Basics of Luminescence & Cathodeluminance

91
Basics of luminescence Basics of luminescence I

Transcript of Basics of Luminescence & Cathodeluminance

Page 1: Basics of Luminescence & Cathodeluminance

Basics of luminescenceBasics of luminescence

I

Page 2: Basics of Luminescence & Cathodeluminance

History of cathodoluminescence

History of cathodoluminescence

Page 3: Basics of Luminescence & Cathodeluminance

History of Cathodoluminescence

1879 CROOKSLuminescence studies on crystals after bombardmentwith a cathode ray

1965 SIPPEL, LONG & AGRELLFirst application for thin section petrography

1965 SMITH & STENSTROMCathodoluminescence studies with the microprobe

1971 KRINSLEY & HYDECathodoluminescence studies with the SEM

1978 ZINKERNAGELFirst CL microscope in Germany

Page 4: Basics of Luminescence & Cathodeluminance

2001 International Conference

„Cathodoluminescence in geosciences:New insights from CL in combinationwith other techniques“

Freiberg, Germany

SLMS = Society for Luminescence Microscopy and SpectroscopyKnoxville, USA

Page 5: Basics of Luminescence & Cathodeluminance

Basics of luminescenceBasics of luminescence???

Page 6: Basics of Luminescence & Cathodeluminance

LuminescenceLuminescence

= transformation of diverse kinds of energyinto visible light

Basics of luminescence

Page 7: Basics of Luminescence & Cathodeluminance

Luminescence of inorganic and organic substances

results from an emission transition of anions, molecules

or a crystal from an excited electronic state to a ground

state with lesser energy.

(Marfunin1979)

Basics of luminescence

Fluorescence = luminescence emission with alifetime < 10-8 s

Phosphorescence = luminescence emission with alifetime > 10-8 s

Page 8: Basics of Luminescence & Cathodeluminance

Basics of luminescence

Main processes of luminescence

(1) absorption of excitation energy and stimulationof the system into an excited state

(2) transformation and transfer of the excitation energy

(3) emission of light and relaxation of the systeminto an unexcited condition

Page 9: Basics of Luminescence & Cathodeluminance

Schematic model of luminescence processesSchematic model of luminescence processes

Excitationby energy

Emissionof light

e-

electrons cathodoluminescence

thermal excitation

biological processes

UV photoluminescence

thermoluminescence

bioluminescence

Page 10: Basics of Luminescence & Cathodeluminance

BioluminescenceBioluminescence

Page 11: Basics of Luminescence & Cathodeluminance

Sample

Back scattered electrons

Secondary electrons

Primary electron beam

Cathodoluminescence

Auger electrons

Scattered electrons

X-rays

Unscattered electrons

Specimen current

Page 12: Basics of Luminescence & Cathodeluminance

incidentelectron beam

continuum radiation(Bremsstrahlung)

cathodoluminescence

Sample surface

back scatteredelectrons

primary X-rayexcitation

secondary electrons

2-8 µm

Electron beam interaction with a solidElectron beam interaction with a solid

Page 13: Basics of Luminescence & Cathodeluminance

incidentelectron beam

sample surface

Electron beam interaction with a solidElectron beam interaction with a solid

Penetration depth of electrons:

R

R = 900 · ρ-0.8 · E01.3 for E0 # 10 keV

R = 450 · ρ-0.9 · E01.7 for E0 > 10 keV

R - penetration depthE0 - electron energyρ - density of the solid

Page 14: Basics of Luminescence & Cathodeluminance

The band modelThe band model

Page 15: Basics of Luminescence & Cathodeluminance

valence band

conduction band

insulatorconductor semiconductor

E

Energy levels in a band scheme for different crystal types

valence bandvalence band

conduction band

conduction bandband gap

band gap

Page 16: Basics of Luminescence & Cathodeluminance

valence band

conduction band

insulatorconductor semiconductor

E

Electron transitions in a band scheme for different crystal types

E (photonenergy)

E

Page 17: Basics of Luminescence & Cathodeluminance

Conduction band

Valence band

E

activator

(b) insulator (broad interband spacing)

(a) semiconductor(small interband spacing)

Positions of ion activator energy levels in a band scheme fordifferent crystal types

acceptor

donor

Page 18: Basics of Luminescence & Cathodeluminance

Valence band

E

activator

luminescence

(e)(a) (b) (c)

trap

(d)

