and Optimization for Digital Systems

84
ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 12: October 2, 2020 Scaling Penn ESE 370 Fall 2020 - Khanna

Transcript of and Optimization for Digital Systems

Page 1: and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 12: October 2, 2020Scaling

Penn ESE 370 Fall 2020 - Khanna

Page 2: and Optimization for Digital Systems

Today

! Layout Roundup" Standard cells

! VLSI Scaling Trends/Disciplines! Effects! Alternatives (cheating)

Penn ESE 370 Fall 2020 - Khanna 2

Page 3: and Optimization for Digital Systems

Standard Cells

! Lay out gates so that heights match" Rows of adjacent cells" Standardized sizing of gate heights

! Motivation: automated place and route" EDA tools convert HDL to layout

Penn ESE 370 Fall 2020 - Khanna 3

Page 4: and Optimization for Digital Systems

Standard Cells

Penn ESE 370 Fall 2020 - Khanna 4

Page 5: and Optimization for Digital Systems

Standard Cell Layout Example

Penn ESE 370 Fall 2020 - Khanna 5

Page 6: and Optimization for Digital Systems

Standard Cell Area

invnand3All cellsuniformheight

Width ofchannel

determinedby routing

Cell area

Penn ESE 370 Fall 2020 - Khanna 6

Page 7: and Optimization for Digital Systems

Standard Cell Layout Example

http://www.laytools.com/images/StandardCells.jpgPenn ESE 370 Fall 2020 - Khanna 7

Page 8: and Optimization for Digital Systems

4x4 6T SRAM Memory

8Penn ESE 370 Fall 2020 - Khanna

Page 9: and Optimization for Digital Systems

Circuit Extraction

! Circuit extraction extracts a schematic representation of a layout, including transistors, wires, and possibly wire and device resistance and capacitance.

! Circuit extraction is used for LVS, and for spice simulation of layouts

9Penn ESE 370 Fall 2020 - Khanna

Page 10: and Optimization for Digital Systems

Circuit Extraction

Penn ESE 370 Fall 2020 - Khanna 10

Page 11: and Optimization for Digital Systems

Circuit Extraction

Penn ESE 370 Fall 2020 - Khanna 11

Page 12: and Optimization for Digital Systems

Scaling

Penn ESE 370 Fall 2020 - Khanna 12

Page 13: and Optimization for Digital Systems

Standard Cells

Penn ESE 370 Fall 2020 - Khanna 13

Page 14: and Optimization for Digital Systems

Scaling Technology

! Premise: features scale “uniformly”" everything gets better in a predictable manner

! Parameters:# l (lambda) -- Mead and Conway (L=2l)# F -- Half pitch – ITRS (F=2l=L)# S – scale factor – Rabaey

# F’=F/S# S>1

Penn ESE 370 Fall 2020 - Khanna 14

(TypicalDRAM)

Metal Pitch

Page 15: and Optimization for Digital Systems

Microprocessor Trans Count 1971-2015

15Kenneth R. Laker, University of Pennsylvania, updated 20Jan15

Curve shows transistor count doubling every

two yearsPentium

40048006

8080Mot 6800

8086

Mot 6800080286

80386

80486

MOS 6502Zilog Z80

80186

AMD K5Pentium II

Pentium IIIAMD K7

Pentium 4AMD K8

AMD K10 AMD 6-Core Opteron 24004-Core i7

2-Core Itanium 26-Core i76-Core i716-Core SPARC T3

10-Core Xenon IBM 4-Core z196IBM 8-Core POWER7

4-Core Itanium Tukwilla

2015: Oracle SPARC M7, 20 nm CMOS,32-Core, 10B 3-D FinFET transistors.

2015Penn ESE 370 Fall 2020 - Khanna

Page 16: and Optimization for Digital Systems

Intel Cost Scaling

16

http://www.anandtech.com/show/8367/intels-14nm-technology-in-detail

Penn ESE 370 Fall 2020 - Khanna

Page 17: and Optimization for Digital Systems

More Moore $ Scaling

! Geometrical Scaling" continued shrinking of horizontal and vertical physical

feature sizes

! Design Equivalent Scaling" design technologies that enable high performance, low

power, high reliability, low cost, and high design productivity even if neither geometrical nor equivalent scaling can be used

17Penn ESE 370 Fall 2020 - Khanna

Page 18: and Optimization for Digital Systems

22nm 3D FinFET Transistor

18

Tri-Gate transistors with multiple fins connected together

increases total drive strength for higher performance

http://download.intel.com/newsroom/kits/22nm/pdfs/22nm-Details_Presentation.pdf

High-k gate

dielectric

Penn ESE 370 Fall 2020 - Khanna

Page 19: and Optimization for Digital Systems

ITRS Roadmap

! International Technology Roadmap for Semiconductors" Try to predict where industry going

! ITRS 2.0 started in 2015 with new focus" System Integration, Heterogeneous Integration,

Heterogeneous Components, Outside System Connectiviy, More Moore, Beyond CMOS and Factory Integartion.

