Bibliography - link.springer.com978-3-319-04747-8/1.pdf · Bibliography The bibliography of this...

27
Bibliography The bibliography of this book is intended to reflect the state of the art of modern C p -theory; besides, it is obligatory to mention the work of all authors whose results, in one form or another, are cited here. The bibliographic selection for this volume has 300 items to solve the proportional part of the task. ALAS, O.T., COMFORT, W.W., GARCIA-FERREIRA, S., HENRIKSEN, M., WILSON, R.G., WOODS, R. [2000] When is jC.X Y/jDjC.X/jjC.Y/j? Houston J. Math. 26:1(2000), 83–115. ALAS, O.T., GARCIA-FERREIRA, S., TOMITA, A.H. [1999] The extraresolvability of some function spaces, Glas. Mat. Ser. III 34(54):1(1999), 23–35. ALAS, O.T., TAMARIZ-MASCARÚA, A. [2006] On the ˇ Cech number of C p .X/ II, Questions Answers Gen. Topology 24:1(2006), 31–49. ARGYROS, S., MERCOURAKIS, S., NEGREPONTIS, S. [1983] Analytic properties of Corson compact spaces, General Topology and Its Rela- tions to Modern Analysis and Algebra, 5. Berlin, 1983, 12–24. ARGYROS, S., NEGREPONTIS, S. [1983] On weakly K-countably determined spaces of continuous functions, Proc. Amer. Math. Soc., 87:4(1983), 731–736. ARHANGELSKII, A.V. [1976] On some topological spaces occurring in functional analysis (in Russian), Uspehi Mat. Nauk, 31:5(1976), 17–32. [1978] The structure and classification of topological spaces and cardinal invariants (in Russian), Uspehi Mat. Nauk, 33:6(1978), 29–84. [1981] Classes of topological groups (in Russian), Uspehi Mat. Nauk, 36:3(1981), 127–146. [1984] Continuous mappings, factorization theorems and function spaces (in Russian), Trudy Mosk. Mat. Obsch., 47(1984), 3–21. [1986] Hurewicz spaces, analytic sets and fan tightness of function spaces (in Russian), Doklady AN SSSR, 287:3(1986), 525–528. [1987] A survey of C p -theory, Questions and Answers in General Topology, 5(1987), 1–109. V.V. Tkachuk, A Cp-Theory Problem Book: Special Features of Function Spaces, Problem Books in Mathematics, DOI 10.1007/978-3-319-04747-8, © Springer International Publishing Switzerland 2014 557

Transcript of Bibliography - link.springer.com978-3-319-04747-8/1.pdf · Bibliography The bibliography of this...

Bibliography

The bibliography of this book is intended to reflect the state of the art of modern Cp-theory;besides, it is obligatory to mention the work of all authors whose results, in one form or another,are cited here. The bibliographic selection for this volume has 300 items to solve the proportionalpart of the task.

ALAS, O.T., COMFORT, W.W., GARCIA-FERREIRA, S., HENRIKSEN, M., WILSON, R.G.,WOODS, R.

[2000] When is jC.X � Y /j D jC.X/jjC.Y /j? Houston J. Math. 26:1(2000), 83–115.

ALAS, O.T., GARCIA-FERREIRA, S., TOMITA, A.H.[1999] The extraresolvability of some function spaces, Glas. Mat. Ser. III

34(54):1(1999), 23–35.

ALAS, O.T., TAMARIZ-MASCARÚA, A.[2006] On the Cech number ofCp.X/ II, Questions Answers Gen. Topology 24:1(2006),

31–49.

ARGYROS, S., MERCOURAKIS, S., NEGREPONTIS, S.[1983] Analytic properties of Corson compact spaces, General Topology and Its Rela-

tions to Modern Analysis and Algebra, 5. Berlin, 1983, 12–24.

ARGYROS, S., NEGREPONTIS, S.[1983] On weakly K-countably determined spaces of continuous functions, Proc. Amer.

Math. Soc., 87:4(1983), 731–736.

ARHANGEL’SKII, A.V.[1976] On some topological spaces occurring in functional analysis (in Russian), Uspehi

Mat. Nauk, 31:5(1976), 17–32.[1978] The structure and classification of topological spaces and cardinal invariants (in

Russian), Uspehi Mat. Nauk, 33:6(1978), 29–84.[1981] Classes of topological groups (in Russian), Uspehi Mat. Nauk, 36:3(1981),

127–146.[1984] Continuous mappings, factorization theorems and function spaces (in Russian),

Trudy Mosk. Mat. Obsch., 47(1984), 3–21.[1986] Hurewicz spaces, analytic sets and fan tightness of function spaces (in Russian),

Doklady AN SSSR, 287:3(1986), 525–528.[1987] A survey of Cp -theory, Questions and Answers in General Topology, 5(1987),

1–109.

V.V. Tkachuk, A Cp-Theory Problem Book: Special Features of Function Spaces,Problem Books in Mathematics, DOI 10.1007/978-3-319-04747-8,© Springer International Publishing Switzerland 2014

557

558 Bibliography

[1989] Topological Function Spaces (in Russian), Moscow University P.H., Moscow,1989.

[1989b] Hereditarily Lindelof spaces of continuous functions, Moscow University Math.Bull., 44:3(1989b), 67–69.

[1990a] Problems in Cp-theory, in: Open Problems in Topology, North Holland, Amster-dam, 1990a, 603–615.

[1990b] On the Lindelöf degree of topological spaces of functions, and on embeddingsinto Cp.X/, Moscow University Math. Bull., 45:5(1990b), 43–45.

[1992a] Topological Function Spaces (translated from Russian), Kluwer Academic Pub-lishers, Dordrecht, 1992a.

[1992b] Cp-theory, in: Recent Progress in General Topology, North Holland, Amsterdam,1992, 1–56.

[1996a] On Lindelöf property and spread in Cp-theory, Topol. and Its Appl., 74:(1–3)(1996a), 83–90.

[1996b] On spread and condensations, Proc. Amer. Math. Soc., 124:11(1996b), 3519–3527.

[1997] On a theorem of Grothendieck in Cp-theory, Topology Appl. 80(1997), 21–41.[1998a] Some observations on Cp-theory and bibliography, Topology Appl., 89(1998a),

203–221.[1998b] Embeddings in Cp-spaces, Topology Appl., 85(1998b), 9–33.[2000a] On condensations of Cp-spaces onto compacta, Proc. Amer. Math. Soc.,

128:6(2000a), 1881–1883.[2000b] Projective � -compactness, !1-caliber and Cp -spaces, Topology Appl.,

104(2000b), 13–26.[1999] Arhangel’skii, A.V., Calbrix, J. A characterization of � -compactness of a cosmic

space X by means of subspaces of RX , Proc. Amer. Math. Soc., 127:8(1999),2497–2504.

ARHANGEL’SKII, A.V., CHOBAN M.M.[1990] On the position of a subspace in the whole space, Comptes Rendus Acad. Bulg.

Sci., 43:4(1990), 13–15.[1996] On continuous mappings of Cp-spaces and extenders, Proc. Steklov Institute

Math., 212(1996), 28–31.

ARHANGEL’SKII, A.V., OKUNEV, O.G.[1985] Characterization of properties of spaces by properties of their continuous images

(in Russian) Vestnik Mosk. Univ., Math., Mech., 40:5(1985), 28–30.

ARHANGEL’SKII, A.V., PAVLOV, O.I.[2002] A note on condensations of Cp.X/ onto compacta, Comment. Math. Univ.

Carolinae, 43:3(2002), 485–492.

ARHANGEL’SKII, A.V., PONOMAREV, V.I.[1974] Basics of General Topology in Problems and Exercises (in Russian), Nauka,

Moscow, 1974.

ARHANGEL’SKII, A.V., TKACHUK, V.V.[1985] Function Spaces and Topological Invariants (in Russian), Moscow University

P.H., Moscow, 1985.[1986] Calibers and point-finite cellularity of the spaces Cp.X/ and some questions of

S. Gul’ko and M. Hušek, Topology Appl., 23:1(1986), 65–74.

ARHANGEL’SKII, A.V., USPENSKIJ, V.V.[1986] On the cardinality of Lindelöf subspaces of function spaces, Comment. Math.

Univ. Carolinae, 27:4(1986), 673–676.

Bibliography 559

ASANOV, M.O., VELICHKO, M.V.[1981] Compact sets in Cp.X/ (in Russian), Comment. Math. Univ. Carolinae,

22:2(1981), 255–266.

BATUROV D.P.[1987] On subspaces of function spaces (in Russian), Vestnik Moskovsk. Univ., Math.,

Mech., 42:4(1987), 66–69.[1988] Normality of dense subsets of function spaces, Vestnik Moskovsk. Univ., Math.,

Mech., 43:4(1988), 63–65.[1990] Normality in dense subspaces of products, Topology Appl., 36(1990), 111–116.[1990] Some properties of the weak topology of Banach spaces, Vestnik Mosk. Univ.,

Math., Mech., 45:6(1990), 68–70.

BELLA, A., YASCHENKO, I.V.[1999] On AP and WAP spaces, Comment. Math. Univ. Carolinae, 40:3(1999), 531–536.

BESSAGA, C., PELCZINSKI, A.[1960] Spaces of continuous functions, 4, Studia Math., 19(1960), 53–62.[1975] Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975.

BOUZIAD, A., CALBRIX, J.[1995] Images usco-compactes des espaces Cech-complets de Lindelöf, C. R. Acad. Sci.

Paris Sér. I Math. 320:7(1995), 839–842.

BURKE, D.K.[1984] Covering properties, Handbook of Set–Theoretic Topology, edited by K. Kunen

and J.E. Vaughan, Elsevier Science Publishers B.V., 1984, 347–422.[2007] Weak-bases and D-spaces, Comment. Math. Univ. Carolin. 48:2(2007),

281–289.

