Appa-module 6-Fault Current Analysis

download Appa-module 6-Fault Current Analysis

of 65

Transcript of Appa-module 6-Fault Current Analysis

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    1/65

    Module 6.0

    Fault Current Calculation

    By: Dr. Hamid Jaffari

    Power system Review

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    2/65

    Fault Currents

    Symmetrical Fault

    Asymmetrical fault

    Power System Review

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    3/65

    Faul t Analys is

    Analysis Type

    Power Flow: normal operating conditions Faults: abnormal operating conditions

    Fault Types

    Balanced or Symmetr ical Fault

    Three Phase Short Circuit

    Unbalanced or Unsymmetr ical Faul ts

    Single line-to-ground

    Double line-to-ground

    Line-to-line What are the results used for?

    o Determining the circuit breaker rating

    o Protective Relaying settings

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    4/65

    Various Types o f Fau lts

    FaultlSymmetrica)a

    FaultcalUnsymmetri)b

    Faultline-to-line Faultground-to-linedouble Faultground-to-line

    fault1

    F

    ZZ

    V)(3I

    l-faultSymmetrica

    fault021

    Ffault

    3Z)3Z(ZZ

    3Vground)-to-(LineI

    nZ

    fault21

    Ffault

    ZZZ

    V3line)-to-(lineI

    j

    a

    b

    c

    a

    b

    c

    a

    b

    c

    a

    b

    c

    a

    b

    c

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    5/65

    Asymmetrical

    Fault Calculation

    Power System Review

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    6/65

    R-L Circu i t Trans ien tsR

    +

    -0

    @

    t

    ClosedSW

    L

    )sin(2)( wtVte

    0)sin(2)()(: ttVtRidt

    tdiLEquation

    ])sin()[sin(2)()()(: Tt

    etZ

    VtititiSolution dcac

    amptZ

    V

    tiac )sin(2)(

    T

    t

    eZ

    Vtidc

    )sin(2)(

    2222 )( lRXRZ

    R

    wltg

    R

    Xtg 11

    fR

    X

    R

    X

    R

    LT

    2

    :)(/ forcedCurrentFaultStateSteadyFaultlSymmetrica :)(transientCurrentOffsetdc

    Solutionforced Solutionnatural

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    7/65

    Asymmetr ical faul t

    ])sin()[sin(2)()()( Tt

    etZ

    Vtititi dcac

    Dc offset Magnitude depends on angle :

    acIoffsetdc 20 )2(

    Z

    VcurrentfaultacrmsIwhere ac )(:

    ])2

    [sin(2)()()(

    )2

    (:

    T

    t

    etItititi

    Set

    acdcac

    In order to get the largest fault current:

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    8/65

    Asymmetr ical faul t

    Note: i(t) is not completely periodic. So, how do weget the rms value of i(t) ?

    Assume :

    Now calculate the RMS Asymmetrical Fault Current:

    )constant(Ce Tt

    AmpeIeIIIIti Tt

    acT

    t

    dcacdcacrms

    2

    222221]2[][)()()(

    cyclesintimeiswhere

    f

    t

    fR

    X

    R

    X

    R

    X

    R

    LTNote

    ;&

    2

    :

    AmpeIeIeIti RXacfR

    Xf

    acT

    t

    acrms)/(

    4

    2

    2

    2

    212121)(

    UnitPer21factoralasymmetric)(:)()(

    )/(

    4

    RX

    acrms ekwhereIkI

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    9/65

    Asymmetr ical Faul t Calculat ion

    Example:In the following Circuit, V=2.4kV, L=8mH,R=0.4, and =260 rad/sec. Determine (a) the rms

    symmetrical fault current; (b) the rms asymmetrical fault

    current; (c) the rms asymmetrical fault current for .1 cycle

    & 3 cycle after the switch closes, assuming the maximumdc offset.

