Assessment of pearlite degradation in power industry cast steel … text.pdf · 2018-01-29 · a...

5
212 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVIII Assessment of pearlite degradation in power industry cast steel after long-term exploitation Justyna Kasińska 1* , Piotr Matusiewicz 2 , Andrzej Czarski 2 , Leopold Barwicki 3 1 Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Department of Applied Computer Science and Armament Engineering, Kielce, Poland, 2 AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, Kraków, Poland, 3 ENREM–POŁANIEC Sp. z o.o., Połaniec, Poland, * [email protected] The paper presents the results of pearlite degradation analysis. The degradation level was evaluated on three specimens (cuttings) of low alloyed 20HM cast steel, sampled from various locations on the main body of the WP turbine exposed to creep (steam temperature 480°C, pressure 12.7 MPa). The mechani- cal properties (hardness, impact toughness) were performed. Microscopic observations were performed on nital-etched sections in the scanning electron microscope JSM 7100F. Microstructure analysis involved the characterization of microstructure morphology and quantitative metallography for describing pearlite degradation after a long-term exposure to creep. The measurements were performed using MetIlo image analysis program. There were measured the volume fraction of the regions with lamellar morphology, V V L and the pearlite degradation ratio, L ratio . In addition the microstructure class were determined on the basis of a qualitative assessment of changes in the morphology of pearlite regions. Key words: 25CrMo4 cast steel, pearlite degradation, quantitative metallography. Inżynieria Materiałowa 5 (219) (2017) 212÷216 DOI 10.15199/28.2017.5.2 © Copyright SIGMA-NOT MATERIALS ENGINEERING 1. INTRODUCTION Changes of the metals and alloys microstructure under heat activa- tion are caused by the tendency to reduce the free energy. McLean [1] defines this behaviour as internal instability of the system. The result of this instability are processes such as grain growth, sphe- roidization, particle coarsening, coalescence, discontinuous thick- ening etc. Knowledge of these processes from the point of view of their mechanisms and kinetics is very important in cognitive terms, but primarily in utilitarian. This is the basis for analysis of the mor- phological stability of microstructure. As regards the lamellar mi- crostructure such as perlite morphological destabilization is above all the result of the spheroidization and particle coarsening. The process of pearlite spheroidization consists in a change of the shape of the cementite plates into the shape which is approxi- mately spherical, with the preservation of the constant phase vol- ume, while is can be accompanied by diffusion growth [2]. The first stage of the process is fragmentation, i.e. division of the plates into smaller ones. Next, gradual rounding of the plates is observed, until a semi-spherical shape is obtained. In the further stages, coarsen- ing of the spheroidized particles may occur. The complexity of the processes taking place during spheroidization has its source in the substructure of ferrite and cementite, the geometrical characteristics of the phases (deviations from the plate morphology), the properties of the interface boundaries etc. Particle coarsening, in alloys with disperse phase, is the process of particles growth, consisting in a diffusive growth of larger par- ticles at the expense of dissolution of the smaller in the matrix, at a constant volume fraction of the disperse phase (e.g. cementite). Particle coarsening results in increasing of mean particle size, as well as changes in the particles size distribution [3]. Many power plants use ferritic-pearlitic steels formed after nor- malization for pressure vessel elements, such as superheated steam pipelines. After a long-term service of the components, it is neces- sary to evaluate whether they are still serviceable under the boiler or turbine working conditions. Metallographic examinations, includ- ing non-destructive replica techniques, are used to obtain images or copies of the element microstructure for the evaluation of its changes and degradation extent. This allows predictions related to the period of further failure-free use of this element [4]. A long-term exploitation of boilers and turbines under elevat- ed temperature and creep above the limiting temperature leads to changes in the microstructure of an element, resulting from the tran- sitions in the ferritic matrix and carbide precipitation processes. The changes in carbide morphology are induced by spheroidizing heat treatment followed by coagulation and coalescence. These changes together with the privileged precipitation of carbides at the grain boundaries are the major factors in lowering toughness, and creep damage such as voids and microcracks can lead to disrepair and failure. In steels and cast steels with the initial, pre-service, ferritic- pearlitic microstructure, early signs of cracking and separations of cementite lamellae in pearlite are observed after a relatively short service period under creep. Next stages involve precipitate coagu- lation, including cementite in pearlite, the growth in size of some carbide types and the formation of ferritic microstructure with the carbide phase of varied morphology. The sequence of changes in steel microstructure due to long-term service under creep is well known and described in the literature. For industrial purposes, the classification of structural change patterns was developed with im- ages of microstructure of typical steel types after various service periods and the corresponding mechanical properties [4÷6]. Also new technologies are underway to allow the control over the desired structure of ferritic-pearlitic steel, i.e. grain size decrease and the shape and dispersion of cementite precipitates [7÷10]. The methods of quantitative metallography used to describe the microstructure expand the scope of interpretation of the microstruc- ture images and facilitate the evaluation of microstructural degener- ation occurring under long-term service and creep [11]. Additional relationships between quantitative parameters of the microstructure and the basic toughness parameters can be obtained from the tool for more reliable assessment of materials in terms of service safety, utilitarian and especially useful for practical industrial applications. Attempts were made in the studies of X10CrMoVNb9–1 steel sup- plied to the energy sector [12]. The following stereological param- eters were evaluated in the quantitative analysis: relative phase