BURKE, D.K., LUTZER, D.J.[1976] Recent advances in the theory of generalized metric spaces, in: Topology: Proc.

Memphis State University Conference, Lecture Notes in Pure and Applied Math.,Marcel Dekker, New York, 1976, 1–70.

BUZYAKOVA, R.Z.[2006a] Spaces of continuous step functions over LOTS, Fund. Math., 192(2006a), 25–35.[2006b] Spaces of continuous characteristic functions, Comment. Math. Universitatis

Carolinae, 47:4(2006b), 599–608.[2007] Function spaces over GO spaces, Topology Appl., 154:4(2007), 917–924.

CALBRIX, J.[1996] k-spaces and Borel filters on the set of integers (in French), Trans. Amer. Math.

Soc., 348(1996), 2085–2090.

CASARRUBIAS–SEGURA, F.[1999] Realcompactness and monolithity are finitely additive in Cp.X/, Topology Proc.,

24(1999), 89–102.[2001] On compact weaker topologies in function spaces, Topology and Its Applications,

115(2001), 291–298.

CASCALES, B.[1987] On K-analytic locally convex spaces, Arch. Math., 49(1987), 232–244.

CASCALES, B., KAKOL, J., SAXON, S.A.[2002] Weight of precompact subsets and tightness, J. Math. Anal. Appl., 269(2002),

500–518.

560 Bibliography

CASCALES, B., ORIHUELA, J.[1991] Countably determined locally convex spaces, Portugal. Math. 48:1(1991), 75–89.

CHOBAN, M.M.[2005] On some problems of descriptive set theory in topological spaces, Russian Math.

Surveys 60:4(2005), 699–719.

CHRISTENSEN, J.P.R.[1974] Topology and Borel Structure, North Holland P.C., Amsterdam, 1974.[1981] Joint continuity of separably continuous functions, Proceedings of Amer. Math.

Soc., 82:3(1981), 455–461.

CIESIELSKI, K.[1993] Linear subspace of R� without dense totally disconnected subsets, Fund. Math.

142 (1993), 85–88.

COMFORT, W.W., FENG, L.[1993] The union of resolvable spaces is resolvable, Math. Japon. 38:3(1993), 413–414.

COMFORT, W.W., HAGER, A.W.[1970a] Estimates for the number of real-valued continuous functions, Trans. Amer. Math.

Soc., 150(1970a), 619–631.[1970b] Dense subspaces of some spaces of continuous functions, Math. Z. 114(1970b),

373–389.[1970c] Estimates for the number of real-valued continuous functions, Trans. Amer. Math.

Soc. 150(1970c), 619–631.

COMFORT, W.W., NEGREPONTIS, S.A.[1974] The theory of ultrafilters. Die Grundl. Math. Wiss., 211, Springer, New York,

1974.[1982] Chain Conditions in Topology, Cambridge Tracts in Mathematics, 79, New York,

1982.

CONTRERAS-CARRETO, A., TAMARIZ-MASCARÚA, A.[2003] On some generalizations of compactness in spaces Cp.X; 2/ and Cp.X;Z/, Bol.

Soc. Mat. Mexicana (3)9:2(2003), 291–308.

DEBS, G.[1985] EspacesK-analytiques et espaces de Baire de fonctions continues, Mathematika,

32(1985), 218–228.

DIJKSTRA, J., GRILLOT, T., LUTZER, D., VAN MILL, J.[1985] Function spaces of low Borel complexity, Proc. Amer. Math. Soc., 94:4(1985),

703–710.

DIJKSTRA, J., MOGILSKI, J.[1991] Cp.X/-representation of certain Borel absorbers, Topology Proc., 16(1991),

29–39.

DI MAIO, G., HOLÁ, L., HOLÝ, D., MCCOY, R.A.[1998] Topologies on the space of continuous functions, Topology Appl. 86:2(1998),

105–122.

DIMOV, G., TIRONI, G.[1987] Some remarks on almost radiality in function spaces, Acta Univ. Carolin. Math.

Phys. 28:2(1987), 49–58.

Bibliography 561

DOUWEN, E.K. VAN

[1984] The integers and topology, Handbook of Set–Theoretic Topology, K. Kunen andJ.E. Vaughan, editors, Elsevier Science Publishers B.V., 1984, 111–167.

DOUWEN, E.K. POL, R.[1977] Countable spaces without extension properties, Bull. Polon. Acad. Sci., Math.,

25(1977), 987–991.

DOW, A.[2005a] Closures of discrete sets in compact spaces, Studia Sci. Math. Hungar.

42:2(2005a), 227–234.[2005b] Property D and pseudonormality in first countable spaces, Comment. Math.

Univ. Carolin. 46:2(2005b), 369–372.

DOW, A., PAVLOV, O.[2006] More about spaces with a small diagonal, Fund. Math. 191:1(2006), 67–80.[2007] Perfect preimages and small diagonal, Topology Proc. 31:1(2007), 89–95.

EFIMOV, B.A.[1977] Mappings and imbeddings of dyadic spaces, I, Math. USSR Sbornik, 32:1(1977),

45–57.

ENGELKING, R.[1977] General Topology, PWN, Warszawa, 1977.

FORT, M.K.[1951] A note on pointwise convergence, Proc. Amer. Math. Soc., 2(1951), 34–35.

FOX, R.H.[1945] On topologies for function spaces, Bull. Amer. Math. Soc., 51(1945), 429–432.

FREMLIN, D.H.[1977] K-analytic spaces with metrizable compacta, Mathematika, 24(1977), 257–261.[1994] Sequential convergence in Cp.X/, Comment. Math. Univ. Carolin., 35:2(1994),

371–382.

GARTSIDE, P.[1997] Cardinal invariants of monotonically normal spaces, Topology Appl.

77:3(1997), 303–314.[1998] Nonstratifiability of topological vector spaces, Topology Appl. 86:2(1998),

133–140.

GARTSIDE, P., FENG, Z.[2007] More stratifiable function spaces, Topology Appl. 154:12(2007), 2457–2461.

GERLITS, J.[1983] Some properties of C.X/, II, Topology Appl., 15:3(1983), 255–262.

GERLITS, J., NAGY, ZS.[1982] Some properties of C.X/, I, Topology Appl., 14:2(1982), 151–161.

GERLITS, J., JUHÁSZ, I., SZENTMIKLÓSSY, Z.[2005] Two improvements on Tkacenko’s addition theorem, Comment. Math. Univ.

Carolin. 46:4(2005), 705–710.

GERLITS, J., NAGY, ZS., SZENTMIKLOSSY, Z.[1988] Some convergence properties in function spaces, in: General Topology and Its

Relation to Modern Analysis and Algebra, Heldermann, Berlin, 1988, 211–222.

562 Bibliography

GILLMAN, L., JERISON, M.[1960] Rings of Continuous Functions, D. van Nostrand Company Inc., Princeton, 1960.

GORDIENKO, I.YU.[1990] Two theorems on relative cardinal invariants inCp -theory, Zb. Rad. Filozofskogo

Fak. Nišu, Ser. Mat., 4(1990), 5–7.

GRAEV, M.I.[1950] Theory of topological groups, I (in Russian), Uspehi Mat. Nauk, 5:2(1950), 3–56.

GRUENHAGE, G.[1976] Infinite games and generalizations of first-countable spaces, General Topology

and Appl. 6:3(1976), 339–352.[1997] A non-metrizable space whose countable power is � -metrizable, Proc. Amer.

Math. Soc. 125:6(1997), 1881–1883.[1998] Dugundji extenders and retracts of generalized ordered spaces, Fundam. Math.,

158(1998), 147–164.[2002] Spaces having a small diagonal, Topology Appl., 122(2002), 183–200.[2006] The story of a topological game, Rocky Mountain J. Math. 36:6(2006), 1885–

1914.

GRUENHAGE, G., MA, D.K.[1997] Bairness of Ck.X/ for locally compact X , Topology Appl., 80(1997), 131–139.

GUL’KO, S.P.[1979] On the structure of spaces of continuous functions and their hereditary paracom-

pactness (in Russian), Uspehi Matem. Nauk, 34:6(1979), 33–40.

GUL’KO, S.P., SOKOLOV, G.A.[1998] P -points in N

� and the spaces of continuous functions, Topology Appl.,85(1998), 137–142.

[2000] Compact spaces of separately continuous functions in two variables, Topologyand Its Appl. 107:1-2(2000), 89–96.

HAGER, A.W.[1969] Approximation of real continuous functions on Lindelöf spaces, Proc. Amer.

Math. Soc., 22(1969), 156–163.

HAGLER, J.[1975] On the structure of S and C.S/ for S dyadic, Trans. Amer. Math. Soc.,

214(1975), 415–428.

HAO-XUAN, Z.[1982] On the small diagonals, Topology Appl., 13:3(1982), 283–293.

HAYDON, R.G.[1990] A counterexample to several questions about scattered compact spaces, Bull.

London Math. Soc., 22(1990), 261–268.

HEATH, R.W., LUTZER, D.J.[1974a] The Dugundji extension theorem and collectionwise normality, Bull. Acad. Polon.

Sci., Ser. Math., 22(1974a), 827–830.[1974b] Dugundji extension theorem for linearly ordered spaces, Pacific J. Math.,

55(1974b), 419–425.

HEATH, R.W., LUTZER, D.J., ZENOR, P.L.[1975] On continuous extenders, Studies in Topology, Academic Press, New York, 1975,

203–213.

Bibliography 563

HEWITT, E.[1948] Rings of real-valued continuous functions, I, Trans. Amer. Math. Soc.,

64:1(1948), 45–99.

