Biochar Meth_public Comment Draft

download Biochar Meth_public Comment Draft

of 137

Transcript of Biochar Meth_public Comment Draft

  • 8/12/2019 Biochar Meth_public Comment Draft

    1/137

    AmericanCarbonRegistry

    American CarbonRegistryTrusted solutions for the carbon market

    Anonprofitenterpriseof

    2010 All Rights Reserved

    MethodologyforBiocharProjectsVersion1.0

  • 8/12/2019 Biochar Meth_public Comment Draft

    2/137

    MethodologyforBiocharProjectsv1.0

    Page|1

    PreparedBy:

    TeresaKoper,PeterWeisberg(TheClimateTrust),AlisonLennie,KeithDriver,HannahSimons

    (PrasinoGroup),MiguelRodriguez,DebbieReed,StefanJirka(InternationalBiocharInitiative),

    JohnGaunt(CarbonConsulting)

  • 8/12/2019 Biochar Meth_public Comment Draft

    3/137

    MethodologyforBiocharProjectsv1.0

    Page|2

    CONTENTS1 Met hodol ogy descr i pt i on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.1 SummaryDescriptionoftheMethodology.................................................................................. 4

    1.2 RelationshiptoApprovedMethodologies.................................................................................... 4

    1.3 Sources.......................................................................................................................................... 6

    1.4 Definitions..................................................................................................................................... 6

    2 Appl i cabi l i t y Condi t i ons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    3 Pr oj ect Boundar i es. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    3.1GreenhouseGasandCarbonPoolBoundaries................................................................................. 14

    3.2TemporalBoundaries........................................................................................................................ 25

    4 Procedur e f or Det er mi ni ng t he Basel i ne Scenar i o and

    Addi t i onal i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    4.1ProcedureforDeterminingtheBaselineScenario........................................................................... 26

    4.2ProcedureforDemonstratingAdditionality..................................................................................... 30

    5 Quant i f i cat i on of GHG Emi ssi on Reduct i ons and Removal s. . . . . . 31

    5.1BaselineEmissions............................................................................................................................ 31

    BioenergyProduction(Default).......................................................................................................... 34

    AerobicDecomposition(Alternative)................................................................................................. 34

    AnaerobicDecompositioninaSWDS(Alternative)............................................................................ 35

    AnaerobicDecompositioninaWastewaterLagoon(Alternative)..................................................... 36

    Combustion(Alternative).................................................................................................................... 41

    ElectricityProduction.......................................................................................................................... 41

    Oil........................................................................................................................................................ 42

    Gas...................................................................................................................................................... 43

    Heat..................................................................................................................................................... 44

    5.2ProjectEmissions.............................................................................................................................. 45

    FeedstockTransportation................................................................................................................... 46

    ProcessingandDryingFeedstock........................................................................................................ 46

    AuxiliaryFuelCombustion.................................................................................................................. 47

  • 8/12/2019 Biochar Meth_public Comment Draft

    4/137

    MethodologyforBiocharProjectsv1.0

    Page|3

    ElectricityConsumption...................................................................................................................... 47

    NonBiogenicPyrolysis........................................................................................................................ 48

    FuelforProcessingBioOil.................................................................................................................. 49

    FuelforProcessingSyngas.................................................................................................................. 49

    FuelforBlendingBiochar.................................................................................................................... 50

    BioOilUse........................................................................................................................................... 50

    SyngasUse.......................................................................................................................................... 50

    BiocharinSitu..................................................................................................................................... 51

    5.3Leakage............................................................................................................................................. 52

    5.4SummaryofGHGEmissionReductionand/orRemovals................................................................. 53

    6 Moni t or i ng. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    6.1DataandParametersAvailableatValidation................................................................................... 55

    6.2DataandParametersMonitored...................................................................................................... 73

    6.3DescriptionoftheMonitoringPlan.................................................................................................. 84

    7 Ref er ences and Ot her I nf or mat i on. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    7.1Sources.............................................................................................................................................. 86

    7.2References........................................................................................................................................ 89

    APPENDI X 1: St andard t est met hod f or est i mat i ng Bi ochar carbon

    stabi l i t y ( BC+100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

    APPENDI X 2: J ust i f i cat i on f or t he St andar d t est met hod f or

    est i mat i ng Bi ochar car bon st abi l i t y ( BC+100) . . . . . . . . . . . . . . 104

    APPENDI X 3: Pr i mi ng of SOC mi ner al i zat i on by bl ack car bon. . . . 130

    APPENDI X 4: SUSTAI NABLE FEEDSTOCK Cr i t er i a. . . . . . . . . . . . . . . . . . . 133

    GeneralGuidelines(ApplicabletoallFeedstocks)................................................................................ 133

    AdditionalGuidelinesforForestandAgriculturalFeedstocks.............................................................. 135

    ForestryFeedstocks.......................................................................................................................... 135

    AgriculturalFeedstocks..................................................................................................................... 135

  • 8/12/2019 Biochar Meth_public Comment Draft

    5/137

    MethodologyforBiocharProjectsv1.0

    Page|4

    1METHODOLOGYDESCRIPTION

    1.1 SummaryDescriptionoftheMethodology

    Biochar is produced through the Pyrolysis of biomass. Under this Methodology, potential

    Feedstocks include forestry and agriculture residues, Municipal Solid Wastes, and other

    biomassbased materials approved for use under the International Biochar Initiatives IBI

    Biochar Standards (2013). In the absenceof Pyrolysis, these Feedstockswould otherwisebe

    combusted or decompose, releasing carbon dioxide (if combustion or decomposition under

    aerobic conditions occurs) or methane (if decomposition occurs under methanogenic

    conditions).

    Pyrolysisphysicallyandchemicallytransformstherapidlydecomposingcarboninrawbiomass

    intoamorerecalcitrantform,whichcanbeappliedtosoilforlongtermsequestration.Alarge

    portion of the Fixed Carbon in Biochar, as measured using the testing methods identified

    herein, is sequestered for a time period well in excess of 100 years. By transforming the

    biomasscarbontoahighlystableformthatresistsdegradation,andensuringthatitremainsin

    this form, emissions from the decomposition or combustion of Feedstocks are significantly

    reduced.Inadditiontothissequestration,Pyrolysisalsogeneratesbiooilandsyngas,whichif

    upgraded,maybeusedasrenewableenergyandthusreducesanthropogenicgreenhousegas

    (GHG)emissions.

    ThisMethodologyquantifies theseGHGemission reductions and sequestrationbenefits that

    resultfromtheimplementationofBiocharprojects.

    1.2 RelationshiptoApprovedMethodologies

    Approvedandpendingmethodologiesforallsectoralscopeswerereviewedtodetermineifan

    existing Methodology could reasonably be revised to meet the objective of this proposed

    Methodology. Two methodologies related to Biochar projects from the Clean DevelopmentMechanismwereidentified,andareoutlinedinTable1.

  • 8/12/2019 Biochar Meth_public Comment Draft

    6/137

    MethodologyforBiocharProjectsv1.0

    Page|5

    Table1:SummaryofRelatedMethodologies

    Methodology Title PrimaryReduction

    Mechanism

    Comments

    CDMAMS

    III.E

    Avoidanceofmethane

    productionfromdecay

    ofbiomassthrough

    controlledcombustion,

    gasificationor

    mechanical/thermal

    treatmentVersion

    16.0

    Avoidanceof

    methaneemissions

    duetopreventionof

    anaerobicdecayof

    biomassinwaste.Use

    ofbiomassinwaste

    asenergysource.

    Controlledcombustion

    Methodology,allowingfor

    allfinalproducts(refuse

    derivedfuel/stabilized

    biomass)tobecombusted

    afterthermochemical

    transformation. Goalof

    AMSIII.Eistoprevent

    Pyrolysisandtoensure

    biogeniccombustion

    emissions.

    CDMAMS

    III.L

    Avoidanceofmethane

    productionfrombiomass

    decaythroughcontrolled

    Pyrolysis Version2.0

    GHGemission

    avoidanceand

    replacementofmore

    GHGintensiveservice

    byPyrolysisoforganic

    matter.

    Landfillavoidanceand

    PyrolysisMethodology,

    allowingforfinalproducts

    tobecombustedafter

    Pyrolysis.GoalofAMSIII.L

    istoavoidlandfillemissionsthroughPyrolysis

    andcombustion. Required

    volatile:FixedCarbon

    ratiosare

  • 8/12/2019 Biochar Meth_public Comment Draft

    7/137

    MethodologyforBiocharProjectsv1.0

    Page|6

    ThestablecarbonthatissequesteredthroughPyrolysisisnotincludedineitherofthesesmall

    scale methodologies, which are instead focused on avoided methane emissions. Given this

    distinction,Methodologyadaptationwouldnotbefeasible,assignificantchangesarerequired

    to accommodate the emission reductions associated with sequestered carbon, which is theprimaryreductioncapturedbythisMethodology.

    1.3 Sources

    This Methodology is based on the draft Quantification Protocol Biochar Projects, v.1, issued

    under theAlbertaSpecifiedGas EmittersRegulation (CarbonConsulting and LeadingCarbon

    2011).

    In addition, technical and good practice guidancewas obtained from Environment Canadas

    annual GHG reporting, the US EPAs Emission Inventory, the Intergovernmental Panel onClimate Change (IPCC), and various other reliable sources of information. The Clean

    DevelopmentMechanismsAM0036FuelswitchfromfossilfuelstoBiomassResiduesinheat

    generation equipment (United Nations 2012a) provided guidance on biomass energy

    accounting. The Methodology also relies heavily on the International Biochar Initiatives

    StandardizedProductDefinitionandTestingGuidelinesforBiocharthatisUsedinSoil(theIBI

    Biochar Standards). The good practice guidance and best science used to develop the

    quantificationMethodologyarepresentedinSection10.

    1.4 Definitions

    Biochar: Biochar isasolidmaterialobtained through the thermochemical

    conversionofbiomassinanoxygenlimitedenvironment.Biochar

    differs fromcharcoal in the sense that itsprimaryuse isnot for

    fuel,butforbiosequestrationoratmosphericcarboncaptureand

    storage.TobecreditedbythisMethodology,Biocharmustcomply

    with all requirements of the most recent version of the

    International Biochar Initiatives Standardized Product Definition

    andProductTestingGuidelinesforBiocharthatisUsedinSoil(akaIBIBiocharStandards).

    BiogenicBiomass: Materialthatisproducedororiginatingfromalivingorganism.

  • 8/12/2019 Biochar Meth_public Comment Draft

    8/137

    MethodologyforBiocharProjectsv1.0

    Page|7

    BiomassResidues:

    ChainofCustody:

    Biomass byproducts, residues and waste streams from

    agriculture,forestryandrelatedindustries.(UnitedNations2006).

    AnyBiomassResiduemeeting theFeedstockexpectationsof the

    IBI Biochar Standards (2013) is eligible for Biochar production

    under this methodology, provided it meets the applicable

    SustainableFeedstockcriteriainAppendix4.

    Documenting/tracking the location and ownership history of

    feedstock stepbystep from its harvesting source to the final

    productofBiochar.

    Developed/Industrialized

    Nation:

    Therearenoestablishedconventionsfordesignatingdeveloped

    ordevelopingnations.ThisMethodologywill follow the listing

    of industrialized nations and economies in transition included

    within Annex I Parties to the United Nations Framework

    ConventiononClimateChange(UNFCCC)(UnitedNations2012g).

    DevelopingNation: Following the definition of developed nation provided above, a

    Developing Nation will be considered to include all nations not

    listedwithin theAnnex Iparties to theUNFCCC (UnitedNations

    2012g),whichhavebeenidentifiedasDevelopingNationsorleastdevelopedcountries.