Transcript of Assessment of pearlite degradation in power industry cast steel … text.pdf · 2018-01-29 · a...

Page 1: Assessment of pearlite degradation in power industry cast steel … text.pdf · 2018-01-29 · a significant degradation of perlite, coarsening and coalescence of carbides, grid of

212 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVIII

Assessment of pearlite degradation in power industry cast steel after long-term exploitationJustyna Kasińska1*, Piotr Matusiewicz2, Andrzej Czarski2, Leopold Barwicki3

1Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Department of Applied Computer Science and Armament Engineering, Kielce, Poland, 2AGH University of Science and Technology, Faculty of Metals Engineering

and Industrial Computer Science, Department of Physical and Powder Metallurgy, Kraków, Poland, 3ENREM–POŁANIEC Sp. z o.o., Połaniec, Poland, *[email protected]

The paper presents the results of pearlite degradation analysis. The degradation level was evaluated on three specimens (cuttings) of low alloyed 20HM cast steel, sampled from various locations on the main body of the WP turbine exposed to creep (steam temperature 480°C, pressure 12.7 MPa). The mechani-cal properties (hardness, impact toughness) were performed. Microscopic observations were performed on nital-etched sections in the scanning electron microscope JSM 7100F. Microstructure analysis involved the characterization of microstructure morphology and quantitative metallography for describing pearlite degradation after a long-term exposure to creep. The measurements were performed using MetIlo image analysis program. There were measured the volume fraction of the regions with lamellar morphology, VV

L and the pearlite degradation ratio, Lratio. In addition the microstructure class were determined on the basis of a qualitative assessment of changes in the morphology of pearlite regions.

Key words: 25CrMo4 cast steel, pearlite degradation, quantitative metallography.

Inżynieria Materiałowa 5 (219) (2017) 212÷216DOI 10.15199/28.2017.5.2© Copyright SIGMA-NOT MATERIALS ENGINEERING

1. INTRODUCTION

Changes of the metals and alloys microstructure under heat activa-tion are caused by the tendency to reduce the free energy. McLean [1] defines this behaviour as internal instability of the system. The result of this instability are processes such as grain growth, sphe-roidization, particle coarsening, coalescence, discontinuous thick-ening etc. Knowledge of these processes from the point of view of their mechanisms and kinetics is very important in cognitive terms, but primarily in utilitarian. This is the basis for analysis of the mor-phological stability of microstructure. As regards the lamellar mi-crostructure such as perlite morphological destabilization is above all the result of the spheroidization and particle coarsening.