HODEL, R.[1984] Cardinal Functions I, in: Handbook of Set-Theoretic Topology, Ed. by K. Kunen

and J.E. Vaughan, Elsevier Science Publishers B.V., 1984, 1–61.

HUŠEK, M.[1972] Realcompactness of function spaces and �.P �Q/, General Topology and Appl.

2(1972), 165–179.[1977] Topological spaces without �-accessible diagonal, Comment. Math. Univ. Car-

olinae, 18:4(1977), 777–788.[1979] Mappings from products. Topological structures, II, Math. Centre Tracts, Ams-

terdam, 115(1979), 131–145.[1997a] Productivity of some classes of topological linear spaces, Topology Appl.

80:1-2(1997), 141–154.[2005] Cp.X/ in coreflective classes of locally convex spaces, Topology and Its Appli-

cations, 146/147(2005), 267–278.

IVANOV, A.V.[1978] On bicompacta all finite powers of which are hereditarily separable, Soviet

Math., Doklady, 19:6(1978), 1470–1473.

JUHÁSZ, I.[1971] Cardinal functions in topology, Mathematical Centre Tracts, 34, Amsterdam,

1971.[1980] Cardinal Functions in Topology—Ten Years Later, Mathematical Centre Tracts,

North Holland P.C., Amsterdam, 1980.[1992] Cardinal functions, Recent Progress in General Topology, North-Holland, Ams-

terdam, 1992, 417–441.

JUHÁSZ, I., MILL, J. VAN

[1981] Countably compact spaces all countable subsets of which are scattered, Com-ment. Math. Univ. Carolin. 22:4(1981), 851–855.

JUHÁSZ, I., SOUKUP, L., SZENTMIKLÓSSY, Z.[2007] First countable spaces without point-countable �-bases, Fund. Math.

196:2(2007), 139–149.

JUHÁSZ, I., SZENTMIKLÓSSY, Z.[1992] Convergent free sequences in compact spaces, Proc. Amer. Math. Soc.,

116:4(1992), 1153–1160.[1995] Spaces with no smaller normal or compact topologies, 1993), Bolyai Soc. Math.

Stud., 4(1995), 267–274.[2002] Calibers, free sequences and density, Topology Appl. 119:3(2002), 315–324.

JUST, W., SIPACHEVA, O.V., SZEPTYCKI, P.J.[1996] Non-normal spaces Cp.X/ with countable extent, Proceedings Amer. Math. Soc.,

124:4(1996), 1227–1235.

KALAMIDAS, N.D.[1985] Functional properties of C.X/ and chain conditions on X , Bull. Soc. Math.

Grèce 26(1985), 53–64.[1992] Chain condition and continuous mappings on Cp.X/, Rendiconti Sem. Mat.

Univ. Padova, 87(1992), 19–27.

564 Bibliography

KALAMIDAS, N.D., SPILIOPOULOS, G.D.[1992] Compact sets in Cp.X/ and calibers, Canadian Math. Bull., 35:4(1992),

497–502.

KUNEN, K.[1980] Set Theory. An Introduction to Independence Proofs, Studies Logic Found.

Mathematics, 102(1980), North Holland P.C., Amsterdam, 1980[1981] A compact L-space under CH, Topology Appl., 12(1981), 283–287.

KUNEN, K., DE LA VEGA, R.[2004] A compact homogeneous S-space, Topology Appl., 136(2004), 123–127.

KURATOWSKI, C.[1966] Topology, vol. 1, Academic Press Inc., London, 1966.

LELEK, A.[1969] Some cover properties of spaces, Fund. Math., 64:2(1969), 209–218.

LINDENSTRAUSS, J., TZAFRIRI, L.[1977] Classical Banach Spaces I, Springer, Berlin, 1977.

LUTZER, D.J., MCCOY, R.A.[1980] Category in function spaces I, Pacific J. Math., 90:1(1980), 145–168.

LUTZER, D.J., MILL, J. VAN, POL, R.[1985] Descriptive complexity of function spaces, Transactions of the Amer. Math. Soc.,

291(1985), 121–128.

LUTZER, D. J., MILL, J. VAN, TKACHUK, V.V.[2008] Amsterdam properties of Cp.X/ imply discreteness of X , Canadian Math. Bull.

51:4(2008), 570–578.

MALYKHIN, V.I.[1987] Spaces of continuous functions in simplest generic extensions, Math. Notes,

41(1987), 301–304.[1994] A non-hereditarily separable space with separable closed subspaces, Q & A in

General Topology, 12(1994), 209–214.[1998] On subspaces of sequential spaces (in Russian), Matem. Zametki, 64:3(1998),

407–413.[1999] Cp.I / is not subsequential, Comment. Math. Univ. Carolinae, 40:4(1999),

785–788.

MALYKHIN, V.I., SHAKHMATOV, D.B.[1992] Cartesian products of Fréchet topological groups and function spaces, Acta

Math. Hungarica, 60(1992), 207–215.

MARCISZEWSKI, W.[1983] A pre-Hilbert space without any continuous map onto its own square, Bull. Acad.

Polon. Sci., 31:(9–12)(1983), 393–397.[1988] A remark on the space of functions of first Baire class, Bull. Polish Acad. Sci.,

Math., 36:(1–2)(1988), 65–67.[1993] On analytic and coanalytic function spaces Cp.X/, Topology and Its Appl.,

50(1993), 241–248.[1995a] On universal Borel and projective filters, Bull. Acad. Polon. Sci., Math.,

43:1(1995a), 41–45.[1995b] A countable X having a closed subspace A with Cp.A/ not a factor of Cp.X/,

Topology Appl., 64(1995b), 141–147.

Bibliography 565

[1997a] A function space Cp.X/ not linearly homeomorphic to Cp.X/�R, FundamentaMath., 153:2(1997a), 125–140.

[1997b] On hereditary Baire products, Bull. Polish Acad. Sci., Math., 45:3(1997b),247–250.

[1998a] P -filters and hereditary Baire function spaces, Topology Appl., 89(1998a),241–247.

[1998b] Some recent results on function spaces Cp.X/, Recent Progress in FunctionSpaces., Quad. Mat. 3(1998b), Aracne, Rome, 221–239.

[2002] Function Spaces, in: Recent Progress in General Topology II, Ed. by M. Hušekand J. van Mill, Elsevier Sci. B.V., Amsterdam, 2002, 345–369.

[2003] A function space Cp.X/ without a condensation onto a � -compact space, Proc.Amer. Math. Society, 131:6(2003), 1965–1969.

MARCISZEWSKI, W., PELANT, J.[1997] Absolute Borel sets and function spaces, Trans. Amer. Math. Soc., 349:9(1997),

3585–3596.

MCCOY, R.A.[1975] First category function spaces under the topology of pointwise convergence, Proc.

Amer. Math. Soc., 50(1975), 431–434.[1978a] Characterization of pseudocompactness by the topology of uniform convergence

on function spaces, J. Austral. Math. Soc., 26(1978a), 251–256.[1978b] Submetrizable spaces and almost � -compact function spaces, Proc. Amer. Math.

Soc., 71(1978b), 138–142.[1978c] Second countable and separable function spaces, Amer. Math. Monthly,

85:6(1978c), 487–489.[1980a] Countability properties of function spaces, Rocky Mountain J. Math., 10(1980a),

717–730.[1980b] A K-space function space, Int. J. Math. Sci., 3(1980b), 701–711.[1986] Fine topology on function spaces, Internat. J. Math. Math. Sci. 9:3(1986),

417–424.

MCCOY, R.A., NTANTU, I.[1986] Completeness properties of function spaces, Topology Appl., 22:2(1986),

191–206.[1988] Topological Properties of Spaces of Continuous Functions, Lecture Notes in

Math., 1315, Springer, Berlin, 1988.

MICHAEL, E.[1966] @0-spaces, J. Math. and Mech., 15:6(1966), 983–1002.[1973] On k-spaces, kR-spaces and k.X/, Pacific J. Math., 47:2(1973), 487–498.[1977] @0-spaces and a function space theorem of R. Pol, Indiana Univ. Math. J.,

26(1977), 299–306.

MILL, J. VAN

[1984] An introduction to ˇ!, Handbook of Set-Theoretic Topology, North-Holland,Amsterdam, 1984, 503–567.

[1989] Infinite-Dimensional Topology. Prerequisites and Introduction, North Holland,Amsterdam, 1989.

[1999] Cp.X/ is not Gı� : a simple proof, Bull. Polon. Acad. Sci., Ser. Math., 47(1999),319–323.

[2002] The Infinite-Dimensional Topology of Function Spaces, North Holland Math.Library 64, Elsevier, Amsterdam, 2002.

MORISHITA, K.[2014] The kR-property of function spaces, Preprint.

566 Bibliography

[1992a] The minimal support for a continuous functional on a function space, Proc. Amer.Math. Soc. 114:2(1992a), 585–587.

[1992b] The minimal support for a continuous functional on a function space. II, TsukubaJ. Math. 16:2(1992b), 495–501.

NAKHMANSON, L. B.[1982] On continuous images of � -products (in Russian), Topology and Set Theory,

Udmurtia Universty P.H., Izhevsk, 1982, 11–15.[1984] The Souslin number and calibers of the ring of continuous functions (in Russian),

Izv. Vuzov, Matematika, 1984, N 3, 49–55.[1985] On Lindelöf property of function spaces (in Russian), Mappings and Extensions

of Topological Spaces, Udmurtia University P.H., Ustinov, 1985, 8–12.

NOBLE, N.[1969a] Products with closed projections, Trans Amer. Math. Soc., 140(1969a), 381–391.[1969b] Ascoli theorems and the exponential map, Trans Amer. Math. Soc., 143(1969b),

393–411.[1971] Products with closed projections II, Trans Amer. Math. Soc., 160(1971),

169–183.[1974] The density character of function spaces, Proc. Amer. Math. Soc., 42:1(1974),

228–233.