    Diluent/Dilutant: Inorganicmaterialthatisdeliberatelymixedorinadvertentlycomingled

    with biomass feedstock prior to processing. These materials will not

    carbonize in an equivalent fashion to the biomass. These materials

    includesoilsandcommonconstituentsofnaturalsoils,suchasclaysand

    gravel thatmaybegatheredwithbiomassor intermixed throughprior

    use of the feedstock biomass. Diluents/dilutants may be found in a

    diverserangeofFeedstocks,suchasagriculturalresidues,manures,and

    MunicipalSolidWastes.(InternationalBiocharInitiative2012).

    Efficiency: Efficiencyisdefinedasthenetquantityofusefulenergygenerated

    bytheenergygenerationsystemperquantityofenergycontained

  • 8/12/2019 Biochar Meth_public Comment Draft

    9/137

    MethodologyforBiocharProjectsv1.0

    Page|8

    inthefuelfired. Incaseofboilersthatareusedonlyforthermal

    energygeneration (andnot forpowergeneration), theEfficiency

    is defined as the net quantity of useful heat generated per

    quantityofenergycontainedinthefuelfiredintheboiler.Incase

    ofpowerplantsproducingonlyelectricpower (notcogeneration

    plants),theEfficiencyisdefinedasthenetelectricitygeneratedby

    the power plant as a whole divided by the quantity of energy

    containedinthefuelfired.

    Feedstock: The material undergoing thermochemical processes to create

    Biochar. Feedstock materials for Biochar consist of Biogenic

    Biomass, but may also contain Diluents. (International Biochar

    Initiative2013).

    FixedCarbon: Fixed Carbon is the component of the Biochar that has been

    shown to be stable through the application of the Ultimate

    Analysisorotherwise,as required in theMethodology to assess

    thestabilityofthesequestrationofthecarbon.

    MaterialChange: Material Changes in Feedstock reflect shifts in Feedstock type

    from one source of biomass to a distinctly different source ofbiomass.InmixedFeedstocks,whetherprocessedorunprocessed,

    a 10% or greater shift in total Feedstock composition shall

    constituteaMaterialChangeinFeedstock.

    Material Changes in production processes reflect increases or

    decreases in process temperature or residence time.AMaterial

    Changeinthermochemicalproductionparametershasoccurredif

    processtemperature(alsoknownasheattreatmenttemperature)

    changes by +/ 50C, or if the thermochemical processing time

    (residence time) changesbymore than10%. SeeAppendix4ofthe IBIBiocharStandards(2013)formoreinformationonhowto

    determine Feedstock types that constitute aMaterialChange in

    type.

  • 8/12/2019 Biochar Meth_public Comment Draft

    10/137

    MethodologyforBiocharProjectsv1.0

    Page|9

    MobileBiochar

    Operations:

    MobileBiocharOperations areBiochar facilitiesthatarebuiltona

    trailerorthatotherwisecanberelocated.Theseoperationsmay

    bemovedonadailyorsimilarlyfrequentbasis.

    MunicipalWaste/

    MunicipalSolidWaste

    (MSW):

    ProjectProponent:

    Solid, nonhazardous refuse that originates from residential,

    industrial, commercial, institutional, demolition, land clearing or

    construction sources (Canadian Council of Ministers of the

    Environment2005).Municipalsolidwasteincludesdurablegoods,

    nondurable goods, containers and packaging, food wastes and

    yard trimmings, and miscellaneous inorganic wastes (US

    EnvironmentalProtectionAgency2011).

    An individualorentity thatundertakes,develops,and/orownsa

    project. This may include the project investor, designer, and/or

    owner of the lands/facilities on which project activities are

    conducted. TheProjectProponent and landowner/facilityowner

    maybedifferententities.

    ProximateAnalysis: Thismethodologicalapproachestablishes the lossofmaterialas

    samples are heated to predefined temperatures and typically

    reportsvolatilematter,FixedCarbon,moisturecontent,andashpresentinafuelasapercentageofdryfuelweight. International

    Standards under ASTM exist for this measure; the relevant

    methodisASTMD176284(2007).

    Pyrolysis: The thermochemical decomposition of a material or compound

    into a carbon rich residue, noncondensable combustible gases,

    andcondensablevapors,byheating intheabsenceofoxygen,or

    low oxygen environment, without any other reagents, except

    possiblysteam(UnitedNations2012c).

    SoilAmendment: Anymaterial added to soil to improve itsphysical and chemical

    properties, such as water retention, permeability, water

    infiltration, drainage, aeration and structure; for the goal of

  • 8/12/2019 Biochar Meth_public Comment Draft

    11/137

    MethodologyforBiocharProjectsv1.0

    Page|10

    providing an improved rooting environment (Davis and Wilson

    2005).

    SolidWasteDisposalSite

    (SWDS)Designated areas intended as the final storage place for solid

    waste. Stockpiles are considered a SWDS if (a) their volume to

    surfacearearatio is1.5or largerand if(b)avisual inspectionby

    the Department Of Environment or responsible governing body

    confirmsthatthematerialisexposedtoanaerobicconditions(i.e.

    ithasalowporosityandismoist).

    UltimateAnalysis:

    VerificationStatement:

    Verifier:

    Aquantitative analysisinwhichpercentagesofallelementsinthe

    substancearedetermined. InternationalStandardsunderASTM

    (www.astm.org)exist forUltimateAnalysis; the relevantmethod

    isASTMD317609(2005).

    A verification statement provides assurance that, through

    examination of objective evidence by a competent and

    independent third party, a GHG assertion is in conformity with

    applicablerequirements.

    A competent and independent person, persons or firmresponsible for performing the verification process. To conduct

    verificationtheverifiermustbeACRapproved.

  • 8/12/2019 Biochar Meth_public Comment Draft

    12/137

    MethodologyforBiocharProjectsv1.0

    Page|11

    2APPLICABILITYCONDITIONS

    1. ThisMethodologyisapplicabletoprojectsthatconvertvariousFeedstocksintoBiochar,

    where the only Feedstocks that meet the definition of Biomass Residues above are

    eligible under this Methodology. The project must not claim carbon credits for any

    Feedstock that is purposefully grown in an agricultural or forestry system whose

    primary function is to serve as a Feedstock to be converted to Biochar. Only waste

    residues (from agricultural and forestry products,Municipal SolidWastes, and other

    sourcesofbiomassbasedFeedstockmaterials)areeligibleasFeedstocks.Concernsof

    Feedstock sustainability pertaining to theoverharvestingof agricultural residues and

    the depletion of soil organic Carbon Stocks are addressed in Appendix 4. Baseline

    conditions claiming the combustion, aerobic or anaerobic decomposition, or

    combustionforbioenergyproductionofanyFeedstockmustbesubstantiatedusingthe

    AdditionalitytestdescribedinSection2.

    2. The Feedstock used to create Biochar offset credits must originate from a biomass

    source or be biogenic in nature; must meet the Feedstock expectations of the IBI

    BiocharStandards(2013);andmustmeettheapplicableSustainableFeedstockcriteria

    in Appendix 4. If Biochar has been produced from Feedstocks of mixed origin, the

    carboncontentof theFeedstockmustbeevaluated toassess thepercentbiomassor

    biogenic carbon content eligible for offset credit. All nonbiogenic material that is

    pyrolyzedmustbeaccountedforwithintheprojectemissions.

    3. AllBiocharproducedbytheprojectmustcomplywithalltherequirementsofthemost

    recentversionofthe InternationalBiocharInitiativesStandardizedProductDefinition

    and Product Testing Guidelinesfor Biochar That is Used in Soil (InternationalBiochar

    Initiative2013).ProjectProponentsmustannuallypresentappropriatedocumentation

    ofsuchcompliance.

    4. Theratioofhydrogentoorganiccarbon,asmeasuredaccordingtotheStandardTest

    MethodforEstimatingBiocharCarbonStabilitybythe InternationalBiochar Initiative

    (2013), is equal to or less than 0.7. The quantity of stable sequestered carbon ofBiochars with a hydrogen to organic carbon ratio of greater than 0.7 cannot be

    conservativelyassured.

  • 8/12/2019 Biochar Meth_public Comment Draft

    13/137

    MethodologyforBiocharProjectsv1.0

    Page|12

    5. TheBiocharproducedby theprojectmustbeapplied to landormixedwithanother

    soil,compost,oramendmentmedium.Suitableevidenceofapplicationtosoilormixing

    withSoilAmendmentsisrequired.

    Biochar that is specifically designed and intended as a Soil Amendment presents a

    disincentivetocombustionduetochangesin itsphysicalandchemicalcharacteristics,

    orpoor returnon investmentasa fuelsource.Assuranceof thestablesequestration

    value ofBiochar is therefore provided through attestations related to thematerials

    end use. Such end use attestations must be guaranteed by the presentation of

    substantiveproof,throughtheapplicationofBiochartosoil,thetypeofproductsold,

    the blending of Biochar with other amendment materials, and additional features

    describedbelow.

    EndUse:

    Substantive proof that Biochar is being applied to soil can be presented through

    agricultural records that indicate the application of Biochar to soil or its use as a

    horticulturalproduct;byindicatingthatBiocharhasbeenmixedorblendedwithother

    SoilAmendments,microbial inoculants, fertilizers andothernutrientproducts;orby

    presentinginformationontwoofthefollowing:

    a. SizeofParticles

    A size limitof less than2 inches (5.08 cm)as the longestdimensionhasbeenplaced on Biochar, such that larger pieces that could be perceived as fuel

    substitutes are avoided within all packaging and shipments of offseteligible

    Biochar.Smallerparticlesfacilitateeasierblendingwithadditionalamendments,

    andwithsoil.

    b. ComparisonofHeatingValueandPrice

    Presenting evidence of a low heating value to price, when compared to fuel

    charcoal demonstrates a disincentive to combustion. Since Biochar provides

    greaterpervolumeorperweightvalueasanoncombustedgood,combustionisless likely to occur when compared to a charcoal of greater heating value or

    lowerpricepoint.Biocharpricedoutsideofitsheatingvalueisnotcosteffective

    asa fuel.Providingpriceandheatingvalue (orBTU) information indicates that

    thereisaneconomicdisincentivetothecombustionofSoilAmendmentBiochar,

  • 8/12/2019 Biochar Meth_public Comment Draft

    14/137

    MethodologyforBiocharProjectsv1.0

    Page|13

    as it isofhighervaluewhenappliedtosoil. It isperceivedthatthemajorityof

    SoilAmendmentBiocharsaresoldatahigherpricepervolumeand/orpriceper

    weight than fuel charcoal, pricing Biochar outside of its heating value, and

    thereforenotcosteffectiveasafuel.

    c. Marketing

    IndicatingthatBiochar ispromotedandsoldasaSoilAmendment(throughthe

    inclusionofmarketingmaterials,linkstoawebsite,orothersimilarinformation).

    6. The technology used for producing Biochar must meet all applicable local, regional,

    state, andnationalairquality Standards in thenationofBiocharproduction.Project

    Proponents must present relevant documentation to indicate that regulatory

    expectationshavebeenmet.

    7. ThefacilitycreatingtheBiocharisoperatingunderapplicablefacilitypermits,withthe

    Biocharandcoproductshandledandutilized inkeepingwithall local, regional,state

    and federal regulations.ProjectProponentsmustpresent relevantdocumentation to

    indicatethatregulatoryexpectationshavebeenmet.

    8. The Project Proponent must demonstrate uncontested and exclusive claim to the

    ownership of the GHG benefits derived from the project activities. The Project

    ProponentmusthavedocumentationtoaddressandresolveallpotentialclaimstoGHG

    benefits by the Feedstock producer, Biochar producer, retailer and enduser. Anytransferofcarbonrightsmustbeclearlydocumented.