Conduction band21

Page 19: Basics of Luminescence & Cathodeluminance

Conduction band

Valence band

E

activator

luminescence

exci

tatio

n

radiationlessemission

Page 20: Basics of Luminescence & Cathodeluminance

The configurational coordinatemodel

The configurational coordinatemodel

Page 21: Basics of Luminescence & Cathodeluminance

Basics of luminescence

excitedstate

groundstate

Configurational coordinate diagram for transitions according to the Franck-Condonprinciple with related absorption and emission bands, respectively.(modified after Yacobi & Holt 1990)

absorptionband

emissionband

Page 22: Basics of Luminescence & Cathodeluminance

Basics of luminescence

Excitation (1) and emission (2) spectra of Mn2+ in calcite (after Medlin 1964)

1

2

Stokes shift

Page 23: Basics of Luminescence & Cathodeluminance

Basics of luminescence

The sensitivity of the electronic states of the Mn2+ ion in octahedral coordination to changes in the intensity of the crystal field splitting Dq and representation in a configurational diagram(modified after Marfunin 1979 and Medlin 1968)

Page 24: Basics of Luminescence & Cathodeluminance

???

How can we usethe luminescence signal ??

How can we usethe luminescence signal ??

Page 25: Basics of Luminescence & Cathodeluminance

Basics of luminescence

Visualization of the real structure of solids by CL

CLPol

Luminescence centres

intrinsic

lattice defects(broken bonds, vacancies)

extrinsic

trace elements(Mn2+, REE2+/3+, etc.)

Page 26: Basics of Luminescence & Cathodeluminance

Basics of luminescence

Types of luminescence centres

transition metal ions (e.g., Mn2+, Cr3+, Fe3+)

rare earth elements (REE2+/3+)

actinides (especially uranyl UO22+)

heavy metals (e.g., Pb2+, Tl+)

electron-hole centres (e.g., S2-, O2

-, F-centres)

crystallophosphores of the ZnS type (semiconductor)

more extended defects (dislocations, clusters, etc.)

Page 27: Basics of Luminescence & Cathodeluminance

Basics of luminescence

Detection of the cathodoluminescence emission

(2) CL spectroscopy(1) CL microscopy

contrasting of different phases

visualization of defects, zoningand internal structures of solids

oapatite

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

300 400 500 600 700 800 900 1000 1100

wavelength [nm]

rel.

inte

nsity

[cou

nts]

Sm3+

Eu2+

Sm3+

Nd3+

Dy3+

determination of the real structure

detection of trace elements, theirvalence and structural position

Page 28: Basics of Luminescence & Cathodeluminance

CL emission spectraCL emission spectra

Page 29: Basics of Luminescence & Cathodeluminance

The crystal field theoryThe crystal field theorylocal environment of the activator ion

- The activator-ligand distances in the different excited states and the slope of the energy levels depend on theintensity of the crystal field(expressed as crystal field splitting = 10Dq)

- The stronger the interaction of the activator ion with thelattice, the greater are the Stokes shift and the width of the emission line.

(Burns, 1993)

Page 30: Basics of Luminescence & Cathodeluminance

The crystal field theoryThe crystal field theorylocal environment of the activator ion

Factors influencing values of or 10Dq are:

- type of the activator ion (size, charge)

- type of the ligands

- the interaction distance

- local symmetry of the ligand environment

etc.

Page 31: Basics of Luminescence & Cathodeluminance

300 400 500 600 700 800

wavelength [nm]

0

16000

12000

8000

4000

rel.

inte

nsity

[cou

nts]

zircon

Dy3+

Dy3+

Dy3+

Dy3+

zircon

scheelite

anhydrite

calcite

fluorite

apatite400 500 600 700 [nm]

Dy3+

Tb3+

Dy3+ Sm3+Dy3+

Sm3+

Sm3+

Sm3+

Tm3+

Influence of the crystal field on CL emission spectraInfluence of the crystal field on CL emission spectra

(1) influence of the crystal field = weak

CL emission spectra are specificof the activator ion

CL spectra of narrow emissionlines (e.g. REE3+)