The process of pearlite spheroidization consists in a change of the shape of the cementite plates into the shape which is approxi-mately spherical, with the preservation of the constant phase vol-ume, while is can be accompanied by diffusion growth [2]. The first stage of the process is fragmentation, i.e. division of the plates into smaller ones. Next, gradual rounding of the plates is observed, until a semi-spherical shape is obtained. In the further stages, coarsen-ing of the spheroidized particles may occur. The complexity of the processes taking place during spheroidization has its source in the substructure of ferrite and cementite, the geometrical characteristics of the phases (deviations from the plate morphology), the properties of the interface boundaries etc.

Particle coarsening, in alloys with disperse phase, is the process of particles growth, consisting in a diffusive growth of larger par-ticles at the expense of dissolution of the smaller in the matrix, at a constant volume fraction of the disperse phase (e.g. cementite). Particle coarsening results in increasing of mean particle size, as well as changes in the particles size distribution [3].

Many power plants use ferritic-pearlitic steels formed after nor-malization for pressure vessel elements, such as superheated steam pipelines. After a long-term service of the components, it is neces-sary to evaluate whether they are still serviceable under the boiler or turbine working conditions. Metallographic examinations, includ-ing non-destructive replica techniques, are used to obtain images or copies of the element microstructure for the evaluation of its

changes and degradation extent. This allows predictions related to the period of further failure-free use of this element [4].

A long-term exploitation of boilers and turbines under elevat-ed temperature and creep above the limiting temperature leads to changes in the microstructure of an element, resulting from the tran-sitions in the ferritic matrix and carbide precipitation processes. The changes in carbide morphology are induced by spheroidizing heat treatment followed by coagulation and coalescence. These changes together with the privileged precipitation of carbides at the grain boundaries are the major factors in lowering toughness, and creep damage such as voids and microcracks can lead to disrepair and failure.

In steels and cast steels with the initial, pre-service, ferritic-pearlitic microstructure, early signs of cracking and separations of cementite lamellae in pearlite are observed after a relatively short service period under creep. Next stages involve precipitate coagu-lation, including cementite in pearlite, the growth in size of some carbide types and the formation of ferritic microstructure with the carbide phase of varied morphology. The sequence of changes in steel microstructure due to long-term service under creep is well known and described in the literature. For industrial purposes, the classification of structural change patterns was developed with im-ages of microstructure of typical steel types after various service periods and the corresponding mechanical properties [4÷6]. Also new technologies are underway to allow the control over the desired structure of ferritic-pearlitic steel, i.e. grain size decrease and the shape and dispersion of cementite precipitates [7÷10].

The methods of quantitative metallography used to describe the microstructure expand the scope of interpretation of the microstruc-ture images and facilitate the evaluation of microstructural degener-ation occurring under long-term service and creep [11]. Additional relationships between quantitative parameters of the microstructure and the basic toughness parameters can be obtained from the tool for more reliable assessment of materials in terms of service safety, utilitarian and especially useful for practical industrial applications. Attempts were made in the studies of X10CrMoVNb9–1 steel sup-plied to the energy sector [12]. The following stereological param-eters were evaluated in the quantitative analysis: relative phase

Page 2: Assessment of pearlite degradation in power industry cast steel … text.pdf · 2018-01-29 · a significant degradation of perlite, coarsening and coalescence of carbides, grid of

NR 5/2017 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING 213

volume VV, relative surface area of interphase boundaries SV and relative number of particles NA.

Currently no standard/computational evaluation of ferritic-pearlitic steel degradation exists. The extent of degradation is deter-mined through a quantitative assessment of the size and dispersion of precipitates, precipitation of carbides along the grain boundaries, grain growth and occurrence of microcracks. In some publications, attempts of computational evaluations of degenerated pearlite were made with the use of image analysis [13, 14].

