Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in...

39
Turbomachinery Hasan Ozcan Assistant Professor Mechanical Engineering Department Faculty of Engineering Karabuk University

Transcript of Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in...

Page 1: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

Turbomachinery

Hasan OzcanAssistant Professor

Mechanical Engineering DepartmentFaculty of Engineering Karabuk University

Page 2: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

2

Introduction

Hasan Ozcan, Ph.D, (Assistant Professor)

B.Sc :Erciyes University, 2009M.Sc :Karabuk University, 2011Doctorate :University of Ontario Institute of 

Technology, 2015

Research Fields: Thermal system design, renewable energy, hydrogen production, Energy Storage

Page 3: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

3

IntroductionMarking SchemeMidterm – 40%Project – 20% (added to final exam ‐ elective)Final Exam – 60%

SourcesBasic Concepts in Turbomachinery ( Ingram, 2009)Turbomachinery Performance Analysis (Levis, 1996 )Fluid Mechanics and thermodynamics of Turbomachinery (Dixon and Hall, 2010)

Course ContentWeek 1: Introduction and Basic PrinciplesWeek 2: Relative and Absolute MotionWeek 3: Turbomachine OperationWeek 4: Basic Concepts for Fluid MotionWeek 5: Dimensionless Parameters in TurbomacineryWeek 6: Efficiency and Reaction for TurbomachineryWeek 7‐9: Axial flow MachinesWeek 9‐12: Hydraulic Turbines Week 11‐13: Analysis of Pumps Week 14: Project presentations

Page 4: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

4

Introduction to Turbomachinery

What is a turbomachine?

‐ Turbomachine is a device exchanging energy with a fluid by either absorbing 

from or extracting energy to the fluid.

‐ The energy extracting devices are called Turbine, while energy absorbing devices 

can be called pump, blower, fan, and compressor.

Page 5: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

5

Introduction to Turbomachinery

Some Applications of Turbomachinery

Page 6: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

6

Introduction to Turbomachinery

Classification of Turbomachines

‐ Energy Extracting – Energy Absorbing

‐ Flow Direction: Axial, radial, mixed

‐ Fluid type: Compressible, incompressible

‐ Impulse, reaction (For hydro turbines)

Page 7: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

7

Introduction to Turbomachinery

Energy Extracting Devices

Gas Turbine: Energy production is accomplished by extracting energy from a 

compressible gas such as air, helium, or CO2. 

Page 8: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

8

Introduction to Turbomachinery

Energy Extracting Devices

Steam Turbine: Energy production is accomplished by extracting energy from 

superheated high pressure steam. Many other liquid woring fluids are also in use.

Page 9: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

9

Introduction to Turbomachinery

Energy Extracting Devices

Wind Turbine: Converts kinetic energy of air into mechanical energy.

Page 10: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

10

Introduction to Turbomachinery

Energy Extracting Devices

Hydro Turbine: Hydoturbines are used to convert the potential energy of water 

into mechanical energy. 

Page 11: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

11

Introduction to Turbomachinery

Energy Absorbing Devices

Pumps: Absorbs energy to increase the pressure of a liquid.

Page 12: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

12

Introduction to Turbomachinery

Energy Absorbing Devices

Fans: Low pressure increase of high flow rate gases.

Page 13: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

13

Introduction to Turbomachinery

Energy Absorbing Devices

Blowers: Medium pressure increase of medium flow rate gases. 

Page 14: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

14

Introduction to Turbomachinery

Energy Absorbing Devices

Compressors: High pressure increase of low flow rate gases

Page 15: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

15

Introduction to Turbomachinery

Positive displacement vs dynamic turbomachines

Courtesy of slidesharecdn.com

Page 16: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

16

Introduction to TurbomachineryFluid Type

Compressible: (Fans, blowers, compressors, gas turbines)

Incompressible: (hydro turbines)

Page 17: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

17

Introduction to Turbomachinery1. Coordinate SystemSince there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, 

represented in three directions;

1. Axial

2. Radial

3. Tangential (Circumferential ‐ rθ)

Axial View

Side View

Page 18: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

18

Introduction to Turbomachinery1. Coordinate SystemThe Velocity at the meridional direction is:

Where x and r stand for axial and radial. 

NOTE: In purely axial flow machines Cr = 0, and in purely radial flow machines Cx=0

Axial ViewAxial View Stream surface View

Page 19: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

19

Introduction to Turbomachinery1. Coordinate SystemTotal flow velocity is calculated based on below view as

Stream surface View

The swirl (tangential) angle is  (i)

Relative Velocities

Relative Velocity (ii)

Relative Flow Angle (iii)

Combining i, ii, and iii ; 

Page 20: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

20

Introduction to Turbomachinery2. Fundemental Laws used in Turbomachinery

2.1. Continuity Equation (Conservation of mass principle)

2.2. Conservation of Energy (1st law of thermodynamics)

Stagnation enthalpy;

if gz = 0;

For work producing machines

For work consuming machines

Page 21: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

21

Introduction to Turbomachinery2. Fundemental Laws used in Turbomachinery

2.3. Conservation of Momentum (Newtons Second Law of Motion)

• For a steady flow process;

• Here, pA is the pressure contribution, where it is cancelled  when there is rotational symmetry. Using 

this basic rule one can determine the angular momentum as

• The Euler work equation is: 

where 

The Euler Pump equation 

The Euler Turbine equation 

Page 22: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

22

Introduction to Turbomachinery2. Fundemental Laws used in Turbomachinery

Writing the Euler Eqution in the energy equation for 

an adiabatic turbine or pump system (Q=0)

NOTE: Frictional losses are not included in the Euler Equation.