Page 32: Basics of Luminescence & Cathodeluminance

ENERGY LEVELS OF THE REE3+

Page 33: Basics of Luminescence & Cathodeluminance

Basics of luminescence

Energy levels diagram and emission spectrum of Eu3+ in Eu2(SO4)3 * 8H2O (after Marfunin 1979)f - oscillatory strength (effectiveness of excitation); A - probability of emission transitions

Page 34: Basics of Luminescence & Cathodeluminance

Influence of the crystal field on CL emission spectraInfluence of the crystal field on CL emission spectra

(2) influence of the crystal field = strong

CL emission spectra are specificof the host crystal

CL spectra of broad emissionbands (e.g. Mn2+, Fe3+)

Mn2+calcite

300 400 500 600 700 800wavelength [nm]

100

400

300

200

rel .

inte

n si ty

[co u

n ts]

Mn2+ activated CL of CaCO3:

aragonite green (~560 nm)

calcite yellow-orange (~610 nm)

magnesite red (~655 nm)

Page 35: Basics of Luminescence & Cathodeluminance

perl (aragonite CaCO3)

sea lily stalk (calcite CaCO3)500 µm

Visual and spectral detection of Mn2+ activated CL in natural carbonates

Page 36: Basics of Luminescence & Cathodeluminance

Mn2+-distribution in crystal hetero-structures:CaCO3 and MgCO3-cluster in Mg-Calcite

Habermann (2001)

Page 37: Basics of Luminescence & Cathodeluminance

Cation positions ofcommon luminescencecentres in silicates

(Ramseyer & Mullis 2000)

Page 38: Basics of Luminescence & Cathodeluminance

Influence of the crystal fieldon the broad CL emission bands in mixed crystals

Influence of the crystal fieldon the broad CL emission bands in mixed crystals

plagioclase

Fe3+Mn2+

0

800

600

400

200rel.

inte

nsity

[cou

nts]

300 400 500 600 700 800 900wavelength [nm]

750

740

730

720

710

700

690

680

wav

elen

gth

[nm

]0 20 40 60 80 100

An content [mol-%]

Position of the Fe3+ activated CL emission band in plagioclases in relation to theanorthite content

IRredlunar plagioclases

Page 39: Basics of Luminescence & Cathodeluminance

InstrumentationInstrumentation

Page 40: Basics of Luminescence & Cathodeluminance

Scanning Electron Microscope JEOL 6400with OXFORD Mono-CL detector

Page 41: Basics of Luminescence & Cathodeluminance

samplesilica-glassfibre guide

primary electron beam

mirror

Cathodoluminescence detector on a scanning electron microscope

OXFORD Mono CL

Page 42: Basics of Luminescence & Cathodeluminance

Hot-cathode luminescence microscope HC1-LM(designed by Rolf Neuser, Bochum)

Page 43: Basics of Luminescence & Cathodeluminance

Cold-cathode luminescence microscope (CITL)(Cambridge Instruments)

Page 44: Basics of Luminescence & Cathodeluminance

Cold-cathode luminescence microscope with EDX detector(Cambridge Instruments)

(Vortisch et al. 2003)

Page 45: Basics of Luminescence & Cathodeluminance

cold-cathode microscopehot-cathode microscope

InstrumentationInstrumentation

leaded glassviewing point

microscope

thin section

coronapoints

condenser

light sourcedischarge tube

curved electrodehigh

voltage

cable

optic axis

specimen

microscopeobjective

focuscoil

cathode

Page 46: Basics of Luminescence & Cathodeluminance

Cathodoluminescence techniquesCathodoluminescence techniques

CL microscopySEM-CL

polished thin (thick) section

defocused electron beam, stationary mode

heated filament („hot cathode“)14 kV, 0.1-0.5 mA

ionized gas („cold cathode“)

glass optics: 380-1200 nm (Vis - IR)

analytical spot ca. 30 µm

true luminescence colours

resolution 1-2 µm

polarizing microscopy, (EDX)

polished sample surface

focused electron beam,scanning mode

heated filament 20 kV, 0.5-15 nA

mirror optics: 200-800 nm (UV - IR)

analytical spot ca. 1 µm

panchromatic CL images (grey levels)