Beyond the previously mentioned possibilities the progress of degradation of the steel microstructure after long-term exploi-tation under elevated temperature can be specified using semi-quantitative method proposed by Dobrzański [4]. In this method degree of degradation is rated by microstructure class determi-nated on the basis of a qualitative assessment of changes in the morphology of microstructure.

In case of ferritic-pearlitic steel microstructure class means: – class 0 corresponds to the degree of degradation equal 0 — ini-

tial state — lamellar cementite in pearlite, few carbides in the ferrite grain boundaries,

– class 1 corresponds to the degree of degradation equal 0.2 — the beginning of the fragmentation of cementite plates in pearlite,

– class 2 corresponds to the degree of degradation equal 0.3 — partial fragmentation of cementite plates in pearlite, the begin-ning of the carbides coarsening, the beginning of the formation of the carbide grid along ferrite grain boundaries,

– class 3 corresponds to the degree of degradation equal 0.4 — a significant degradation of perlite, coarsening and coalescence of carbides, grid of carbide along ferrite grain boundaries,

– class 4 corresponds to the degree of degradation equal 0.6 — complete disappearance of perlite areas, a significant increase of the carbides size, thickening of carbide grid along ferrite grain boundaries.

2. MATERIALS AND METHODS

The degradation level was evaluated on three specimens (cuttings) of low alloy 25CrMo4 cast steel, sampled from various locations on the main body of the WP turbine exposed to creep (steam tempera-ture 480°C, pressure 12.7 MPa). The follow-up test of the chemical composition shown in Table 1 [15].

Each of the cuttings sampled from the main body of the turbine was tested with the Vickers hardness test and Charpy V impact en-ergy test (Tab. 2).

Microscopic observations were performed on nital-etched sec-tions in the scanning electron microscope JSM 7100F (Fig. 1, 2).

Microstructure analysis involved the characterization of micro-structure morphology and quantitative metallography for describ-ing pearlite degradation after a long-term exposure to creep. The measurements were performed using MetIlo image analysis pro-gram [16].

3. QUALITATIVE AND QUANTITATIVE METALLOGRAPHY

Microscopic bservations indicated degradation of the microstruc-ture seen as the segmentation of cementite lamellae in pearlite, spheroidization and coagulation, and the formation of carbide lat-tice at the ferrite grain boundaries locally (Fig. 1, 2). No creep dam-age was detected.

Fracture surface observations showed the predominance of mixed fracture surfaces, mostly with brittle cracking areas (53-75% of the fracture surface). The specimens were used to evaluate by volume fraction of the regions with lamellar morphology, VV

L. The measurements were performed on 10 microstructure images of each specimen. The Chojnowski-Tegard criterion was adopted for the classification of cementite precipitations, i.e. the cementite particles were classified as lamellar if their length to width aspect ratio was larger than 5 [17]. A lamellar area is the area with explicit lamellar morphology. Regardless of sampling location, the level of pearl-ite degradation is similar. The volume fraction of the areas with lamellar morphology VV

L is about 8% (Tab. 3). The measurement accuracy was estimated as half of the confidence interval for the mean. The analysis of variance indicated no significant differences between the specimens (Fig. 3).

Table 1 . Chemical composition of 25CrMo4 cast steelTabela 1. Skład chemiczny staliwa 25CrMo4

Element C Mn Cr Ni Mo Cu

Wt % 0.27 0.50 0.55 0.075 0.44 0.12

Table 2. Hardness and impact toughness of examined samplesTabela 2. Twardość oraz udarność badanych próbek

Sample Hardness HV5

Energy of breaking, J

Impact toughness J/cm2

Brittle fracture%

1 150 18 22.0 53

2 146 22 27.0 75

3 150 29 36.2 73

Fig. 1. Microstructure of 25CrMo4 cast steel

Rys. 1. Mikrostruktura staliwa 25CrMo4

Page 3: Assessment of pearlite degradation in power industry cast steel … text.pdf · 2018-01-29 · a significant degradation of perlite, coarsening and coalescence of carbides, grid of