NOBLE, N., ULMER, M.[1972] Factoring functions on Cartesian products, Trans Amer. Math. Soc., 163(1972),

329–339.

NYIKOS, P.[1981] Metrizability and the Fréchet–Urysohn property in topological groups, Proc.

Amer. Math. Soc., 83:4(1981), 793–801.

OKUNEV, O.G.[1984] Hewitt extensions and function spaces (in Russian), Cardinal Invariants and

Mappings of Topological Spaces (in Russian), Izhvsk, 1984, 77–78.[1985] Spaces of functions in the topology of pointwise convergence: Hewitt extension

and � -continuous functions, Moscow Univ. Math. Bull., 40:4(1985), 84–87.[1993a] On Lindelöf ˙-spaces of functions in the pointwise topology, Topology and Its

Appl., 49(1993a), 149–166.[1993b] On analyticity in cosmic spaces, Comment. Math. Univ. Carolinae, 34(1993b),

185–190.[1995] On Lindelöf sets of continuous functions, Topology Appl., 63(1995), 91–96.[1996] A remark on the tightness of products, Comment. Math. Univ. Carolinae,

37:2(1996), 397–399.[1997] On the Lindelöf property and tightness of products, Topology Proc., 22(1997),

363–371.[2002] Tightness of compact spaces is preserved by the t -equivalence relation, Com-

ment. Math. Univ. Carolin. 43:2(2002), 335–342.[2005a] Fréchet property in compact spaces is not preserved by M -equivalence, Com-

ment. Math. Univ. Carolin. 46:4(2005a), 747–749.[2005b] A � -compact space without uncountable free sequences can have arbitrary

tightness, Questions Answers Gen. Topology 23:2(2005b), 107–108.

OKUNEV, O.G., SHAKHMATOV, D.B.[1987] The Baire property and linear isomorphisms of continuous function spaces (in

Russian), Topological Structures and Their Maps, Latvian State University P.H.,Riga, 1987, 89–92.

Bibliography 567

OKUNEV, O.G., TAMANO, K.[1996] Lindelöf powers and products of function spaces, Proceedings of Amer. Math.

Soc., 124:9(1996), 2905–2916.

OKUNEV, O.G., TAMARIZ-MASCARÚA, A.[2004] On the Cech number of Cp.X/, Topology Appl., 137(2004), 237–249.

OKUNEV, O.G., TKACHUK, V.V.[2001] Lindelöf ˙-property in Cp.X/ and p.Cp.X// D ! do not imply countable

network weight in X , Acta Mathematica Hungarica, 90:(1–2)(2001), 119–132.[2002] Density properties and points of uncountable order for families of open sets in

function spaces, Topology Appl., 122(2002), 397–406.

PASYNKOV, B.A.[1967] On open mappings, Soviet Math. Dokl., 8(1967), 853–856.

PELANT, J.[1988] A remark on spaces of bounded continuous functions, Indag. Math., 91(1988),

335–338.

POL, R.[1977] Concerning function spaces on separable compact spaces, Bull. Acad. Polon.

Sci., Sér. Math., Astron. et Phys., 25:10(1977), 993–997.[1978] The Lindelöf property and its analogue in function spaces with weak topology,

Topology. 4-th Colloq. Budapest, 2(1978), Amsterdam, 1980, 965–969.[1989] Note on pointwise convergence of sequences of analytic sets, Mathem., 36(1989),

290–300.

PONTRIAGIN, L.S.[1984] Continuous Groups (in Russian), Nauka, Moscow, 1984.

PYTKEEV, E.G.[1976] Upper bounds of topologies, Math. Notes, 20:4(1976), 831–837.[1982a] On the tightness of spaces of continuous functions (in Russian), Uspehi Mat.

Nauk, 37:1(1982a), 157–158.[1982b] Sequentiality of spaces of continuous functions (in Russian), Uspehi Matematich-

eskih Nauk, 37:5(1982b), 197–198.[1985] The Baire property of spaces of continuous functions, (in Russian), Matem.

Zametki, 38:5(1985), 726–740.[1990] A note on Baire isomorphism, Comment. Math. Univ. Carolin. 31:1(1990), 109–

112.[1992a] On Fréchet–Urysohn property of spaces of continuous functions, (in Russian),

Trudy Math. Inst. RAN, 193(1992a), 156–161.[1992b] Spaces of functions of the first Baire class over K-analytic spaces (in Russian),

Mat. Zametki 52:3(1992b), 108–116.[2003] Baire functions and spaces of Baire functions, Journal Math. Sci. (N.Y.)

136:5(2006), 4131–4155

PYTKEEV, E.G., YAKOVLEV, N.N.[1980] On bicompacta which are unions of spaces defined by means of coverings,

Comment. Math. Univ. Carolinae, 21:2(1980), 247–261.

RAJAGOPALAN, M., WHEELER, R.F.[1976] Sequential compactness of X implies a completeness property for C.X/, Cana-

dian J. Math., 28(1976), 207–210.

568 Bibliography

REZNICHENKO, E.A.[1987] Functional and weak functional tightness (in Russian), Topological Structures

and Their Maps, Latvian State University P.H., Riga, 1987, 105–110.[1989] A pseudocompact space in which only the subsets of not full cardinality are not

closed and not discrete, Moscow Univ. Math. Bull. 44:6(1989), 70–71.[1990] Normality and collectionwise normality in function spaces, Moscow Univ. Math.

Bull., 45:6(1990), 25–26.[2008] Stratifiability of Ck.X/ for a class of separable metrizable X , Topology Appl.

155:17-18(2008), 2060–2062.

RUDIN, M.E.[1956] A note on certain function spaces, Arch. Math., 7(1956), 469–470.

RUDIN, W.[1973] Functional Analysis, McGraw-Hill Book Company, New York, 1973.

SAKAI, M.[1988a] On supertightness and function spaces, Commentationes Math. Univ. Carolinae,

29:2(1988a), 249–251.[1988b] Property C 00 and function spaces, Proc. Amer. Math. Soc., 104:3(1988b),

917–919.[1992] On embeddings into Cp.X/ where X is Lindelöf, Comment. Math. Univ.

Carolinae, 33:1(1992), 165–171.[1995] Embeddings of �-metrizable spaces into function spaces, Topol. Appl., 65(1995),

155–165.[2000] Variations on tightness in function spaces, Topology Appl., 101(2000), 273–280.[2003] The Pytkeev property and the Reznichenko property in function spaces, Note di

Matem. 22:2(2003/04), 43–52[2006] Special subsets of reals characterizing local properties of function spaces,

Selection Principles and Covering Properties in Topology, Dept. Math., SecondaUniv. Napoli, Caserta, Quad. Mat., 18(2006), 195–225,

[2007] The sequence selection properties of Cp.X/, Topology Appl., 154(2007),552–560.

[2008] Function spaces with a countable cs�-network at a point, Topology and Its Appl.,156:1(2008), 117–123.

[2014] On calibers of function spaces, Preprint.

SHAKHMATOV, D.B.[1986] A pseudocompact Tychonoff space all countable subsets of which are closed and

C�-embedded, Topology Appl., 22:2(1986), 139–144.

SHAPIROVSKY, B.E.[1974] Canonical sets and character. Density and weight in compact spaces, Soviet

Math. Dokl., 15(1974), 1282–1287.[1978] Special types of embeddings in Tychonoff cubes, subspaces of ˙-products and

cardinal invariants, Colloquia Mathematica Soc. Janos Bolyai, 23(1978), 1055–1086.

[1981] Cardinal invariants in bicompacta (in Russian), Seminar on General Topology,Moscow University P.H., Moscow, 1981, 162–187.

SIPACHEVA, O.V.[1988] Lindelöf ˙-spaces of functions and the Souslin number, Moscow Univ. Math.

Bull., 43:3(1988), 21–24.[1989] On Lindelöf subspaces of function spaces over linearly ordered separable

compacta, General Topology, Spaces and Mappings, Mosk. Univ., Moscow,1989, 143–148.

Bibliography 569

[1992] On surlindelöf compacta (in Russian), General Topology. Spaces, Mappings andFunctors, Moscow University P.H., Moscow, 1992, 132–140.

SOKOLOV, G.A.[1986] On Lindelöf spaces of continuous functions (in Russian), Mat. Zametki,

39:6(1986), 887–894.[1993] Lindelöf property and the iterated continuous function spaces, Fundam. Math.,

143(1993), 87–95.

STONE, A.H.[1963] A note on paracompactness and normality of mapping spaces, Proc. Amer. Math.

Soc., 14(1963), 81–83.

TALAGRAND, M.[1979] Sur laK-analyticité des certains espaces d’operateurs, Israel J. Math., 32(1979),

124–130.[1984] A new countably determined Banach space, Israel J. Math., 47:1(1984), 75–80.[1985] Espaces de Baire et espaces de Namioka, Math. Ann., 270(1985), 159–164.

TAMANO, K., TODORCEVIC, S.[2005] Cosmic spaces which are not �-spaces among function spaces with the topology

of pointwise convergence, Topology Appl. 146/147(2005), 611–616.

TAMARIZ–MASCARÚA, A.[1996] Countable product of function spaces having p-Frechet-Urysohn like properties,

Tsukuba J. Math. 20:2(1996), 291–319.[1998] ˛-pseudocompactness in Cp-spaces, Topology Proc., 23(1998), 349–362.[2006] Continuous selections on spaces of continuous functions, Comment. Math. Univ.

Carolin. 47:4(2006), 641–660.