    +

    -0@ tClosedSW

    mHL 20

    )sin(24002)( wtte

    4R

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    10/65

    Asymmetr ical Fau lt Calcu lat ion

    Solution:

    4.82042.3

    4.82042.3016.34.0)108)(602(4.0)() 3

    ZZ

    jxjLjRjXRZa

    A95.788042.3

    2400

    volts

    Z

    VIac

    A46.13662195.788)0()0(;0@) kIItb acrms

    00.110739.6121)3(

    641.1693.1121)1.0(

    54.74.0

    016.3)()

    354.7

    )3(4

    54.7

    )1.0(4

    xecyclek

    ecyclek

    RatioR

    Xc

    A95.788)3()3(

    A69.294,1641.1)1.0()1.0(

    cyclekIcycleI

    xcyclekIcycleI

    acrms

    acrms

    +

    - 0@

    t

    ClosedSW

    mHL 20

    )sin(400,22)( wtte

    4R

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    11/65

    Asymmetr ical Fau lt-Unloaded

    Synch ronous Mach ine

    Three Stages: Subtransient, Transient, and Steady State

    constanttimearmatureT

    /I

    /I

    /I

    :

    offsetdcMaximum22)(

    )2

    sin(]1

    )11

    ()11

    [(2)(

    CurrentousInstantane)()()(

    A

    ReactanceStateSteadyReactance/sSynchronouaxixdirect

    ''ReactanceTransientaxixdirect

    '

    ReactancentSubtransieaxixdirect"

    /"/

    "

    ''"

    ""

    '"

    dgd

    dgd

    dgd

    TtTt

    d

    g

    dc

    d

    T

    t

    dd

    T

    t

    dd

    gac

    XEX

    XEX

    XEX

    Where

    eIeX

    E

    ti

    tX

    eXX

    eXX

    Eti

    tititi

    AA

    dd

    dcac

    Add

    ddd XXX

    T,T,TConstantsTime

    &ReactancesMachine

    :provideeresManufactur:Note

    '"

    ,'

    ,"

    Stator

    Uniform air-gap

    Stator winding

    Rotor

    Rotor winding

    N

    S

    d-axis

    q-axis

    axisquadratureaxisqaxisdirectaxisd

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    12/65

    Synch ronous Mach ine

    Asymmetr ical Faul t Envelopes

    Asymmetry Sources: (1) Open Phase and (2) SLG Fault

    d

    g

    X

    EI

    "

    "

    d

    g

    X

    EI

    '

    '

    d

    g

    X

    EI

    CurrentfaultntSubtransie

    CurrentfaultTransient

    CurrentfaultS.S

    )(tiac

    t

    envelopescurrentAC

    AA T

    t

    T

    t

    d

    geIe

    XE

    "

    "MAX-dc 22(t)i

    "2I

    I2

    '2I

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    13/65

    ntSubtransie

    Transient

    StateSteady

    offsetdc

    FaultalAsymmetric

    GeneratornearFaultalAsymmetricofStages

    d

    g

    X

    EI

    "

    "

    "2I

    d

    g

    X

    EI'

    '

    '

    2I

    d

    g

    X

    EI

    "2I

    '2I

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    14/65

    Fault Current

    Calculation

    Power System Review

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    15/65

    Fault Current Analys is

    Power System Review

    Four methods to calculate the fault current:

    1.Ohmic Method (not preferred)

    2.Infinite Bus Method (Convenient & Easy)3.Per Unit Method (Most Common)

    4.MVA Method (Quick & Easy)

    Note: This co urse wi l l focus on PU & MVA Methods

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    16/65

    Fault Curren t Analys is

    Power System Review

    Ohmic Method

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    17/65

    Ohm ic Method

    Power System Review

    This Method Requires:Transferring all impedances to high/low

    voltage side of transformer using square

    of XFMR turn ratio

    Using your AC circuit theory knowledge

    Voltage & Current dividers

    Thevenin & Norton equivalentsKramers Rule, etc

    2

    1

    22

    2

    1

    N

    NOR

    N

    N

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    18/65

    Infinite Bus method

    Power System Review

    Fault Curren t Analys is

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    19/65

    In f in i te Bus Calcu lat ion

    SCBsae

    pu

    puSC

    rtransformeutilityputotal

    IxI

    Z

    ZZ

    actualI:Step4kVx3

    3KVAICalculate:Step3

    0.1ICalculate:Step2

    ZCalculate:Step1

    SC

    LL

    Base

    )(

    Infinite Bus calculation is a convenient way to

    estimate the maximum 3fault current flow on the secside of the transformer

    The following steps are necessary to calculate the ISC

    100

    %&

    ;