214 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVIII

a b

c d

a b

c d

a b

c d

a b

c d

Fig. 2. Microstructure of samples from 25CrMo4 cast steel: a), c) high degradation level, b) ,d) low degradation levelFig. 2. Mikrostruktura próbek ze staliwa 25CrMo4: a), c) wysoki stopień degradacji, b), d) niski stopień degradacji

Table 3. Volume fraction of lamellar pearlite areasTabela 3. Objętość względna obszarów z morfologią płytkową

Sample VVL, % Lratio

1 9.3±3.9 0.28

2 8.0±3.5 0.24

3 6.8±2.4 0.20

Fig. 3. Volume fraction of lamellar pearlite areas, VVL

Fig. 3. Objętość względna obszarów z morfologią płytkową VVL

In addition, the pearlite degradation ratio, Lratio, was determined by referring the volume fraction of the microstructure lamellar ar-eas, VV

L, to the total volume fraction of the pearlitic phase in the microstructure at the initial condition (prior to being put to service) VV

P. At the initial condition of the pearlite microstructure the Lratio should be close to 1 (unity), whereas in the case of complete break-up, the Lratio will be equal to 0.

a)

c)

b)

d)

Page 4: Assessment of pearlite degradation in power industry cast steel … text.pdf · 2018-01-29 · a significant degradation of perlite, coarsening and coalescence of carbides, grid of

NR 5/2017 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING 215

The volume fraction of pearlite VVP, calculated for the alloy in

question from the lever rule is 33.2%. The pearlite degradation ra-tio, Lratio, for the material investigated was in the range 0.2 to 0.28.

4. CONCLUSIONS

The results of the investigations and the analysis of the literature [4] suggest that the degree of degradation of the turbine main body made of 25CrMo4 cast steel ranges from 0.3 to 0.4. It corresponds to the microstructure class equal 2 to 3. According to Dobrzański [4], the degree equal to 0.3 indicates minor or partial break-up of pearlite, whereas 0.4 indicates a considerable pearlite break-up. For the degree of 0.3÷0.4, the pearlite degradation ratio, Lratio, is a good measure of the degree of structural degradation. In the case of fur-ther degradation (above 0.4), i.e. progressing carbide coarsening and coalescence in the former pearlite regions or the formation of carbide lattice at the grain boundaries, other stereological param-eters can be used, such as density of the carbide lattice or the degree of coverage of grain boundaries by the carbide lattice.

REFERENCES

[1] McLean M.: Microstructural instabilities in metallurgical systems — a re-view. Metal Science 3 (1978) 113÷122.

[2] Czarski A., Skowronek T., Matusiewicz P.: Stability of a lamellar structure — effect of the true interlamellar spacing on the durability of a pearlite colony. Arch. Metall. Mater. 60 (4) (2015) 2499÷2504.

[3] Matusiewicz P., Wiencek K.: Coarsening kinetics of Fe3C particles in Fe–0.67% C steel. Arch. Metall. Mater. 55 (1) (2010) 231÷238.

[4] Dobrzański J.: Materiałoznawcza interpretacja trwałości stali dla ener-getyki. Open Access Library 3 (2011) 1÷228.

[5] Atlasy degradacyjnych zmian struktury podstawowych stali energetycz-nych w wyniku długotrwałej eksploatacji. Opracowanie Instytutu Ener-getyki, Warszawa (1996).

[6] Atlas metalograficzny struktur stali stosowanych na rury kotłowe. ZEOW Radom (1980).

[7] Molenda R., Kuziak R.: Metaloznawcze podstawy kształtowania struktury i właściwości blach ze stali DP w procesie ciągłego wyżarzania. Prace IMŻ 2 (2011).

[8] Hauserová D., Dlouhý J., Nový Z.: Przyspieszona sferoidyzacja węglików w stalach średniowęglowych. Inżynieria Powierzchni 2 (2011) 28÷32.

