AVA analysis as a machine learning problem€¦ · hydrocarbon*reserves*from*seismic* images.*...

27
University of British Columbia SLIM Ben Bougher, SEG 2016 AVA analysis as a machine learning problem Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2016 SLIM group @ The University of British Columbia.

Transcript of AVA analysis as a machine learning problem€¦ · hydrocarbon*reserves*from*seismic* images.*...

  • University of British ColumbiaSLIM

    Ben Bougher, SEG 2016

    AVA analysis as a machine learning problem

    Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).Copyright (c) 2016 SLIM group @ The University of British Columbia.

  • Reflection seismology as an unsupervised learning problem

    3

    Approaches: Physics  driven  (conventional)  Data  driven  (thesis  contributions)  

    Motivation: Inability  to  discover  hydrocarbons  directly  from  seismic  data.  

    Problem: Automatically  segment  potential  hydrocarbon  reserves  from  seismic  images.  

  • Angle domain common image gathers

    8

    θProblem:  Need  angle  dependent  reflectivity  responses  

    Solution:  Angle  domain  common  image  gather  migration

    x1

    x

    z1

    dept

    h

    refle

    ctiv

    ity

    Earth  Model R(𝜃)  at  (x1,z1)

  • Scattering theory (Zoeppritz)

    9

    θ1θ1

    θ2

    φ1

    φ2

    Vp1, Vs1, ρ1

    Vp2, Vs2, ρ2

    Rpp Rps

    Tpp

    Tps

    2

    664

    RPP

    RPS

    TPP

    TPS

    3

    775 =

    2

    6664

    � sin ✓1 � cos�1 sin ✓2 cos�2cos ✓1 � sin�1 cos ✓2 � sin�2sin 2✓

    VP1VS1

    cos2�1⇢2VS22VP1⇢1V 2S1VP 2

    cos 2✓1⇢2VS2VP1⇢1V 2S1

    cos 2�2

    �cos�2 VS1VP1 sin 2�1⇢2VP2⇢1VP1

    ⇢2VS2⇢1VP1

    sin 2�2

    3

    7775

    �1 2

    664

    sin ✓1

    cos ✓1

    sin 2✓1

    cos 2�1

    3

    775

    Problem: Relate angle dependent reflectivity to rock physics.

    Assumption: Ray theory approximation.

    Solution:

    Problem: Non-linear, not useful for inversion.

    R(✓) / VP , VS , ⇢

  • Scattering theory (Shuey)

    10

    Limitations: Small  perturbations  over  a  background  trend  valid  <  30  degrees  

    Benefits:  linear  for  i  and  g  invert  using  simple  least  squares  

    0 10 20 30 40 50 60 70 80 90

    theta [deg]

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    Rpp

    Zoeppritz2-term Shuey

    Rpp(✓) = i(�VP ,�⇢) + g(�VP ,�VS ,�⇢) sin2 ✓

    R(𝜃)  at  (x1,z1)

    Shuey  approximation

  • Shuey term inversion as a projection

    11

    Rpp

    Rpp(✓) at x1, z1

    ADCIG at x1

    θ

    ADCIGs

    Image  for  every  scattering  angle.  An  angle  gather  for  every  slice.  A  reflectivity  curve  for  every  point.

  • Shuey term inversion as a projection

    11

    Rpp

    Rpp(✓) at x1, z1

    Fit  the  reflectivity  curve  using  a  linear  combination  of  the  Shuey  vectors.  Each  reflectivity  curve  is  projected  down  to  two  coefficients.

  • Shuey term inversion as a projection

    11

    i g

    i,g at x1

    i

    g

    Reduced  the  dimensionality  of  the  angle  gathers  to  two  coefficients.  Projection  coefficients  can  be  plotted  to  analyze  the  multivariate  relationships.

