Analysis of Cyclic Adenosine Monophosphate (cAMP ...

7
723 Korean Chem. Eng. Res., 53(6), 723-729 (2015) http://dx.doi.org/10.9713/kcer.2015.53.6.723 PISSN 0304-128X, EISSN 2233-9558 ์—ญ์ƒ ํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ์—์„œ ๋ชจ๋ฉ˜ํŠธ ๋ฐฉ๋ฒ•๊ณผ van Deemter ์‹์„ ์ด์šฉํ•œ ๊ณ ๋ฆฌํ˜• ์•„๋ฐ๋…ธ์‹  ์ผ์ธ์‚ฐ์˜ ๋ถ„๋ฆฌํŠน์„ฑ ์—ฐ๊ตฌ ์ด์ผ์†ก ยท ๊ณ ๊ด€์˜ ยท ๊น€์ธํ˜ธ โ€  ์ถฉ๋‚จ๋Œ€ํ•™๊ต ํ™”ํ•™๊ณตํ•™๊ณผ 34134 ๋Œ€์ „๊ด‘์—ญ์‹œ ์œ ์„ฑ๊ตฌ ๊ถ๋™ 220 (2015 ๋…„ 2 ์›” 12 ์ผ ์ ‘์ˆ˜, 2015 ๋…„ 3 ์›” 31 ์ผ ์ˆ˜์ •๋ณธ ์ ‘์ˆ˜, 2015 ๋…„ 4 ์›” 3 ์ผ ์ฑ„ํƒ) Analysis of Cyclic Adenosine Monophosphate (cAMP) Separation via RP-HPLC (reversed-phase high-performance liquid chromatography) by the Moment Method and the van Deemter Equation Il Song Lee, Kwan Young Ko and In Ho Kim โ€  Department of Chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 34134, Korea (Received 12 February 2015; Received in revised form 31 March 2015; accepted 3 April 2015) ์š” ์•ฝ ๊ณ ์„ฑ๋Šฅ์•ก์ฒดํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ(high-performance liquid chromatography, HPLC) ์—์„œ C18(octadecyl silica, ODS) ์นผ๋Ÿผ์—์„œ ๊ณ ๋ฆฌํ˜• ์•„๋ฐ๋…ธ์‹  ์ผ์ธ์‚ฐ(cyclic adenosine monophosphate, cAMP) ์˜ ํฌ๋กœ๋งˆํ† ๊ทธ๋žจ์„ ์–ป์€ ํ›„, ๋ชจ๋ฉ˜ํŠธ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€ ๋‹ค. ์ผ๋ฐ˜์†๋„ ๋ชจ๋ธ(general rate model, GR model) ์„ ๊ธฐ๋ฐ˜์œผ๋กœ first absolute moment ์™€ second central moment ๋ฅผ ๊ณ„์‚ฐ ํ•˜์˜€๋‹ค. ๋ชจ๋ฉ˜ํŠธ ๋ถ„์„์˜ ์ค‘์š”ํ•œ ์„ธ ๊ฐ€์ง€ ๊ณ„์ˆ˜์ธ ๋ถ„์žํ™•์‚ฐ๊ณ„์ˆ˜(molecular diffusivity, D m ), ์™ธ๋ถ€๋ฌผ์งˆ์ „๋‹ฌ๊ณ„์ˆ˜(external mass transfer coefficient, k f ), ์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ๊ณ„์ˆ˜(intra-particle diffusivity, D e ) ๋Š” ๊ฐ๊ฐ Wilke-Chang ์‹, Wilson-Geankoplis ์‹์„ ์ด์šฉํ•˜๊ณ  ์ด๋ก ๋‹จ์ˆ˜(theoretical plate number) ์‹๊ณผ van Deemter ์‹์„ ๋น„๊ตํ•˜์—ฌ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ์‹คํ—˜์€ ๊ฐ๊ฐ ์„ธ ๊ฐ€์ง€์˜ ์ด๋™์ƒ ์กฐ์„ฑ, ์šฉ์งˆ ๋†๋„, ์œ ๋Ÿ‰ ์กฐ๊ฑด์—์„œ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. Van Deemter ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ ค ๋ชจ๋ฉ˜ํŠธ ๋ถ„์„๊ฒฐ๊ณผ๋ฅผ ์ •์„ฑ์ ์œผ๋กœ ์ •๋ฆฌ ํ–ˆ์œผ๋ฉฐ, ์ด๋ก ๋‹จ ์ƒ๋‹น๋†’์ด(height equivalent to a theoretical plate, HETP, H total ) ์— H ax , H f , H d ๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•ด van Deemter coefficient ๋ฅผ ๋น„๊ตํ–ˆ๋‹ค. HETP ์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ์ฃผ๋Š” ์š”์ธ์€ ์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ(H d ) ์ด์—ˆ์œผ๋ฉฐ ์™ธ๋ถ€๋ฌผ์งˆ ์ „๋‹ฌ(H f ) ๋Š” ๊ทธ ์˜ํ–ฅ์ด ๋งค์šฐ ์ž‘์•˜๋‹ค. Abstract - The moment analysis of cyclic adenosine monophosphate (cAMP) was performed using chromatograms that were obtained with the pulse input method from an octadecyl silica (ODS) high-performance liquid chromatogra- phy (HPLC) column. The general rate (GR) model was employed to calculate the first absolute moment and the second central moment. Three important coefficients for moment analysis, which are molecular diffusivity (D m ), external mass transfer coefficient (k f ), and intra-particle diffusivity (D e ), were estimated by the Wilke-Chang equation, Wilson-Gean- koplis equation, and comparing van Deemter equation to theoretical plate number equation, respectively. Experiments were conducted by various conditions of flow rates, methanol volume ratio of the mobile phase, and solute concentra- tion. After the moment analysis, results were organized by van Deemter plots. Also van Deemter coefficients were com- pared each other to effect H ax , H f , and H d on height equivalent to a theoretical plate (HETP, H total ). The value of intra- particle diffusion (H d ) was the primary factor which makes for HETP whereas external mass transfer (H f ) was disre- gardable factor. Key words: HPLC, Parameter Estimation, Moment Analysis, Van Deemter Equation, General Rate Model โ€  To whom correspondence should be addressed. E-mail: [email protected] โ€ก ์ด ๋…ผ๋ฌธ์€ ์„œ์šธ๋Œ€ํ•™๊ต ๊น€ํ™”์šฉ ๊ต์ˆ˜๋‹˜์˜ ์ •๋…„์„ ๊ธฐ๋…ํ•˜์—ฌ ํˆฌ๊ณ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. This is an Open-Access article distributed under the terms of the Creative Com- mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by- nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduc- tion in any medium, provided the original work is properly cited.

