Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared...

32
Thermal Infrared Radiation and Carbon Dioxide in the Atmosphere Bill Satzer 3M Company

Transcript of Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared...

Page 1: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Thermal Infrared Radiation and Carbon Dioxide in the Atmosphere

Bill Satzer3M Company

Page 2: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Outline

• Radiation spectra – incoming and outgoing• Physical setting – characteristics of the atmosphere• CO2   interaction with infrared• Basic model and some results

Page 3: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds
Page 4: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds
Page 5: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Earth’s emitted spectrum

Ozone

Carbon dioxide

Water vapor

Page 6: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Atmospheric composition(parts per million by volume)

• Nitrogen (N2)  780,840 • Oxygen (O2) 209,460 • Argon (Ar) 9340 • Carbon dioxide (CO2) 394• Methane (CH4) 1.79• Ozone (O3) 0.00 – 0.07• Water vapor                             4000 (average over full atmosphere) 

Page 7: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds
Page 8: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Carbon dioxide and water vapor: concentration as a function of height in the atmosphere

Page 9: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds
Page 10: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Temperature vs. altitude in earth’s atmosphere

Page 11: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds
Page 12: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Effect of an atmospheric  gas on long wave radiation  from   the earth’s surface depends on:

• Amount of the gas by volume;• Amount of long wave energy radiated; and • Amount of energy the gas can absorb at a 

given wavelength.

Page 13: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Receptivity of gas molecules to infrared radiation

• Molecules can absorb and emit energy only at certain wavelengths.

• The typical infrared wavelength of interest is about 400 times the size of a carbon dioxide molecule.  Interaction is via electric field with       molecule’s electric charge distribution.

• Excited molecular states have very long lifetimes compared to excited electron states – from milliseconds to tenths of seconds.

• Mean time between collisions with another molecule is roughly 0.1 microseconds – so, many collisions and efficient energy transfer.

• Very little scattering occurs.

Page 14: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Downward long wave radiation spectrum  (measured at the earth’s surface)

Page 15: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Which gases are the important absorbers? 

• N2 and O2 are not – they are essentially transparent to IR.• H2O• CO2• CH4

Good absorbers of IR are gases with molecules having easily excited bending, vibration or rotation modes.

Page 16: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Bending, stretching and rotating modes for CO2 molecule

Page 17: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Fine structure of carbon dioxide absorption spectrum near 15 micron wavelength

Page 18: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds
Page 19: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Schwarzschild equations for radiative transfer

In an infinitesimal layer in local thermodynamic equilibrium , for a fixed frequency and angle of incidence:

dIup  = ‐kIup ρr secθ dz  +  kIb ρr secθ dz  

dIdown =  kIdown ρr secθ dz   ‐ kIb ρr secθ dz 

where I is radiative flux,  k = k(z, p, T, ν) is the absorption coefficient, ρr  is the density of the radiating gas, Ib = Ib (T) is blackbody radiation flux from Planck’s law, z is altitude, p is pressure, T is temperature, and ν is frequency.

Page 20: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

dz

ϴ

ϴ

ρr p T

Iup 

Idown

k

ν

ν

Page 21: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

It’s convenient to introduce a transmission function.  

First take u to be the mass of the radiating gas per unit area:

Note: u = 0 at the top of the atmosphere, and increases as z decreases.

Then the transmission function is defined as:

for u0  <  u1 .

τ takes values in [0, 1].

u = ∞ dz

τ(u0, u1) = exp [-secθ 1

0]

Page 22: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

u = u0 Top of atmosphere 

u = u1 Earth’s surface

IupIdown

zu

Page 23: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Rewriting the Schwarzschild equations in terms of u:

dIup  =    kIup  secθ du  ‐ kIb secθ du 

dIdown =  ‐ kIdown secθ du  +  kIb secθ du 

Page 24: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Then the general solution is :

u0  is the value at the upper boundary, taken to be the top of the atmosphere.  u1 is the value at the lower boundary, usually taken to be the earth’s surface.

Also Idown (u0) = 0 because there is essentially no downward infrared flux from the top of the atmosphere.  Furthermore, Iup (u1 ) is the blackbody radiation from the surface of the earth.

= 1) 

Iup (u) = Iup (u1) τ (u, u1) + secθ 1 τ(u,w) dw

Idown (u) = Idown (u0) τ (u0 , u) + secθ 0 τ(w,u) dw

Page 25: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Integrating these general solutions by parts, and applying boundary conditions, we  eliminate explicit dependence on absorption coefficient:

Iup(u) = Ib (u) + 1

Idown (u) = Ib (u) – Ib (0) τ(0,u) –

Page 26: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Some special cases:

I. High transmission. Low absorption (τ → 1).

Iup (u) = Ib (u1)

II. Low transmission, high absorption (τ → 0).

Idown (u) = 0

Iup (u) = Ib (u)

Idown (u) = Ib (u)

Page 27: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Radiation flux computation    (Gilbert Plass)

Page 28: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds
Page 29: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Conclusions and Caveats

• Carbon dioxide is a potent absorber of infrared radiation, especially near 15 microns.

• We’ve only considered radiative transfer, but convection and other energy transport mechanisms operate, especially in the troposphere

• We’ve considered CO2 , but water vapor is also a significant atmospheric absorber.  

Page 30: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

from the New York Times – October 28, 1956 

Page 31: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

Last paragraph of the NYT story

Page 32: Bill Satzer 3M Company - University of Minnesotamcgehee/Seminars/Climate... · Thermal Infrared Radiation and ... • Argon (Ar) 9340 ... excited electron states –from milliseconds

References

• Gilbert N. Plass, Infrared radiation in the atmosphere, American Journal of Physics,   24 , No. 5, May 1956.

• P.E. Martin and E.F. Barker, The Infrared Absorption Spectrum of Carbon Dioxide, Physical Review, 41,  August 1, 1932.

• V. Robert Stull, Philip J. Wyatt, and Gilbert N. Plass, The Infrared Transmittance of Carbon Dioxide, Applied Optics, 3, No. 2, February 1964

• R.T. Pierrehumbert, Principles of Planetary Climate, 2010