    KnownisCircuitShortUtilityIf:Note1)(

    ZZ

    MVA

    MVAZ

    where

    ZZZ

    rtransforme

    SC

    baseutility

    rtransformeutilityputotal

    0&100

    %

    ;

    UnknownisCircuitShortUtilityIf:Note2

    utilityrtransforme

    rtransformetotal

    ZpuZ

    Z

    where

    ZZ

    totalZ

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    20/65

    7.5%Z

    kVkV/4.1613.8

    KVA5000

    VS

    In f in i te Bus Calcu lat ion

    Unknown Uti l ity SC Data

    A4.925295.693333.13actualI:Step4

    A95.693

    16.43

    5000

    kVx3

    3KVAICalculate:Step3

    333.13075.

    0.10.1ICalculate:Step2

    075.0100

    5.7

    100

    Z%ZCalculate:Step1

    SC

    LL

    Base

    pu

    xIxIkVx

    Z

    pu

    SCBsae

    pu

    puSC

    Example1:Calculate the maximum 3fault current on 5000 KVATransformers secondary bus.

    DataSourceNo

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    21/65

    7.5%Z

    kVkV/4.1613.8

    KVA5000

    VS

    Inf in i te Bus Calcu lat ion

    w i th Known Uti li ty SC Data

    A642695.69326.9actualI:Step4

    A95.69316.43

    5000

    kVx3

    3KVAICalculate:Step3

    26.9108.0

    0.10.1ICalculate:Step2

    108.0075.033.0ZCalculate:Step1

    SC

    LL

    Base

    )(

    total

    xIxI

    kVx

    Z

    puZZ

    SCBsae

    putotal

    puSC

    rtransformeutility

    Example2:Calculate the maximum 3fault current on 5000 KVA

    Transformers secondary bus.

    150MVASC

    puZ

    Z

    puxS

    S

    kV

    kVZZ

    pu

    rtransforme

    Oldbase

    Newbase

    new

    oldpuUtility

    SC

    baseutility

    OldNew

    075.0100

    5.7

    100

    %

    033.150

    5

    16.4

    16.41

    1

    150

    150

    MVA

    MBAZ

    ZZZCalculate

    22

    rtransformeutilitytoal

    pu108.0330.00.075Ztotal utilityZ

    :StepsnCalculatio

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    22/65

    Fault Curren t Analys is

    Power System Review

    Per-Unit Method

    F lt C t A l i

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    23/65

    Power System Review

    Fault Current Analys is:

    Per-Unit Method

    PU analysis is used for both symmetrical &unsymmetrical fault calculations.

    All components are defined in PU system.

    Analysis is performed using equivalent per phase

    circuit modeling.

    Requires knowledge of symmetrical components

    Requires selecting two system bases for

    calculating all base & PU quantities:kVBase & MVAbase

    F lt C t A l i

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    24/65

    Power System Review

    Fau lt Curren t Analys is:

    Per-Unit Method

    This Method requires:Knowledge of symmetrical components

    Positive sequence (+ SEQ)

    Negative sequence(-SEQ)Zero sequence (0 SEQ)

    Interconnecting positive, negative, and

    zero networks for calculating the variousunsymmetrical faults(LG, LL/LLG, and 3)

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    25/65

    Symmetr ical Components

    Power System Review

    Steps involved:

    1. Draw a single-line diagram of the desired

    power system(equivalent per phase)

    2. Define zones using transformation point asa point of demarcation

    3. Select a common MVAbase for all zones

    4. Select a kVBasefor one zone & Calculatea. kVBase for other zones

    b. Zbase, and Ibasefor all zones

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    26/65

    Symmetr ical Components..con t

    Power System Review

    6. Replace each component with itsequivalent reactance in per-unit

    7. Draw sequence networks(+, -, 0)

    8. Use (+)SEQ network for SymmetricalFault analysis

    9. Combine appropriate networks for

    calculating various UnsymmetricalFault analysis

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    27/65

    Symmetrical

    Fault Calculation

    Power System Review

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    28/65

    3Symmetr ical Faul t Analys is(PU Method)

    Symmetrical Fault refers to a balanced 3fault, in a balanced 3system operating in

    steady state, which is either :

    Bolted fault: LLLG fault with Zfault=0Non-Bolted fault: LLLG fault with Zfault0

    Only the (+)SEQ network exists. (0)SEQ & (-)SEQ currents are equal to Zero.