Transcript of Analysis of Cyclic Adenosine Monophosphate (cAMP ...

Page 1: Analysis of Cyclic Adenosine Monophosphate (cAMP ...

723

Korean Chem. Eng. Res., 53(6), 723-729 (2015)

http://dx.doi.org/10.9713/kcer.2015.53.6.723

PISSN 0304-128X, EISSN 2233-9558

์—ญ์ƒ ํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ์—์„œ ๋ชจ๋ฉ˜ํŠธ ๋ฐฉ๋ฒ•๊ณผ van Deemter ์‹์„ ์ด์šฉํ•œ

๊ณ ๋ฆฌํ˜• ์•„๋ฐ๋…ธ์‹  ์ผ์ธ์‚ฐ์˜ ๋ถ„๋ฆฌํŠน์„ฑ ์—ฐ๊ตฌ

์ด์ผ์†ก ยท ๊ณ ๊ด€์˜ ยท ๊น€์ธํ˜ธโ€ 

์ถฉ๋‚จ๋Œ€ํ•™๊ต ํ™”ํ•™๊ณตํ•™๊ณผ

34134 ๋Œ€์ „๊ด‘์—ญ์‹œ ์œ ์„ฑ๊ตฌ ๊ถ๋™ 220

(2015๋…„ 2์›” 12์ผ ์ ‘์ˆ˜, 2015๋…„ 3์›” 31์ผ ์ˆ˜์ •๋ณธ ์ ‘์ˆ˜, 2015๋…„ 4์›” 3์ผ ์ฑ„ํƒ)