[9] Gajewski M., Kasińska J.: Wide-ranging influence of mischmetal on prop-erties of GP240GH cast steel. Archives of Foundry Engineering 12 (4) (2012) 85÷94.

[10] Czarski A., Skowronek T., Osuch W.: Influence of orientation relationship between ferrite and cementite in pearlite on stability of cementite plates. Archives of Foundry Engineering 33 (1) (2007) 41÷49.

[11] Satora K., Matusiewicz P.: Ilościowa ocena mikrostruktur materiału próbek pobranych z rurociągu pary świeżej kotła przed próbami przyspieszonego pełzania. Praca niepublikowana, Kraków (2003).

[12] Barwicki L.: Degradacja żarowytrzymałej stali X10CrMoVNb9–1 podczas długotrwałego oddziaływania wysokiej temperatury. Rozprawa doktorska, Warszawa (2005).

[13] Nutal N., Gommes C. J., Blacher S., Pouteau P., Pirard J.P., Boschini F., Traina K., Cloots R.: Image analysis of pearlite spheroidization based on the morphological characterization of cementite particles. Image Anal. Stereol. 29 (2010) 91÷98.

[14] Lis J., Wieczorek P., Łyszczarz P.: Ilościowa ocena mikrostruktury prętów żebrowanych ze stali niskowęglowej po procesie QTB. Hutnik–Wiadomości Hutnicze 77 (9) (2010) 494÷497.

[15] Orzeczenie techniczne nr OR.14.DJ.15/3. Praca niepublikowana, Połaniec (2015).

[16] Szala J.: Zastosowanie metod komputerowej analizy obrazu do ilościowej oceny struktury materiałów. Wydawnictwo Politechniki Śląskiej, Gliwice (2001).

[17] Chojnowski E. A., Tegart W. J.: Accelerated spheroidization of pearlite. Metal Sc. J. 2 (1968) 14÷18.

Page 5: Assessment of pearlite degradation in power industry cast steel … text.pdf · 2018-01-29 · a significant degradation of perlite, coarsening and coalescence of carbides, grid of

216 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVIII

Ocena degradacji perlitu w staliwie dla energetyki po długotrwałej eksploatacji

Justyna Kasińska1*, Piotr Matusiewicz2, Andrzej Czarski2, Leopold Barwicki3

1Politechnika Świętokrzyska w Kielcach, Wydział Mechatroniki i Budowy Maszyn, Katedra Technik Komputerowych i Uzbrojenia, 2Akademia Górniczo–Hutnicza w Krakowie, Wydział Inżynierii Metali i Informatyki Przemysłowej, Katedra Metaloznawstwa i Metalurgii Proszków,

3ENREM–POŁANIEC Sp. z o.o.; *[email protected]

Inżynieria Materiałowa 5 (219) (2017) 212÷216DOI 10.15199/28.2017.5.2© Copyright SIGMA-NOT MATERIALS ENGINEERING

Słowa kluczowe: staliwo 25CrMo4, degradacja perlitu, metalografia ilościowa.

1. CEL BADAŃ

W wielu krajowych elektrowniach na elementy części ciśnienio-wych kotłów, jak np. rury przegrzewaczy, są stosowane głównie normalizowane stale ferrytyczno-perlityczne. Po ich długotrwałej pracy zachodzi potrzeba oceny możliwości dalszej ich eksploata-cji w warunkach pracy kotła lub turbiny. W stalach i staliwach o wyjściowej (przedeksploatacyjnej) mikrostrukturze ferrytyczno--perlitycznej już po krótkich czasach eksploatacji w warunkach pełzania obserwuje się początkowe etapy pękania i fragmentacji płytek cementytu w perlicie. Kolejne etapy degradacji struktu-ry to koagulacja wydzieleń, w tym cementytu w perlicie, wzrost wielkości niektórych rodzajów węglików, aż do utworzenia mikro-struktury ferrytycznej z bardzo zróżnicowaną morfologicznie fazą węglikową. Zastosowanie metod metalografii ilościowej do opisu mikrostruktury niewątpliwie rozszerza możliwości interpretacyjne obrazów mikrostruktury i ułatwia przeprowadzenie oceny stopnia ich degradacji zachodzącej w warunkach długotrwałej eksploatacji i pełzania. Obecnie nie istnieje znormalizowana/obliczeniowa oce-na degradacji stali ferrytyczno-perlitycznych, a jedynie dokonuje się jej przez ocenę jakościową. Dlatego celem badań było wyko-rzystanie oraz ocena możliwości narzędzi metalograficznych do określenia stopnia degradacji perlitu w staliwie 25CrMo4 po dłu-gotrwałej eksploatacji.