resolution << 1 µm

SE, BSE, EDX/WDX, cooling stage

Page 47: Basics of Luminescence & Cathodeluminance

Cathodoluminescence imagingCathodoluminescence imaging

zircon

CL

SE

BSE

10 µm

CL

Polmi

500 µm

quartz

Cathodoluminescence microscopySEM cathodoluminescence

Page 48: Basics of Luminescence & Cathodeluminance

Cathodoluminescence microscope HC1-LM

Computer aidedimage analysis

vacuumpumps

electronicsteerage

CL microscope withattached CCD basedviedeo camera

Page 49: Basics of Luminescence & Cathodeluminance

brassclips

screen

sampleholder

Sample chamber

Wehnelt cylinder

Electron gun

Hot-cathode luminescence microscope HC1-LM

sample is fixedupside down inthe sample holder

transparency !

Page 50: Basics of Luminescence & Cathodeluminance

microscope

sample

Light sourcefilamentelectron

beam

Polarisingmicroscopy

Cathodoluminescencemicroscopy

Cathodoluminescence microscopyCathodoluminescence microscopy

Page 51: Basics of Luminescence & Cathodeluminance

Sample preparationSample preparation

Page 52: Basics of Luminescence & Cathodeluminance

Sample preparationSample preparation

1. Polished thin section sample holder(glass)

epoxy resin

sample(~25 µm)

48 m

m

28 mm

application for all CL equipments

Page 53: Basics of Luminescence & Cathodeluminance

Sample preparationSample preparation

2. Polished section Sample holder(plastics)

application for SEM-CL („cold-cathode“ microscopes)

epoxy resin

samplepiece

Page 54: Basics of Luminescence & Cathodeluminance

Sample preparationSample preparation

4. Sample holder for fluid inclusionpreparates

sample holder(metallic)

glassplate

48 m

m

28 mm

application for all CL equipments

samplepiece

Page 55: Basics of Luminescence & Cathodeluminance

Sample preparationSample preparation

3. Polished sample piece

samplepiece

application for SEM-CL („cold-cathode“ microscopes)

Page 56: Basics of Luminescence & Cathodeluminance

Sample preparationSample preparation

5. Pressed tablet (powder samples)

application for SEM-CL („cold-cathode“ microscopes)

pressed tabletof powder sample

Page 57: Basics of Luminescence & Cathodeluminance

Sample preparationSample preparation

for SEM-CL and „hot-cathode“ CL microscopes

Coating with conducting material

- to prevent the built up of electrical charge during electron irradiation

- coating material: C, Au, Al, Ag, Cu

Page 58: Basics of Luminescence & Cathodeluminance

DocumentationDocumentation

Page 59: Basics of Luminescence & Cathodeluminance

DocumentationDocumentation

Digital video cameraKAPPA 961-1138 CF 20 DXC

Digital micrographsConvetional photos/slides

Nikon photo cameraKodak Ektachrome 400 HC

Advantages of CCD:

high spatial resolution

high sentsitivity

- analysis of minerals withvery low CL intensities

- low accumulation time

direct combination withimage analysis

Page 60: Basics of Luminescence & Cathodeluminance

Spectral CL measurementsSpectral CL measurements

Page 61: Basics of Luminescence & Cathodeluminance

High-resolution CL spectroscopyHigh-resolution CL spectroscopy

14 kV, 0.2 mA< 5s accumulation time

adaptation(30µm screen)

Silica-glassfibre guide

150, 600, 1200 lines/mm 0.4 nm resolution

data processing

Page 62: Basics of Luminescence & Cathodeluminance

adaptation

High-resolution CL spectroscopyHigh-resolution CL spectroscopy

Triple-gratingspectrograph

Nitrogen-cooledCCD-detector

Silica-glass fibre guide

CL microscope

Page 63: Basics of Luminescence & Cathodeluminance

Factors influencingCL properties/intensityFactors influencingCL properties/intensity

Page 64: Basics of Luminescence & Cathodeluminance

Factors influencing the CL intensityFactors influencing the CL intensity

time(especially transient CL)

sample preparation(sample surface, thickness)

sample coating(quality, thickness, material)

temperature

analytical conditions(acceleration voltage, beam current, vacuum, etc.)

type of equipment

analytical factors crystalllographic factors

quenching

luminescence activation

sensitizing

Page 65: Basics of Luminescence & Cathodeluminance

Basics of luminescence

Analytical parameters influencing cathodoluminescenceAnalytical parameters influencing cathodoluminescence