Analysis of Cyclic Adenosine Monophosphate (cAMP) Separation via RP-HPLC

(reversed-phase high-performance liquid chromatography)

by the Moment Method and the van Deemter Equation

Il Song Lee, Kwan Young Ko and In Ho Kimโ€ 

Department of Chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 34134, Korea

(Received 12 February 2015; Received in revised form 31 March 2015; accepted 3 April 2015)

์š” ์•ฝ

๊ณ ์„ฑ๋Šฅ์•ก์ฒดํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ(high-performance liquid chromatography, HPLC)์—์„œ C18(octadecyl silica, ODS) ์นผ๋Ÿผ์—์„œ

๊ณ ๋ฆฌํ˜• ์•„๋ฐ๋…ธ์‹  ์ผ์ธ์‚ฐ(cyclic adenosine monophosphate, cAMP)์˜ ํฌ๋กœ๋งˆํ† ๊ทธ๋žจ์„ ์–ป์€ ํ›„, ๋ชจ๋ฉ˜ํŠธ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€

๋‹ค. ์ผ๋ฐ˜์†๋„ ๋ชจ๋ธ(general rate model, GR model)์„ ๊ธฐ๋ฐ˜์œผ๋กœ first absolute moment์™€ second central moment๋ฅผ ๊ณ„์‚ฐ

ํ•˜์˜€๋‹ค. ๋ชจ๋ฉ˜ํŠธ ๋ถ„์„์˜ ์ค‘์š”ํ•œ ์„ธ ๊ฐ€์ง€ ๊ณ„์ˆ˜์ธ ๋ถ„์žํ™•์‚ฐ๊ณ„์ˆ˜(molecular diffusivity, Dm), ์™ธ๋ถ€๋ฌผ์งˆ์ „๋‹ฌ๊ณ„์ˆ˜(external mass

transfer coefficient, kf), ์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ๊ณ„์ˆ˜(intra-particle diffusivity, De)๋Š” ๊ฐ๊ฐ Wilke-Chang ์‹, Wilson-Geankoplis

์‹์„ ์ด์šฉํ•˜๊ณ  ์ด๋ก ๋‹จ์ˆ˜(theoretical plate number) ์‹๊ณผ van Deemter ์‹์„ ๋น„๊ตํ•˜์—ฌ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ์‹คํ—˜์€ ๊ฐ๊ฐ ์„ธ ๊ฐ€์ง€์˜

์ด๋™์ƒ ์กฐ์„ฑ, ์šฉ์งˆ ๋†๋„, ์œ ๋Ÿ‰ ์กฐ๊ฑด์—์„œ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. Van Deemter ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ ค ๋ชจ๋ฉ˜ํŠธ ๋ถ„์„๊ฒฐ๊ณผ๋ฅผ ์ •์„ฑ์ ์œผ๋กœ ์ •๋ฆฌ

ํ–ˆ์œผ๋ฉฐ, ์ด๋ก ๋‹จ ์ƒ๋‹น๋†’์ด(height equivalent to a theoretical plate, HETP, Htotal)์— Hax, Hf, Hd๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์•Œ์•„๋ณด๊ธฐ

์œ„ํ•ด van Deemter coefficient๋ฅผ ๋น„๊ตํ–ˆ๋‹ค. HETP์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ์ฃผ๋Š” ์š”์ธ์€ ์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ(Hd)์ด์—ˆ์œผ๋ฉฐ ์™ธ๋ถ€๋ฌผ์งˆ

์ „๋‹ฌ(Hf)๋Š” ๊ทธ ์˜ํ–ฅ์ด ๋งค์šฐ ์ž‘์•˜๋‹ค.