  • Relation to hydrocarbons

    12

    �0.4 �0.2 0.0 0.2 0.4I

    �0.4

    �0.2

    0.0

    0.2

    0.4

    G

    mudrock linesand - shalegas sand - shale

    g =i

    1 + k

    h1� 4 hVSihVP i

    ⇣ 2m

    + khVSihVP i

    ⌘i

    *m,  c,  k  are  geological  parameters  determined    empirically  from  well  logs/laboratory  measurements

    Hydrocarbon  reserves  are  found  from  outliers  of  a  crossplot!

    Brine-‐saturated  sands  and  shales  follow  a    mudrock  line:  

    Hydrocarbon  saturated  sands  deviate  from  this  trend.

  • Reality bites

    13

    5 10 15 20 25 30✓ [deg]

    �1.6

    �1.4

    �1.2

    �1.0

    �0.8

    �0.6

    �0.4

    �0.2

    Rpp

    ⇥104

    0 5 10 15 20 25 30 35 40✓ [deg]

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    Rpp

    0 5 10 15 20 25 30✓ [deg]

    0

    1

    2

    3

    4

    5

    6

    Rpp

    0 5 10 15 20 25 30✓ [deg]

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5I

    G

    Problem:    Shuey  components  can’t  explain  the  features  in  real  data.

    Solution:    Use  unsupervised  machine  learning  to  find  better  projections.

    BG  dataset Penobscot  dataset Mobil  Viking  dataset

  • Unsupervised learning problem

    14

    X 2 Rn⇥d

    n  is  number  of  samples  in  the  image,    d  is  the  number  of  angles

  • Principle component analysis (PCA)

    Eigendecomposition  of  the  covariance  matrix:  

    Project  onto  the  eigenvectors  with  the  two  largest  eigenvalues.  Maximizes  the  variance  (a  measure  of  information).

    15

    C = XTX =1

    n

    nX

    i

    xixTi

  • Marmousi II Earth model

    17

    0 1000 2000 3000 4000x [m]

    0

    500

    1000

    1500

    2000

    z[m

    ]

    vp

    12001400160018002000220024002600

    0 1000 2000 3000 4000x [m]

    0

    500

    1000

    1500

    2000z

    [m]

    vs

    0

    150

    300

    450

    600

    750

    900

    1050

    0 1000 2000 3000 4000x [m]

    0

    500

    1000

    1500

    2000

    z[m

    ]

    rho

    105012001350150016501800195021002250

    0 1000 2000 3000 4000x[m]

    0

    500

    1000

    1500

    2000

    z[m

    ]

    zero-o↵set rpp

    �0.32�0.24�0.16�0.080.000.080.160.240.32

    Specifically  made  for  testing  amplitude  vs.  offset  analysis  

    Contains  gas-‐saturated  sand  embedded  in  shales  and    brine-‐sands.  

  • Seismic modeling

    18

    0 500 1000 1500 2000 2500 3000 3500 4000x [m]

    0

    500

    1000

    1500

    2000

    z[m

    ]

    0 5 10 15 20 25 30✓ [deg]

    500 1000 1500 2000 2500 3000 3500 4000 4500 5000x [m]

    0

    500

    1000

    1500

    2000

    2500

    z[m

    ]

    �5 0 5 10 15 20 25 30✓ [deg]

    Physically  consistent  with  the  Zoeppritz  equations

    Migrated  visco-‐acoustic  survey

    True  reflectivity Migrated  seismic

  • Kernel PCA

    Problem:  Find  a  non-‐linear  projection  that  provides  better  discrimination  of  trends  and  outliers.  

    Solution:  Use  the  “kernel-‐trick”  to  compute  PCA  in  a  high-‐dimensional  non-‐linear  feature  space  

    20

  • Kernel trickPCA  can  be  calculated  from  the  Gramian  inner  product  matrix:  

    Replace                          with  a  kernel    

    Example  c=2,  b=1

    21

    hxi,xji (xi,xj)

    �(x) = [1,p2x1,

    p2x2, x

    21, x

    22,p2x1x2]

    XXT =

    0

    BBB@

    hx1,x1i hx1,x2i . . . hx1,xnihx2,x1i hx2,x2i . . . hx2,xni

    ......

