Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar...

42
University of California, Davis Barycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing November 8, 2007

Transcript of Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar...

Page 1: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

University of California, Davis

Barycentric Finite ElementMethods

N. SukumarUniversity of California at DavisSIAM Conference on Geometric

Design and Computing November 8, 2007

Page 2: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Collaborators and Acknowledgements

• Collaborators

• Research support of the NSF is acknowledged

Alireza Tabarraei (Graduate Student, UC Davis)

Elisabeth Malsch (Post-Doc, Germany)

Page 3: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Outline

Motivation

Introduction to Finite Element Method

Conforming Barycentric Finite Elements

Modeling Crack Discontinuities via Partition of Unity Finite Elements

Summary and Outlook

Page 4: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Motivation: Voronoi Tesellations in Mechanics

Polycrystallinealloy

(Courtesy ofKumar, LLNL)

(Martin and Burr, 1989)(Bolander and

S, PRB, 2004)

Fiber-matrix composite Osteonal bone

Page 5: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Motivation: Crack Modeling

FEM

X-FEM (Moes et al., 1999)Nodes are enriched by a• discontinuous function and• near-tip fields

crack

Mesh generated using ‘Triangle’

Page 6: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Motivation: Crack Modeling on Polygonal Meshes

Convex Mesh Non-Convex Mesh

Page 7: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Motivation: Crack Propagation on Quadtree Meshes

Quadtree mesh Zoom

Page 8: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Galerkin Finite Element Method (FEM)

3

1

2

xFEM: Function-based method to solve partial differential equations

Strong Form:

!

"#2u = f in$, u = u on %$

Variational (Weak) Form:

steady-state heat conductionDT

!

u* = argmin

u"[u] = #u•#u /2 $ fu( )

%

& d%'

( )

*

+ ,

Page 9: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Galerkin FEM (Cont’d)

!

"#[u] = " $u•$u /2 % fu( )&

' d& = 0Variational Form

!

"#u•"ud$$

% & f#ud$$

% = 0 '#u( H0

1($)

!

uh(x) = " j (x)u j

j# , $uh = "i(x)

Finite-dimensional approximations for trial function andadmissible variations

must vanish on the bdry

Page 10: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Galerkin FEM (Cont’d)

Discrete Weak Form and Linear System of Equations

!

"#uh •"uhd$$

% = f#uhd$$

%

!

Ku = f

Kij = "#i •"# j d$$

% , fi = f# i d$$

%!

"#i •"# jd$$

%&

' (

)

* + u j

j=1

N

, = f# i d$$

%

Page 11: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Biharmonic EquationStrong Form

!

"4u = f in#

BCs : u = u and $u/$n = 0 on $#

Variational (Weak) Form

!

Find u" S such that

!

"2u"2

w#

$ d# = fw#

$ d# %w & V

!

S = u : u" H2(#), u = u on $#,$u /$n = 0 on $#{ }

!

V = w :w " H2(#),w = 0 on $#,$w /$n = 0 on $#{ }

Page 12: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Nodal Basis Function and Nodal Shape Function

Basis function

a

Shape function

!

"a(x)

!

Na(x)

a a

Page 13: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

• Affine combination:

• Convex combination:

• Regularity:

• Piece-wise linear on the boundary: conformity and for imposing Dirichlet boundary conditions

• Fast computations for and ; efficient numerical quadrature over each element

!

"i(#) =1

i

$ ,

!

x := "i(#)x

i

i

$

FEM: Desired Bases Properties and Implementation

!

"i# 0 ensures convergence

for 2nd order PDEs(isoparametric map)

!

"i# C

$(%)

!

C0

!

"i

!

"#i

Page 14: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Convex hull

p lies outside the circumcircles in green

Voronoi (Natural Neighbor)-Based Interpolants

Page 15: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

!

"i(p) =Ai(p)

A(p)

Sibson Interpolant

(Sibson, 1980)

Page 16: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Laplace Interpolant

!

"i(p) =# i(p)

# j (p)j

$!

" i(p) =si(p)

hi(p)

(Christ et al., Nuclear Physics B, 1982; Belikov et al., 1997; Hiyoshi and Sugihara, 1999)

Page 17: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

• Wachspress basis functions (Wachspress, 1975; Warren, 1996; Meyer et al, 2002; Malsch, 2003)

• Mean value coordinates (Floater, 2003; Hormann, 2005; Floater and Hormann, 2006)

• Laplace and maximum-entropy basis functions

x

(S, 2004; S and Tabarraei, 2004)

Barycentric Coordinates on Polygons

x

Page 18: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

• Convex combination

• Partition of unity

• Reproduces affine functions (linear completeness)

!

"i

i=1

n

# (x) =1

!

"i(x)x

i= x

i=1

n

#

Properties of Barycentric Coordinates

!

"i# 0

Page 19: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Laplace Shape Function (Circumscribable Polygons)

Canonical Elements

Identical to Wachspress and Discrete Harmonic Weight

Page 20: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Laplace Shape Function

Isoparametric Transformation

!

"i(p) =# i(p)

# j (p)j

$,

!

" i(p) =si(p)

hi(p)

(S and Tabarraei, IJNME, 2004)

Page 21: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Polygonal Basis Function

Page 22: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

• Affine functions:

• Convex combination:

Pos-def mass matrix, total variation diminishing Convex hull property Optimal conditioning

!

"i

i=1

n

# (x) =1,

!