Abstract โˆ’ The moment analysis of cyclic adenosine monophosphate (cAMP) was performed using chromatograms

that were obtained with the pulse input method from an octadecyl silica (ODS) high-performance liquid chromatogra-

phy (HPLC) column. The general rate (GR) model was employed to calculate the first absolute moment and the second

central moment. Three important coefficients for moment analysis, which are molecular diffusivity (Dm), external mass

transfer coefficient (kf), and intra-particle diffusivity (De), were estimated by the Wilke-Chang equation, Wilson-Gean-

koplis equation, and comparing van Deemter equation to theoretical plate number equation, respectively. Experiments

were conducted by various conditions of flow rates, methanol volume ratio of the mobile phase, and solute concentra-

tion. After the moment analysis, results were organized by van Deemter plots. Also van Deemter coefficients were com-

pared each other to effect Hax, Hf, and Hd on height equivalent to a theoretical plate (HETP, Htotal). The value of intra-

particle diffusion (Hd) was the primary factor which makes for HETP whereas external mass transfer (Hf) was disre-

gardable factor.

Key words: HPLC, Parameter Estimation, Moment Analysis, Van Deemter Equation, General Rate Model

โ€ To whom correspondence should be addressed.E-mail: [email protected]โ€ก์ด ๋…ผ๋ฌธ์€ ์„œ์šธ๋Œ€ํ•™๊ต ๊น€ํ™”์šฉ ๊ต์ˆ˜๋‹˜์˜ ์ •๋…„์„ ๊ธฐ๋…ํ•˜์—ฌ ํˆฌ๊ณ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

This is an Open-Access article distributed under the terms of the Creative Com-mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduc-tion in any medium, provided the original work is properly cited.

Page 2: Analysis of Cyclic Adenosine Monophosphate (cAMP ...

724 ์ด์ผ์†ก ยท ๊ณ ๊ด€์˜ ยท ๊น€์ธํ˜ธ

Korean Chem. Eng. Res., Vol. 53, No. 6, December, 2015

1. ์„œ ๋ก 

๊ณ ์„ฑ๋Šฅ์•ก์ฒดํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ(HPLC)๋Š” ํ˜ผํ•ฉ๋ฌผ์˜ ๋ถ„๋ฆฌ์™€ ์ •์ œ์—

์œ ์šฉํ•œ ์žฅ์น˜์ด๋‹ค. ํŠนํžˆ octadecyl silica(ODS)๋ฅผ ํก์ฐฉ์ œ๋กœ ์‚ฌ์šฉํ•˜๋Š”

์—ญ์ƒํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ๋ฒ•์€ ์•ก์ฒดํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ์˜ ๋ถ„๋ฆฌ ์—ฐ๊ตฌ์—์„œ ๋งŽ

์ด ์‚ฌ์šฉ๋œ๋‹ค[1]. HPLC์˜ ํฌ๋กœ๋งˆํ† ๊ทธ๋žจ์€ ์šฉ์ถœ ์‹œ๊ฐ„์„ ๊ฒฐ์ •ํ•˜๋Š” ์ƒ

ํ‰ํ˜• ์—ด์—ญํ•™(phase-equilibrium thermodynamics)์— ๊ฐ€์žฅ ๋งŽ์€ ์˜ํ–ฅ

์„ ๋ฐ›๊ธฐ ๋•Œ๋ฌธ์—[2] ํฌ๋กœ๋งˆํ† ๊ทธ๋žจ์˜ ๊ฒฝํ–ฅ๊ณผ ๋ถ„๋ฆฌ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์—ด์—ญํ•™

์  ๊ณ„์‚ฐ์œผ๋กœ ์–ป๋Š” ์ฒด๋ฅ˜์ธ์ž์™€ ๋ถ„๋ฆฌ๊ณ„์ˆ˜๋ฅผ ํ†ตํ•ด ์•Œ ์ˆ˜ ์žˆ๋‹ค[3]. ์ƒํ‰ํ˜•

์—ด์—ญํ•™์€ ์˜ค์ง ํ”ผํฌ์˜ ์šฉ์ถœ ์œ„์น˜์—๋งŒ ์˜ํ–ฅ์„ ์ฃผ์ง€๋งŒ ํ”ผํฌ์˜ ๋  ๋„“ํž˜

ํ˜„์ƒ(band spreading)๊ณผ ํ”ผํฌ์˜ ๋Œ€์นญ์„ฑ์€ ๋ฌผ์งˆ์ „๋‹ฌ์†๋„๋ก (mass transfer

kinetics)์˜ ์˜ํ–ฅ์„ ๋ฐ›๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ์นผ๋Ÿผ ๋‚ด์˜ kinetic ์—ฐ๊ตฌ๋Š” ๋ฌผ์งˆ์ „๋‹ฌ

