Analysis of reflectivity echo.ppt

download Analysis of reflectivity echo.ppt

of 136

Transcript of Analysis of reflectivity echo.ppt

  • 8/22/2019 Analysis of reflectivity echo.ppt

    1/136

    Analysis of reflectivity echo

  • 8/22/2019 Analysis of reflectivity echo.ppt

    2/136

    Analysis of reflectivity echo

  • 8/22/2019 Analysis of reflectivity echo.ppt

    3/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    4/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    5/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    6/136

    Rainfall Estimation Limitations

    Brightband

    Contamination

    Radar Centered Arch of Higher

    Rainfall Accumulations on prouduct.

    Overestimate

    rainfall

    But rare to

    affect convectiveflash flooding

    events

  • 8/22/2019 Analysis of reflectivity echo.ppt

    7/136

    Rainfall Estimation Limitations

    Inaccurate Z/R relationship due to

    estimation of drop size distributions

    Same Reflectivity,

    Vastly Different

    Rainrates

  • 8/22/2019 Analysis of reflectivity echo.ppt

    8/136

    Mixed shape

  • 8/22/2019 Analysis of reflectivity echo.ppt

    9/136

    Mixed shape

  • 8/22/2019 Analysis of reflectivity echo.ppt

    10/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    11/136

    Anticipating Dominant Warm Rain

    Process Convection

    Assess the environment

  • 8/22/2019 Analysis of reflectivity echo.ppt

    12/136

    Ft. Collins Flood (07/28/97)

    12z and 00z Denver U/A soundings

  • 8/22/2019 Analysis of reflectivity echo.ppt

    13/136

    Efficiencyschematic

  • 8/22/2019 Analysis of reflectivity echo.ppt

    14/136

    Precipitation in

    Flash Floods Enhanced Intensity

    Precipitation efficiency

    Tropical, maritime

    connection Deep, above-freezing

    layer

    Low-level jet, rapid

    moisture replenishment Low-level focus (terrain

    and boundary)

    http://www.comet.ucar.edu/class/FLOAT_2001/index.htm

  • 8/22/2019 Analysis of reflectivity echo.ppt

    15/136

    Flash flood threat from weakly

    sheared cells

    Warm cloud depth

    increases collision

    coalescenceresulting in

    excessive rainfall

    rates

    Storm top may not

    be high

    W R i P

  • 8/22/2019 Analysis of reflectivity echo.ppt

    16/136

    Warm Rain Processes

    Radar Signatures

    Kansas Turnpike Flash Flood Aug 30, 2003

    LEC

    C S ti th h W

  • 8/22/2019 Analysis of reflectivity echo.ppt

    17/136

    Cross Section through Warm-

    Rain Supercell

  • 8/22/2019 Analysis of reflectivity echo.ppt

    18/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    19/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    20/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    21/136

    0.5

  • 8/22/2019 Analysis of reflectivity echo.ppt

    22/136

    V shape notch

  • 8/22/2019 Analysis of reflectivity echo.ppt

    23/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    24/136

    Hook shape echo

    The hook echo is always located the right

    rear of the main echo movement.

    The hook echo is always associated with

    meso-cyclone and hailstorm.

    When the meso-cyclone is detected using

    lowest ( 0.5 elevation angle ) , a tornado

    may occur.

  • 8/22/2019 Analysis of reflectivity echo.ppt

    25/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    26/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    27/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    28/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    29/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    30/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    31/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    32/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    33/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    34/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    35/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    36/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    37/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    38/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    39/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    40/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    41/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    42/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    43/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    44/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    45/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    46/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    47/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    48/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    49/136

    200252708:55 gmt)

    2.4deg

    3.4deg1.5deg

    0.5deg

  • 8/22/2019 Analysis of reflectivity echo.ppt

    50/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    51/136

    Same supercell at max BWER

  • 8/22/2019 Analysis of reflectivity echo.ppt

    52/136

    Same supercell at max BWER

    detection range Large BWER

    is barely

    visible @ 78

    nm or only148 km

    -20

    C

    Wide lower topped supercell

  • 8/22/2019 Analysis of reflectivity echo.ppt

    53/136

    Wide, lower topped supercell

    updraft

    Front-flankupdraft

    Very wideupdraft

    Prolific 5.5 cmhail and 45 m/swinds

    -20

    C

    BWER = 5mi max size

  • 8/22/2019 Analysis of reflectivity echo.ppt

    54/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    55/136

    The Weak Echo Region

    WERs are ellipticalin shape

    Is that the shape ofthe updraft?

