yarrowia lipolytica

    NCYC 789 mediates the synthesis of antimicrobial silver nano-

    particles via cell-associated melanin. AMB Express 3, 32

    39.  Seshadri, S.  et al.  (2011) Green synthesis of lead sulde nano-

    particles by the lead resistant marine yeast, Rhodosporidium

    diobovatum. Biotechnol. Prog.  27, 1464–1469

    40. Mourato, A.  et al. (2011) Biosynthesis of crystalline silver and gold

    nanoparticles by extremophilic yeasts.   Bioinorg. Chem. Appl.

    2011, 546074

    41. Waghmare, S.R.   et al.   (2015) Ecofriendly production of silver

    nanoparticles using   Candida utili s and its mechanistic action

    against pathogenic microorganisms. 3 Biotech  5, 33–38

    42. Nam, K.T.  et al.   (2006) Virus-enabled synthesis and assembly

    of nanowires for lithium ion battery electrodes.  Science   312,

    885–888

    43.  Noruzi, M. (2015) Biosynthesis of gold nanoparticles using plant

    extracts.  Bioprocess Biosyst. Eng. 38, 1–14

    44. Singh, P.  et al.  (2015) A strategic approach for rapid synthesis of 

    gold and silver nanoparticles by  Panax ginseng leaves. Artif. Cells

    Nanomed. Biotechnol.

    45. Singh, P.  et al.   (2015) The development of a green approach for

    the biosynthesis of silver and gold nanoparticles by using  Panax 

     ginseng  root extract, and their biological applications.  Artif. Cells

    Nanomed. Biotechnol.   Published online March 14, 2015. http:// 

    dx.doi.org/10.3109/21691401.2015.1011809

    46. Singh, P.   et al.   (2015) Biogenic silver and gold nanoparticles

    synthesised using red ginseng root extract, and their applications.

     Artif. Cells Nanomed. Biotechnol.  Published online February 23,

    2015. http://dx.doi.org/10.3109/21691401.2015.1008514

    Trends in Biotechnology, Month Year, Vol. xx, No. yy   11

    http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0430http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0430http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0430http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0430http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0430http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0430http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0430http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0430http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0435http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0435http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0435http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0435http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0435http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0435http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0435http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0435http://dx.doi.org/10.3109/1040841X.%202015.1018131http://dx.doi.org/10.3109/1040841X.%202015.1018131http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0445http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0445http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0445http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0445http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0445http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0445http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0445http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0445http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0450http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0450http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0450http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0450http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0450http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0450http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0450http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0450http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0450http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0460http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0460http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0460http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0460http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0460http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0460http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0460http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0460http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0460http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0465http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0465http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0465http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0465http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0465http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0465http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0465http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0465http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0465http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0470http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0470http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0470http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0470http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0470http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0470http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0470http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0470http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0495http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0495http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0495http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0495http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0495http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0495http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0495http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0495http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0500http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0500http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0500http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0500http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0500http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0500http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0500http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0500http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0500http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0505http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0505http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0505http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0505http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0505http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0505http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0505http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0505http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0515http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0515http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0515http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0515http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0515http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0515http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0515http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0515http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0520http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0520http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0520http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0520http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0520http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0520http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0520http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0520http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0520http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0520http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0520http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0520http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0525http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0525http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0525http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0525http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0525http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0525http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0525http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0525http://dx.doi.org/10.3109/21691401.2015.1068792http://dx.doi.org/10.3109/21691401.2015.1068792http://dx.doi.org/10.3109/21691401.2015.1064937http://dx.doi.org/10.3109/21691401.2015.1011805http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0545http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0545http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0545http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0545http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0545http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0545http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0545http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0545http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0545http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0550http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0550http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0550http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0550http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0550http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0550http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0550http://dx.doi.org/10.3109/21691401.2015.1041640http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0570http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0570http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0570http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0570http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0570http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0570http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0570http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0570http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0570http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0570http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0575http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0575http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0575http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0575http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0575http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0575http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0575http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0575http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0575http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0580http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0580http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0580http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0580http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0580http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0580http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0585http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0585http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0585http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0585http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0585http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0585http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0585http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0585http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0585http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0590http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0590http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0590http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0590http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0590http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0590http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0590http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0590http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0590http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0600http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0600http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0600http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0600http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0600http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0600http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0600http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0600http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0600http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0600http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0605http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0605http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0605http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0605http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0605http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0605http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0605http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0605http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0610http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0610http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0610http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0610http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0610http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0610http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0610http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0610http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0610http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0615http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0615http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0615http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0615http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0615http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0615http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0615http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0615http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0620http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0620http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0620http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0620http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0620http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0620http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0620http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0620http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0620http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0620http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0620http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0625http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0625http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0625http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0625http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0625http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0625http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0630http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0630http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0630http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0630http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0630http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0630http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0630http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0630http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0630http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0630http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0630http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0635http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0635http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0635http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0635http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0635http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0635http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0635http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0635http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0635http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0640http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0640http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0640http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0640http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0640http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0640http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0645http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0645http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0645http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0645http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0645http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0645http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0645http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0645http://dx.doi.org/10.3109/21691401.2015.1011809http://dx.doi.org/10.3109/21691401.2015.1011809http://dx.doi.org/10.3109/21691401.2015.1008514http://dx.doi.org/10.3109/21691401.2015.1008514http://dx.doi.org/10.3109/21691401.2015.1011809http://dx.doi.org/10.3109/21691401.2015.1011809http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0645http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0645http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0645http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0640http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0640http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0635http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0635http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0635http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0630http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0630http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0630http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0625http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0625http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0625http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0620http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0620http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0620http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0615http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0615http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0615http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0610http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0610http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0610http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0605http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0605http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0605http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0600http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0600http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0600http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0595http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0590http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0590http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0590http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0585http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0585http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0585http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0580http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0580http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0575http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0575http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0575http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0570http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0570http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0570http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0570http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0565http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0560http://dx.doi.org/10.3109/21691401.2015.1041640http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0550http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0550http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0550http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0550http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0545http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0545http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0545http://dx.doi.org/10.3109/21691401.2015.1011805http://dx.doi.org/10.3109/21691401.2015.1064937http://dx.doi.org/10.3109/21691401.2015.1068792http://dx.doi.org/10.3109/21691401.2015.1068792http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0525http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0525http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0520http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0520http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0515http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0515http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0510http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0505http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0505http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0500http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0500http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0500http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0495http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0495http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0490http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0485http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0480http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0475http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0470http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0470http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0465http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0465http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0465http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0460http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0460http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0460http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0455http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0450http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0450http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0450http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0445http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0445http://dx.doi.org/10.3109/1040841X.%202015.1018131http://dx.doi.org/10.3109/1040841X.%202015.1018131http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0435http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0435http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0430http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0430http://refhub.elsevier.com/S0167-7799(16)00040-8/sbref0430