ํ˜„์ƒ์ด ํ”ผํฌ ๋„“ํž˜ ํ˜„์ƒ(peak broadening)์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์•Œ ์ˆ˜ ์žˆ

์œผ๋ฏ€๋กœ scale-up ์„ค๊ณ„ ์‹œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์œ„ํ•œ ํ•„์ˆ˜์ ์ธ ํ•ญ๋ชฉ์ด๋‹ค[4].

์นผ๋Ÿผ ๋‚ด์˜ ๋ชจ๋ฉ˜ํŠธ ๋ถ„์„์€ 1960๋…„๋Œ€๋ถ€ํ„ฐ van Deemter ์‹๊ณผ Knox

์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. Kinetic ํ˜„์ƒ๋“ค์€ ์šฉ์ถœ๋˜๋Š” ํ”ผํฌ์˜ ์œ„

์น˜์™€ ๊ด€๋ จ์ด ์žˆ๋Š” first absolute moment์™€, ํ”ผํฌ์˜ ๋„ˆ๋น„ ๋ฐ ๋  ๋„“ํž˜

ํ˜„์ƒ๊ณผ ์—ฐ๊ด€๋œ second central moment๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ๋‹ค[5]. 1970๋…„

๋Œ€์—๋Š” general plate ์‹๊ณผ ๋ฌผ์งˆ์ „๋‹ฌ๊ณ„์ˆ˜๋ฅผ ํ†ตํ•ด ๋  ๋„“ํž˜ ํ˜„์ƒ์˜ ์ •

๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” second central moment ๊ฐ’์„ ๊ณ„์‚ฐํ•˜์˜€๋‹ค[6]. 1980๋…„

๋Œ€์—๋Š” ๋ฌผ์งˆ์ „๋‹ฌํ˜„์ƒ์„ ์ถ•๋ฐฉํ–ฅ๋ถ„์‚ฐ(axial dispersion), ์™ธ๋ถ€๋ฌผ์งˆ์ „

๋‹ฌ(external mass transfer), ์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ(intra-particle diffusion),

ํก์ฐฉ ๋ฐ ํƒˆ์ฐฉ(adsorption/desorption)์œผ๋กœ ์„ธ๋ถ„ํ™”ํ•˜์˜€๋‹ค. ์ด ์š”์ธ๋“ค์„

๊ณ ๋ คํ•˜์—ฌ ์ด๋ก ๋‹จ ์ƒ๋‹น๋†’์ด(height equivalent to a theoretical plate,

HETP)๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ์ผ๋ฐ˜์†๋„ ๋ชจ๋ธ(general rate model, GR model)์ด

๋งŒ๋“ค์–ด์กŒ๋‹ค[7,8]. 1990๋…„๋Œ€๋ถ€ํ„ฐ๋Š” ์—ญ์ƒ ์นผ๋Ÿผ(reversed-phase column),

๊ฒ” ์—ฌ๊ณผ ์นผ๋Ÿผ(gel filtration column), ์ด์˜จ ๊ตํ™˜ ์นผ๋Ÿผ(ion exchange column)

๋“ฑ ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์นผ๋Ÿผ ๋‚ด์—์„œ์˜ GR model๊ณผ ๋ชจ๋ฉ˜ํŠธ ๋ถ„์„์— ๋Œ€ํ•œ ์ด

๋ก ์ด ์ •๋ฆฝ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋ฅผ ๋‹ค์–‘ํ•œ ์‹คํ—˜๋ฐฉ๋ฒ•์— ์ ์šฉํ•˜์˜€๋‹ค. Tallarek

๋“ฑ[9-13]์€ ๋ถ„๊ด‘๋ฒ•(spectroscopic method)์„, Miyabe์™€ Sajonz ๋“ฑ

[14-16]์€ ๋‹ค์–‘ํ•œ ์กฐ์ž‘๋ฒ•์œผ๋กœ ์‹คํ—˜๊ณผ ์ด๋ก ์˜ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตยท๋ถ„์„ํ•˜์˜€๋‹ค.