    7.3 km AGL 45

    dBZ

    reflectivity

    contour

    10 km

    O i i f th W k E h R i

  • 8/22/2019 Analysis of reflectivity echo.ppt

    56/136

    Origin of the Weak Echo Region

    Quarter Panel Display

  • 8/22/2019 Analysis of reflectivity echo.ppt

    57/136

    Quarter Panel Display6/18/1992

    Severe sheared updraft intensity

  • 8/22/2019 Analysis of reflectivity echo.ppt

    58/136

    Severe sheared updraft intensity BWER detection

    BWER (Bounded Weak Echo Region)

    0.5

    1.5

    2.4

    3.4

    BWERs

    difficult

    to detect

    this far

    out

    Typical

    BWER topnear the

    -20to -25o

    C level

    -20C

    Needs a

    connection to

    the low-level

    WER

    Classic severe updraft

  • 8/22/2019 Analysis of reflectivity echo.ppt

    59/136

    Classic severe updraft

    signature case

    Right-rearupdraft

    Typical width

    Produced a fewrecord sized

    hailstones

    BWER = 2mi max size

    -20

    C

    Classic severe updraft

  • 8/22/2019 Analysis of reflectivity echo.ppt

    60/136

    Classic severe updraftsignature case

    Velocity

    -20

    C

  • 8/22/2019 Analysis of reflectivity echo.ppt

    61/136

    Example

    >45 dBZ echo

    to 7300 m AGL

    hookWER

    BWER

  • 8/22/2019 Analysis of reflectivity echo.ppt

    62/136

    Radar Characteristic of Severe

  • 8/22/2019 Analysis of reflectivity echo.ppt

    63/136

    StormsIn a Sheared Environment

    Strong low-level reflectivity gradients.

    Displaced low-level Echo Core.

    Occasionally concaved echo open to inflow. Mid-level sloping echo overhang: WER*.

    Strong upper mid-level echo core over low-level reflectivity gradient/concavity.

    Echo top above mid-level echo core. * Sometimes BWER

    After Lemon, 1980.

    Remember these 6 characteristics!!

    On updraft flank:

    Summary: Severe updraft

  • 8/22/2019 Analysis of reflectivity echo.ppt

    64/136

    Summary: Severe updraftsignatures

    severe updraft signatures common to allstorms in order of most severe first

    BWER

    WER

    Intense and deep reflectivity core relative to the

    20C level

    Storm top displaced over WER

    Deep convergence zone*

    Supercell Visual Appearance

  • 8/22/2019 Analysis of reflectivity echo.ppt

    65/136

    p pp

  • 8/22/2019 Analysis of reflectivity echo.ppt

    66/136

    The gust front

  • 8/22/2019 Analysis of reflectivity echo.ppt

    67/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    68/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    69/136

    2013/11/4

    2 69

    SA

  • 8/22/2019 Analysis of reflectivity echo.ppt

    70/136

    2013/11/4

    2 70

  • 8/22/2019 Analysis of reflectivity echo.ppt

    71/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    72/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    73/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    74/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    75/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    76/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    77/136

    ( f ) ( )

  • 8/22/2019 Analysis of reflectivity echo.ppt

    78/136

    13: 42 (left ) 13: 51 (right )

    Li l i d lti ll t

  • 8/22/2019 Analysis of reflectivity echo.ppt

    79/136

    Linearly-organized multicell storms

    W kl ti ll li

  • 8/22/2019 Analysis of reflectivity echo.ppt

    80/136

    Weakly convective squall line

  • 8/22/2019 Analysis of reflectivity echo.ppt

    81/136

    S t i l

  • 8/22/2019 Analysis of reflectivity echo.ppt

    82/136

    Some terminology

    Squall line: multicell convection organizedinto laterally-aligned cells that may or maynot be interacting

    Bow echo: a squall line with a bow-shaped morphology

    Gust front- leading edge of downdraft-driven convective storm outflow

    T i l ( td)

  • 8/22/2019 Analysis of reflectivity echo.ppt

    83/136

    Terminology (contd)

    Mesoscale Convective System(MCS)A multicell convective complex

    Most often includes a radar-observed linear

    organization in its mature phase May be relatively disorganized

    In its largest, longest-lived formsbecomes a Mesoscale ConvectiveComplex (MCC)

    A satellite view of an MCS

  • 8/22/2019 Analysis of reflectivity echo.ppt

    84/136

    A satellite view of an MCC

  • 8/22/2019 Analysis of reflectivity echo.ppt

    85/136

    MCS schematic cross section

  • 8/22/2019 Analysis of reflectivity echo.ppt

    86/136

    MCS schematic cross-section

    Morphology and Evolution

  • 8/22/2019 Analysis of reflectivity echo.ppt

    87/136

    Morphology and Evolution

    Role of air flows in complex multicell system

    3 distinct modes (TS, LS, and PS)

    Parker and Johnson (2000)

  • 8/22/2019 Analysis of reflectivity echo.ppt

    88/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    89/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    90/136

    Bow Echoes

  • 8/22/2019 Analysis of reflectivity echo.ppt

    91/136

    From Fujita, 1978, the morphology of the typical

    Bow Echo.