    Power System Review

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    29/65

    Symmetr ical Fau lt Model ing

    for a Bo lted Fau lt (PU Method)

    Z0eq

    Note:VF=Pre Fault Voltage

    +

    _Vo=0

    Z2 eq

    VF

    Z1eq

    +

    _

    +

    _V1=0

    I0=0

    I1 Ia

    Ib

    Ic

    VcVb

    Va+

    +

    +

    _ _ _

    Ib = -Ia = Ic = ISCVbg = Vag = Vcg =0

    Phase

    g

    +

    _V2=0

    I2=0

    )(1

    )()(1PUeq

    PUf

    ZVI PUfault

    02I

    00I

    SEQ

    SEQ)(

    SEQ)(SEQ)0(

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    30/65

    Prac t ice Example (PU Method):

    In the following power system Calculate(a)3Symmetrical

    fault current @ Bus3 and select an appropriate BreakerSize @ Bus 3

    G1G2

    PU.150X

    kV13.8

    MVA500

    "

    .15PU0T1

    115kV/13.8kV

    MVA500

    "X

    PU.200X

    kV13.2

    MVA750

    "

    .18PU0T2

    kV8.13/115kV

    MVA750

    "X

    6XT1

    2X 13T

    17.63Zbase

    115kVKvbase

    MVA750

    Sbase

    1Bus 2Bus

    3Bus

    4X 23T

    .254Zbase

    13.8kVKvbase

    MVA750

    Sbase

    .254Zbase

    13.8kVKvbase

    MVA750

    Sbase

    MVA750SBase

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    31/65

    Breaker Selec t ion

    Modern Circuit Breaker standards are designed based on

    ISymmetrical. The following steps are required to determine anappropriate breaker size:

    1. Use E/X method to calculate the minimum ISymmetrical.

    2. Calculate X/R ratio:

    1. If X/R 15 It means the dc offset has not decayed

    to an acceptable level. Thus, calculate IAsymmetrical.

    3. Calculate IAsymmetricalat calculated fault location.

    4. Breaker Interrupting Capability should be 20%greater

    than the calculated fault current.

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    32/65

    Breaker Selec t ion Cri ter ion

    Generator/ Synchronous Motor/Large Induction motors

    Breakers: Use subtransient Reactance Xdto calculate ISymmetrical.

    Use 2 cycle Breaker

    TransmissionBreakers:

    Use 3 cycle Breakers if X/R>15

    Use 5 cycle Breaker if X/R

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    33/65

    A2.614,16

    8.0

    13,291.2I CapabilityngInterruptiBreaker

    G1 G2

    PU.150X

    kV13.8

    MVA500

    "

    .15PU0T1

    115kV/13.8kV

    MVA500

    "

    X

    PU.200X

    kV13.2

    MVA750

    "

    .18PU0T2

    kV8.13/115kV

    MVA750

    "

    X

    6XT1

    2X 13T

    17.63Zbase

    115kVKvbase

    MVA750

    Sbase

    1Bus 2Bus

    3Bus

    4X 23T

    .254Zbase

    13.8kVKvbase

    MVA750

    Sbase

    .254Zbase

    13.8kVKvbase

    MVA750

    Sbase

    MVA750SBase

    kV115:ClassVoltageBreaker:SelectionBreaker

    cycle3:CycleBreaker

    Prac t ice Example (PU Method):

    A2.291,13I lSymmetrica

    S t i l F l t C t

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    34/65

    Symmetr ical Fault Current

    AnalysisMVA-Method

    MVA Method

    Power System Review

    F lt C t C l l t i

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    35/65

    Fau lt Curren t Calcu lat ion-MVA Method This method follows a four steps process:

    1. Calculate the Admittance of every component in its own

    infinite bus.

    2. Multiply the calculated admittances in step(1) by the

    MVA rating of each component to get MVASC.

    3. Combine short-circuit MVAs &follow the Admittance

    series & parallel rules:

    4. Convert MVAs to Symmetrical fault current

    Power System Review

    %

    100)Admittance(

    ZY

    )Admittance(YxMVAMVAsc

    ntotal MVAMVAMVAMVA ........