2.4. Rothalpy

An important property for fluid flow in rotating systems is called rothalpy (I)

and 

Writing the velocity (c) , in terms of relative velocities :

, simplifying; 

Defining a new RELATIVE stagnation enthalpy; 

Redefining the Rothalpy: 

Page 23: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

23

Introduction to Turbomachinery2. Fundamental Laws used in Turbomachinery

2.6. Second Law of Thermodynamics

The Clasius Inequality :

For a reversible cyclic process:

Entropy change of a state is , , that we can evaluate the isentropic process when the process is 

reversible and adiabatic (hence isentropic).

Here we can re‐write the above definition as and using the first law of thermodynamics:

dQ‐dW=dh=du+pdv and  

Page 24: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

24

Introduction to Turbomachinery

Page 25: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

25

Introduction to Turbomachinery2. Fundamental Laws used in Turbomachinery

2.5. Bernoulli’s Equation

Writing an energy balance for a flow, where there is no 

heat transfer or power production/consumption, one obtains :

Applying for a differential control volume:

(where enthalpy is

When the process is isentropic   ), one obtains

Euler’s motion equation:

Integrating this equation into stream 

direction, Bernoulli equation is obtained:

When the flow is incompressible, density does not change, thus the equation becomes:

where and po is called as stagnation pressure.    

For hydraulic turbomachines head is defined as H= thus the equation takes the form.

NOTE: If the pressure and density change is negligibly small, than the stagnation pressures at inlet and outlet 

conditions are equal to each other (This is applied to compressible isentropic processes) 

Page 26: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

26

2017 Midterm Q: Using the first law of thermodynamics, show the Bernoulli equationyields to Hin = Hout for hydraulic turbomachines

Page 27: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

27

Page 28: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

28

Introduction to Turbomachinery2. Fundemental Laws used in Turbomachinery

2.7. Compressible flow relations

For a perfect gas, the Mach # can be written as, . Here a is the speed of sound, R, T and  are 

universal gas constant, temperature in (K), and specific heat ratio , respectively.

Above 0.3 Mach #, the flow is taken as compressible, therefore fluid density is no more constant. 

With the stagnation enthalpy definition, for a compressible fluid: (i)

Knowing that:

and  , one gets 1 (ii)

Replacing (ii) into (i) one obtains relation between static and stagnation temperatures:  (iii)

Applying the isentropic process enthalpy ( / ) to the ideal gas law ( ):     / and one 

gets: (iv)

Integrating one obtains the relation between static and 

stagnation pressures :  (v)

Page 29: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

29

Introduction to Turbomachinery2. Fundemental Laws used in TurbomachineryDeriving Speed of sound

Page 30: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

30

Introduction to Turbomachinery2. Fundemental Laws used in Turbomachinery

Deriving Speed of sound

Page 31: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

31

Introduction to Turbomachinery2. Fundemental Laws used in Turbomachinery

Deriving Speed of sound

Page 32: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

Introduction to Turbomachinery

32

2. Fundemental Laws used in Turbomachinery

2.7. Compressible flow relations

Above combinations yield to many definitions used in turbomachinery for compressible flow. Some are listed 

below:

1. Stagnation temperature – pressure relation between two arbitrary points: 

2. Capacity (non‐dimensional flow rate) :  

3. Relative stagnation properties and Mach #: 

HOMEWORK: Derive the non dimensional flow rate (Capacity) equation using equations (iii), (v) from the previous 

slide and the continuity equation 

Page 33: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

33

Introduction to Turbomachinery2. Fundamental Laws used in Turbomachinery

2.7. Compressible flow relations

Relation of static‐relative‐stagnation 

temperatures on a T‐s diagram

Temperature (K)

Temperature – gas properties relation

Page 34: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

34

Introduction to Turbomachinery2. Fundemental Laws used in Turbomachinery

2.8. Efficiency definitions used in Turbomachinery

1. Overall efficiency 

2. Isentropic – hydraulic efficiency:

3. Mechanical efficiency: 

2.8.1 Steam and Gas Turbines

1. The adiabatic total‐to‐total efficiency is :

When inlet‐exit velocity changes are small: : 

Page 35: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

35

Introduction to Turbomachinery2. Fundemental Laws used in Turbomachinery

2.8.1 Steam and Gas Turbines

Temperature (K)

Enthalpy – entropy relation for turbines and compressors

Page 36: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

36

Introduction to Turbomachinery2. Fundemental Laws used in Turbomachinery

2. Total‐to‐static efficiency: 

Note: This efficiency definition is used when the kinetic energy is not utilized and entirely wasted. Here, exit 

condition corresponds to ideal‐ static exit conditions are utilized (h2s)

2.8.2. Hydraulic turbines

1. Turbine hydraulic efficiency 

Page 37: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

37

Introduction to Turbomachinery2. Fundemental Laws used in Turbomachinery

2.8.3. Pumps and compressors

1. Isentropic (hydraulic for pumps) efficiency

2. Overall efficiency

3. Total‐to‐total efficiency 

4. For incompressible flow : 

Page 38: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

38

Introduction to Turbomachinery2. Fundemental Laws used in Turbomachinery

2.8.4. Small Stage (Polytropic Efficiency) for an ideal gas For energy absorbing devices

integrating

For and ideal compression process  , so 

Therefore, the compressor efficiency is: 

NOTE: Polytropic efficiency is defined to show the differential pressure effect on the overall efficiency, resulting in an 

efficiency value higher than the isentropic efficiency.

Page 39: Assistant Professor · 2018. 3. 6. · Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial

39

Introduction to Turbomachinery2. Fundemental Laws used in Turbomachinery

2.8.5. Small Stage (Polytropic Efficiency) for an ideal gas For energy extracting devices