    Echo is bowed towards the direction of the echo movement.

    A bow echo is often associated with strong surface winds at the

    leading of the bow echo.

    Bow Echoes Important 3-D features

  • 8/22/2019 Analysis of reflectivity echo.ppt

    92/136

    Development of Cyclonic bookend vortex

    Affects strength of RIJ

    Can be an area of increased downdrafts (non-supercell and

    supercell tornadoes)

    p

    Elevated RIJs

    Line-end vortices

    RINs Strong reflectivity

    gradient

    Weak Echo Regions

    Displaced echo top

    Supercell transition

    Bow Echoes

  • 8/22/2019 Analysis of reflectivity echo.ppt

    93/136

    Bow Echoes

    Rear-Inflow Notch (RIN) May indicate a descending RIJ

  • 8/22/2019 Analysis of reflectivity echo.ppt

    94/136

    Bow Echoes

  • 8/22/2019 Analysis of reflectivity echo.ppt

    95/136

    Supercell transition to Bows

  • 8/22/2019 Analysis of reflectivity echo.ppt

    96/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    97/136

    Can you apply the Lemon

  • 8/22/2019 Analysis of reflectivity echo.ppt

    98/136

    technique here?

    Yes, accountingfor storm motion, a

    WER and BWER

    can be detected

    -20

    C

    WERand

    BWER

    along

    leading

    edge

  • 8/22/2019 Analysis of reflectivity echo.ppt

    99/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    100/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    101/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    102/136

    Summary: Severe updraft

  • 8/22/2019 Analysis of reflectivity echo.ppt

    103/136

    signatures

    severe updraft signatures common to allstorms in order of most severe first

    BWER

    WER Storm top displaced over WER

    Deep convergence zone

    Intense reflectivity core, and deep relative to the20C level

  • 8/22/2019 Analysis of reflectivity echo.ppt

    104/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    105/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    106/136

    Volumetric Radar Data

  • 8/22/2019 Analysis of reflectivity echo.ppt

    107/136

    AZ/RAN 272o/172 km

    3 km (10 kft)

    9.1 km (30 kft) 12.2 km (40 kf

    6.1 km (20 kft

    Volumetric Radar Data

  • 8/22/2019 Analysis of reflectivity echo.ppt

    108/136

    AZ/RAN 293o/67 km

    Ground-Relative Wind ProductionM h i

  • 8/22/2019 Analysis of reflectivity echo.ppt

    109/136

    Mechanisms

    Much more than a simple downburst

    HL

    +5mb

    -2mb

    roun - e a ve n ro uc onMechanisms

  • 8/22/2019 Analysis of reflectivity echo.ppt

    110/136

    Mechanisms

    Most likely area for XDW is on outflow flank oflow-level mesocyclone and in the precip-filled

  • 8/22/2019 Analysis of reflectivity echo.ppt

    111/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    112/136

    The Gust front

  • 8/22/2019 Analysis of reflectivity echo.ppt

    113/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    114/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    115/136

    (CR 37)

  • 8/22/2019 Analysis of reflectivity echo.ppt

    116/136

    (CR 37)

  • 8/22/2019 Analysis of reflectivity echo.ppt

    117/136

    (STI 58)

  • 8/22/2019 Analysis of reflectivity echo.ppt

    118/136

    (HI 59)

  • 8/22/2019 Analysis of reflectivity echo.ppt

    119/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    120/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    121/136

    (HSR 33)

  • 8/22/2019 Analysis of reflectivity echo.ppt

    122/136

    (ET 41)

  • 8/22/2019 Analysis of reflectivity echo.ppt

    123/136

    (V 27)

  • 8/22/2019 Analysis of reflectivity echo.ppt

    124/136

    (VWP 48)

  • 8/22/2019 Analysis of reflectivity echo.ppt

    125/136

    1(OHP 78)

  • 8/22/2019 Analysis of reflectivity echo.ppt

    126/136

    3(THP 79)

  • 8/22/2019 Analysis of reflectivity echo.ppt

    127/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    128/136

    (VIL 57)

  • 8/22/2019 Analysis of reflectivity echo.ppt

    129/136

    (SW 30)

  • 8/22/2019 Analysis of reflectivity echo.ppt

    130/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    131/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    132/136

  • 8/22/2019 Analysis of reflectivity echo.ppt

    133/136

    ()

  • 8/22/2019 Analysis of reflectivity echo.ppt

    134/136

    ( )

  • 8/22/2019 Analysis of reflectivity echo.ppt

    135/136

    2005614

  • 8/22/2019 Analysis of reflectivity echo.ppt

    136/136

    08:43(gmt) 08:55(gmt) 09:08(gmt)

    2002527