    :MVAsParallela)

    21 ntotal MVAMVAMVAMVA

    1........111

    :MVAsSeriesb)

    21

    llkVx

    TotalMVAscalIsymmetric

    3

    )(

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    36/65

    MVA Equ ivalent Network

    ntotal MVAMVAMVAMVA ........

    :MVAsParallel

    21

    ntotal MVAMVAMVAMVA

    1........

    111

    :MVAsSeries

    21

    1MVA 2MVA 3MVA

    1MVA 2MVA 3MVA

    321 MVAMVAMVAMVAtotal

    321

    1111

    MVAMVAMVAMVAtotal

    TotalMVA

    TotalMVA

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    37/65

    Why Use the MVA Method?

    This method is internationally used and accepted by most

    protection engineers.

    The network set up is easier than Ohmic or PU method.

    You can calculate Ifaultin a shorter time period. This method makes it easier to see the fault contributions

    @ every point in the system.

    Calculation accuracy is within 3% to 5% compared to PU &

    Ohmic method.

    Power System Review

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    38/65

    MVA Method Assumpt ions

    Power System Review

    10.1 R

    X

    Two Conditions must be satisfied:

    OperationStateSteady.2

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    39/65

    Symmetr ical Fau lt Current

    Analysis.. .MVA-Method

    Power System Review

    )(3: KAIxkVxMVAscMVAUtility scllfault

    )(:

    2

    Z

    kV

    MVACable

    ll

    fault

    %

    100:/

    "Gend

    fault

    XxMVAMVAMotorusSycnhroonoGenerator

    %

    100:

    xfmr

    fault

    ZxMVAMVArTransforme

    Formulas:

    Note:Impedances (Z) are steady state values

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    40/65

    Where: Xd=direct-axis Subtransient Reactance

    Xd

    = IFull-load amp

    /ILocked Rotor amp

    Power System Review

    Symmetr ical Fau lt Current

    Analysis.. .MVA-Method

    %

    100:

    "Gend

    motorfault

    XxMVAMVAMotor

    amploadfull

    rotorlockedmotorfault

    IIxMVAMVAMotorInduction

    :

    :Motor

    Symmetr ical Fau l t Curren t

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    41/65

    Summary:

    Power System Review

    Symmetr ical Fau lt Curren t

    Analysis.. .MVA-Method

    LLkVxMVAI

    totalKAfault

    3)(

    )]/1()/1()/1[(

    1

    21 nMVAMVAMVAtotalseriesMVA

    nMVAMVAMVAtotalparallelMVA 21

    E l 1 F lt C l l t i (MVA th d )

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    42/65

    Example1:Fault Calcu lat ion (MVA method )

    Generator

    M

    Utility Source

    13.8kV, 15KA fault current

    Motor

    2MVA Y

    4.16kV

    Xd=0.25pu

    3-500McM cables, 2000 ft

    Z=0.2

    Transformer

    7MVA

    13.8kV/4.16kV

    Z=9%

    1.5MVA Y

    4.16kV

    Xd=0.15pu

    Bus 1 13.8kV

    Bus 2 4.16kV

    In the following Power System, Calculate the fault current @ Bus2 & fault current

    contributions from both Gen & Motor?

    S

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    43/65

    Step1:Network Model ing(MVA Method)

    Generator

    M

    Utility Source

    13.8kV, 15KA fault current

    Motor2MVA Y

    4.16kV

    Xd=0.25

    3-500McM cables, 2000 ft

    Z=0.2

    Transformer

    7MVA

    13.8kV/4.16kV

    Z=9%

    1.5MVA Y

    4.16kV

    Xd=0.15

    MVAxxMVAsource 5.358)kA15()kv8.13(3

    MVAx

    ZxMVAMVA

    xfmr

    rtransforme 77.779

    1007

    %

    100

    MVAx

    X

    xMVAMVAd

    Generator 10

    15.0

    15.1

    1"

    MVAxXxMVAMVA dMotor 825.0

    12

    1"

    52.358

    77.77

    10

    8

    MVAZ

    kVMVA

    line

    Line 53.862.0

    )16.4(22

    53.86

    Bus1 13.8kV

    Bus2 4.16kV

    St 2 N t k R d t i

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    44/65

    Step 2: Network Reduc t ion(MVA Method)