  • 8/12/2019 Biochar Meth_public Comment Draft

    15/137

    MethodologyforBiocharProjectsv1.0

    Page|14

    3PROJECTBOUNDARIES

    3.1GreenhouseGasandCarbonPoolBoundaries

    Sources,SinksandReservoirs(SSRs)includedintheprojectandbaselinequantificationinclude

    thosethatarewithintheprojectsite(thephysical,geographic locationofwherethePyrolysis

    of the Feedstocks into Biochar occurred), as well as others that are offsite. A generalized

    processflowdiagramofatypicalprojectandbaselinearepresented inFigure1andFigure2,

    respectively. The SSRs represented in those figures were compared and their relevance

    evaluated to determine if they should be included or excluded from the quantification

    Methodology. While Biochar may translocate, we assume that the proportion of carbon

    calculated to be stable remains sequestered regardless of its location, given that the stable

    carbon test methodology is conservatively based on harsh environments unlikely to be

    experiencedbytranslocatedbiochar.

    Tables2and3providejustificationfortheinclusionorexclusionofeachofthepotentialSSRsin

    theprojectandbaselineconditions.

  • 8/12/2019 Biochar Meth_public Comment Draft

    16/137

    MethodologyforBiocharProjectsv1.0

    Page|15

    Figure1:ProcessFlowDiagramfortheProjectCondition

    ProjectBoundary

    FeedstockProcessingand

    Drying

    PyrolysisorThermochemical

    Conversion

    NetElectricityConsumed

    AuxiliaryFuelUse

    FeedstockTransportation

    FeedstockProduction

    ProcessHeatUse

    BioOilProcessing

    SyngasProcessing

    BiocharBlending

    BTrans

    STrans

    BAp

    BTrans

  • 8/12/2019 Biochar Meth_public Comment Draft

    17/137

    MethodologyforBiocharProjectsv1.0

    Page|16

    FeedstockTransportation

    FeedstockProduction

    CombustionofFeedstock

    AnaerobicDecomposition

    ofFeedstock

    Aerobic

    DecompositionofFeedstock

    SoilAmendmentProduction

    SoilAmendment

    Transportation

    Figure2:ProcessFlowDiagramfortheBaselineCondition

    FossilGasUse

    HeatUseand/or

    Production

    FossilOilUse

    ElectricityProduction

  • 8/12/2019 Biochar Meth_public Comment Draft

    18/137

    MethodologyforBiocharProjectsv1.0

    Page|17

    Table2:GHGSources

    Source Gas Included? Justification/Explanation

    Baseline

    FeedstockProduction

    CO2 No Excluded.Thisisa

    conservativeassumption.CH4 No

    N2O No

    FeedstockTransportation

    CO2 No Excluded.Thisisa

    conservativeassumption.CH4 No

    N2O No

    AerobicDecompositionof

    Feedstock

    CO2 No

    BiogenicCO2emissionsare

    excluded.Thisisa

    conservativeassumption.

    CH4 YesIncludedasprimarysourcesof

    emissionsinthebaseline.

    N2O Yes

    AnaerobicDecomposition

    ofFeedstockinaSolid

    WasteDisposalSystemor

    Lagoon

    CO2 No

    BiogenicCO2emissionsare

    excluded. Thisisa

    conservativeassumption.

    CH4 Yes Included.Primarysourceof

    emissionsinthebaseline.N2O Yes

    CombustionofFeedstock

    CO2 No

    BiogenicCO2emissionsare

    excluded. Thisisa

    conservativeassumption.

    CH4 Yes Included.Primarysourceof

    emissionsinthebaseline.N2O Yes

  • 8/12/2019 Biochar Meth_public Comment Draft

    19/137

    MethodologyforBiocharProjectsv1.0

    Page|18

    SoilAmendmentProduction

    CO2 No Excluded.Thisisa

    conservativeassumption.CH4 No

    N2O No

    SoilAmendment

    Transportation

    CO2 No Excluded.Thisisa

    conservativeassumption.CH4 No

    N2O No

    SoilAmendment

    Application

    CO2 No Excluded.Thisisa

    conservativeassumption.CH4 No

    N2O No

    FossilOilUse

    CO2 Yes Included.Theemissions

    associatedwiththeuseof

    fossiloil,fossilgasandheat

    energythatwouldhavebeen

    requiredtocompensatefor

    theheatproducedinthe

    projectconditionmustbe

    accountedfor.

    Thisemissionsourceisnotto

    beincludediftheemissions

    associatedarecoveredunder

    anexistingcapandtradeor

    CH4 Yes

    N2O Yes

    FossilGasUse

    CO2 Yes

    CH4 Yes

    N2O Yes

    HeatUseand/orProductionCO2 Yes

    CH4 Yes

  • 8/12/2019 Biochar Meth_public Comment Draft

    20/137

    MethodologyforBiocharProjectsv1.0

    Page|19

    1If the project occurs in a region in which there is an emissions trading program or any other mechanism

    that includes GHG allowance trading, these emissions cannot be accounted for unless evidence isprovided that the GHG emission reductions associated with generating renewable energy (in the case offossil oil use, fossil gas use or heat production) or renewable electricity (in the case of electricityproduction) have not and will not be otherwise counted or used under the cap-and-trade program or othermechanism.

    N2O Yes

    otherregulatoryframeworkin

    thejurisdictionofBiochar

    production.1

    IfBiomassResidueswould

    havemadeenergyinthe

    baseline,theseemission

    sourcescannotbeincluded.

    ElectricityProduction

    CO2 Yes

    Included.Theemissions

    associatedwiththe

    productionofgridelectricitytocompensateforthe

    equivalentamountofpower

    producedintheproject

    condition.

    Thisemissionsourceisnotto

    beincludediftheproject

    occursinaDevelopedNationortheemissionsassociated

    couldpotentiallybecovered

    underanexistingcapand

    traderegulatoryframeworkin

    thejurisdictionofBiochar

    production.1

    CH4 Yes

    N2O Yes

  • 8/12/2019 Biochar Meth_public Comment Draft

    21/137

    MethodologyforBiocharProjectsv1.0

    Page|20

    2 If environmental credits, RECs or other forms of credit documentation have been issued, the Project

    Proponent shall either not include this emission source or provide evidence that the RECs have not beenused and have been cancelled from the environmental credit.

    Thisemissionsourceisalso

    notapplicableifthe

    environmentalbenefit

    associatedwiththerenewable

    electricityisalreadyclaimed

    andsold(forexampleasa

    RenewableEnergyCertificate

    (REC)).2

    IfBiomassResidueswouldhavegeneratedenergyinthe

    baseline,thisemissionsource

    cannotbeincluded.

  • 8/12/2019 Biochar Meth_public Comment Draft

    22/137

    MethodologyforBiocharProjectsv1.0

    Page|21

    Table2:GHGSources(continued)

    Source Gas Included? Justification/Explanation

    Project

    FeedstockProduction

    CO2 No Excluded.Theproductionof

    theFeedstockmaterialwould

    beequivalenttothe

    productionofresiduesona

    unitofproductionbasis. The

    exclusionofpurposegrown

    cropsensuresthatthe

    equivalencyismaintained. As

    such,itisconservativeto

    excludeconsiderationofthis

    source.

    CH4 No

    N2O No

    FeedstockTransportation

    CO2 Yes

    Included.Potentially

    importantemissionsource.

    CanbeexcludediftheProject

    Proponentcandemonstrate

    theemissionsareDeMinimis

    ortheFeedstocksoriginateat

    thesiteofthePyrolysisunit.

    CH4 No Excludedforsimplification.

    Thisemissionsourceis

    assumedtobeverysmall.N2O No

    ElectricityConsumed

    CO2 Yes

    Included.TheCO2emissions

    associatedwiththe

    consumptionofgridelectricity

    arelikelytohaveamaterial

    impactonprojects.

    CH4 No Excludedforsimplification.

    Thisemissionsourceis

    assumedtobeverysmall.N2O No

  • 8/12/2019 Biochar Meth_public Comment Draft

    23/137

    MethodologyforBiocharProjectsv1.0

    Page|22

    FeedstockProcessingand

    Drying

    CO2 Yes Includedasthissource/sinkis

    likelytohaveamaterial

    impactonprojects.CH4 Yes

    N2O Yes

    Pyrolysis,or

    Thermochemical

    Conversion,ofNon

    BiogenicFeedstock

    CO2 Yes Includedasthissource/sinkis

    likelytohaveamaterial

    impactonprojects.Biogenic

    emissionsareexcluded.

    CH4 Yes

    N2O Yes

    AuxiliaryFuelConsumption

    CO2 Yes Includedasthissource/sinkis

    likelytohaveamaterial

    impactonprojects.CH4 Yes

    N2O Yes

    BiocharTransportation

    CO2 No Excluded.Transportation

    wouldbeequivalenttothe

    BaselineScenario

    transportationforSoil

    Amendments.Further,the

    quantityofemissionsfrom

    transportingthismaterialis

    minimal,giventheeconomic

    limitationsoftransporting

    Biocharasignificantdistance.

    CH4 No

    N2O No

    BioOilProcessing

    CO2 Yes Includedasthissource/sinkis

    likelytohaveamaterial

    impactonprojects.CH4 Yes

    N2O Yes

    BioOilTransportation

    CO2 No Excludedasunderthemajorityofconfigurations,

    biooilisconsumedonsiteor

    includedwithinthebroader

    fueldeliverynetwork.

    CH4 No

    N2O No

  • 8/12/2019 Biochar Meth_public Comment Draft

    24/137

    MethodologyforBiocharProjectsv1.0

    Page|23

    Shippingdistancesforthis

    materialwouldbeminimal

    giventheeconomiclimitations

    associatedwithtransportingthesematerialssignificant

    distances.

    BioOilUse

    CO2 No

    CO2emissionsareexcluded

    becausetheyarebiogenic.

    CH4 Yes Includedasthissource/sinkis

    likelytohaveamaterialimpactonprojects.N2O Yes

    SyngasProcessing

    CO2 Yes Includedasthissource/sinkis

    likelytohaveamaterial

    impactonprojects.CH4 Yes

    N2O Yes

    SyngasTransportation

    CO2 No Excludedasunderthe

    majorityofconfigurations,

    syngasisconsumedonsiteor

    includedwithinthebroader

    fueldeliverynetwork.

    Shippingdistancesforthis

    materialwouldbeminimal

    giventheeconomiclimitations

    associatedwithtransporting

    thesematerialssignificant

    distances.

    CH4 No

    N2O No

    SyngasUseCO2 No

    CO2emissionsareexcluded

    becausetheyarebiogenic.

    CH4 Yes Includedasthissource/sinkis

  • 8/12/2019 Biochar Meth_public Comment Draft

    25/137

    MethodologyforBiocharProjectsv1.0

    Page|24

    Table3:CarbonPools

    CarbonPools Included? Justification/Explanation

    Baseline

    CarbonsequesteredinFeedstocks

    fortheprojectNo

    CarbonDioxideemissionsfromthecombustionordecomposition

    ofFeedstocks,whichareallwaste

    residues,areconsideredbiogenic.

    Project

    Stablecarbonsequesteredin

    BiocharYes

    Thisistheprimarysourceof

    emissionreductionscapturedby

    thisMethodology.

    Abovegroundbiomasswhere

    BiocharisintegratedNo

    Itisassumedthattheintegration

    ofBiocharintosoilswillincrease

    theirproductivityandtherefore

    increaseabovegroundbiomass.It

    isthereforeconservativeto

    N2O Yeslikelytohaveamaterial

    impactonprojects.