TANI, T.[1986] On the tightness of Cp.X/, Memoirs Numazu College Technology, 21(1986),

217–220.

TKACHENKO, M.G.[1978] On the behaviour of cardinal invariants under the union of chains of spaces (in

Russian), Vestnik Mosk. Univ., Math., Mech., 33:4(1978), 50–58.[1979] On continuous images of dense subspaces of topological products (in Russian),

Uspehi Mat. Nauk, 34:6(1979), 199–202.[1982] On continuous images of dense subspaces of ˙-products of compacta (in

Russian), Sibirsk. Math. J., 23:3(1982), 198–207.[1985] On continuous images of spaces of functions, Sibirsk. Mat. Zhurnal, 26:5(1985),

159–167.[2005] Tkachenko, M.G., Tkachuk, V.V. Dyadicity index and metrizability of compact

continuous images of function spaces, Topol. Appl., 149:(1–3)(2005), 243–257.

TKACHUK, V.V.[1984b] Characterization of the Baire property in Cp.X/ in terms of the properties of the

space X (in Russian), Cardinal Invariants and Mappings of Topological Spaces(in Russian), Izhevsk, 1984b, 76–77.

[1986a] The spaces Cp.X/: decomposition into a countable union of bounded subspacesand completeness properties, Topology Appl., 22:3(1986a), 241–254.

[1986b] Approximation of RX with countable subsets of Cp.X/ and calibers of the spaceCp.X/, Comment. Math. Univ. Carolinae, 27:2(1986b), 267–276.

570 Bibliography

[1987a] The smallest subring of the ring Cp.Cp.X// which contains X [ f1g is densein Cp.Cp.X// (in Russian), Vestnik Mosk. Univ., Math., Mech., 42:1(1987a),20–22.

[1987b] Spaces that are projective with respect to classes of mappings, Trans. MoscowMath. Soc., 50(1987b), 139–156.

[1988] Calibers of spaces of functions and metrization problem for compact subsets ofCp.X/ (in Russian), Vestnik Mosk. Univ., Matem., Mech., 43:3(1988), 21–24.

[1991] Methods of the theory of cardinal invariants and the theory of mappings appliedto the spaces of functions (in Russian), Sibirsk. Mat. Zhurnal, 32:1(1991),116–130.

[1994] Decomposition of Cp.X/ into a countable union of subspaces with “good”properties implies “good” properties of Cp.X/, Trans. Moscow Math. Soc.,55(1994), 239–248.

[1995] What if Cp.X/ is perfectly normal? Topology Appl., 65(1995), 57–67.[1998] Mapping metric spaces and their products onto Cp.X/, New Zealand J. Math.,

27:1(1998), 113–122.[2000] Behaviour of the Lindelöf ˙-property in iterated function spaces, Topology

Appl., 107:3-4(2000), 297–305.[2001] Lindelöf ˙-property in Cp.X/ together with countable spread of X implies X is

cosmic, New Zealand J. Math., 30(2001), 93–101.[2003] Properties of function spaces reflected by uniformly dense subspaces, Topology

Appl., 132(2003), 183–193.[2005a] A space Cp.X/ is dominated by irrationals if and only if it is K-analytic, Acta

Math. Hungarica, 107:4(2005a), 253–265.[2005b] A nice class extracted from Cp -theory, Comment. Math. Univ. Carolinae,

46:3(2005b), 503–513.[2007a] Condensing function spaces into ˙-products of real lines, Houston Journal of

Math., 33:1(2007a), 209–228.[2007b] Twenty questions on metacompactness in function spaces, Open Problems in

Topology II, ed. by E. Pearl, Elsevier B.V., Amsterdam, 2007a, 595–598.[2007c] A selection of recent results and problems in Cp-theory, Topology and Its Appl.,

154:12(2007c), 2465–2493.[2009] Condensations of Cp.X/ onto � -compact spaces, Appl. Gen. Topology,

10:1(2009), 39–48.

TKACHUK, V.V., SHAKHMATOV, D.B.[1986] When the space Cp.X/ is � -countably compact? (in Russian), Vestnik Mosk.

Univ., Math., Mech., 41:1(1986), 70–72.

TKACHUK, V.V., YASCHENKO, I.V.[2001] Almost closed sets and topologies they determine, Comment. Math. Univ.

Carolinae, 42:2(2001), 395–405.

TODORCEVIC, S.[1989] Partition Problems in Topology, Contemporary Mathematics, American Mathe-

matical Society, 84(1989). Providence, Rhode Island, 1989.[1993] Some applications of S and L combinatorics, Ann. New York Acad. Sci.,

705(1993), 130–167.[2000] Chain-condition methods in topology, Topology Appl. 101:1(2000), 45–82.

TYCHONOFF A.N.[1935] Über einer Funktionenraum, Math. Ann., 111(1935), 762–766.

Bibliography 571

USPENSKIJ, V.V.[1978] On embeddings in functional spaces (in Russian), Doklady Acad. Nauk SSSR,

242:3(1978), 545–546.[1982a] On frequency spectrum of functional spaces (in Russian), Vestnik Mosk. Univ.,

Math., Mech., 37:1(1982a), 31–35.[1982b] A characterization of compactness in terms of the uniform structure in function

space (in Russian), Uspehi Mat. Nauk, 37:4(1982b), 183–184.[1983b] A characterization of realcompactness in terms of the topology of pointwise con-

vergence on the function space, Comment. Math. Univ. Carolinae, 24:1(1983),121–126.

VALOV, V.M.[1986] Some properties of Cp.X/, Comment. Math. Univ. Carolinae, 27:4(1986),

665–672.[1997a] Function spaces, Topology Appl. 81:1(1997), 1–22.[1999] Spaces of bounded functions, Houston J. Math. 25:3(1999), 501–521.

VALOV, V., VUMA, D,[1996] Lindelöf degree and function spaces, Papers in honour of Bernhard

Banaschewski, Kluwer Acad. Publ., Dordrecht, 2000, 475–483.[1998] Function spaces and Dieudonné completeness, Quaest. Math. 21:3-4(1998),

303–309.

DE LA VEGA, R., KUNEN, K.[2004] A compact homogeneous S-space, Topology Appl., 136(2004), 123–127.

VELICHKO, N.V.[1981] On weak topology of spaces of continuous functions (in Russian), Matematich.

Zametki, 30:5(1981), 703–712.[1982] Regarding the theory of spaces of continuous functions (in Russian), Uspehi

Matem. Nauk, 37:4(1982), 149–150.[1985] Networks in spaces of mappings (in Russian), Mappings and Extensions of

Topological Spaces, Udmurtia University P.H., Ustinov, 1985, 3–6.[1995b] On normality in function spaces, Math. Notes, 56:5-6(1995), 1116–1124.[2001] On subspaces of functional spaces, Proc. Steklov Inst. Math. 2(2001), 234–240.[2002] Remarks on Cp -theory, Proc. Steklov Inst. Math., 2(2002), 190–192.

VIDOSSICH, G.[1969a] On topological spaces whose function space is of second category, Invent. Math.,

8:2(1969a), 111–113.[1969b] A remark on the density character of function spaces, Proc. Amer. Math. Soc.,

22(1969b), 618–619.[1970] Characterizing separability of function spaces, Invent. Math., 10:3(1970),

205–208.[1972] On compactness in function spaces, Proc. Amer. Math. Soc., 33(1972), 594–598.

WHITE, H.E., JR.[1978] First countable spaces that have special pseudo-bases, Canadian Mathematical

Bull., 21:1(1978), 103–112.

WILDE, M. DE

[1974] Pointwise compactness in space of functions and R.C. James theorem, Math.Ann., 208(1974), 33–47.

Bibliography

YASCHENKO, I.V.[1992c] On fixed points of mappings of topological spaces, Vestnik Mosk. Univ., Math.,

Mech., 47:5(1992a), 93.[1992d] Cardinality of discrete families of open sets and one-to-one continuous mappings,

Questions and Answers in General Topology, 2(1992b), 24–26.[1994] On the monotone normality of functional spaces, Moscow University Math. Bull.,

49:3(1994), 62–63.

ZENOR, PH.[1980] Hereditary m-separability and hereditary m-Lindelöf property in product spaces

and function spaces, Fund. Math., 106(1980), 175–180.

572

List of special symbols

For every symbol of this list we refer the reader to a place where it was defined.There could be many such places, but we only mention one here. Note that a symbolis often defined in the first volume of this book entitled “Topology and FunctionSpaces”; we denote it by TFS. We never use page numbers; instead, we have thefollowing types of references:

(a) To an introductory part of a sectionFor example,

expX 1.1says that expX is defined in the Introductory Part of Section 1.1.Of course,

Cp.X/ TFS-1.1says that Cp.X/ is defined in the Introductory Part of Section 1.1 of the bookTFS.

(b) To a problemFor example,

Cu.X/ TFS-084says that the expression Cu.X/ is defined in Problem 084 of the book TFS.

(c) To a solutionFor example,

O.f;K; "/ S.321says that the definition of O.f;K; "/ can be found in the Solution of Problem321 of the book TFS.The expression,

HFD T.040says that the definition ofHFD can be found in the Solution of Problem 040 ofthis volume.

V.V. Tkachuk, A Cp-Theory Problem Book: Special Features of Function Spaces,Problem Books in Mathematics, DOI 10.1007/978-3-319-04747-8,© Springer International Publishing Switzerland 2014

573

Every problem is short, so it won’t be difficult to find a reference in it. Anintroductory part is never longer than two pages so, hopefully, it is not hard to find areference in it either. Please keep in mind that a solution of a problem can be prettylong, but its definitions are always given in the beginning.