    52.358

    77.77

    10

    8

    53.86 10

    8

    76.36

    53.86

    1

    77.77

    1

    52.358

    11

    :MVAsSeries

    totalMVA

    76.36

    53.86

    1

    77.77

    1

    52.358

    1

    1

    MVAtotal

    321

    :

    MVAMVAMVAMVA

    MVAsParallel

    total

    76.54876.3610 totalMVA

    76.54

    MVAFault

    St 3 F lt MVA C i t I

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    45/65

    Step 3:Fau l t MVA Conversion to Ifault

    76.54faultMVA

    6003.7)16.4(3

    76.54

    )16.4(3

    )3()(

    LLLL

    faultfault

    kVxkVx

    MVAkAI

    AmplSymmetricaIfault 3.600,7)(

    kVkVll 16.4

    :2QuantitiesBus

    Bus2 Fault Current:

    Example1:Faul t Analysis (PU Method)

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    46/65

    Generator

    M

    Utility Source

    13.8kV, 15KA fault current

    Motor2MVA Y

    4.16kV

    Xd=0.25

    3-500McM cables, 2000 ft

    Z=0.2

    Transformer

    7MVA

    13.8kV/4.16kV

    Z=9%

    1.5MVA

    Y

    4.16kV

    Xd=0.15

    Bus1 13.8kV

    Bus2 4.16kV

    puVf 0.1

    2)( BusforNetworkSEQ

    utilityZ

    XfmrZ

    LineZ

    GenZmotorZ

    In the following Power System, Calculate the fault current @ Bus2 & fault current

    contributions from both Gen & Motor using PU Method?

    Example1:Faul t Analysis(PU Method)

    Examp le 1: Symmetr ical Fault Current

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    47/65

    Examp le 1: Symmetr ical Fault Current

    Calculat ion Comparison between

    PU & MVA Methods

    AmpI Busfault 3.600,72@

    A7.605,7A879,13548.0)(2@ xxIpuII basefaultBusfault

    :ncalculatiomethodMVA

    :ncalculatioMethodUnitPer

    E 1 M t /G F lt C t ib t i

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    48/65

    76.36

    8

    10

    AkVx

    MVAI

    onContributiGenerator

    Genfault 9.387,116.43

    10

    :

    GenMVA

    MotorMVA

    )( LineXfmrUtilityMVA

    AkVx

    MVAI

    onContributiMotor

    motorfault 3.110,116.43

    8

    :

    Ex1: Moto r/Gen Fau lt Con tr ibu t ion

    (MVA Method)

    AkVx

    MVAI

    onContributiUtility

    fault 102,5205.7

    76.36

    16.43

    76.36

    :

    A2.600,73.110,19.387,1102,5

    :

    Genfutilityfmotorffau lt IIII

    CurrentFaultTotal

    Ex1:Symmetr ical Fau l t Current Analys is

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    49/65

    Ex1:Symmetr ical Fau lt Current Analys is

    PU & MVA Methods Comparison

    AmpI motorf 3.110,1

    A110,1f-motorI

    :ncalculatiomethodMVA

    :ncalculatioMethodUnitPer

    Symmetr ical Fau l t Curren t Calculat ion

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    50/65

    Symmetr ical Fau lt Curren t Calculat ion

    MVA MethodExample2: Calculate the Symmetrical fault current @ Bus2 using the MVA Method