    ProcessHeatUse

    CO2 No Thissourceisexcludedastherearenoemissions

    associatedwithitsdirectuse.CH4 No

    N2O No

    BiocharApplication

    CO2 No Excluded.Emissions

    associatedwiththeactivityof

    applyingBiochartosoilwillbe

    equivalenttotheBaseline

    ScenarioofapplyingSoil

    Amendments.

    CH4 No

    N2O No

  • 8/12/2019 Biochar Meth_public Comment Draft

    26/137

    MethodologyforBiocharProjectsv1.0

    Page|25

    excludethispool.

    SoilorganiccarbonwheretheBiocharisintegrated

    No

    AdditionsofBiochartosoilhave

    beenobservedtobothenhance

    thestabilizationofexisting,native

    carboninthatsoil(referredtoas

    negativepriming)andtocauseit

    todecomposemorerapidly

    (calledpositivepriming).Woolf

    andLehmann(2012),inareview

    oftheliteratureonpriming,found

    negativeprimingtobeordersof

    magnitudelargerthanpositive

    priming.Whilepositivepriming

    mayoccasionallyoccur,itismore

    rareandlimitedtospecificsoil

    andenvironmentalconditionsnot

    commonlyfoundwhereBiocharis

    applied.Acorrectionfactorhas

    beenappliedtothenegative

    emissionsattributedtoBiochar

    sequestrationtoaddresstherisk

    ofpositivepriming.

    3.2TemporalBoundaries

    TheCreditingPeriodforthisprojecttypeissevenyears.

    Theminimumprojecttermissevenyears:Thisistheminimumlengthoftimeforwhicha

    ProjectProponentcommitstoprojectcontinuance,monitoringandverification.

  • 8/12/2019 Biochar Meth_public Comment Draft

    27/137

    MethodologyforBiocharProjectsv1.0

    Page|26

    4PROCEDUREFORDETERMININGTHEBASELINESCENARIO

    ANDADDITIONALITY

    4.1ProcedureforDeterminingtheBaselineScenario

    DefaultBaselineScenario:

    ItisassumedthattheBaselineScenarioforprojectsapplyingthisMethodologyconsistsofthe

    combustion of all Feedstocks with energy capture (heat and/or electricity) in a bioenergy

    productionfacility.BioenergyproductionhasbeenidentifiedasthemostconservativeBaseline

    Scenario for consideration under this Methodology as it represents the most conservative

    comparable alternativewhen considering the potentialGHG reductions from the use of the

    Feedstock.Further,thisconsidersthepotentialfortheseusestogenerateotherenvironmentalcredits. Citing bioenergy as the default Baseline Scenario results in the exclusion of all

    electricity,heat,biooil,andbiogasproduction,aswellasanegationofallbenefitsofmethane

    generation avoidance. Other Baseline Scenarios may exist, however, adequate proof of

    alternative baseline Feedstock usage must be provided in order tojustify using any non

    bioenergyBaselineScenariocalculations.

    Project Proponents must identify the bioenergy baseline for each individual Feedstock

    processedbytheirprojectforeitherofthefollowingFeedstockenduses:

    Thebiomassresidueisburnedinacontrolledmannertogenerateheatorelectricity

    thatiscapturedandused;

    Thebiomassresidueissoldtootherconsumersinthemarketandthepredominantuse

    oftheBiomassResiduesintheregion/countryisforenergypurposes(heatand/or

    powergeneration).

    TheProjectProponentshallestablishabaselineconditionforeachFeedstockprocessedbythe

    project.TheProjectProponenthastheoptiontoassumethatallFeedstockswouldhavebeen

    managed for bioenergy production, because this is the most conservative option. The table

    belowoutlineshowthedefaultbaselineconditionwillbeclassifiedthroughouttheremainder

    ofthisMethodology.

  • 8/12/2019 Biochar Meth_public Comment Draft

    28/137

    MethodologyforBiocharProjectsv1.0

    Page|27

    Table4:Defaultbaselineconditionparameter

    Defaultbaselinecondition BaselineconditioniParameter

    (FSi)Thebiomass residue isburnt inacontrolledmanner

    to generate heat or electricity that is captured and

    used.

    OR

    Thebiomassresidueissoldtootherconsumersinthe

    market and the predominant use of the Biomass

    Residuesintheregion/countryisforenergypurposes

    (heatand/orpowergeneration).

    Bioenergy

    production

    FSB

    AlternativeBaselineScenarios:

    AlternativeBaseline Scenarios for projects applying thisMethodology must be either 1) the

    decomposition of the Feedstock, under either aerobic or anaerobic conditions, or 2) the

    combustionoftheFeedstock,withoutenergycapture.Inallthesescenarios,carbonreturnsto

    the atmosphere as part of the biogenic carbon cycle. The combustion or decomposition

    processes may be controlled or uncontrolled. Appropriate evidence must be provided by

    ProjectProponents inorder toqualify foranyalternativenonbioenergyproductionBaselineScenario.

    Intheagriculturesector,thiscouldincludethelagoontreatmentorcompostingofagricultural

    residues and their reapplication to the land. In the forestry sector, this could include the

    decompositionofforestryresiduesontheforestfloor,lagoontreatmentofmillresidues,orthe

    combustionofthematerialwherethereisnoenergyrecovery.Forotherwastestreamssuchas

    food waste or other Feedstocks collected from industrial, commercial, institutional and

    residentialsources,thesematerialsmayeitherbedisposedof in landfills(withorwithoutgas

    capture),anaerobiclagoons,compostedorincinerated.

    IfanalternativeBaselineScenarioisused,ProjectProponentsmustdemonstratethatthisisthe

    mostreasonableandcrediblebaselineforeachindividualFeedstockprocessedbytheirproject

    using the most recent version of the methodological tool Combined tool to identify the

  • 8/12/2019 Biochar Meth_public Comment Draft

    29/137

    MethodologyforBiocharProjectsv1.0

    Page|28

    BaselineScenarioanddetermineAdditionalityaccessiblethroughtheUNFCCwebsite(United

    Nations2012d).

    Foreach sourceofbiomass residue, theProjectProponent shalluseStep 1: Identification of

    alternativescenariostotheproposedprojectactivitythatareconsistentwithcurrentlawsand

    regulations,toidentifyalternativeusesforthebiomassresidue.Thealternativestobeanalyzed

    foruseofBiomassResiduesinclude,interalia:

    Thebiomassresidueisdumpedorlefttodecayundermainlyaerobicconditions.This

    applies,forexample,todumpinganddecayofBiomassResiduesonfieldsorthe

    controlledcompostingoftheresidue;

    Thebiomassresidueisdumpedorlefttodecayunderclearlyanaerobicconditionsata

    SolidWasteDisposalSite(s)(SWDS); Thebiomassresidueismanagedunderclearlyanaerobicconditionsinawastewater

    lagoon.

    Thebiomassresidueisburntinanuncontrolledmannerwithoututilizingitforenergy

    purposes;

    Theproposedprojectactivityisundertakenwiththebiomassresiduebutwithoutbeing

    registeredasaCarbonOffsetproject(theBiomassResiduesarepyrolyzedbutno

    CarbonOffsetpaymentsaremade);

    Anyotheruseofthebiomassresidue(i.e.anaerobicdigestion).

    Step 2: Barrier analysis to eliminate alternatives to theproject activity thatfaceprohibitive

    barriers:

    Establish a complete list of barriers that would prevent alternative scenarios for the use of

    BiomassResidues tooccur in theabsenceof theCarbonOffsetproject. Indoing so, relevant

    local regulations governing the use of different technologies and technical specifications of

    Biocharproductsshouldbetakenintoaccount.

    Step3:InvestmentAnalysis:

    ThisStepservestodeterminewhichofthealternativescenariosintheshortlistremainingafterStep 2 is the most economically or financially attractive. For this purpose, an investment

    comparison analysis is conducted for the remaining alternative scenarios after Step2. If the

    investment analysis is conclusive, the economically or financially most attractive alternative

    scenarioisconsideredastheBaselineScenario.

  • 8/12/2019 Biochar Meth_public Comment Draft

    30/137

    MethodologyforBiocharProjectsv1.0

    Page|29

    Step4:CommonPracticeAnalysis

    ThepreviousStepsshallbecomplementedwithananalysisoftheextenttowhichtheproposed

    project type (i.e. technology or practice) has already diffused in the relevant sector and

    geographical area. This test is a credibility check to demonstrate Additionality which

    complementsthebarrieranalysis(Step2)and,whereapplicable,theinvestmentanalysis(Step

    3).

    Based on these steps, the Project Proponent shall establish a baseline condition for each

    Feedstockprocessedbytheproject.Thetablebelowoutlineshowthemostplausiblebaseline

    conditionwillbeclassifiedthroughouttheremainderofthisMethodology.

    Table5:Alternativebaselineconditionparameters

    Mostplausiblealternativebaselinecondition BaselineconditioniParameter

    (FSi)

    Thebiomassresidueisdumpedorlefttodecayunder

    mainlyaerobicconditions.Thisapplies, forexample,

    todumpinganddecayofBiomassResiduesonfields.

    Aerobic

    decomposition

    FSA

    Thebiomassresidueisdumpedorlefttodecayunder

    clearlyanaerobicconditionsataSolidWasteDisposal

    Sites(SWDS).

    Anaerobic

    decompositionin

    SWDS

    FSAn

    The biomass residue is managed under clearly

    anaerobicconditionsinawastewaterlagoon.

    Anaerobic

    decompositionin

    lagoon

    FSL

    The biomass residue is burnt in an uncontrolled

    mannerwithoututilizingitforenergypurposes;

    Combustion FSC

    If the most plausible baseline condition for biomass residue typej is not listed in the tableabove,theProjectProponentshalljustifyaconservativeassumptionforthebaselineconditioni

    oftheFeedstock.

  • 8/12/2019 Biochar Meth_public Comment Draft

    31/137

  • 8/12/2019 Biochar Meth_public Comment Draft

    32/137

    MethodologyforBiocharProjectsv1.0

    Page|31

    5QUANTIFICATIONOFGHGEMISSIONREDUCTIONSAND

    REMOVALS

    Note:valuesaregivenforeachparameterintheparametertablesin6.1and6.2.

    5.1BaselineEmissions

    BaselinequantificationinthisMethodologyisprojectionbased,usingprojectionsofreductions

    orremovalsintheprojecttoestimatethebaselineemissionsthatwouldhaveoccurredinthe

    absence of the project. Emissions under the baseline condition are determined using the

    followingequations:

    DefaultBaseline(Feedstockwouldhavebeenusedonlyforbioenergyproduction)

    , (1)

    Where:

    BEy=thesumofthebaselineemissionsinyeary

    BEB,y=emissionsduetothecombustionofFeedstockforbioenergyBproductioninyear

    y

    OR,withappropriateevidence:

    AlternativeBaseline:

    , , , , , , , , (2)

    Where:BEy=thesumofthebaselineemissionsinyeary

    BEA,y=emissionsduetotheaerobicdecompositionAofFeedstockinyeary

    BEAn,y=emissionsduetotheanaerobicdecompositionAnofFeedstockinanSWDSin

    yeary

  • 8/12/2019 Biochar Meth_public Comment Draft

    33/137

    MethodologyforBiocharProjectsv1.0

    Page|32

    BEL,y=emissionsduetotheanaerobicdecompositionofFeedstockinalagoonLinyear

    y

    BEC,y=emissionsduetothecombustionCofFeedstockwithoutbioenergyproductionin

    yeary

    BEE,y=auxiliaryemissionsduetotheuseofelectricityEinyeary

    BEO,y=auxiliaryemissionsduetotheuseoffossiloilOinyeary

    BEG,y=auxiliaryemissionsduetotheuseoffossilgasGinyeary

    BEH,y=auxiliaryemissionsduetotheuseofheatHinyeary

    Step1:Identifythebaselinecondition

    ProjectProponentsshallusethestepsoutlinedinSection4.1ofthisdocumenttodetermine

    theBaselineconditioniforeachFeedstock.