"i(x)x

i= x

i=1

n

#

Maximum-Entropy Basis Functions: Constraints

!

"i(x) # 0 $i,x

(Arroyo and Ortiz, IJNME, 2006)

(Farouki and Goodman, Math. Comp., 96)

: convex approximation scheme

!

uh

(S, IJNME, 2004; Arroyo and Ortiz, IJNME, 2006)

Page 23: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

!

max" #R+

n

$ "i

i=1

n

% (x)ln"i(x)

mi(x)

!

"(x) = # $ R+

n: #

i

i=1

n

% =1, #i

i=1

n

% xi= x

& ' (

) * +

(S and Wright, IJNME, 2007; S and Wets, SIOPT, 2007) MAXENT/Minimum Relative-Entropy Formulation

: Prior (weight function)

!

mi(x)

Page 24: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

MAXENT Solution

• Numerical solution based on the dual (logsumexp func)• Convex minimization (Agmon et al., JCP, 1979)

!

"i(x) =Zi(x)

Z(x), Zi(x) = mi(x)exp(#x i • $),

Z = Z j (x)j

% (partition function)

Wachspress MVC MAXENT

Page 25: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

3

1 a 2

Quadtree

2 3

A

(Tabarraei and S, FEAD, 2005)

Page 26: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Non-Convex Polygons

!

wi(x) =

tan("i#1

2) + tan(

"i

2)

ri

,

!

tan("i

2) =

sin"i

1+ cos"i

=ri# r

i+1

riri+1 + r

i$ r

i+1

Mean Value Coordinates

(Hormann and Floater, ACM Transaction on Graphics, 2006)

!

"i(x) =wi(x)

w j (x)j

#

!

ri= x

i" x, r

i= x

i" x

Page 27: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Introduction of a function within a FE spacesuch that conformity and sparsity of thestiffness matrix are retained

Classical Finite Element Approximation

!

uh(x) = "

i(x)u

i

i

# ,

!

"i(x) =1,

i

# "i(x)x

i

i

# = x

Partition of Unity Finite Element Method (PUFEM)

)(x!

(Melenk and Babuska, CMAME, 1996)

!

C0

!

"

Page 28: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

!

uh(x) = "i(x)ui

i#I

$ + " j (x)%(x)j#J

$ a j

classical enrichment

PUFEM/X-FEM (Moes et al., IJNME, 1999)

!

{"i}i#I ${" j%} j#J

Bases

• Index set consists of all nodes in the mesh•, Index set consists of nodes that are enriched

!

I

!

J•

FE space

!

"

Page 29: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

FE and Enriched Basis Functions

FE basis function Enriched basis function

!

"a(x)

a a

crack

!

"a(x)H(x)

Page 30: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

X-FEM Approximation (Polygonal Mesh)

!

uh(x) = "i(

i#I

$ x)ui + " j (j#J

$ x)H(x)a j + "k (x)k#K

$ %& (x)&=1

4

$ bk&

Heaviside enriched nodes Near-tip enriched nodes

(Tabarraei and S, CMAME, 2008)

Page 31: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Laplace (Polygonal) and Enriched Bases Functions

Crack

Page 32: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

MVC (Non-Convex) and Enriched Bases Functions

Crack

Page 33: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Mesh a Mesh b Mesh c

Patch Test

Regularized mesh

Error in the norm = 2L )10( 10!

O

Error in the energy norm = )10( 9!O

Page 34: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Mesh a Mesh b

Error in the norm for meshes a and b areand , respectively

Patch Test (Cont’d)Non-regularized mesh

)10( 7!O )10( 6!

O

2L

Page 35: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Poisson Problem: Localized Potential

( )2221 )1(4

16)(xx

eu+!!

!=x

22 )3,3(in4 !="=#! $%u

!"= on0u

( )2221 )1(4

16xx

e++!

!

Potential

(Tabarraei and S, CMAME, 2007)

Page 36: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Poisson Problem: Mesh Refinements

Mesh a Mesh b Mesh c

Mesh d Mesh e Mesh f

Page 37: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

!

KI

= (" 2 sin2 # +"1 cos

2 #) $a

KII

= (" 2 %"1)sin# cos# $a(Aliabadi, IJF, 1987)

Oblique Crack in an Infinite Plate

Page 38: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Oblique Crack (Cont’d)

Quadtree mesh Non-convex mesh292 elements 292 elements

Page 39: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Oblique Crack: Stress Intensity Factors

Page 40: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Inclined Central Crack in Uniaxial Tension

Animation Zoom

!

a

L= 0.01

Page 41: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Summary and Outlook

• Barycentric coordinates on irregular polygons were used to develop finite element methods

• Mesh-independent modeling of cracks on polygons and quadtree meshes was presented

• Potential use of barycentric coordinates in FE: smooth interpolants for higher-order PDEs; construction of convex approximants; meshing microstructures in 3D; polyhedral/octree FE

Page 42: Barycentric Finite Element Methods - USI InformaticsBarycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing

Journal Acronyms• IJNME : International Journal for Numerical Meth. in Engg.

• CMAME : Computer Methods in Applied Mech. and Engg.

• FEAD : Finite Elements in Analysis and Design

• PRB : Physical Review B

• SIOPT : SIAM Journal of Optimization • JCP : Journal of Computational Physics

Links to my journal publications on barycentric FEM areavailable from http://dilbert.engr.ucdavis.edu/~suku