! http://www.itrs2.net/

Penn ESE 370 Fall 2020 - Khanna 19

Page 20: and Optimization for Digital Systems

More-than-Moore

20

“More-than-Moore”, International Road Map (IRC) White Paper, 2011.

International Technology Road Map for Semiconductors

Scaling

Penn ESE 370 Fall 2020 - Khanna

Page 21: and Optimization for Digital Systems

Preclass 1

! Scaling from 32nm $ 22nm, what is 1/S?" Scaling minimum gate length" And pitch distance

Penn ESE 370 Fall 2020 - Khanna 21

Page 22: and Optimization for Digital Systems

MOS Transistor Scaling - (1974 to present)

1/S=0.7 per technology node

[0.5x per 2 nodes]

Pitch Gate

Source: 2001 ITRS - Exec. Summary, ORTC Figure, Andrew KahngPenn ESE 370 Fall 2020 - Khanna 22

Page 23: and Optimization for Digital Systems

Scaling

! Channel Length (L)! Channel Width (W)! Oxide Thickness (tox) ! Doping (Na)! Voltage (VDD,Vt,)

Penn ESE 370 Fall 2020 - Khanna 23

Page 24: and Optimization for Digital Systems

Full Scaling (Ideal Scaling)

! Channel Length (L) 1/S! Channel Width (W) 1/S! Oxide Thickness (tox) 1/S! Doping (Na) S! Voltage (VDD,Vt,) 1/S

Penn ESE 370 Fall 2020 - Khanna 24

Page 25: and Optimization for Digital Systems

Effects on Physical Properties and Specs?

! Area! Capacitance

" Cox and Cgate

! Resistance! Current (Id)! Gate Delay (tgd)! Wire Delay (twire)

! Power " Same frequency" Scaled frequency

! Power Density" Same frequency" Scaled frequency

25Penn ESE 370 Fall 2020 - Khanna

Preclass 2 - table

Page 26: and Optimization for Digital Systems

Area

! l’% l/S! Area impact?! A = L ×W! L

W1/S=0.7

Penn ESE 370 Fall 2020 - Khanna 26

Page 27: and Optimization for Digital Systems

Area

! l’% l/S! Area impact?! A = L ×W! A’% A/S2

! 32nm % 22nm! 50% area! 2 × transistor capacity

for same area

L

W1/S=0.7

Penn ESE 370 Fall 2020 - Khanna 27

Page 28: and Optimization for Digital Systems

Capacitance

! Capacitance per unit area scaling?

" Cox= eSiO2/tox

" t’ox% tox/S

Penn ESE 370 Fall 2020 - Khanna 28

Page 29: and Optimization for Digital Systems

Capacitance

! Capacitance per unit area scaling?

" Cox= eSiO2/tox

" t’ox% tox/S" C’ox % Cox×S

Penn ESE 370 Fall 2020 - Khanna 29

Page 30: and Optimization for Digital Systems

Capacitance

! Gate Capacitance scaling?

# Cgate= A×Cox

# A’% A/S2

# C’ox % Cox×S

Penn ESE 370 Fall 2020 - Khanna 30

Page 31: and Optimization for Digital Systems

Capacitance

! Gate Capacitance scaling?

# Cgate= A×Cox

# A’% A/S2

# C’ox % Cox×S# C’gate % Cgate/S

Penn ESE 370 Fall 2020 - Khanna 31

Page 32: and Optimization for Digital Systems

Wire Resistance

! Resistance scaling?! R=rL/(W*t)

" L, t remain similar (not scaled)

! W$ W/S

Penn ESE 370 Fall 2020 - Khanna 32

Page 33: and Optimization for Digital Systems

Wire Resistance

! Resistance scaling?! R=rL/(W*t)

" L, t remain similar (not scaled)

! W$ W/S! R’ $ R×S

Penn ESE 370 Fall 2020 - Khanna 33

Page 34: and Optimization for Digital Systems

Current

! Which Voltages matters here? (Vgs,Vds,Vth…)! Transistor charging looks like

voltage-controlled current source! Saturation Current scaling?