-120 -100 -80 -60 -40 -20 0 +20

Specimen current at 20 kV [nA]

rela

tive

inte

nsity2

0

1000

3

Variation of the intensity of quartz CLwith beam current(modified after Hanusiak 1975)

rela

tive

inte

nsity

1

100

10

100

temperature [°C]

1

0.1 1 10

Variation of CL intensity with sampletemperature for quartz(modified after Hanusiak & White 1975)

Page 66: Basics of Luminescence & Cathodeluminance

Basics of luminescence

Sensitizing and quenching

Interaction between two or more ions with transfer of ecitation energyfrom one ion to another resulting in changes of their luminescence.

Quenching of luminescence:

(1) concentration quenching(self quenching)

(2) quenching by ions with intensecharge transfer bands (e.g. Fe2+, Co2+)

(3) quenching due to lattice defects

(4) thermal quenching

Sensitizing of luminescence:

(1) emission-reabsorption(„cascade“ luminescence)

(2) resonance radiationless

(3) nonresonance radiationless

typical sensitizer ions:

(1) ions with intensive absorptionbands in the UV (e.g. Tl+, Cu+, Pb2+)for sensitization of Mn2+

(2) ions of transition metals (e.g. Mn2+) forsensitization of REE3+

(3) REE2+/3+ for sensitization of REE3+

Page 67: Basics of Luminescence & Cathodeluminance

excitationemission

activatoractivator

excitationradiationlesstransition

luminescence emission concentration quenching

Page 68: Basics of Luminescence & Cathodeluminance

Influence of excitation energy and delay time on emission spectra oflaser-induced time-resolvedluminescence(apatite Ehrenfriedersdorf, Germany)

(Kempe & Götze 2002)

Page 69: Basics of Luminescence & Cathodeluminance

Basics of luminescence

Mineral groups and minerals showing CLMineral groups and minerals showing CL

in general all insulators and semiconductors

elements diamondsulfides sphaleriteoxides corundum, cassiterite, periclasehalides fluorite, halitesulfates anhydrite, alunitephosphates apatitecarbonates calcite, aragonite, dolomite, magnesitesilicates feldspar, quartz, zircon, kaolinite

technical products (synthetic minerals, ceramics, glasses !)

no luminescence of conductors, iron minerals andFe-rich phases

Page 70: Basics of Luminescence & Cathodeluminance

CL of orthopyroxene (with carbonate) from an alkaline complex, Namibia

300 µm

Page 71: Basics of Luminescence & Cathodeluminance

General applications of CL in geosciencesGeneral applications of CL in geosciences

identification of minerals, mineral distribution andquantification

typomorphic properties(CL colour, CL behaviour, spectral characteristics)

crystal chemistry(trace elements, internal structures, zoning)

reconstruction of geological processes

characterisation of technical products(also non-crystalline phases !)

Page 72: Basics of Luminescence & Cathodeluminance

calcite

feldspar

quartz?

Identification of minerals

Mineral distribution

Quantification of mineral abundance

Identification of minerals

Mineral distribution

Quantification of mineral abundance

Page 73: Basics of Luminescence & Cathodeluminance

Identification of minerals - mineral distribution - textureIdentification of minerals - mineral distribution - texture

500 µm

Q

Kf

Plag

CLPol

Applications of CL

Page 74: Basics of Luminescence & Cathodeluminance

Identification of minerals - mineral distributionIdentification of minerals - mineral distribution

400 µm

QF

C

zircon

kaolinite

500 µm

500 µm

Pol CL

Page 75: Basics of Luminescence & Cathodeluminance

Quantification of mineral abundance by combined CL and image analysisQuantification of mineral abundance by combined CL and image analysis

Aim:

- quantification of phases in addition to conventional methods

Limits of other methods:

- chemical analysis provides no information concerning phase composition- X-ray diffraction without information concerning texture, intergrowth, etc.

limited application for non-crystalline samples - polarizing microscopy is time consuming, limits for fine-grained samples

Advantages of combined CL and image analysis:

- clear phase contrast by CL and automatization of analysis bycomputer aided image analysis

