Optimization of Multibody Systems

29
Jean-François Collard Paul Fisette 24 May 2006 Optimization of Multibody Systems

description

Optimization of Multibody Systems. Jean-François Collard Paul Fisette 24 May 2006. Multibody Dynamics. Mobile Robot. Railway vehicle. Parallel manipulator. ( Bombardier 1993 , 2003, 2006). Off-road vehicle. Serial manipulator. ( McGill 1997 ). M(q) q + c (q, q) = J T (q) l. - PowerPoint PPT Presentation

Transcript of Optimization of Multibody Systems

Page 1: Optimization of Multibody Systems

Jean-François Collard

Paul Fisette

24 May 2006

Optimization of Multibody Systems

Page 2: Optimization of Multibody Systems

Multibody DynamicsMotion analysis of complex mechanical systems

(UCL 1995)

Mobile Robot

(McGill 1997)

Parallel manipulator

(Tenneco-Monroe 2000, 2004, 2006)

Automotive suspension

(International benchmark 1991)

Off-road vehicle

(Automatic System 2002)

Mechanisms

(Bombardier 1993, 2003, 2006)

Railway vehicle

.M(q) q + c (q, q) = JT (q) ..ROBOTRAN

(KULeuven, 2002)

Serial manipulator

« Computer simulation »

Multibody DynamicsOptimization prerequisites

Applications

Motion analysisHistorical aspects

Page 3: Optimization of Multibody Systems

Multibody DynamicsHistorical aspects 1970 …

Satellites : “first” multibody applications Analytical linear model – Modal analyses

1980 … Vehicle dynamics, Robotics (serial robots) “Small” nonlinear models, Time simulation of “small systems”

1990 … Vehicle, machines, helicopters, mechanisms, human body, etc. Flexible elements, Non-linear simulations, Sensitivity analysis, …

2000 … Idem + Multiphysics models (hydraulic circuits, electrical actuator, …) Idem + Optimization of performances

Multibody DynamicsOptimization prerequisites

Applications

Motion analysisHistorical aspects

Page 4: Optimization of Multibody Systems

Optimization : “prerequisites”

Model formulation : assembling, equations of motion

Assembling

Equations of motion

Model “fast” simulation

Compact analytical formulation

Compact symbolical implementation (UCL)

Model portability

Analytical “ingredients”

Model exportation

Multibody DynamicsOptimization prerequisites

Applications

Model formulationModel « fast » simulationModel portability

Page 5: Optimization of Multibody Systems

Optimization : “prerequisites”Model formulation Assembling : nonlinear constraint equations : h(q, t) = 0

Equations of motion

« DAE »

« ODE »

Reduction technique (UCL)

Multibody DynamicsOptimization prerequisites

Applications

Model formulationModel « fast » simulationModel portability

Page 6: Optimization of Multibody Systems

Optimization : “prerequisites”Model “fast” simulation Compact analytical formulation

Compact symbolical implementation (UCL)Formalism

parameters

operators

m z + k z + m g = 0

+, -, ...

m, k, z, ...

..SymbolicGenerator(Robotran)

Audi A6 dynamics : real time simulation !

# flops

# bodies

Lagrange

RecursiveNewton-Euler

Multibody DynamicsOptimization prerequisites

Applications

Model formulationModel « fast » simulationModel portability

Page 7: Optimization of Multibody Systems

Optimization : “prerequisites”Model portability Analytical “ingredients”

Model exportation

Reaction forces:

Freact(q, q, q, m, …)...

Inverse dynamics:

Q(q, q, q, m, …)...

Direct dynamics:

q = f (q, m, I, F, L, …).. .

Direct kinematics:

x = J(q) q. .

Inverse kinematics:

q = (J-1)x. .

x.

. q

Q

Freact. q

SymbolicGenerator(Robotran)

MatlabSimulink

MultiphysicsPrograms (Amesim)

Optimizationalgorithms…

Multibody DynamicsOptimization prerequisites

Applications

Model formulationModel « fast » simulationModel portability

Page 8: Optimization of Multibody Systems

Optimization: applications

Isotropy of parallel manipulators

Assembling constraints and penalty method

Comfort of road vehicles

Multi-physics model

Biomechanics of motion

Identification of kinematic and dynamical models

Synthesis of mechanisms

Extensible-link approach

Multiple local optima

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 9: Optimization of Multibody Systems

Isotropy of parallel manipulators

Problem statement

qx J

1x2x

3x

1q 2q

3q J

3 dof

1q

2q

3q

1 2 3, ,x x x

Rb

z

Rp

la

lb

3 dof

Objective : Maximize isotropy index over a 2cm sided cubeParameters : la, lb, z, Rb, Rp

1

N

iicond J

NIsotropy index

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 10: Optimization of Multibody Systems

Isotropy of parallel manipulators

Dealing with assembling constraints

Constraints involving joint variables q :h(q) = 0

Coordinate partitioning :q = [u v]

Newton-Raphson iterative algorithm:vi+1 = vi – [h/v]-1 h(q)

h(q)

Multiple closed loops

?h(q) = 0

u v ?

Types of problems encountered :

Singularity

h/v = 0

u v2

v1

q1

q2

q3u

v1

v2

Unclosable

h(q) 0 v

u v2

v1

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 11: Optimization of Multibody Systems

Isotropy of parallel manipulators

Penalization of assembling constraints

-0.15 -0.1 -0.05 0 0.050.05

0.15

0.2

0.25

Cost function penalty

x [m]

y [m

]

assembling constraints

0.1

G

xx

x

X

The optimizer call f(X) return value ?