Id=(µCOX/2)(W/L)(Vgs-VTH)2

Vgs,VTH: V’$ V/SW’$ W/SL’$ L/SC’ox$ Cox×S

Penn ESE 370 Fall 2020 - Khanna 34

Page 35: and Optimization for Digital Systems

Current

! Which Voltages matters here? (Vgs,Vds,Vth…)! Transistor charging looks like

voltage-controlled current source! Saturation Current scaling?

Id=(µCOX/2)(W/L)(Vgs-VTH)2

Vgs,VTH: V’$ V/SW’$ W/SL’$ L/SC’ox$ Cox×S

I’d=(µCOXS/2)((W/S)/(L/S))(Vgs/S-VTH/S)2

Penn ESE 370 Fall 2020 - Khanna 35

Page 36: and Optimization for Digital Systems

Current

! Which Voltages matters here? (Vgs,Vds,Vth…)! Transistor charging looks like

voltage-controlled current source! Saturation Current scaling?

Id=(µCOX/2)(W/L)(Vgs-VTH)2

Vgs,VTH: V’$ V/SW’$ W/SL’$ L/SC’ox$ Cox×S

I’d$Id/SPenn ESE 370 Fall 2020 - Khanna 36

Page 37: and Optimization for Digital Systems

Current

! Velocity Saturation Current scaling?

Vgs,VTH: V’$ V/SL’$ L/S W’$ W/SC’ox$ CoxS

Penn ESE 370 Fall 2020 - Khanna 37

Page 38: and Optimization for Digital Systems

Current

! Velocity Saturation Current scaling?

Vgs,VTH: V’$ V/SL’$ L/S W’$ W/SC’ox$ CoxS

I’d$ Id/S

Penn ESE 370 Fall 2020 - Khanna 38

IDS ≈νsatCOXW VGS −VTH −VDSAT

2%

& '

(

) *

Page 39: and Optimization for Digital Systems

Gate Delay

# Gate Delay scaling?# tgd=Q/I=(CV)/I# V’$ V/S# I’d$ Id/S# Cg’$ Cg/S

Note: Ids modeled as current source; V is changing with scale

factor

Penn ESE 370 Fall 2020 - Khanna 39

Page 40: and Optimization for Digital Systems

Gate Delay

# Gate Delay scaling?# tgd=Q/I=(CV)/I# V’$ V/S# I’d$ Id/S# Cg’$ Cg/S# t’gd$ tgd/S

Note: Ids modeled as current source; V is changing with scale

factor

Penn ESE 370 Fall 2020 - Khanna 40

Page 41: and Optimization for Digital Systems

Wire Delay

# Wire delay scaling?# twire=R´C

# R’ $ R×S# C’$ C/S

! Again assuming (logical) wire lengths remain constant

Penn ESE 370 Fall 2020 - Khanna 41

Page 42: and Optimization for Digital Systems

Wire Delay

# Wire delay scaling?# twire=R´C

# R’ $ R×S# C’$ C/S# t’wire $ twire

Penn ESE 370 Fall 2020 - Khanna 42

! Again assuming (logical) wire lengths remain constant

Page 43: and Optimization for Digital Systems

Power Dissipation (Dynamic)

! Capacitive (Dis)charging scaling?! P=(1/2)CV2f

! V’$ V/S! C’$ C/S

Penn ESE 370 Fall 2020 - Khanna 43

Page 44: and Optimization for Digital Systems

Power Dissipation (Dynamic)

! Capacitive (Dis)charging scaling?! P=(1/2)CV2f

! V’$ V/S! C’$ C/S

! P’$ P/S3

Penn ESE 370 Fall 2020 - Khanna 44

Page 45: and Optimization for Digital Systems

Power Dissipation (Dynamic)

! Capacitive (Dis)charging scaling?! P=(1/2)CV2f

! V’$ V/S! C’$ C/S

! P’$ P/S3

! Increase Frequency?