    Table6:BaselineConditions

    Baselineconditioni Parameter(FSi)

    Bioenergyproduction(default) FSB

    Aerobicdecomposition FSA

    AnaerobicdecompositioninaSWDS FSAn

    Anaerobicdecompositioninalagoon FSL

    Combustionwithoutbioenergyproduction FSC

    Every stream of Feedstock that is processed into Biochar is assumed to be diverted from

    bioenergyproductionunderthedefaultcalculations(Equation1),unlessotherwisejustifiedby

    the procedure for determining the Baseline Scenario. Alternative Feedstock diversions may

    include those foraerobicdecomposition,anaerobicdecomposition inaSolidWasteDisposal

    Site(SWDS)orinalagoon,orcombustionwithoutenergycapture,andareaddressedusingthe

    alternativecalculations(Equation2).

    Step2:IdentifytheFeedstockcomposition

    ThecompositionofFeedstock fromBiomassResiduesmayvaryandshouldbeclassified into

    thefollowingcategories:

  • 8/12/2019 Biochar Meth_public Comment Draft

    34/137

    MethodologyforBiocharProjectsv1.0

    Page|33

    Table7:FeedstockCategories

    Feedstocktypej Parameter(pj)

    Woodandwoodproducts PW

    Pulp,paperandcardboard(otherthansludge) PP

    Food,foodwaste,beveragesandtobacco(otherthan

    sludge)

    PF

    Textiles PT

    Garden,yardandparkwaste PG

    Glass,plastic,metal,otherinertwaste(nonbiogenic) PNB

    TheamountofFeedstocktypejpreventedfrombaselinedisposaliiscalculatedusingsampling

    asfollows:

    ,, , ,, (3)

    Where:

    FSi,j,y=theamountofFeedstocktypejpreventedfrombaselinedisposaliinyeary(t)

    FSi,y=totalamountofFeedstock preventedfrombaselinedisposaliinyeary(t)

    Pn,j,y

    =weightfractionoftheFeedstocktypej inthesamplencollectedduringyeary(t)

    Z=numberofsamplescollectedduringyeary

    Equation(3)determinesthefractionofeachindividualFeedstocktypeusedforonediscreet

    Biocharproductionevent(sameFeedstockblendratiosandsameproductionparameters).The

    massofeachFeedstocktype(e.g.straw)iscalculatedbyidentifyingthefractionitrepresentsin

    thetotalmassofincomingFeedstock.Thus,ifaFeedstockisa60:35:5blendofstraw,wood

    chips,andnonbiogenicmaterial(asidentifiedbyfollowingFeedstockdeterminationand

    samplingproceduresoutlinedintheIBIBiocharStandards(2013)),andthetotalvolumeof

    incomingFeedstockdivertedfromlandfilldisposalis240tonnesforyear1,thecalculationis:

    240t*0.6forstraw,240t*0.35forwoodchips,and240t*0.05fornonbiogenicmaterials,

    resultingin144,84,and12tonnesforstraw,woodchipsandnonbiogenicFeedstocks,

    respectively.ThissameproceduremaybeusedtoidentifythetotalvolumeofeachFeedstock

  • 8/12/2019 Biochar Meth_public Comment Draft

    35/137

    MethodologyforBiocharProjectsv1.0

    Page|34

    fraction,foreachdisposaltype,includingnonbiogenicmaterials.TheseFSi,j,yvalueswillbe

    usedinsubsequentcalculationstodeterminethetotalemissionreduction.

    Bioenergy

    Production

    (Default)

    The emissions due to the combustion of Feedstock for producing bioenergy (heat and/or

    electricity)arecalculatedasfollows:

    , , ,

    ; , ,

    (4)

    Where:

    BEB,y = Baseline emissions due to the combustion of Feedstock for bioenergy B

    productioninyeary

    FSB,j,y=theamountofFeedstocktypejpreventedfrombaselineconditionbioenergy

    productionBinyeary(t)

    EFCH4,i=theCH4emissionfactorfortheFeedstocktypejpreventedfromthebaseline

    conditioni(kgCH4/kg)

    EFN2O,i=theN2OemissionfactorfortheFeedstocktypejpreventedfromthebaseline

    conditioni(kgN2O/kg)

    AerobicDecomposition(Alternative)

    TheemissionsduetotheaerobicdecompositionofFeedstockarecalculatedasfollows:

    , ,, , ; ,, , (5)Where:

    BEA,y=BaselineemissionsduetotheaerobicdecompositionAofFeedstockinyeary

    FSA,j,y=thefractionofFeedstocktypejdivertedfromaerobicdecompositionAinyeary

    (t)

    EFACH4,y=theemissionfactorformethaneCH4pertonneofwastedivertedfromaerobic

    decompositionAvalidinyeary(tCH4/t)

    GWPCH4=GlobalWarmingPotentialofCH4(tCO2e/tCH4);21

  • 8/12/2019 Biochar Meth_public Comment Draft

    36/137

    MethodologyforBiocharProjectsv1.0

    Page|35

    EFAN2O,y= theemission factor fornitrousoxideN20per tonneofwastediverted from

    aerobicdecompositionA,validinyeary(tN2O/t)

    GWPN2O=GlobalWarmingPotentialofN2O(tCO2e/tN2O);3103

    AnaerobicDecompositioninaSWDS(Alternative)

    TheemissionsduetotheanaerobicdecompositionofFeedstockinanSWDSarecalculatedas

    follows:

    , 1 1 1612 ,

    ,, 1

    (6)

    Where:

    BEAn,y=BaselineemissionsduetotheanaerobicdecompositionAnofFeedstockinan

    SWDSinyeary

    =Modelcorrectionfactortoaccountformodeluncertaintiesforyearyfy=therecoveredmethaneatthelandfillinyeary(%)

    GWPCH4=theGlobalWarmingPotentialofmethaneCH4(tCO2e/tCH4);21

    OX=theoxidationfactor(reflectingtheamountofmethanefromSWDSthatisoxidized

    inthesoilorothermaterialcoveringthewaste)

    16/12=RatioofmolecularweightsofMethane(16)toCarbon(12)

    F=thefractionofmethaneintheSWDSgas(%)

    DOCf,y=thefractionfofdegradableorganiccarbonthatdecomposesunderthespecific

    conditionsoccurringintheSWDSforyeary

    MCFy=Methaneconversionfactorforyeary

    FSan,j,y= theamountofFeedstock typejprevented frombaselineconditionanaerobic

    decompositionANinanSWDSinyeary(t)

    DOCj=thedegradableorganiccarbonintheFeedstocktypejkj=thedecayratefortheFeedstocktypej(l/yr)

    3SAR100GWPvaluesforCH4andN2O,fromtheIPCCFourthAssessmentReport(AR4),WorkingGroup1,Chapter

    2,Table2.14(page212)athttp://ipccwg1.ucar.edu/wg1/Report/AR4WG1_Print_Ch02.pdf.

  • 8/12/2019 Biochar Meth_public Comment Draft

    37/137

    MethodologyforBiocharProjectsv1.0

    Page|36

    AnaerobicDecompositioninaWastewaterLagoon(Alternative)

    TheemissionsduetotheanaerobicdecompositionofFeedstockinawastewaterlagoonare

    calculatedasfollows:

    , , (7)Where:

    BELy =Baselinemethane emissions from the anaerobic treatment ofwastewater in

    openanaerobic lagoons L,orof sludge in sludgepits in theabsenceof theproject

    activityinyeary(tCO2e)

    BELCH4,MCFy=Baseline lagoonLmethaneCH4emissions(tCO2e)determinedusingthe

    MethaneConversionFactor(MCFy)BELN2O,y=AnnualbaselineoflagoonLN2Oemissionsin(tCO2e/yr)

    The methane emissions due to the anaerobic decomposition of Feedstock in a wastewater

    lagoonarecalculatedasfollows:

    , (8)Where:

    BELCH4,MCFy=BaselinelagoonLmethaneCH4emissions(tCO2e)determinedusingthe

    MethaneConversionFactor(MCFy)GWPCH4=theGlobalWarmingPotentialofmethaneCH4(tCO2e/tCH4);21

    MCFBLy=AveragebaselineB lagoon Lmethane conversion factor (fraction) inyear y,

    representingthefractionof(CODBLyxBo)thatwouldbedegradedtoCH4intheabsence

    oftheprojectactivity

    Bo=Maximummethaneproductioncapacity,expressing themaximumamountofCH4

    thatcanbeproducedfromagivenquantityofchemicaloxygenOdemand(tCH4/tCOD)

    CODBLy = Baseline B quantity of chemical oxygen demand that would be treated in

    anaerobiclagoonsLorsludgepitsintheabsenceoftheprojectactivityinyeary(tCOD)

    0.89(9)

    Where:

  • 8/12/2019 Biochar Meth_public Comment Draft

    38/137

    MethodologyforBiocharProjectsv1.0

    Page|37

    MCFBLy=AveragebaselineBlagoonLmethaneconversionfactor(fraction)inyeary,

    representingthefractionof(CODBLyxBo)thatwouldbedegradedtoCH4intheabsence

    oftheprojectactivity.

    fd=Factorexpressingtheinfluenceofthedepthdoftheanaerobiclagoonorsludgepit

    onmethanegeneration

    fTy=FactorexpressingtheinfluenceofthetemperatureTonthemethanegenerationin

    yeary

    0.89=Conservativenessfactor

    ThemonthlyvalueoffTyiscalculatedasfollows,usingthevantHoffArrhenius

    approach:

    fTy=0.104;ifT2,m302.5K

    (10)

    Where:

    fTy=FactorexpressingtheinfluenceofthetemperatureTonthemethanegenerationin

    yeary.

    e=Activationenergyconstant(15,175cal/mol)

    T2,m=AveragetemperatureTattheprojectsiteinmonthm(K)

    Tl=303.15K(273.15K+30K)R=IdealGasConstant(1.986cal/Kmol)

    m=Monthsofyearyofthecreditingperiod.

    TheannualvalueoffTyiscalculatedasfollows:

    , ,

    (11)

    Where:

    fTy=FactorexpressingtheinfluenceofthetemperatureTonthemethanegenerationin

    yeary.

    fTm=FactorexpressingtheinfluenceofthetemperatureTonthemethanegenerationin

    monthm.

  • 8/12/2019 Biochar Meth_public Comment Draft

    39/137

    MethodologyforBiocharProjectsv1.0

    Page|38

    CODavailable,m=Quantityofchemicaloxygendemandavailablefordegradationinthe

    anaerobiclagoonorsludgepitinmonthm(tCOD)

    CODBL,m=BaselineBquantityofchemicaloxygendemandthatwouldbetreatedin

    anaerobiclagoonLorsludgepitsintheabsenceoftheprojectactivityinmonthm

    (tCOD)

    m=monthsoftheyearyofthecreditingperiod.