NR OK

xxF

det(Jc) = 0.004

FG X

f(X)

NR KO

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 12: Optimization of Multibody Systems

Isotropy of parallel manipulators

Results for the Delta robot

Optimum design

Initial designOptimum values

Average isotropy = 95%

la = 13.6 cm

lb = 20 cm

z = 13.5 cm

Rb = 13.1 cm

Rp = 10.4 cm

Using free-derivative algorithm: Simplex method (Nelder-Mead)

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 13: Optimization of Multibody Systems

Comfort of road vehicles

Model: Audi A6 with a semi-active suspension

+MBS

Hydraulic

+MBS

Hydraulic

Multibody Model(UCL – ULg)

Front left Front right

Rear left Rear right

+

Front leftFront left Front rightFront right

Rear leftRear left Rear rightRear right

+

ROBOTRAN (UCL) : symbolic

OOFELIE (ULg) : FEM - numerical

Hydraulic Model(TENNECO Automotive)

Control Model(KULeuven)

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 14: Optimization of Multibody Systems

Comfort of road vehicles

Optimization using Genetic Algorithms

Objective : Minimize the average of the 4 RMS vertical

accelerations of the car body corners

Parameters : 6 controller parameters

Input : 4 Stochastic road profiles

0 2 4 6 8 10 12-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time [s]

Ver

tical

pos

ition

[m]

rear-left wheelrear-right wheelfront-left wheelfront-right wheel

0.710.52Initial uncontrolled

RMS accelerations [m/s2]

0.580.41Optimum

0.660.46Initial controlled

Ride & handlingComfort

0.710.52Initial uncontrolled

RMS accelerations [m/s2]

0.580.41Optimum

0.660.46Initial controlled

Ride & handlingComfort

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 15: Optimization of Multibody Systems

Biomechanics of motion

Objective : Quantification of joint and muscle efforts

+ ElectroMyoGraphy (EMG) :

Fully equipped subject :

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 16: Optimization of Multibody Systems

Biomechanics of motion

Kinematics optimization

• MAX relative error = 2.05 % • MEAN relative error = 0.05 % MEAN absolute error = 3.1 mm

xmod and xexp superimposed :

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 17: Optimization of Multibody Systems

Biomechanics of motion

Muscle overactuation: optimization Forearm flexion/extension

From : triceps brachii EMG biceps brachii EMG

find : triceps brachii force biceps brachii force

and the corresponding elbow torque QEMG

that best fit the elbow torque QINV

obtained from inverse dynamics.

In progress…

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 18: Optimization of Multibody Systems

Synthesis of mechanisms

Initial mechanism

Optimal mechanism

Target

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 19: Optimization of Multibody Systems

Synthesis of mechanisms

Problem statement

Requirements

Variables: point coordinates & design parameters

Constraint: assembling the mechanism

Function-generationPath-following ORObjective:

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 20: Optimization of Multibody Systems

Synthesis of mechanisms

Extensible-link model

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 21: Optimization of Multibody Systems

Synthesis of mechanisms

Extensible-link model

Advantage: no assembling constraints

1,

1

1min , ,

2

NT

i

N

i i i il f f

d t f l K d t f l

Objective:Non-Linear Least-Squares Optimization

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 22: Optimization of Multibody Systems

Synthesis of mechanisms

Multiple solution with Genetic Algorithms

Different local optima !

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 23: Optimization of Multibody Systems

Synthesis of mechanisms

Optimization strategy

Find equilibrium of each configuration

Group grid points w.r.t. total equilibrium energy

Perform global synthesis starting from best candidates

Create grid over the design space

Refine possibly the grid

7x7 grid = 49 points

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 24: Optimization of Multibody Systems

Synthesis of mechanisms

Optimization strategy

Find equilibrium of each configuration

Group grid points w.r.t. total equilibrium energy

Perform global synthesis starting from best candidates

Create grid over the design space

Refine possibly the grid

Optimization parameters:

ONLY point coordinates

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 25: Optimization of Multibody Systems

Synthesis of mechanisms

Optimization strategy

Find equilibrium of each configuration

Group grid points w.r.t. total equilibrium energy

Perform global synthesis starting from best candidates

Create grid over the design space

Refine possibly the grid

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 26: Optimization of Multibody Systems

Synthesis of mechanisms

Optimization strategy

Find equilibrium of each configuration

Group grid points w.r.t. total equilibrium energy

Perform global synthesis starting from best candidates

Create grid over the design space

Refine possibly the grid

4 groups = 4 candidates

Global synthesis

2 local optima:

Optimization parameters:

point coordinates

AND design parameters

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 27: Optimization of Multibody Systems

Synthesis of mechanisms

Optimization strategy

Find equilibrium of each configuration

Group grid points w.r.t. total equilibrium energy

Perform global synthesis starting from best candidates

Create grid over the design space

Refine possibly the grid

4 groups = 4 candidates

2 local optima:

Global synthesisOptimization parameters:

point coordinates

AND design parameters

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 28: Optimization of Multibody Systems

Synthesis of mechanisms

Application to six-bar linkage: multiple local optima

83521 grid points

284 groups

14 local optima

1 « global » optimum

Additional design criteria

Multibody DynamicsOptimization prerequisites

Applications

Isotropy of manipulatorsComfort of vehiclesBiomechanics of motionSynthesis of mechanisms

Page 29: Optimization of Multibody Systems

Thank you for your attention