! tgd $ tgd/S

! So: f $ f×S

Penn ESE 370 Fall 2020 - Khanna 45

Page 46: and Optimization for Digital Systems

Power Dissipation (Dynamic)

! Capacitive (Dis)charging scaling?! P=(1/2)CV2f

! V’$ V/S! C’$ C/S

! P’$ P/S3

! Increase Frequency?

! tgd $ tgd/S

! So: f $ f×S

! P $ P/S2

Penn ESE 370 Fall 2020 - Khanna 46

Page 47: and Optimization for Digital Systems

Effects? (Preclass 2)

! Area 1/S2

! Capacitance (Cox, Cg) S, 1/S! Resistance S! Threshold (Vth) 1/S! Current (Id) 1/S! Gate Delay (tgd) 1/S! Wire Delay (twire) 1! Power 1/S3, 1/S2

Penn ESE 370 Fall 2020 - Khanna 47

1/S=0.7

Page 48: and Optimization for Digital Systems

Power Density

! P’ % P/S2 (increased frequency)! P’ % P/S3 (same frequency)! A’ % A/S2

! Power Density: P/A two cases?

Penn ESE 370 Fall 2020 - Khanna 48

Page 49: and Optimization for Digital Systems

Power Density

! P’ % P/S2 (increased frequency)! P’ % P/S3 (same frequency)! A’ % A/S2

! Power Density: P/A two cases?" P/A % P/A increase freq." P/A % (P/A)/S same freq.

Penn ESE 370 Fall 2020 - Khanna 49

Page 50: and Optimization for Digital Systems

But…

! Don’t like some of the implications! High resistance wires! Higher gate oxide capacitance! Atomic-scale dimensions

! …. Quantum tunneling

! Need for more wiring! Not scale speed fast enough

Penn ESE 370 Fall 2020 - Khanna 50

Page 51: and Optimization for Digital Systems

Improving Resistance

! R=rL/(W×t)! W’$ W/S

" L, t similar

! R’ $ R×S

Penn ESE 370 Fall 2020 - Khanna 51

Page 52: and Optimization for Digital Systems

Improving Resistance

! R=rL/(W×t)! W’$ W/S

" L, t similar

! R’ $ R×S

What might we do?Decrease ρ (copper) – introduced 1997http://www.ibm.com/ibm100/us/en/icons/copperchip/

Penn ESE 370 Fall 2020 - Khanna 52

Page 53: and Optimization for Digital Systems

Capacitance and Leakage

! Capacitance per unit area" Cox= eSiO2/tox

" t’ox% tox/S" C’ox % Cox×S

What’s wrong with tox = 1.2nm?

source: Borkar/Micro 2004Penn ESE 370 Fall 2020 - Khanna 53

Page 54: and Optimization for Digital Systems

Capacitance and Leakage

! Capacitance per unit area" Cox= eSiO2/tox

" t’ox% tox/S" C’ox % Cox×S

What might we do?Reduce dielectric constant, e, and not scale

thickness to mimic tox scaling.Penn ESE 370 Fall 2020 - Khanna 54

Page 55: and Optimization for Digital Systems

High-K dielectric Survey

Wong/IBM J. of R&D, V46N2/3P133—168, 2002Penn ESE 370 Fall 2020 - Khanna 55

Page 56: and Optimization for Digital Systems

Wire Layers = More Wiring

Penn ESE 370 Fall 2020 - Khanna 56

Page 57: and Optimization for Digital Systems

Gate Delay

# tgd=Q/I=(CV)/I# V’$ V/S# I’d$ Id/S# Cg’$ Cg/S# t’gd$ tgd/S

Penn ESE 370 Fall 2020 - Khanna 57

How might weaccelerate speed up?

Page 58: and Optimization for Digital Systems

Gate Delay

# tgd=Q/I=(CV)/I# V’$ V

# I’d=(µCOXS/2)((W/S)/(L/S))(Vgs-VTH)2

# I’d$ Id×S

Penn ESE 370 Fall 2020 - Khanna 58

Don’t scale V!

How might weaccelerate speed up?

Page 59: and Optimization for Digital Systems

Gate Delay

# tgd=Q/I=(CV)/I# V’$ V

# I’d=(µCOXS/2)((W/S)/(L/S))(Vgs-VTH)2

# I’d$ Id×S# Cg’$ Cg/S# t’gd$ tgd/S2

Penn ESE 370 Fall 2020 - Khanna 59

Don’t scale V!

How might weaccelerate speed up?