    Foreachmonthm, thequantityofwastewaterdirected to theanaerobic lagoon, the

    quantityoforganic compounds thatdecay and thequantityof anyeffluent from the

    lagoon isbalanced,giving thequantityofCOD that isavailable fordegradation in the

    next month. The amount of organic matter available for degradation to methane

    (CODavailable,m) isassumed tobeequal to theamountoforganicmatterdirectedto the

    anaerobiclagoonorsludgepit,lessanyeffluent,plustheCODthatmayhaveremained

    inthelagoonorsludgepitfromthepreviousmonthsasfollows:

    , , 1 , ,with

    1 ,, and

    , ,, ,

    (12)

    Where:

    CODavailable,m=Quantityofchemicaloxygendemandavailablefordegradationinthe

    anaerobiclagoonorsludgepitinmonthm(tCOD)

    m=monthsoftheyearyofthecreditingperiod

    CODBL,m=BaselineBquantityofchemicaloxygendemandthatwouldbetreatedin

    anaerobiclagoonsorsludgepitsintheabsenceoftheprojectactivityinmonthm(tCOD)

    fT,m1=FactorexpressingtheinfluenceofthetemperatureTonthemethanegeneration

    inmonthm1

    CODout,x=CODoftheeffluentoutinperiodx(tCOD)

  • 8/12/2019 Biochar Meth_public Comment Draft

    40/137

  • 8/12/2019 Biochar Meth_public Comment Draft

    41/137

    MethodologyforBiocharProjectsv1.0

    Page|40

    CODAD,m=Chemicaloxygendemandinthewastewaterorsludgethatistreatedinthe

    PyrolysisunitorunderclearlyaerobicconditionsADintheprojectactivityinmonthm

    (tCOD/m3)

    m=monthsofyearyofthecreditingperiod

    Thenitrousoxideemissionsduetothenitrification/denitirificationofmanureFeedstocks ina

    wastewaterlagoonarecalculatedasfollows:

    , , 11000 ,, ,, (15)Where:

    BELN2O,y=Baselineemissionsof lagoonLN2Odue tothenitrification/denitirificationof

    manureFeedstocks(tCO2e)

    GWPN2O=GlobalWarmingPotential(GWP)forN2O(tCO2e/tN2O);310

    CFN2ON,N=ConversionfactorN2ONtoN2O(44/28)

    ELN2O,D,y=DirectDN2Oemissioninyeary(tN2ON/year)

    ELN2O,ID,y=IndirectIDN2Oemissioninyeary(tN2ON/year)

    ,, ,, , ,

    (16)

    ,, , ,,,

    , ,

    (17)

    Where:

    ELN2O,D,y=DirectDlagoonLN2Oemissioninyeary(tN2ON/year)

    ELN2O,ID,y=IndirectIDlagoonLN2Oemissioninyeary(tN2ON/year)

    EFLN2O, D,j=Direct D lagoon L N2Oemission factor for the treatment systemjof the

    manuremanagementsystem(tN2ON/tN)

    QEM, m = Monthly volume of the effluent mix EM entering the manure management

    system(m3/month)monthm

    [N]EM, m = Monthly total nitrogen concentration in the effluent mix EM entering the

    manuremanagementsystem(tN/m3)monthm

  • 8/12/2019 Biochar Meth_public Comment Draft

    42/137

    MethodologyforBiocharProjectsv1.0

    Page|41

    EFLN2O,ID=IndirectIDlagoonLN2OemissionfactorforN2Oemissionsfromatmospheric

    depositionofnitrogenonsoilsandwatersurfaces(tN2ON/tNH3NandNOxN)

    FgasMS,j, LT=Defaultvalues fornitrogen lossdue tovolatilizationofNH3andNOx from

    manuremanagement(fraction)

    Combustion(Alternative)

    The emissions due to the combustion of Feedstock without bioenergy production are

    calculatedasfollows:

    , ,, ,

    ; ,, ,

    (18)

    Where:

    BEC,y=baselineemissionsdue to thecombustionCofFeedstockwithoutbioenergy

    production(tCO2e)inyeary

    FSC,j,y=theamountofFeedstocktypejpreventedfrombaselineconditioncombustion

    Cinyeary(t)

    EFCH4,i = the CH4 emission factor for combustion of the Feedstock typej baseline

    condition(pathwaysi)(kgCH4/kg)

    GWPCH4=GlobalWarmingPotentialofCH4(tCO2e/tCH4);21

    EFN2O,i=theN2OemissionfactorforcombustionoftheFeedstocktypej(kgN2O/kg)

    GWPN2O=GlobalWarmingPotentialofN2O(tCO2e/tN2O);310

    ElectricityProduction

    The emissions due to the production of electricity that would have been required to

    compensatefortherenewableelectricityproducedintheprojectconditionarecalculatedas

    follows:

    , , (19)Where:

  • 8/12/2019 Biochar Meth_public Comment Draft

    43/137

    MethodologyforBiocharProjectsv1.0

    Page|42

    BEE,y=baselineemissionsduetotheproductionofelectricityEthatwouldhavebeen

    required to compensate for the renewable electricity produced in the project

    condition(tCO2e)

    ER,y= thenetquantityof renewableelectricityRgenerated in theprojectcondition

    andusedoffsiteinyeary(kWh)

    EFGrid=theregionalelectricitygridemissionfactor(kgCO2e/kWh)

    ThesebaselineemissionsBEE,y,however,cannotbeaccountedforinthefollowingscenarios:

    1. TheDEFAULTbaselinebioenergyproductionhasbeenindicatedfortheproject.If

    anyportionoftheFeedstockusedbytheprojectwouldhavebeenusedfor

    bioenergyproductioninthebaseline,theProjectProponentcannotaccountforBEE,y

    2. Ifelectricityemissionsarecoveredbyanexistingregulatoryframework(likeacapandtradeprogram,arequirementtoreportGHGemissions,oranyothertracking

    andregulationofGHGGHGGHGemissions)inthejurisdictionoftheBiochar

    production,theProjectProponentcannotaccountforBEE,y.

    3. IftheprojectoccursinanAnnex1county,theProjectProponentcannotaccountfor

    BEE,ybecausetheemissionreductionsareindirect.

    4. Iftheprojectisgenerating,claimingandsellingRenewableEnergyCertificates(RECs)

    orotherenvironmentalcredits,theProjectProponentcannotaccountforBEE,y.If

    RECshavebeenissued,theProjectProponentshalleithernotincludethisemission

    sourceorprovideevidencethattheRECshavenotbeenusedandhavebeencancelledfromtheenvironmentalcreditprogram.

    Oil

    Theemissionsduetotheuseoffossiloilthatwouldhavebeenrequiredtocompensatefor

    thebiooilproducedintheprojectconditionarecalculatedasfollows:

    , , ;, ; , %

    (20)

    Where:

  • 8/12/2019 Biochar Meth_public Comment Draft

    44/137

    MethodologyforBiocharProjectsv1.0

    Page|43

    BEO,y=baselineemissionsduetotheuseoffossiloilOthatwouldhavebeenrequired

    tocompensateforthebiooilproducedintheprojectcondition(tCO2e)

    Fueli,y=thevolumeofeachtypeofliquidfuelitogenerateanequivalentamountof

    biooilonanenergybasisinyeary(L,m3orother)

    Oy=thevolumeofbiooilproducedintheprojectconditioninyeary(L,m3orother)

    %i=thepercentageofeachtypeoffueloffset(%)

    EFCO2.=theCO2emissionfactorforeachtypeoffuel(kgCO2/L,m3orother)

    EFCH4.=theCH4emissionfactorforeachtypeoffuel(kgCH4/L,m3orother)

    GWPCH4=GlobalWarmingPotentialofCH4(tCO2e/tCH4);21

    EFN2O.=theN2Oemissionfactorforeachtypeoffuel(kgN2O/L,m3orother)

    GWPN2O=GlobalWarmingPotentialofN2O(tCO2e/tN2O);310

    Thesebaselineemissions, however,cannotbeaccountedforinthefollowingscenarios:1. TheDEFAULTbaselinebioenergyproductionhasbeenindicatedfortheproject.If

    anyportionoftheFeedstockusedbytheprojectwouldhavebeenusedfor

    bioenergyproductioninthebaseline,theProjectProponentcannotaccountfor

    BEO,y.

    2. Iffossiloiliscoveredbyanexistingregulatoryframework(likeacapandtrade

    program,arequirementtoreportGHGemissions,oranyothertrackingand

    regulationofGreenhouseGasemissions)inthejurisdictionoftheBiochar

    production,theProjectProponentcannotaccountforBEO,y.

    Gas

    Theemissionsduetotheuseoffossilgasthatwouldhavebeenrequiredtocompensatefor

    thesyngasproducedintheprojectconditionarecalculatedasfollows:

    , , ;,

    ; ,

    % (21)

    Where:

  • 8/12/2019 Biochar Meth_public Comment Draft

    45/137

    MethodologyforBiocharProjectsv1.0

    Page|44

    BEG,y=baselineemissionsduetotheuseoffossilgasGthatwouldhavebeenrequired

    tocompensateforthesyngasproducedintheprojectcondition(tCO2e)

    Fueli,y=thevolumeofeachtypeofgaseousfuelitogenerateanequivalentamountof

    syngasonanenergybasisinyeary(L,m3orother)

    Gy=thevolumeofsyngasproducedintheprojectconditioninyeary(L,m3orother)

    %i=thepercentageofeachtypeoffuelioffset(%)

    EFCO2.=theCO2emissionfactorforeachtypeoffuel(kgCO2/L,m3orother)

    EFCH4.=theCH4emissionfactorforeachtypeoffuel(kgCH4/L,m3orother)

    GWPCH4=GlobalWarmingPotentialofCH4(tCO2e/tCH4);21

    EFN2O.=theN2Oemissionfactorforeachtypeoffuel(kgN2O/L,m3orother)

    GWPN2O=GlobalWarmingPotentialofN2O(tCO2e/tN2O);310

    Thesebaselineemissions, however,cannotbeaccountedforinthefollowingscenarios:1. TheDEFAULTbaselinebioenergyproductionhasbeenindicatedfortheproject.If

    anyportionoftheFeedstockusedbytheprojectwouldhavebeenusedfor

    bioenergyproductioninthebaseline,theProjectProponentcannotaccountfor

    BEG,y.

    2. Iffossilgasiscoveredbyanexistingregulatoryframework(likeacapandtrade

    program,arequirementtoreportGHGemissions,oranyothertrackingand

    regulationofGHGemissions)inthejurisdictionoftheBiocharproduction,the

    ProjectProponentcannotaccountforBEG,y.

    Heat

    Theemissionsduetotheproductionofheatthatwouldhavebeenrequiredtocompensate

    fortheheatproducedintheprojectconditionarecalculatedasfollows:

    , , ;,

    ; ,

    %/ %(22)

    Where:

  • 8/12/2019 Biochar Meth_public Comment Draft

    46/137

    MethodologyforBiocharProjectsv1.0

    Page|45

    BEH,y = baseline emissions due to the production of heat H that would have been

    requiredtocompensatefortheheatproducedintheprojectcondition(tCO2e)

    Fueli,y=thevolumeoffuel(fueltypei)togenerateequivalentheatonanenergybasisin

    yeary(L,m3orother)

    Hy=theheatloadproducedundertheprojectconditioninyeary(GJ)

    %i=thepercentageofeachtypeoffueloffset(%)

    NCVFueli=thenetcalorificvalueofeachtypeoffuelioffsetbytheproject(GJ/L,m3or

    other)

    %eff = the percentage of Efficiency eff of the thermal energy heating system (%)

    EFCO2.=theCO2emissionfactorforeachtypeoffuel(kgCO2/L,m3orother)

    EFCH4.=theCH4emissionfactorforeachtypeoffuel(kgCH4/L,m3orother)

    GWPCH4=GlobalWarmingPotentialofCH4(tCO2e/tCH4);21

    EFN2O.=theN2Oemissionfactorforeachtypeoffuel(kgN2O/L,m3orother)

    GWPN2O=GlobalWarmingPotentialofN2O(tCO2e/tN2O);310

    Thesebaselineemissions, however,cannotbeaccountedforinthefollowingscenarios:1. TheDEFAULTbaselinebioenergyproductionhasbeenindicatedfortheproject.If

    anyportionoftheFeedstockusedbytheprojectwouldhavebeenusedfor

    bioenergyproductioninthebaseline,theProjectProponentcannotaccountfor

    BEH,y.