- comparison of optical and CL microscopy possible- information concerning texture, phase distribution, grain size, porosity, etc.- only one thin section necessary

Page 76: Basics of Luminescence & Cathodeluminance

Cathodoluminescence microscope HC1-LM

Computer aidedimage analysis

vacuumpumps

electronicsteerage

CL microscope withattached CCD basedviedeo camera

Page 77: Basics of Luminescence & Cathodeluminance

Image processing algorithm:

(1) shadow correction by means of low-pass filtering(2) basic image processing (focus, contrast, brightness, etc.)(3) definition of the CL colours of the different mineral phases by

combining the values of colour and brightness(4) false-colour imaging of the different phases (thresholding) and

conversion to binary mode(5) processing of phases in the binary mode(6) definition of options and measuring(7) extraction of data and interpretation

the number of fields of view depends on:

- the homogeneity/heterogeneity of the sample- magnification- contents of mineral phases analysed

Page 78: Basics of Luminescence & Cathodeluminance

Quantitative CL microscopy of synthetic standard samplesQuantitative CL microscopy of synthetic standard samples

CLPol

300 µm

Q

QC

Q

C

F

C

F

F

60

50

40

30

20

10

%

alkali feldspar magnetitequartz

1 0.54 0.72

45 45.7 46.345 45.7 46.3

5 5.3 4.5

calcite

calibrated composition

weight-%

vol-%

analysed composition

vol-%

Page 79: Basics of Luminescence & Cathodeluminance

Quantification of mineral abundance by combined CL and image analysisQuantification of mineral abundance by combined CL and image analysis

Binary mode

CL image

Thresholding

Quantification offeldspar content

Page 80: Basics of Luminescence & Cathodeluminance

quartzfeldsparcarbonatekaolinitepore space

Mineral composition ofCretaceous sandstonesof the Elbe valley, Germany(Magnus & Götze 1997)

Page 81: Basics of Luminescence & Cathodeluminance

Typomorphic properties of mineralsTypomorphic properties of minerals

Page 82: Basics of Luminescence & Cathodeluminance

First classification of quartz types according to their CL propertiesafter ZINKERNAGEL (1978)

Page 83: Basics of Luminescence & Cathodeluminance

Typomorphic CL properties of quartzTypomorphic CL properties of quartz

schist

rhyolitegranite

hydrothermal

Applications of CL

Page 84: Basics of Luminescence & Cathodeluminance

Li

Al Al

FeTi

Ge

Na

K

Crystal chemistryCrystal chemistry

- trace-elementdistribution

- quantification ??

Page 85: Basics of Luminescence & Cathodeluminance

fluoriteChemnitz, Germany

100 µm

oo21

1600

1200

800

400

0

rel.

Inte

nsity

[cou

nts]

300 400 500 600 700 800wavelength [nm]

1

2

Er3+Eu2+

Dy3+

Dy3+

Sm3+

Dy3+ Sm3+

Dy3+

fluorite, Chemnitz (Germany)

Applications of CL

Crystal chemistryCrystal chemistry

Page 86: Basics of Luminescence & Cathodeluminance

18O

16O

Isotope geochemistryIsotope geochemistry

Page 87: Basics of Luminescence & Cathodeluminance

Application of CL in isotope geochemistry and geochronology

Application of CL in isotope geochemistry and geochronology

detection of internal structures,zoning and alteration featuresin samples for the analysis ofstable isotopes

detection of relic cores andinternal structures in zirconused for age dating

Page 88: Basics of Luminescence & Cathodeluminance

General applications of CL in geosciencesGeneral applications of CL in geosciences

identification of minerals, mineral distribution andquantification

typomorphic properties(CL colour, CL behaviour, spectral characteristics)

crystal chemistry(trace elements, internal structures, zoning)

reconstruction of geological processes

characterisation of technical products(also non-crystalline phases !)

Page 89: Basics of Luminescence & Cathodeluminance

Characterisation of technical productsCharacterisation of technical products

Page 90: Basics of Luminescence & Cathodeluminance

Technical and industrial applications:

- ceramics

- refractory materials

- glass

- waste materials

- building stones and materials

- archeometry

- biomaterials etc.

Page 91: Basics of Luminescence & Cathodeluminance

Al content and cathodoluminescence in silica glass

Applications of CL

Glass Glass