The symbols are arranged in alphabetical order; this makes it easy to find theexpressions B.x; r/ and ˇX , but it is not immediate what to do if we are lookingfor

Lt2T Xt . I hope that the placement of the expressions which start with Greek

letters or mathematical symbols is intuitive enough to be of help to the reader. Evenif it is not, then there are only three pages to plough through. The alphabetic order isby line and not by column. For example, the first three lines contain symbols whichstart with “A” or something similar and lines 3–5 are for the expressions beginningwith “B”, “ˇ” or “B”.

A.�/ TFS-1.2 a.X/ TFS-1.5

AD.X/ TFS-1.4V

A T.300

AjY T.092 Bd .x; r/ TFS-1.3

B.x; r/ TFS-1.3 (B1)–(B2) TFS-006

ˇX TFS-1.3 B.X/ 1.4

clX.A/ TFS-1.1 cl� .A/ TFS-1.1

C.X/ TFS-1.1 C �.X/ TFS-1.1

C.X; Y / TFS-1.1 Cp.X; Y / TFS-1.1

Cu.X/ TFS-084 Cp.Y jX/ TFS-1.5

Cp.X/ TFS-1.1 C �p .X/ TFS-1.1

c.X/ TFS-1.2 conv.A/ 1.2

CH 1.1 �.X/ TFS-1.2

�.A;X/ 1.2 �.x;X/ 1.2

D.�/ TFS-1.2 d.X/ TFS-1.2

dom.f / 1.4 diam.A/ TFS-1.3

D 1.4 �F TFS-1.5

�X TFS-1.2 �.X/ TFS-1.2

�n.Z/ T.019 �ijn .Z/ T.019

} 1.1 }C 1.1

�t2T ft TFS-1.5 ext.X/ TFS-1.2

expX TFS-1.1 Fin.A/ S.326

f <� g 1.1 f � g 1.4

574 List of special symbols

List of special symbols 575

fn!!f TFS-1.1 f jY TFS-022

F� TFS-1.3 F� TFS-1.3

'�.X/ for a card. inv. ' 1.1 F�ı 1.4

Gı TFS-1.3 G� TFS-1.3

Gı� TFS-1.5 GCH 1.1

h#.U / S.228 HFD T.040

h'.X/ for a card. inv. ' 1.1 I TFS-1.1

Int.A/ TFS-1.1 IntX.A/ TFS-1.1

iw.X/ TFS-1.2 J.�/ TFS-1.5

K 1.4 K�ı 1.4

l.X/ TFS-1.2 L.�/ TFS-1.2

limS for S D fAn W n 2 !g 1.5 (LB1)–(LB3) TFS-007

max.f; g/ TFS-1.1 min.f; g/ TFS-1.1

(MS1)–(MS3) TFS-1.3 m.X/ TFS-1.5

MA.�/ 1.1 MA 1.1

nw.X/ TFS-1.2 N TFS-1.1

O.f;K; "/ S.321 O.f; x1; : : : ; xn; "/ TFS-1.2L

t2T Xt TFS-1.4LfXt W t 2 T g TFS-1.4

p.X/ TFS-1.2 (PO1)–(PO3) TFS-1.4

pS W Qt2T Xt !Qt2S Xt TFS-1.4 pt W Qs2T Xs ! Xt TFS-1.2

Qt2T Xt TFS-1.2

QfXt W t 2 T g TFS-1.2Qt2T gt TFS-1.5 ˘0

� .X/ TFS-2.4

.A;X/ TFS-1.2 .x;X/ TFS-1.2

.X/ TFS-1.2 ��.x;X/ TFS-1.4

�w.X/ TFS-1.4 ��.X/ TFS-1.4

�Y W Cp.X/! Cp.Y / TFS-1.5 P 1.1

P 1.4 Q TFS-1.1

q.X/ TFS-1.5 R TFS-1.1

r� for r W X ! Y TFS-1.5 hSi S.489

s.X/ TFS-1.2 SA TFS-2.1

St.x;U/ TFS-1.3 St.A;U/ TFS-1.3

˙�.�/ TFS-1.5 ˙0� .X/ 1.4

�.�/ TFS-1.5 ˙.�/ TFS-1.5

t0.X/ TFS-1.5 tm.X/ TFS-1.5

t.X/ TFS-1.2 �.x;X/ TFS-1.1

�.X/ TFS-1.1 �.A;X/ TFS-1.1

��.X/ TFS-1.2 �.d/ TFS-1.3

�X TFS-1.5Sffi W i 2 I g 1.4

!<! 1.4 U1 ^ : : : ^ Un S.144

!� TFS-370 w.X/ TFS-1.1

Œx1; : : : ; xnIO1; : : : ; On TFS-1.1 X1 � : : : �Xn TFS-1.2

XT TFS-1.2 .Z/! S.493

.Z/� S.493

576 List of special symbols

Index

Aabsolute Borel set of class �, 1.4, 323, 324,

373–375almost closed set, 1.3almost disjoint family of sets, 1.5, 053analytic space, 1.4, 334–340, 352, 353, 360,

361, 363, 366, 368–371, 385–387, 392,395, 397, 399, 460, T.132, T.341, T.363

antichain, 1.1Aronszajn tree, 1.1, 068Aronszajn coding, 1.1, 068

BBaire property, 263–265, 406, 441, T.046,

T.371Baturov’s theorem, 269Booth lemma, 052Borel set, 1.4, 322, 330–334, 339–342, 354,

368, 372, T.322, T.333, T.339, T.372

Ccaliber, 1.3, 275–294, 299, T.281, T.285Cantor set (see also space K), 348, 353, 376,

T.250cardinal function, 1.2, 1.5, 145–151, 405cardinal invariant, 1.1category of a set in a space, 057, T.351, T.371ccc property, 1.1Cech-complete space, 137, 138, 210, 232, 272,

273, 324, 402, 443, T.210, T.272, T.385,T.500

Cech–Stone compactification, 042, 238, 286,371, 386, 387, 403, 439, 491 T.126,T.131, T.244, T.322, T.371, T.385

C -embedded subspace, T.218, T.455, T.468

centered family, T.058, T.280chain, 1.1, 068character at a point, 1.2, 054, T.092character of a set, T.222, T.487, T.489character of a space, 131, 158, 444, T.489clopen set, T.063, T.126, T.203, T.219, T.298,

T.309, T.371closed discrete set, T.126, T.205, T.219, T.285,

T.316, T.455closed cover, 1.3, 373closed map, 206, 245, 316, 478, 493, 494,

T.246, T.493, T.494club (closed unbounded subset of an ordinal),

1.1, 064, 065, T.069cofinal set, 1.1, 097, T.285collectionwise normality, 139, 140, 437 041,

045, 058, 060–062, 072–076, 082–083,085, 090–096, 099, 118–120, 128–131,134, 201–204, 211, 220, 225, 233, 237,241, 248, 254, 259, 260, 262, 273, 279,287, 294–299, 306, 347, 348, 355–357,359, 365, 375, 377, 381, 383–389,391–396, 398, 413, 454, 462, 468,482, 495T.041, T.045, T.062, T.073, T.082,T.090, T.098, T.131, T.211, T.218,T.222, T.227, T.229, T.235, T.250,T.270, T.272, T.298, T.309, T.346,T.357, T.372, T.377, T.384, T.385,T.391, T.395, T.465, T.468, T.487,T.489, T.493

compactification, 1.3, 233, T.224compact-valued map, 1.3, 1.4., 240–242, 249,

388compatible elements of a partially ordered set,

1.1complete family of covers, 1.4

V.V. Tkachuk, A Cp-Theory Problem Book: Special Features of Function Spaces,Problem Books in Mathematics, DOI 10.1007/978-3-319-04747-8,© Springer International Publishing Switzerland 2014

577

Index

completely metrizable space, 315, 316, 373,419, 493, 494, 498, 499, T.132, T.313,T.333, T.348, T.357, T.368

completely regular space, T.139condensation, 045, 077–079, 102, 341,

354–359, 392, T.139, T.250, T.357,T.363

connected space, 1.3, T.309, T.312consistency with ZFC, 1.1, 047continuous map, 094, 104, 105, 121–123, 133,

148, 150, 201, 206, 243, 245–249, 253,254, 277, 305, 315–317, 332, 338, 360,361, 363, 364, 390, 463, 467–473,479–482, 486, 491, T.063, T.069, T.104,T.109, T.131, T.132, T.139, T.237,T.245, T.250, T.252, T.266, T.268,T.294, T.298, T.316, T.318, T.333,T.354, T.368, T.372, T.384, T.459,T.468, T.500

Continuum Hypothesis (CH), 1.1, 039, 040,041, 042, 046, 047, 069, 089, 097-100,237, 238, 298, 300

convex hull, 1.2, 104, T.104convex set, 1.2, T.104cosmic space, 107–111, 192, 195, 198–200,

218, 225, 228, 244, 263, 270, 300, 346,363, 364, 395, 451, T.109, T.250, T.270,T.300, T.363, T.368

countably additive class (or property), 1.5, 405,406, 441, 442, 445–450

countably compact space, 092, 133, 204,218, 226, 417, T.126, T.203, T.235,T.391

countably paracompact space, 141cozero set (see also functionally open set),

T.080, T.252

D�-system, 038�-system lemma, 038�-root, 038dense subset of a partially ordered set, 1.1dense subspace, 009, 010, 039, 040, 072, 080,