    2. Iffueliiscoveredbyanexistingregulatoryframework(likeacapandtradeprogram,

    arequirementtoreportGHGemissions,oranyothertrackingandregulationofGHG

    emissions)inthejurisdictionoftheBiocharproduction,theProjectProponent

    cannotaccountforBEH,y.

    5.2ProjectEmissions

    Emissions under the project condition (in tonnes CO2e) are determined using the following

    equation:

    , , , , , , , , , , , (23)

    Where:

  • 8/12/2019 Biochar Meth_public Comment Draft

    47/137

    MethodologyforBiocharProjectsv1.0

    Page|46

    PEy=thesumoftheprojectemissionsinyeary(tCO2e)

    PETR,y=emissionsduetothetransportationTofFeedstocksinyeary(tCO2).

    PEP,y=emissionsassociatedwiththeprocessingPanddryingofFeedstockinyeary(t

    CO2e)

    PEPy,y=emissionsduetothecombustionofauxiliaryfuelforthepurposeofPyrolysisPy,

    orthermalconversionofFeedstockinyeary(tCO2e)

    PEE,y =auxiliaryemissionsfromthenetconsumptionofelectricityEundertheproject

    conditioninyeary(tCO2e)

    PEPNB,y=emissionsduetothePyrolysisPofnonbiogenicNBFeedstockmaterialsinyear

    y(tCO2e)

    PEB,y=auxiliaryemissionsduetotheblendingofBiocharBinyeary(tCO2e)

    PEOP,y.=auxiliaryemissionsduetotheprocessingofbiooilOPinyeary(tCO2e)

    PEGP,y=auxiliaryemissionsduetotheprocessingofsyngasGPinyeary(tCO2e)

    PEOU,y=auxiliaryemissionsduetotheuseofbiooilOUinyeary(tCO2e)

    PEGU,y=auxiliaryemissionsduetotheuseofsyngasGUintheyeary(tCO2e)

    CBS,y=carbonsequestrationSassociatedwiththeappropriateenduseand/orinsitu

    applicationofBiocharBinyeary(tCO2e)

    FeedstockTransportation

    In cases where the BiomassResidues are not generated directly at the project site, ProjectProponents shall determine CO2 emissions resulting from transportation of the Biomass

    ResiduestotheprojectplantusingthelatestversionofthetoolProjectandLeakageemissions

    fromroadtransportationoffreightfromtheCleanDevelopmentMechanism.PETR,minthetool

    corresponds to theparameterPETR,y in thisMethodologyand themonitoringperiodm isone

    year.

    ProcessingandDryingFeedstock

    TheemissionsassociatedwiththeprocessinganddryingofFeedstockarecalculatedasfollows:

    , ,, ;,, ; ,,

    (24)

  • 8/12/2019 Biochar Meth_public Comment Draft

    48/137

    MethodologyforBiocharProjectsv1.0

    Page|47

    Where:

    PEP,y=projectemissionsassociatedwith theprocessingPanddryingofFeedstock in

    yeary(tCO2e)

    FuelP,i,y = the volume of each type of fuel used for drying in year y (L, m3 or other)

    EFCO2.=theCO2emissionfactorforeachtypeoffuel(kgCO2/L,m3orother)

    EFCH4.=theCH4emissionfactorforeachtypeoffuel(kgCH4/L,m3orother)

    GWPCH4=GlobalWarmingPotentialofCH4(tCO2e/tCH4);21

    EFN2O.=theN2Oemissionfactorforeachtypeoffuel(kgN2O/L,m3orother)

    GWPN2O=GlobalWarmingPotentialofN2O(tCO2e/tN2O);310

    AuxiliaryFuelCombustion

    TheemissionsduetothecombustionofauxiliaryfuelforthepurposeofPyrolysisorthermal

    conversionofFeedstockarecalculatedasfollows:

    . ,, ;,, ; ,,

    (25)

    Where:

    PEPY,y=projectemissionsduetothecombustionofauxiliaryfuelforthepurposeof

    PyrolysisPYorthermalconversioninyearyofFeedstock(tCO2e)

    FuelPY,i,y=thevolumeofeachtypeofPyrolysisPYorthermalconversionfuel(fueltypei)

    usedinyeary(L,m3orother)

    EFCO2.=theCO2emissionfactorforeachtypeoffuel(kgCO2/L,m3orother)

    EFCH4.=theCH4emissionfactorforeachtypeoffuel(kgCH4/L,m3orother)

    GWPCH4=GlobalWarmingPotentialofCH4(tCO2e/tCH4);21

    EFN2O.=theN2Oemissionfactorforeachtypeoffuel(kgN2O/L,m3orother)

    GWPN2O=GlobalWarmingPotentialofN2O(tCO2e/tN2O);310

    ElectricityConsumption

    Theemissionsduetotheconsumptionofelectricity intheprojectconditionarecalculatedas

    follows:

  • 8/12/2019 Biochar Meth_public Comment Draft

    49/137

    MethodologyforBiocharProjectsv1.0

    Page|48

    , , (26)Where:

    PEE,y=projectemissionsduetotheconsumptionofelectricityEintheprojectcondition(tCO2e)EG,y=thequantityofgridGelectricityconsumedintheprojectconditioninyeary(kWh)

    EFGrid=theregionalelectricitygridemissionfactor(kgCO2e/kWh)

    If the project occurs in a country or region in which there is an operational capandtrade

    system,requirementtoreportGreenhouseGasemissions,oranyothertrackingandregulation

    ofGHGemissionsthatcoversthiselectricity,theseemissionsstillneedtobeaccountedfor.If,

    inthebaseline,auxiliaryemissionsduetotheuseofelectricity(BEE,y)arenotaccountedforand

    totalelectricitybeinggeneratedbytheprojectactivitiesinyearyisgreaterthanorequaltothe

    projectselectricity consumption in year y, then thequantityofelectricity consumedby the

    projectdoesnotneedtobeaccountedforand,.shallbe0.NonBiogenicPyrolysis

    The emissions due to the Pyrolysis of nonbiogenic Feedstock materials are calculated as

    follows:

    , , , ; , ; , (27)

    Where:

    PEPNB,y=projectemissionsduetothePyrolysisofnonbiogenicPNBFeedstockmaterials

    inyeary(tCO2e)

    FSPNBi,y=theamountofnonbiogenicFeedstock(feedstocktypei)PyrolyzedPNBinyear

    y(t)

    EFCO2,=theCO2emissionfactorforthenonbiogenicFeedstock(kgCO2/kg)

    EFCH4,NB=theCH4emissionfactorforthenonbiogenicNBFeedstock (kgCH4/kg)

    GWPCH4=GlobalWarmingPotentialofCH4(tCO2e/tCH4);21

    EFN2O,NB=theN2OemissionfactorforthenonbiogenicNBFeedstock (kgN2O/kg)

    GWPN2O=GlobalWarmingPotentialofN2O(tCO2e/tN2O);310

  • 8/12/2019 Biochar Meth_public Comment Draft

    50/137

  • 8/12/2019 Biochar Meth_public Comment Draft

    51/137

    MethodologyforBiocharProjectsv1.0

    Page|50

    FuelforBlendingBiochar

    TheauxiliaryemissionsduetotheblendingofBiochararecalculatedasfollows:

    , , ; , ; ,

    (30)

    Where:

    PEBl,y=projectemissionsduetotheblendingofBiocharBI(tCO2e)

    FuelBLi,y = the volume of each type of fuel i used in year y (L, m3 or other)

    EFCO2.=theCO2emissionfactorforeachtypeoffuel(kgCO2/L,m3orother)

    EFCH4.=theCH4emissionfactorforeachtypeoffuel(kgCH4/L,m3orother)

    GWPCH4=GlobalWarmingPotentialofCH4(tCO2e/tCH4);21

    EFN2O.=theN2Oemissionfactorforeachtypeoffuel(kgN2O/L,m3orother)

    GWPN2O=GlobalWarmingPotentialofN2O(tCO2e/tN2O);310

    BioOilUse

    Theauxiliaryemissionsduetotheuseofbiooilarecalculatedasfollows:

    , , ; ,

    (31)

    Where:

    PEOU,y=projectemissionsduetotheuseofbiooilOUinyeary(tCO2e)

    FuelOUi,y = the volume of each type of fuel i used in year y (L, m3 or other)

    EFCH4.=theCH4emissionfactorforbiooilused(kgCH4/L,m3orother)

    GWPCH4=GlobalWarmingPotentialofCH4(tCO2e/tCH4);21EFN2O.=theN2Oemissionfactorforbiooilused(kgN2O/L,m

    3orother)

    GWPN2O=GlobalWarmingPotentialofN2O(tCO2e/tN2O);310

    SyngasUse

  • 8/12/2019 Biochar Meth_public Comment Draft

    52/137

    MethodologyforBiocharProjectsv1.0

    Page|51

    Theauxiliaryemissionsduetotheuseofsyngasarecalculatedasfollows:

    , , ; , (32)

    Where:

    PEGU,y=projectemissionsduetotheuseofsyngasGUinyeary(tCO2e)

    FuelGUi,y = the volume of each type of fuel i used in year y (L, m3 or other)

    EFCH4.=theCH4emissionfactorforsyngasused(kgCH4/L,m3orother)

    GWPCH4=GlobalWarmingPotentialofCH4(tCO2e/tCH4);21

    EFN2O.=theN2Oemissionfactorforsyngasused(kgN2O/L,m3orother)

    GWPN2O=GlobalWarmingPotentialofN2O(tCO2e/tN2O);310

    BiocharinSitu

    Thesequestrationassociatedwiththeappropriateenduseand/orapplicationofBiocharinsitu

    iscalculated followingproceduresandmeasurementsoutlined in theStandardTestMethod

    forEstimatingBiocharCarbonStabilitybythe InternationalBiochar Initiative(2013),which is

    Appendix 1 in this Methodology. The stability of carbon in Biochar is calculated first by

    determining the ratio of hydrogen to organic carbon within the Biochar, and then through

    comparing that ratio toa seriesof100+ year stability values thatweredetermined through

    extensiveconsultationwithsoilscientists,BiocharscientistsandBiocharproducersaspartof

    thedevelopmentoftheBiocharcarbonstabilitydocumentation.Theorganiccarbonratioand

    the100+yearstabilityvaluearetheninsertedintothefollowingformulatocalculatethemass

    of sequestered carbon in Biochar. (Appendix 1 is the test method and Appendix 2 is the

    justificationforthismethod.)

    ,, , ,, 100 ,/1004412 0.95

    (33)

    Where:

    CBS,y=Stable100yearsequestrationBSassociatedwiththeappropriateenduseand/or

    insituapplicationofBiochar typej (whichwasproducedwithaconsistentFeedstock

  • 8/12/2019 Biochar Meth_public Comment Draft

    53/137

    MethodologyforBiocharProjectsv1.0

    Page|52

    type under uniform production parameters, following the IBI Biochar Standards

    (InternationalBiocharInitiative2013))inyeary(tCO2e)

    BCj,y=MassofBiochartypejinyeary(metrictonnes)

    Corg,j,y=OrganicCarbonratioasapercentageofBiocharjinyeary

    BC+100=percentageofBiocharcarbonthatisstableforatleast100yearsinsitu

    Mj,y=moisturecontent%ofBiochartypejinyeary

    44/12=molarratioofcarbondioxidetocarbon

    0.95 = correction factor used to account for any possible positive priming effect of

    addingBiochartosoil(Formoreinformation,pleaserefertotheBiocharcarbonstability

    documentationinAppendix3(InternationalBiocharInitiative2013a).