Page 60: and Optimization for Digital Systems

But… Power Dissipation (Dynamic)

! Capacitive (Dis)charging

# P=(1/2)CV2f# V’$ V# C’$ C/S# P’$ P/S

Penn ESE 370 Fall 2020 - Khanna 60

Page 61: and Optimization for Digital Systems

But… Power Dissipation (Dynamic)

! Capacitive (Dis)charging

# P=(1/2)CV2f# V’$ V# C’$ C/S# P’$ P/S

! Increase Frequency?# t’gd $ tgd/S2

# f’ $ f×S2

# P’ $ P×S

If don’t scale V, power dissipation doesn’t scale down!

Penn ESE 370 Fall 2020 - Khanna 61

Page 62: and Optimization for Digital Systems

…And Power Density

! P’$ P×S (increase frequency)! A’$ A/S2

! What happens to power density?

Penn ESE 370 Fall 2020 - Khanna 62

Page 63: and Optimization for Digital Systems

…And Power Density

! P’$ P×S (increase frequency)! A’$ A/S2

! What happens to power density?

! P/A $ S3×P

! Power Density Increases!

Penn ESE 370 Fall 2020 - Khanna 63

Page 64: and Optimization for Digital Systems

Historical Voltage Scaling

! Frequency impact?! Power Density impact?

http://software.intel.com/en-us/articles/gigascale-integration-challenges-and-opportunities/

Penn ESE 370 Fall 2020 - Khanna 64

Page 65: and Optimization for Digital Systems

Scale V separately with Factor U, (U<S)

! tgd=Q/I=(CV)/I! V’$V/U

Penn ESE 370 Fall 2020 - Khanna 65

Page 66: and Optimization for Digital Systems

Scale V separately with Factor U

! tgd=Q/I=(CV)/I! V’$V/U

! I’d=(µCOXS/2)((W/S)/(L/S)(Vgs/U-VTH/U)2

! I’d$ S/U2×Id

! C’$ C/S

Penn ESE 370 Fall 2020 - Khanna 66

Page 67: and Optimization for Digital Systems

Scale V separately with Factor U

! tgd=Q/I=(CV)/I! V’$V/U

! I’d=(µCOXS/2)((W/S)/(L/S)(Vgs/U-VTH/U)2

! I’d$ S/U2×Id

! C’$ C/S! t’gd$ ((1/(SU))/(S/U2))×tgd

! t’gd$ (U/S2)×tgd

Penn ESE 370 Fall 2020 - Khanna 67

Page 68: and Optimization for Digital Systems

Scale V separately with Factor U

! tgd=Q/I=(CV)/I! V’$V/U

! I’d=(µCOXS/2)((W/S)/(L/S)(Vgs/U-VTH/U)2

! I’d$ S/U2×Id

! C’$ C/S! t’gd$ ((1/(SU))/(S/U2))×tgd

! t’gd$ (U/S2)×tgd

! f’ $ (S2/U)×fPenn ESE 370 Fall 2020 - Khanna 68

Page 69: and Optimization for Digital Systems

Scale V separately with Factor U

! tgd=Q/I=(CV)/I! V’$V/U

! I’d=(µCOXS/2)((W/S)/(L/S)(Vgs/U-VTH/U)2

! I’d$ S/U2×Id

! C’$ C/S! t’gd$ ((1/(SU))/(S/U2))×tgd

! t’gd$ (U/S2)×tgd

! f’$ (S2/U)×fPenn ESE 370 Fall 2020 - Khanna 69

Ideal scale factors:S=100U=100t=1/100fideal=100

Page 70: and Optimization for Digital Systems

Preclass 3

! Assuming Vdd=10V in a 10μm process and Vdd=1V in a 100nm process, what are S and U? (assume everything else scales according to ideal scaling.)" S =

" U =

Penn ESE 370 Fall 2020 - Khanna 70

Page 71: and Optimization for Digital Systems

Scale V separately with Factor U

! tgd=Q/I=(CV)/I! V’$V/U

! I’d=(µCOXS/2)((W/S)/(L/S)(Vgs/U-VTH/U)2

! I’d$ S/U2×Id

! C’$ C/S! t’gd$ ((1/(SU))/(S/U2))×tgd

! t’gd$ (U/S2)×tgd

! f’$ (S2/U)×fPenn ESE 370 Fall 2020 - Khanna 71

Ideal scale factors:S=100U=100t=1/100fideal=100

Cheatingfactors:S=100U=10

How much faster are gates?