    Generator

    M

    M

    Generator

    Utility Source

    22.86kV, 15KA fault current

    Transformer

    20MVA Delta-Yn

    22.86/4.16kVZ=9% 5MVA

    4.16kV

    Z=12%

    Transformer

    3.5MVA Delta-Yn

    4.16kV/480V

    Z=7%

    Motor

    2MVA Y

    4.16kVZ=15%

    Motor

    1.5MVA Y

    480V

    Z=16%

    Y

    Y

    3-500McM cables, 2000 ft

    Z=.18

    Bolted Fault

    Generator

    2MVA

    480 V

    Z=14%

    BUS 1

    BUS 2

    903.5931586.223 kAxkVxMVA LLfault

    22.903,218.0

    )86.22( 22

    kV

    Z

    kVMVA

    line

    fault

    50

    07.0

    5.3

    100%

    222.22209.0

    20

    100

    %

    Z

    MVAMVA

    Z

    MVAMVA

    Xfmrfau lt

    Xfmrfau lt

    MVAZ

    MVAGMVA

    MVAZ

    MVAGMVA

    fault

    fault

    286.1414.0

    2

    100

    %)2(

    667.4112.0

    5

    100

    %)1(

    MVAZ

    MVAGMVA

    MVAZ

    MVAMMVA

    fau lt

    fau lt

    375.916.0

    5.1

    100

    %)2(

    333.1315.0

    2

    100

    %)1(

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    51/65

    22.86 kV Utility Source:

    Line:

    Transformers:

    Power System Review

    903.5931586.223 kAxkVxMVA LLfault

    22.903,218.0

    )86.22(22

    kV

    Z

    kVMVA

    line

    fault

    5007.0

    5.3

    100

    %

    222.22209.0

    20

    100

    %

    Z

    MVAMVA

    Z

    MVAMVA

    Xfmrfault

    Xfmrfault

    Solut ion to Example2 (MVA method):

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    52/65

    Solut ion to Example2 (MVA method):

    Generators:

    Motors:

    Power System Review

    MVA

    Z

    MVAGMVA

    MVAZMVAGMVA

    fault

    fault

    286.14

    14.0

    2

    100%

    )2(

    667.4112.05

    100

    %)1(

    MVAZ

    MVAGMVA

    MVAZ

    MVAMMVA

    fault

    fault

    375.916.0

    5.1

    100

    %)2(

    333.1315.0

    2

    100

    %)1(

    Example 2:Symmetr ical Fau l t Current

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    53/65

    Example 2:Symmetr ical Fau lt Current

    Calculat ion (MVA-method)

    Power System Review

    593.903MVA

    2903.220MVA

    222.222MVA

    41.667

    MVA

    50 MVA 13.333MVA

    9.375MVA

    14.286MVA

    BUS 1

    BUS 2

    ModelingNetwork:Step1

    Symmetr ical Faul t Curren t

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    54/65

    Symmetr ical Fault Curren t

    AnalysisMVA-Method

    Series MVAs:

    Parallel MVAs:

    Power System Review

    )]/1()/1()/1[(

    1

    21 nMVAMVAMVAtotalseriesMVA

    nMVAMVAMVAtotalparallelMVA 21

    ReductionMVANetwork:Step2

    E l 2 S t i l F l t C t

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    55/65

    Example2: Symmetr ical Fau lt Current

    AnalysisMVA-Method

    MVAseries:

    MVA=1/[(1/593.903)+(1/2,903.220)+(1/222.222)]

    MVA=1/[(.0017)+(.0003)+(.0045)]=153.846

    Bus1(parallel)=153.846+41.667+13.333=208.846

    MVA series@Bus2:

    MVA=1/[(1/208.846)+(1/50)]MVA=1/[(.0048)+(.0200)]=40.323

    Power System Review

    ReductionMVANetwork:Step2

    50 MVA

    9.375MVA

    14.286MVA

    BUS 2

    208.846MVA

    Ex2: Short Circu i t MVA Calcu lat ion

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    56/65

    Ex2: Short Circu i t MVA Calcu lat ion

    @ Bus 2(MVA method)

    153.846MVA

    41.667MVA

    50MVA

    13.333MVA

    9.375MVA

    14.286MVA

    BUS 1

    BUS 2

    846.153)]22.222/1()22.903,2/1()903.593/1[(

    1

    totalseriesMVA

    50MVA

    9.375MVA

    14.286MVA

    BUS 2

    MVA846.208333.13667.41846.153 parallelMVA

    208.846MVA

    nCalculatioMVAFault:Step3

    Ex2: Short Circu i t MVA Calcu lat ion

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    57/65

    40.323MVA

    9.375MVA

    14.286MVA

    BUS 2

    MVA984.63375.9286.14323.402@ BusMVA

    323.40)]50/1()846.208/1[(

    1

    seriesMVA

    MVA984.632@ BusMVA fault

    Ex2: Short Circu i t MVA Calcu lat ion

    @ Bus 2(MVA method)

    Example2: Symmetr ical Fau l t

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    58/65

    Example2: Symmetr ical Fau lt

    Current AnalysisMVA-Method

    Bus2(total) = 40.323+14.286+9.375=63.984 MVA

    Now, Calculate the Short Circuit MVA @Bus1?