    . . ....

    hxn,x1i hxn,x2i . . . hxn,xni

    1

    CCCA

    (xi,xj) = (xTi xj + b)

    c = h�(xi),�(xj)i

  • RecapSituation:  Exploring  seismic  data  for  anomalous  responses.  Problem:  Physical  model  can  not  explain  real  world  data.  Solution:  Learn  useful  projections  directly  from  the  data.  Assessment:  

    • PCA  is  equivalent  for  physically  consistent  data,  but  more  robust  to  processing/acquisition  artifacts.  

    • Kernel  PCA  makes  outliers  linearly  separable  from  the  background.  

    Next:  Automatic  segmentation  (clustering)  

    23

  • Each  point  is  initially  considered  a  cluster.  Each  iteration  merges  the  closest  clusters  into  a  larger  cluster.  Builds  a  hierarchy  until  a  defined  number  of  classes  is  reached.

    Hierarchical clustering

    24

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9�0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0

    1

    2

    3 4

    5

    6

    7

    8

    9

    5 3 1 2 47 96 80

    A

    BB

    C

    Unclassified  data Classification  hierarchy

  • Results - PCA

    25

    Clustered  physically  consistent  data Clustered  migrated  data

  • Results - Kernel PCA

    26

    Clustered  physically  consistent  data Clustered  migrated  data

  • Summary

    Successes:  Each  projection  could  segment  the  reservoir.  Kernel  PCA  provided  advantageous  multivariate  geometries  (linearly  separable).  

    Challenges:  Clustering  is  highly  sensitive  to  user  chosen  parameters.  Kernel  PCA  is  computationally  expensive  and  lacks  interpretation.  

    27

  • Robust PCA

    Problem:  Find  a  sparse  set  of  outlying  reflectivity  responses  against  a  background  trend.  Assumption:  The  background  trend  of  similar  curves  is  highly  redundant,  which  forms  a  low  rank  matrix.  Solution:  

    28

    minL,S

    kLk⇤ + �kSk1,1 s.t. L+ S = X

  • Results - physically consistent data

    29

    0 1000 2000 3000 4000x [m]

    0

    500

    1000

    1500

    z[m

    ]

  • Results - migrated seismic

    30

  • Summary

    Successes:  Segmentation  of  reservoir  in  both  images.  Physically  interpretable  segmentation  without  clustering.  

    Challenges:  Requires  tuning  of  one  optimization  trade  off  parameter.  Convergence  sensitive  to  the  rank  of  outliers,  not  well  understood.

    31

  • Epilogue

    Outcome:  Generalized  a  conventional  analysis  approach  using  unsupervised  learning  models.  Successful  in  segmented  potential  hydrocarbon  reserves  from  seismic  data  Future:  More  data,  standardized  datasets  Quantitative  benchmarks

    44

  • References[1]Zoeppritz, K., 1919, VII b. Über Reflexion und Durchgang seismischer Wellen durch Unstetigkeitsflächen: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1919, 66–84 [2]Shuey, R. T., 1985, A simplification of the Zoeppritz equations: Geophysics, 50, 609–614. [3]Gardner, G. H. F., L. W. Gardner, and A. R. Gregory, 1974, Formation velocity and density; the diagnostic basics for stratigraphic traps: Geophysics, 39, 770–780. [4]Castagna, J. P., M. L. Batzle, and R. L. Eastwood, 1985, Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks: Geophysics, 50, 571–581. [5]Castagna, J. P., H. W. Swan, and D. J. Foster, 1998, Framework for AVO gradient and intercept interpretation: Geophysics, 63, 948–956. [6]Edgar, J., and J. Selvage, 2013, Dynamic Intercept-gradient Inversion

    46