237, 239, 278, 368, 385–387, 420, 431,495

dense subspace T.058, T.063, T.074, T.078,T.080, T.081

dense subspace (see also the previous page),T.109, T.187, T.309, T.312, T.333,T.349, T.351, T.368, T.406, T.416,T.421, T.500

dense-in-itself, space, 057, 358, T.045, T.046,T.219, T.272, T.358

density degree, 037, 095, 177, 188, 216, 405,457, 483, 487, T.285

depending on a set of coordinates, map, T.109,T.268, T.298

diagonal of a space, 028, 029, 087, 091, 203,235, 290, 293–298, 300, 396, T.019,T.020, T.021, T.028, T.029, T.030,T.062, T.078, T.081, T.087, T.089,T.098, T.173, T.203, T.294

diagonal number, 028, 029, 091, 178, 179, 180,449, T.087, T.173, T.235

diagonal product of maps, T.266diameter of a set, T.055, T.348, T.358, T.368diamond principle (}), 1.1, 069, 070, 073,

079, 289Dieudonné complete space, 430disconnected space, 1.3, T.219discrete family of sets, T.132, T.217, T.373discrete space, 424, 443, 486, 492 494,

498–500, T.371discrete subspace, 188, 401, T.007, T.098,

T.219, T.500discrete union, T.219, T.250domain of a map, 1.4domination by irrationals, T.391double arrow space, 383Dugundji system, 103, T.104

Eembedding 250, 303, 322, 370, 371, 376–378,

387, T.019, T.132, T.250, T.298, T.333,T.372, T.385

extent, 1.3, 1.5external base, T.092extremal disconnectedness, T.219

Fface of a product, T.109, T.110, T.268, T.298,

T.415, T.455, T.500factorization of a map defined on a subspace of

a product, T.109, T.268faithfully indexed set, T.089filter, T.372filter on a partially ordered set, 1.1finite intersection property (see the entry for

centered family)finitely additive class (or property or cardinal

function), 1.5, 401–403, 406, 407finite-to-one map, 1.5, 498, 499, T.498first category set, 057, T.351first countable space, 099, 202, 329, 401, 408,

415, T.045, T.205, T.351

578

Index

Fodor’s lemma, 067free sequence, 198, T.198free union (see discrete union)Fréchet–Urysihn space, 1.5, 120, 131,

134–136, 186, 204, 205, 210, 214, 384,398, 402, 450, 464–466, T.045

F� -set, 1.4, 323, 379, 420, T.422

GGeneralized Continuum Hypothesis (GCH),

1.1generating topology by a base, 1.3generating topology by a closure operator, 1.3generating topology by a family of local bases,

1.3generating topology by a family of maps, 1.3generating topology by a linear order, 072generating topology by a metric 419generating topology by a subbase, 1.3, T.363generating topology by an interior operator, 1.3Gerlits property, 1.5, 463, 464Gerlits–Pytkeev theorem, 465Gı-diagonal (or diagonal Gı), 028, 029, 087,

235, 300, T.087, T.235Gı-set, 055, 091, T.041, T.062, T.090, T.333,

T.500, T.429G�-set, 1.2, 001, T.078

HHausdorff space, T.098, T.372hedgehog space, 019, 020, 021height of a tree, 1.1height of an element of a tree, 1.1hereditarily analytic space, 400hereditarily Cech-complete space, 272, 273hereditarily irresolvable space, T.219hereditarilyK-analytic space, 400hereditarily k-space, 214hereditarily Lindelöf space, 001, 005, 007,

010, 011, 014, 015, 039, 074, 076, 085,086, 099, 100, 190, 198, T.073, T.270

hereditarily normal space, 002, 090, 142, 201,202, T.090

hereditarily p-space, 272hereditarily realcompact space, 404, 425, 451hereditarily separable space, 1.1, 004, 008,

012, 014, 040, 060, 073, 077–079, 082,088, 089, 098, 198, 237, T.040, T.082,T.099

hereditarily sequential space, 214hereditarily stable space, 200

hereditarily weakly Whyburn space, 215, 220hereditary cardinal function, 146, 147hereditary density, 004, 008, 012, 014, 017,

018, 020, 021, 024, 030, 032, 036, 039,040, 043, 059, 169, 171, 172, 173, 174,405, 428, 458, T.020, T.029, T.030,T.036, T.166, T.173

hereditary Lindelöf number, 001, 005, 007,011, 014, 015, 017, 018, 020, 021, 023,029, 033, 035–037, 039, 040, 043, 059,166, 167–171, 190, 193, 194, 405, 429,458, T.021, T.029, T.030, T.036, T.166,T.173, T.368, T.490

hereditary property, 420, 421, 433, T.455Hewitt realcompactification, 145HFD space, T.040homeomorphic spaces, 313, 330, 347–353,

386, 424, 432, 500, T.132, T.217, T.219,T.250, T.313, T.322, T.348, T.351,T.363, T.415, T.457

homeomorphism, T.217, T.333, T.349homeomorphism (see also previous column),

T.357, T.371, T.372, T.421, T.498,T.500

homogeneous space, 1.5, T.371Hurewicz space, 1.2, 1.3, 132, 188, 216Hurewicz space (see also the previous page),

217, T.132, T.188

Iidentity map, T.357induced topology, 072, T.357invariance under operation, 1.3, 254, T.250irrationals, 4, 313, 317, 328, 329, 341, 347,

352, 358, 359, 365, 367, 370, 371, 388,390, T.132, T.346, T.395

irreducible map, 492, T.246, T.493, T.494irresolvable space, T.219isomorphism of linearly ordered sets, 072i -weight, 177, 178, 244, 425, 451, 471

JJensen’s axiom (see diamond principle (}))

KK-analytic space, 1.4, 343–346, 388, 389, 390,

391, 393–395, 397–400, 460, T.250,T.346, T.391

�-Aronszajn tree, 1.1�-modification of a space, 1.2, 128

579

Index

�-monolithic space, 1.2, 113, 114, 116, 117,120–122, 144, 152, 154, 157, 190–192,197, 199, 296, 426, 468, 473

�-scattered space, 1.2, 133, 187, 477�-simple space, 1.2, 127, 129, 130, 157�-small diagonal, 1.3, 290, 293, 298, 300,

T.294, T.298, T.300�-Souslin tree, 1.1, 070, 071, 073, 074, T.073�-stable space, 1.2, 106, 108–112, 118,

123–126, 143, 152–154, 156, 192, 195,200, 266–268, 478, T.112, T.237

K�ı-space, 1.3, 250, 261, 262, 362, 367,T.250, T.262, T.377

k-space, 1.2, 131, 210, 214, 230, 402, 465,466, T.131, T.210

�-tree (for a regular cardinal �), 1.1, 068, 070,071, 074, T.073

Kowalsky hedgehog J.�/, 019–021, T.019

Llarge inductive dimension, 1.4, 308Lavrentieff theorem, T.333left-separated space, 1.1, 004, 007, 009, 037,

T.004, T.078lexicographic order, 1.4limit of a sequence, 054, 379, 389, T.055,

T.131, T.246, T.316, T.384, T.493limit of a family of sets, 1.5limit of a transfinite sequence, 1.3, T.298Lindelöf number (degree), 001, 128, 240, 269,

405, 456 T.490Lindelöf p-space, 1.3, 223, 231, 244–246, 250,

252, 253, 255, 260, 261, 271Lindelöf property (see also Lindelöf space),

1.2Lindelöf ˙-space, 1.3, 223–228, 230, 231,

233, 234, 236, 239, 242, 243, 248, 249,253, 254, 256–259, 261, 263, 265–270,300, 459, T.227, T.237, T.270, T.399

Lindelöf space, 076, 089, 098, 112, 127, 128,129, 135–137, 189, 199, 234, 264, 294,306, 422, 438, 452, 454, T.112, T.217,T.223, T.268

linear homeomorphism, T.217linear map, T.132linear topological space, 1.2, 104, T.104,

T.105, T.131linearly ordered space, 072–076, T.073,

T.075linearly homeomorphic vector spaces,

T.217local base, T.416

locally compact space, 1.3, 098, 132, 434,T.203, T.223, T.357, T.434

locally convex space, 1.2, 104, T.105, T.131locally finite family, 103, 115, T.104, T.244,

T.354locally pseudocompact space, 435lower semicontinuous map, 1.4, 315L-space, 1.1, 039, 059, 074, 099Luzin space, 1.1, 043–046, 063, T.046, T.063

MMartin’s Axiom (MA), 1.1, 047, 048–063, 071,

083, 088, 099, 140, 197–200, 288, 382,395 T.050, T.063, T.395

maximal almost disjoint family, 053maximalelement of a partially ordered set,

T.074maximal family with a property P , T.058maximal space, T.219measurable map, T.363, T.368, T.384metacompact space, 1.5, 437–440metric space, T.055, T.105, T.313, T.333,

T.348, T.368, T.373metrizable space 062, 083, 090–094, 099,

101–106, 203, 217, 219, 221, 229, 239,272, 285, 295–299, 315, 316, 348–350,357, 359, 373, 374, 392, 395, 396, 401,402, 412–414, 416–419, 446, 451, 455,493–499 T.062, T.132, T.203, T.235,T.285, T.300, T.357, T.385

monolithic space, 1.2, 107, 115–117, 120, 122,152, 154, 155, 266, 297

Mrowka space, 407, T.130multiplicative class of Borel subsets of a space,

1.4multiplicative class of absolute Borel sets, 1.4

Nnatural projection, T.109, T.110, T.250, T.298,

T.455, T.500network, 235network weight, 096, 107–111, 192, 197, 199,

200, 218, 225, 228, 244, 260, 263 270,300, 346, 363, 364, 395, 405, 451, 457,470, 488, T.109, T.250, T.270, T.300

network with respect to a cover, 1.3, T.229normal space, 002, 100, 139–141, 234, 308,

309, 311, 407, 438, 453–455, T.201,T.203, T.217, T.245, T.311, T.372

nowhere dense set, 057, 058, T.039, T.042,T.045, T.089, T.219, T.351

580

Index

O!-cover, 1.5, T.188, T.217, T.464!-monolithic space, 1.2, 116, 117, 120, 122,

190–192, 197, 199, 296, 468, T.468open mapping, 326, 415, 476, 477, 498, 499,

T.110open-separated sets in a topological space,

T.309operator on a family of subsets of a set, 1.3operator on a set, 048, 049, 068, 072, T.004,