    Power System Review

    Available Fault Current @Bus 2:

    Ifault=63.984 MVA/[ x 0.48kV]=76,963 A3

    Ex2:Calcu late Short Circu it MVA@ Bus1

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    59/65

    Ex2:Calcu late Short Circu it MVA@ Bus1

    (MVA method)

    153.864MVA

    41.667

    MVA

    50 MVA

    9.375MVA

    14.286MVA

    13.333MVA

    195.531MVA

    13.333MVA

    50MVA

    9.375+14.286=23.661MVA

    208.864+16.051=224.915MVA

    208.864= 195.531+13.333MVA

    1/[(1/50)+(1/23.661)]=1/.0623=16.051MVA

    Power System Review

    BUS 1 BUS 1

    BUS 1

    BUS 1

    BUS 2

    MVA531.195667.41846.153 parallelMVA

    MVA915.2241@ BusfaultMVA

    Ex2: Calcu late Sho rt Circu it MVA

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    60/65

    S.C or Fault MVA @ Bus1:

    S.C or Fault MVA= 224.915

    Ifault @Bus1= 224.915 MVA/( x4.16kV)

    Power System Review

    @Bus 1 (MVA method)

    3

    Available Fault Current at Bus 1:

    I fault @Bus1=31,216 A

    E l 3 S t i l F l t A l i

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    61/65

    Example 3: Symmetr ical Faul t Analys is

    Power System Review

    Source M

    1500 MVA

    Fault69 kV

    X=2.8

    10 MVA

    X=8.5%69kV/-n 13.8kV

    13.2 kV

    X=0.2

    Calculate the symmetrical fault current at the secondary terminals of a 10 MVA XFMR

    using both the PU-Method & the MVA Method. Use 15 MVA & 69 kV base values for

    the transmission line.

    5 MVA -n

    Zone 1 Zone 2

    kVV 691Base-lL

    AkVx

    SIBase 57.6273

    1Base

    Base2 4.31715

    69

    S

    2

    Base

    Base2

    Base1

    1

    1

    kV

    Z

    MVAS 15Base MVAS 15Base

    7.1215

    8.132

    Base2Z

    kVV 8.132Base-lL

    Example3: Symmetr ical Faul t

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    62/65

    Example3: Symmetr ical Fault

    Analys is(MVA-method)

    Power System Review

    1700.36MVA

    1500MVA

    117.65MVA

    27.32MVA

    5 MVA_____

    (13.2/13.8)x0.2=27.32

    102.52MVA

    27.32MVA

    MVA Fault= 102.52+27.32

    = 129.84

    Ifault=129.84/(1.732x13.8)

    = 5,432.3 Amps

    65.117

    1

    36.1700

    1

    1500

    11

    MVA

    rTransforme

    Line

    Source

    Motor

    Example 3:

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    63/65

    Symmetr ical Fau lt Calcu lat ion

    Compar ison Between PU & MVA

    Methods

    I fault=5,410.3 Amp

    I fault = 5,432.3 Amp

    :methodPU

    :methodMVA

    Example 3:

    Power System Review

    R f

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    64/65

    References

    1. J.D. Golver, M.S. Sarma, Power System Analysis and design,

    4thed., (Thomson Crop, 2008).2. M.S. Sarma, Electric Machines, 2nded., (West Publishing Company,

    1985).

    3. A.E. Fitzgerald, C. Kingsley, and S. Umans, Electric

    Machinery, 4th

    ed. (New York: McGraw-Hill, 1983).4. P.M. Anderson, Analysis of Faulted Power systems(Ames, IA: Iowa

    Satate university Press, 1973).

    5.W.D. Stevenson, Jr., Elements of Power System Analysis, 4th

    ed. (New York: McGraw-Hill, 1982).

    Solut ion

    Break Time !!!!!

  • 8/10/2019 Appa-module 6-Fault Current Analysis

    65/65

    Solut ion

    Answer: 37.5 KVA

    Break Time !!!!!