Page 72: and Optimization for Digital Systems

Scale V separately with Factor U

! tgd=Q/I=(CV)/I! V’$V/U

! I’d=(µCOXS/2)((W/S)/(L/S)(Vgs/U-VTH/U)2

! I’d$ S/U2×Id

! C’$ C/S! t’gd$ ((1/(SU))/(S/U2))×tgd

! t’gd$ (U/S2)×tgd

! f’$ (S2/U)×fPenn ESE 370 Fall 2020 - Khanna 72

Ideal scale factors:S=100U=100t=1/100fideal=100

Cheatingfactors:S=100U=10t=1/1000fnew=1000

How much faster are gates?

Page 73: and Optimization for Digital Systems

Scale V separately with Factor U

! tgd=Q/I=(CV)/I! V’$V/U

! I’d=(µCOXS/2)((W/S)/(L/S)(Vgs/U-VTH/U)2

! I’d$ S/U2×Id

! C’$ C/S! t’gd$ ((1/(SU))/(S/U2))×tgd

! t’gd$ (U/S2)×tgd

! f’$ (S2/U)×fPenn ESE 370 Fall 2020 - Khanna 73

Ideal scale factors:S=100U=100t=1/100fideal=100

Cheatingfactors:S=100U=10t=1/1000fnew=1000

fnew/fideal=10

Page 74: and Optimization for Digital Systems

Power Density Impact

! P = (1/2)CV2 f! P $ (1/S) (1/U2) (S2/U) = S/U3

! P/A $ (S/U3) / (1/S2) = S3/U3

Penn ESE 370 Fall 2020 - Khanna 74

Page 75: and Optimization for Digital Systems

Power Density Impact

! P = (1/2)CV2 f! P $ (1/S) (1/U2) (S2/U) = S/U3

! P/A $ (S/U3) / (1/S2) = S3/U3

! U=10 S=100! P/A $ 1000 (P/A)

Penn ESE 370 Fall 2020 - Khanna 75

Page 76: and Optimization for Digital Systems

Power Density Impact

! P = (1/2)CV2 f! P $ (1/S) (1/U2) (S2/U) = S/U3

! P/A $ (S/U3) / (1/S2) = S3/U3

! U=10 S=100! P/A $ 1000 (P/A)

! Compare with ideal scaling:! P/A $ S3×P (ideal scaling)! P/A $ 1,000,000 (P/A) (ideal scaling)

Penn ESE 370 Fall 2020 - Khanna 76

Page 77: and Optimization for Digital Systems

Scaling Methods

Penn ESE 370 Fall 2020 - Khanna 77

Page 78: and Optimization for Digital Systems

42 Years of uP Trend Data

78Penn ESE 370 Fall 2020 - Khanna

Page 79: and Optimization for Digital Systems

Conventional Scaling

! Ends in your lifetime! Perhaps already:

" "Basically, this is the end of scaling.”" May 2005, Bernard Meyerson, V.P. and chief technologist for

IBM's systems and technology group

Penn ESE 370 Fall 2020 - Khanna 79

Page 80: and Optimization for Digital Systems

ITRS 2.0 Report 2015

! “After 2021, the report forecasts, it will no longer be economically desirable for companies to continue traditional transistor miniaturization in microprocessors.”

Penn ESE 370 Fall 2020 - Khanna 80

Page 81: and Optimization for Digital Systems

BUT…

Penn ESE 370 Fall 2020 - Khanna 81

Source:https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/09/mark-bohr-on-continuing-moores-law.pdf

Page 82: and Optimization for Digital Systems

BUT…

Penn ESE 370 Fall 2020 - Khanna 82

Source:https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/09/mark-bohr-on-continuing-moores-law.pdf

Page 83: and Optimization for Digital Systems

Big Ideas

! Moderately predictable VLSI Scaling" unprecedented capacities/capability growth for

engineered systems" …but not for much longer

Penn ESE 370 Fall 2020 - Khanna 83

Page 84: and Optimization for Digital Systems

Admin

! Proj 1 Due Monday (no lecture)" I will NOT be extending Proj 1" Study old midterms!" Can only use one late day max

" Everyone on team must have a late day available to use

! Talk to your teammates!!!" Can use Canvas groups discussion" Can use Piazza" Can use email

Penn ESE 370 Fall 2020 - Khanna 84