2000๋…„๋Œ€๋ถ€ํ„ฐ Miyabe ๋“ฑ์€ ๋ชจ๋ฉ˜ํŠธ ๋ถ„์„์„ ์•ก์ฒด ํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ

(liquid chromatography, LC)์—์„œ HPLC๊นŒ์ง€ ํ™•๋Œ€์‹œ์ผฐ๋‹ค. ๋˜ํ•œ, ๊ณ 

์ •์ƒ(stationary phase)์ด๋‚˜ ๋ฆฌ๊ฐ„๋“œ(ligand)์— ๋Œ€ํ•œ ์†๋„๋ก ์ด ๊ตฌ์ฒด์ 

์œผ๋กœ ํŠน์„ฑํ™” ๋˜์—ˆ์œผ๋ฉฐ ์ „๋‹ฌ๋ฐฉ๋ฒ• ๊ฐ๊ฐ์— ๋Œ€ํ•œ ์†๋„๋ก ์€ ์ •๋Ÿ‰์  ์ •ํ™•

์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ๊ตฌ์ฒด์ ์œผ๋กœ ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค[2,3,17-20]. ์นผ๋Ÿผ

๋‚ด๋ถ€์˜ ๋ฌผ์งˆ์ „๋‹ฌ ์—ฐ๊ตฌ ์ดˆ๊ธฐ์—๋Š” ์ด๋ก ์„ ์ •๋ฆฝํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋Œ€๋ถ€๋ถ„ ์„

์œ ํ™”ํ•™๋ฌผ์งˆ์„ ๋ถ„์„ํ•˜์˜€๋‹ค[17-19]. 1990๋…„๋Œ€์—์„œ 2000๋…„๋Œ€๊นŒ์ง€๋Š” ์œ 

๋ฆฌ ์นผ๋Ÿผ(glass column)์ด๋‚˜ ์ด์˜จ ๊ตํ™˜ ์นผ๋Ÿผ(ion exchange column)์„ ํ†ต

ํ•ด ๋ถ„๋ฆฌ๋˜๋Š” ์ด์„ฑ์งˆ์ฒด ๋ฐ ๋‹จ๋ฐฑ์งˆ๊นŒ์ง€ ๋ชจ๋ฉ˜ํŠธ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™•์‚ฐ๋˜

์—ˆ๋‹ค[4,14-16,20].

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ถ„์ž๋Ÿ‰์ด 329.206 g/mol์ธ ๊ณ ๋ฆฌํ˜• ์•„๋ฐ๋…ธ์‹  ์ผ์ธ

์‚ฐ(cyclic adenosine monophosphate, cAMP)์„ ์—ญ์ƒ HPLC(RP-HPLC)

์นผ๋Ÿผ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. cAMP๋Š” ๋Œ€์ถ”์— ๋“ค์–ด์žˆ๋Š” ์ฒœ์—ฐ ์•ฝ๋ฌผ๋กœ ์ด์—

๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ, Spoto ๋“ฑ[21]์€ ์—ญ์ƒ HPLC๋ฅผ

์ด์šฉํ•˜์—ฌ cAMP์˜ kinetic์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ, Zhang ๋“ฑ[22]์€ HPLC๋ฅผ

์ด์šฉํ•˜์—ฌ ๋Œ€์ถ”๊ฐ€ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” cAMP๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์„ธํฌ๋ง‰ ์•ˆ์ชฝ์—