    These measurements and calculations must be repeated for each subsequent year of

    production or after any Material Change in Feedstock or process activity as outlined in the

    Standard Test Method for Estimating Biochar Carbon Stability document (International

    BiocharInitiative2013a).

    5.3Leakage

    Restricting Biochar production to nonpurposegrown Feedstocks will prevent Leakage from

    upstreamsources.Further,LeakageduetothedepletionofsoilorganicCarbonStocksandthe

    potential for overharvesting organic agricultural residue is addressed in Appendix 2. The

    provisions of this Methodology require documentation supporting the end use of Biochar,

    limitingtheriskofLeakagebyprovidingtangible,substantiveevidenceofstablesequestration.

    Leakagecouldoccur if, in theabsenceoftheproject,theBiomassResidueswouldhavebeen

    used togeneraterenewableenergy.WhenaPyrolysisunit isoptimized tomakebothenergy

    andBiochar,itwillmakelessenergythanabiomassfacilitywhichisoptimizedtomakeenergy

    alone,duetoEfficiencyreductions.Fossilfuelscouldthereforebeusedtocompensateforthe

    lossofenergyassociatedwithdivertingsomeenergyproductionintotheproductionofBiochar

    instead.

    IfFeedstocktypejwasusedforbioenergyproduction,asinthedefaultBaselineScenario,the

    ProjectProponentmustaccount for the increase inemissionsneeded tocompensate for the

  • 8/12/2019 Biochar Meth_public Comment Draft

    54/137

    MethodologyforBiocharProjectsv1.0

    Page|53

    renewable energy that would have been produced in the Baseline Scenario. The Leakage

    emissionsresultingfromalossinEfficiencyofthebiomassfacilityarecalculatedasfollows:

    ,, , (34)

    Where:

    Leakagey=Leakagethatoccursinyeary(tCO2e)

    LEloss=Leakagedue toPyrolysisofFeedstocks thatotherwisewouldhavebeenused

    purelyforthegenerationofenergy(tCO2e)

    FSB,j,y = the amount of Feedstock typej diverted from baseline condition bioenergy

    productionBinyeary(t)

    NCVj,y=netcalorificvalueof theFeedstocktype jprocessedat theBiochar facility in

    yeary(GJ/tofdrymatter)

    =thebaselineBEfficiencyofthebiomassfacilitywheretheBiomassResidueswouldhavebeencombustedbeforetheimplementationoftheproject(kWh/GJorGJ/GJ)

    =theEfficiencyofthePyrolysisfacilityintheprojectPcondition(kWh/GJorGJ/GJ)EFLeakage=Emission factor for reducedenergyproduction. If theFeedstockwouldhave

    producedelectricityinthebaselinecondition,usetheregionalelectricitygridemission

    factor(tCO2e/kWh).Ifthermalheatwouldhavebeenproducedinthebaseline,usetheemissionfactorassociatedwiththemostcarbonintensivefuelthatcouldreasonablybe

    usedtoreplacethisbiomassheat(tCO2e/GJ)

    5.4SummaryofGHGEmissionReductionand/orRemovals

    Theemissionreductionsforthisprojectactivityarecalculatedasfollows:

    (35)

    Where:

    ERY =NetGHGemissionsreductionsand/orremovalsinyeary

  • 8/12/2019 Biochar Meth_public Comment Draft

    55/137

    MethodologyforBiocharProjectsv1.0

    Page|54

    Y = year, where the baseline year is 0 and the first year of

    productionis1

    BEY =Baselineemissionsinyeary

    PEy =Projectemissionsinyeary

    Leakagey =Leakagethatoccursinyeary

  • 8/12/2019 Biochar Meth_public Comment Draft

    56/137

    MethodologyforBiocharProjectsv1.0

    Page|55

    6MONITORING

    6.1DataandParametersAvailableatValidation

    Thefollowingdatawillbemadeavailableat Validation by the Project Proponent. Default

    valuesmayvaryaccordingtothephysicallocationoftheprojectactivity.TheProjectProponent

    mustprovideevidenceandjustificationthatthevaluespresentedhereareapplicabletotheir

    projectactivity,orprovideandjustifyprojectspecificvaluesasneeded.

    ShouldthedataparameterslistedbelownotbeavailableatthetimeofValidation,theProject

    Proponent must provide a plan for determination and/or monitoring the data during the

    project.Allparametersusedmustbereviewedonanannualbasistoensurethemostcurrent

    value is used in calculations. A project proponent has flexibility to balance the cost of

    verificationagainstaccruedERTs.

    Equation # Equation4

    DataUnit/

    Parameter:

    EFACH4

    Dataunit: gCH4/kgwaste(wetbasis)

    Description: EmissionfactorforCH4associatedwithwastetreatment

    practices.Sourceofdata: Table4.1,Chapter4,Volume5ofIPCC2006Guidelines

    Valuetobeapplied: Ifcountryspecificdata isavailable, then thisshallbeapplied,

    and themethodused toderive thevalue,aswellas thedata

    sources, need to be documented in the GHG Project Plan. If

    countryspecificdataarenotavailable, thenapply thedefault

    valueslistedinTable8below.

    Table8:DefaultemissionfactorsforCH4emissionsfromtheaerobic

    treatmentofwaste.

    CH4emissionfactors(gCH4/kgwastetreated)

    Onadryweightbasis 10

    (0.0820)

    Onawetweightbasis 4

  • 8/12/2019 Biochar Meth_public Comment Draft

    57/137

    MethodologyforBiocharProjectsv1.0

    Page|56

    (0.038)

    Assumptions on the waste treated: 2550% DOC in the dry

    matter, 2% N in dry matter, moisture content 60%. The

    emissionfactorfordrywasteareestimatedfromthoseforwet

    wasteassumingmoisturecontentof60%inwetwaste.

    Anycomment: Pleasenotethatemissionfactorswillneedtobeconvertedto

    theproperunitsforinclusioninthebaselinecalculations,from

    gCH4/kgwastetotCH4/twaste.100yrconversionmultiplier

    forCH4=310,source:SAR100GWPvaluesfromtheIPCC

    FourthAssessmentReport(AR4),WorkingGroup1,Chapter2,

    Table2.14(page212)at

    http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2

    102.html

    http://ipcc

    wg1.ucar.edu/wg1/Report/AR4WG1_Print_Ch02.pdf

    Equation# Equation5

    DataUnit/

    Parameter:

    EFAN2O

    Dataunit: gN2O/kgwaste(wetbasis)

    Description: EmissionfactorforN2Oassociatedwithwastetreatment

    practices.

    Sourceofdata: Table4.1,Chapter4,Volume5ofIPCC2006Guidelines

    Valuetobeapplied: Ifcountryspecificdata isavailable, then thisshallbeapplied,

    and themethodused toderive thevalue,aswellas thedata

    sources, need to be documented in the GHG Project Plan. If

    countryspecificdataarenotavailable, thenapply thedefault

    valueslistedinTable9below.Table9:DefaultemissionfactorsforN2Oemissionsfromaerobic

    wastetreatment.

    N2Oemissionfactors

    (gN2O/kgwastetreated)

  • 8/12/2019 Biochar Meth_public Comment Draft

    58/137

    MethodologyforBiocharProjectsv1.0

    Page|57

    Onadryweightbasis 0.6

    (0.21.6)

    Onawetweightbasis 0.3

    (0.060.6)

    Assumptions on the waste treated: 2550% DOC in the dry

    matter, 2% N in dry matter, moisture content 60%. The

    emissionfactorfordrywasteareestimatedfromthoseforwet

    wasteassumingmoisturecontentof60%inwetwaste.

    Anycomment: Pleasenotethatemissionfactorswillneedtobeconvertedto

    theproperunitsforinclusioninthebaselinecalculations,from

    gN2O/kgwastetotN2O/twaste.100yrconversionmultiplier

    forN2O=21,source:SAR100GWPvaluesfromtheIPCC

    FourthAssessmentReport(AR4),WorkingGroup1,Chapter2,

    Table2.14(page212)at

    http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2

    102.html

    Equation# Equation6

    DataUnit/Parameter:

    Dataunit:

    Description: Modelcorrectionfactortoaccountformodeluncertainties

    incalculatingemissionsduetotheanaerobic

    decompositionofFeedstockinanSWDS

    Sourceofdata:

    Valuetobeapplied: 0.9

    Anycomment: Oonketel.(1994)havevalidatedseverallandfillgasmodels

    basedon17realizedlandfillgasprojects. Themeanrelative

    errorofmultiphasemodelswasassessedtobe18%. Giventheuncertaintiesassociatedwiththemodelandinorderto

    estimateemissionreductionsinaconservativemanner,a

    discountof10%(10%isused,ratherthan18%,becauseitis

    conservativetounderestimatethebaselineemissions)is

  • 8/12/2019 Biochar Meth_public Comment Draft

    59/137

    MethodologyforBiocharProjectsv1.0

    Page|58

    appliedtothemodelresults.

    Equation # Equation6DataUnit/Parameter: OX

    Dataunit: Fraction

    Description: Oxidation factor (reflecting the amount of methane from

    the SWDS that is oxidized in the soil or other material

    coveringthewaste)

    Sourceofdata: CDMAnnex10 Toolfordeterminingmethaneemissions

    avoidedfromdumpingwasteatSWDS(V4.0).

    Valuetobeapplied: Default:0.1

    Project Proponent can alternatively conduct a site visit at

    theSWDSwhereFeedstockswouldhavebeendisposed. If

    theSWDS iscoveredwithoxidizingmaterialsuchassoilor

    compost,usethedefaultvalueof0.1. Use0forothertypes

    ofSolidWasteDisposalSites.

    Anycomment:

    Equation# Equation6

    DataUnit/Parameter: F

    Dataunit:

    Description: FractionofmethaneintheSWDSgas(volumefraction)

    Sourceofdata: IPCC2006GuidelinesforNationalGreenhouseInventories

    Valuetobeapplied: 0.5

    Anycomment: This factor reflects the fact that some degradable organic

    carbon does not degrade, or degrades very slowly, under

    anaerobicconditionsintheSWDS. Adefaultvalueof0.5is

    recommendedbyIPCC.

    Equation# Equation6

  • 8/12/2019 Biochar Meth_public Comment Draft

    60/137

    MethodologyforBiocharProjectsv1.0

    Page|59

    DataUnit/Parameter: DOCf

    Dataunit:

    Description: Fractionofdegradableorganiccarbon(DOC)thatcan

    decompose

    Sourceofdata: IPCC2006GuidelinesforNationalGreenhouseGas

    Inventories

    Valuetobeapplied: 0.5

    Anycomment:

    Equation# Equation6

    DataUnit/Parameter: DOCj

    Dataunit:

    Description: FractionofdegradableorganiccarbonintheFeedstock type

    jdiverted(weightfraction)

    Sourceofdata: IPCC2006GuidelinesforNationalGreenhouseGas

    Inventories(adaptedfromVolumes5,Tables2.4and2.5)

    Valuetobeapplied: ApplythefollowingvaluesfordifferentFeedstocktypesj:

    Table10:DefaultvaluesforDOCi

    Feedstocktype DOCj(%wet

    waste)

    DOCj(%dry

    waste)

    Woodandwood

    products

    43 50

    Pulp,paperand

    cardboard(other

    thansludge)

    40 44

    Food,foodwaste,

    beveragesand

    tobacco(otherthan

    sludge)

    15 38

    Textiles 24 30

    Garden,yardand

    parkwaste

    20 49

    Glass,plastic, 0 0

  • 8/12/2019 Biochar Meth_public Comment Draft

    61/137

    MethodologyforBiocharProjectsv1.0

    Page|6