2. MATERIAŁ I METODYKA BADAŃ

Badania stopnia degradacji prowadzono na trzech próbkach (wy-cinkach) ze staliwa niskostopowego 20HM pobranych z różnych miejsc korpusu WP turbiny eksploatowanej w warunkach pełzania (temperatura pary w części WP 480°C, ciśnienie 12,7 MPa). Anali-za składu chemicznego wykazała: 0,27% C, 0,50% Mn, 0,55% Cr, 0,075% Ni, 0,44% Mo, 0,12% Cu. Dla każdego z wycinków pobra-nych z korpusu turbiny przeprowadzono badania twardości metodą Vickersa oraz udarności na próbkach Charpy V.

Obserwacje mikroskopowe przeprowadzono w elektronowym mikroskopie skaningowym JSM 7100F na zgładach trawionych nitalem. Analiza mikrostruktury obejmowała charakterystykę mor-

fologii mikrostruktury oraz metalografię ilościową do opisu stopnia degradacji perlitu po długotrwałej eksploatacji w warunkach pełza-nia. Do pomiarów wykorzystano komputerowy program do analizy obrazu MetIlo.

3. WYNIKI I ICH DYSKUSJA

Obserwacje mikrostruktury ujawniły degradację mikrostruktury materiału korpusu widoczną jako fragmentacja płytek cementytu w perlicie, sferoidyzacja i koagulacja oraz lokalne tworzenie się siatki węglików na granicach ziaren ferrytu (rys. 1). Nie stwierdzo-no uszkodzeń pełzaniowych.

Obserwacje przełomów wykazały dominację przełomów mie-szanych z przewagą obszarów pękania kruchego (53÷75% po-wierzchni przełomu).

Na badanych próbkach oszacowano udział objętościowy obsza-rów z morfologią płytkową. Do klasyfikacji wydzieleń cementytu przyjęto kryterium Chojnowskiego-Tegarda. Do obliczeń przyjęto obszar o wyraźnie zaznaczającej się płytkowej morfologii. Nieza-leżnie od miejsca pobrania próbki stopień degradacji jest zbliżony. Ułamek objętości obszarów z morfologią płytkową wynosił około 8%.

4. PODSUMOWANIE

Na podstawie przeprowadzonych badań oraz analizy literatury [1] można ocenić, że stopień wyczerpania badanego korpusu turbiny ze staliwa 25CrMo4 jest równy 0,3÷0,4. Według J. Dobrzańskiego [4] stopień wyczerpania równy 0,3 oznacza nieznaczny lub czę-ściowy rozpad perlitu, natomiast stopień wyczerpania równy 0,4 oznacza znaczny rozpad perlitu. Dla stopnia wyczerpania 0,3÷0,4 dobrą miarą zdegradowania struktury jest współczynnik degradacji perlitu, Lratio. Natomiast w przypadku dalszej degradacji (stopień wyczerpania powyżej 0,4), tj. postępującej koagulacji i koalescen-cji w obszarach byłego perlitu czy tworzenia się siatki węglików po granicach ziaren, można zastosować inne parametry stereologiczne, np. gęstość cząstek węglików czy stopień pokrycia granic ziaren siatką węglików.