T.005, T.074ordinal space, 064, 065–069, 273, 491, T.069,

T.211oscillation of a function, T.368, T.384!-simple space, 1.2, 127!-stable space, 1.2, 106, 112, 119, 125, 126,

145, 192, 195, 267, 268, T.112, T.237outer base, 396

Pparacompact space, 203, 217, 314, 315, 422,

437, 452, T.104, T.203, T.217, T.244,T.245, T.246, T.422

partially ordered set, 048, 049, 068, T.058�-character, 158, 402, 442, T.131, T.158,

T.298P-directed family of sets, 1.4P-dominated space, T.391P.�/-monolithic space for a property P , 1.2,

139, 140, 146–151, 158–186, 189, 190,193, 194, 427–429, 475

perfect image (or preimage), 1.2, 243, 245,249, 252, 304, 325, 390, 487–492,T.245, T.489, T.490, T.492

perfect map, 326, T.266perfect space, 001, T.331, T.363, T.368perfectly disconnected space, T.219perfectly normal space, 003, 061, 075, 080,

081–087, 089, 095, 096, 142, 202,T.080, T.081, T.087

point-countable family of sets, T.203point-finite cellularity, 175, 284, 405, 485,

T.491pointwise bounded subset of function space,

T.384pointwise countable type, T.222Polish space, 1.4, 319, 320, 321, 325, 326–330,

338–340, 347, 351, 358, 365, T.322,T.333, T.339, T.357, T.358, T.384,T.385

P -point, 1.1, 042precaliber, 1.3, 275–280, 283, 284, 286, 288,

289, T.050, T.280

Pressing-Down Lemma, 067product space, 050, 109, 114, 117, 254, 255,

256, 268, 280–282, 302, 333, 335, 343,493, 494–499, T.050, T.089, T.109,T.110, T.112, T.132, T.250, T.266,T.268, T.298, T.363, T.415, T.455,T.500

pseudocompact space, 1.4, 093, 119, 130, 131,138, 205, 435, 452, 495–497, T.132,T.205, T.391, T.465, T.494

pseudocomplete space, 1.5, T.498pseudocharacter of a space, 179, 236, 401, 409,

448pseudometric, 1.4pseudo-open map, 1.3, 251pseudoradial space, 1.3, 211, 212p-space, 1.3, 221, 222–224, 230–232p-space (continued from the previous page),

244–247, 250, 251, 252, 253, 255, 260,271, 272, T.222, T.223, T.224, T.245

P -space, 1.1, 1.2, 112, 127, 135, 137, T.112�-weight, 131, 406, 442, T.089, T.158, T.187

Qquotient image, 149, 251, 274, 275

Rradial space, 1.3, 209, T.211rational numbers, the space of, 349–351, 356,

T.309, T.349, T.351real line, 342, 355, 380, 382, T.349realcompact space, 391, 404, 423, 425, 430,

436, 451, T.436, T.492resolvable space, T.219restriction map, T.080, T.217, T.218, T.368,

T.455, T.500retract, 1.2, 123, 316, 500, T.132, T.217, T.500retraction, 1.2right-separated space (this coincides with the

concept of scattered space), 1.1, 005,006, 008, T.005

Rosenthal compact space, 1.4, 383–385, 387,T.385

R-quotient map (or image), 147, 149, 150, 181,183, 184, 469, T.139, T.268

SSA axiom, 1.1, 036, 086, 193, 195, 196scattered space, 1.1, 006, 098, 099, 128–130,

133, 134, 136, 213, 272, 273, T.130,T.272

581

Index

� -compact space, 132, 216, 226, 274, 323,351, 352, 354, 355, 362, 364, 366, 367,368, 466, 482, T.132, T.203, T.372,T.395

� -countably compact space, 132� -discrete family, 373, T.229, T.235� -discrete network, 228, 235, T.229� -disjoint base, T.412second category set, T.371second countable space, 046, 055, 057, 080,

084, 102, 107, 109–111, 229, 248, 249,252, 254, 271, 306, 318, 320, 321,323, 324, 329, 332, 333, 341, 351,362–365, 367, 368, 376–379, 403, 411,455, T.055, T.062, T.063, T.080, T.089,T.092, T.131, T.132, T.220, T.250,T.298, T.320, T.322, T.341, T.351,T.354, T.363, T.368, T.377, T.379,T.384, T.455

separable space, 039, 044, 046, 073–076, 081,084, 088, 089, 217, 282, 287, 385, 397,412, 493, 495, T.045, T.073, T.074,T.081, T.082, T.087, T.089

separable metrizable space (in this book this isthe same as second countable space),106, 219, 493, 497–499

separating points by a family of maps, T.354separating subsets by a family of sets, 1.3,

233separating subsets by disjoint open (or Borel)

sets, T.309, T.339separation axioms, T.098sequential space, 041, 131, 210, 211, 214, 402,

465, 466, T.041, T.316sequentially compact space, T.384Shanin condition, 282simple space, 1.2, 129, 130� -locally compact space, 132small diagonal (see also �-small diagonal), 1.3,

290, 293, 294, 295, 296–298, T.298,T.300

Sorgenfrey line, 227Souslin line, T.074Souslin number, 075, 275, 405, 485, T.050,

T.089Souslin property, 050, 058, 288, 289, T.039,

T.046, T.050, T.073Souslin tree (see �-Souslin tree)space A.�/, T.203, T.219, T.223space ˇ!, 042, 238, 371, 386, 387, 403, 439,

491, T.042, T.131, T.322, T.385space D.�/ (see discrete space)

space D� (see also Cantor cube), 039, 040,

089, 303, T.040, T.298, T.372space I, 133, 143, 144, 305, T.436, T.500space I

� , 354, 369, T.250, T.298space J.�/ (see Kowalsky hedgehog)space K (see also Cantor set), 1.4, 318, 376,

378, T.250, T.348space L.�/, 227, 402, 440, T.220space P (see irrationals)space Q (see rational numbers)space R (see real line)space R

� , 117, 330, 354, 360, 361, 367, 371,381, 382, 424, 492, 494, 500, T.019,T.132, T.217, T.312, T.372, T.379,T.384, T.385, T.399, T.434, T.455,T.500

space �.A/, 1.2, T.312space ˙.A/, 1.2space !1, 064–069, 491, T.069space !1 C 1, 273, T.211spread, 007, 008, 013, 014, 016, 019, 022, 028,

031, 034, 036, 037, 039, 040, 060–062,078, 079, 160, 161, 163, 164, 189, 190,191, 192, 193, 195, 196, 197, 199, 405,427, 458, T.007, T.015, T.019, T.028,T.036, T.078, T.082, T.087, T.098,T.160

� -product, 1.2, T.110, T.268˙-product, 1.2, T.110, T.268� -pseudocompact space, 132, 435� -space, 228, 235˙-space, 1.3, 221, 223, 224, 226, 228, 229,

234–236, 238, T.223, T.229S-space, 1.1, 040, 059, 098, 099stable space, 1.2, 108–111, 118, 124, 152–154,

156, 200, 268stationary set, 1.1, 065, 066, 067, 069strictly weaker topology, 072strong L-space, 1.1, 059, 099strong S-space, 1.1, 059, 098, 099strong ˙-space, T.223, T.229strongly dense subspace, 1.5strongly �-monolithic space, 1.2, 135, 157, 158strongly monolithic space, 1.2, 101, 136strongly zero-dimensional space, 1.4, 306–312,

314–316, T.306, T.311subbase of a topology, 1.1submaximal space, 1.3, 208, T.219submetrizable space, 1.4, 392subparacompact space, T.223, T.235subtree, 1.1supremum of a family of topologies, T.139

582

Index

TTalagrand space, 234tightness of a space, 120, 176, 183–185, 207,

234, 287, 296, 410, 447, 456, 461, 462,463, T.041, T.173, T.298, T.384

topology of uniform convergence (this is thesame as uniform convergence topology)

tree, 1.1, 068, 070, 071, 074, T.073T0-separating family, T.270T1-separating family, T.203, T.270T1-space, T.219T2-space (see Hausdorff space)T3 12

-space (see Tychonoff space)T4-space (in this book this is the same as

normal space)two arrows space (see double arrow space)Tychonoff cube (see space I

� )Tychonoff space T.098, T.139, T.205, T.219,

T.245, T.363, T.372

Uultradisconnected space, T.219ultrafilter, T.058, T.371uniform convergence topology, 431, T.357,

T.379, T.421uniformly dense set, 1.5, 456–461, T.457,

T.459uniformly discrete set in a metric space,

T.373

upper semicontinuous map, 1.3, 240–242, 249,388, T.346

VVietoris topology, T.372Velichko’s theorem, 030

Wweak functional tightness, 181, 182, 484weaker topology, 072weakly Whyburn space, 1.3, 206, 209, 211,

213, 215, 219, 220, T.220weight, 091, 094, 096, 102, 105, 131, 187,

244, 295, 303, 304, 403, 405, 411,445, T.039, T.046, T.089, T.092, T.102,T.105, T.109, T.158, T.187, T.250,T.268, T.285, T.322, T.357, T.372,T.412, T.487, T.489, T.490

Whyburn space, 1.3, 204, 205–212, 216–219,T.217, T.219

Zzero-set (see also functionally closed set), 1.5,

T.080, T.252zero-dimensional space, 1.1, 034, 035,

301–307, 309, 312, 313, 347, 348,T.063, T.132, T.205, T.298, T.306,T.309, T.311

583