  • 8/15/2019 Biological syntesis of nanoparticles from plants and microorganisms.pdf

    12/12

    TIBTEC 1353 No. of Pages 12

    47. Murugan, K. et al. (2015) Cymbopogon citratus-synthesised gold

    nanoparticles boost the predation ef ciency of copepod   Meso-

    cyclops aspericornis   against malaria and dengue mosquitoes.

    Exp. Parasitol. 153, 129–138

    48.  Poopathi, S.   et al.   (2015) Synthesis of silver nanoparticles from

     Azadirachta indica–

    a most effective method for mosquito control.Environ. Sci. Pollut. Res. Int. 22, 2956–2963

    49.  Amooaghaie, R.   et al.   (2015) Synthesis, characterization and

    biocompatibility of silver nanoparticles synthesised from  Nigella

     sativa leafextractin comparisonwith chemicalsilver nanoparticles.

    Ecotoxicol. Environ. Saf.  120, 400–408

    50. Elango, G. et al. (2015) Green synthesis, spectroscopic investiga-

    tionand photocatalyticactivityof leadnanoparticles.Spectrochim.

     Acta A Mol. Biomol. Spectrosc.  139, 367–373

    51. Kalaiselvi, A. et al.  (2015) Synthesis and characterization of palla-

    dium nanoparticles using Catharanthus roseus leaf extract and its

    application in the photo-catalytic degradation. Spectrochim. Acta

     A Mol. Biomol. Spectrosc. 135, 116–119

    52.  Sadeghi, B.   et al.  (2015) Facile green synthesis of silver nano-

    particles using seed aqueous extract of  Pistacia atlantica and its

    antibacterial activity. Spectrochim. ActaA Mol.Biomol.Spectrosc.

    134, 326–332

    53. Zhou, G.J.   et al.   (2014) Biosynthesis of CdS nanoparticles in

    banana peel extract.   J. Nanosci. Nanotechnol.  14, 4437–4442

    54. Gogoi, N.   et al.   (2015) Green synthesis and characterization of 

    silver nanoparticles using alcoholic  ower extract of  Nyctanthes

     arbortristis   and   in vitro   investigation of their antibacterial and

    cytotoxic activities.   Mater. Sci. Eng. C Mater. Biol. Appl.   46,

    463–469

    55. Kora, A.J.   et al.   (2012) Size-controlled green synthesis of silver

    nanoparticles mediated by gum ghatti ( Anogeissus latifolia ) and its

    biological activity.   Org. Med. Chem. Lett.  2, 17

    56. Ashokkumar, S.   et al.   (2015) Synthesis of silver nanoparticles

    using A. indicum   leaf extract and their antibacterial activity. Spec-

    trochim. Acta A Mol. Biomol. Spectrosc. 134, 34–39

    57.  Velmurugan, P.   et al.  (2015) Synthesis and characterization of 

    nanosilver with antibacterial properties using  Pinus densi  ora

    young cone extract.   J. Photochem. Photobiol. B  147, 63–68

    58.  Suresh, D.   et al.   (2015)   Artocarpus gomezianus   aided green

    synthesis of ZnO nanoparticles: luminescence, photocatalytic

    and antioxidant properties.   Spectrochim. Acta