์กด์žฌํ•˜๋Š” ์•„๋ฐ๋‹์‚ฐ ์‚ฌ์ดํด๋ผ์•„์ œ(adenylate cyclase)์— ์˜ํ•ด ์•„๋ฐ๋…ธ

์‹  ์‚ผ์ธ์‚ฐ(adenosine triphosphoric acid, ATP)์—์„œ ๋งŒ๋“ค์–ด์ง€๋Š” cAMP

๋Š” ์„ธํฌ ๊ฐ„ ์‹ ํ˜ธ ์ „๋‹ฌ ๊ฒฝ๋กœ์— ๊ด€์—ฌํ•˜๋Š” 2์ฐจ ์‹ ํ˜ธ ์ „๋‹ฌ์ž์ด๋‹ค. ์ฒด๋‚ด์—์„œ

cAMP ํ™œ์„ฑ์€ ๋‹จ๋ฐฑ์งˆ ๊ธฐ์ž‘์— ์˜ํ•ด ๋ฐœํ˜„๋˜๋ฉฐ ์•”, ์‹ฌ์žฅ์งˆํ™˜์— ๋Œ€ํ•œ

๋Œ€์‘๋ ฅ์„ ๋†’์—ฌ์ฃผ๋Š” ํšจ๊ณผ๊ฐ€ ์žˆ๋‹ค. cAMP์˜ ๋ชจ๋ฉ˜ํŠธ ๋ถ„์„์„ ์œ„ํ•˜์—ฌ

GR model์„ ์‚ฌ์šฉํ•˜์˜€๊ณ , ํ‰ํ˜•์ƒ์ˆ˜(K)๋Š” first absolute moment๋ฅผ

ํ†ตํ•ด ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๋ถ„์žํ™•์‚ฐ๊ณ„์ˆ˜(molecular diffusivity, Dm)๋Š” Wilke-

Chang ์‹์„ ํ†ตํ•ด ๊ณ„์‚ฐํ•œ ํ›„, ์ถ•๋ฐฉํ–ฅ๋ถ„์‚ฐ๊ณ„์ˆ˜(axial dispersion coefficient,

Dax)๋ฅผ ๊ตฌํ•˜์˜€๋‹ค. ์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ๊ณ„์ˆ˜(intra particle diffusivity, De)๋Š”

van Deemter ์‹๊ณผ ์ด๋ก ๋‹จ์ˆ˜(theoretical plate number, N)๋ฅผ ๋น„๊ตํ•˜์—ฌ

์–ป์—ˆ๋‹ค. ๋ชจ๋ฉ˜ํŠธ ๋ถ„์„์„ ํ†ตํ•ด ์–ป๋Š” parameter๋“ค์„ ์ด์šฉํ•˜์—ฌ ์ •๋Ÿ‰์ 

๊ฒฐ๊ณผ์ธ van Deemter coefficient๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , ์ •์„ฑ์  ๊ฒฐ๊ณผ๋ฅผ van

Deemter ๊ทธ๋ž˜ํ”„๋ฅผ ๋„์‹ํ™”ํ•˜์˜€๋‹ค.

2. ์ด ๋ก 

๋ชจ๋ฉ˜ํŠธ ๋ถ„์„์„ ํ†ตํ•ด ํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ์˜ ๊ฑฐ๋™์„ ํšจ๊ณผ์ ์œผ๋กœ ์ดํ•ดํ• 

์ˆ˜ ์žˆ๋‹ค. ์šฉ๋ฆฌํ‰ํ˜•(retention equilibrium)์€ first absolute moment (ฮผ1),

๋ฌผ์งˆ์ „๋‹ฌ์†๋„๋ก ์€ second central moment (ฮผ2)์— ์˜ํ•ด ๊ฒฐ์ •๋œ๋‹ค.

ํก์ฐฉํ‰ํ˜•์ƒ์ˆ˜(adsorption equilibrium constant, K)๋Š” ์‹ (1)๊ณผ ๊ฐ™์ด

์šฉ์ถœ ํ”ผํฌ์˜ ์œ„์น˜๋กœ๋ถ€ํ„ฐ ๊ฒฐ์ •๋œ๋‹ค.

(1)

์—ฌ๊ธฐ์„œ Ce(t)๋Š” ์นผ๋Ÿผ ์ถœ๊ตฌ์—์„œ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ๋†๋„์˜ ๋ณ€ํ™”๋ฅผ, L์€ ์นผ

๋Ÿผ์˜ ๊ธธ์ด๋ฅผ, u0๋Š” ์ด๋™์ƒ์˜ ํ‘œ๋ฉด์†๋„๋ฅผ, ฮตe๋Š” ์นผ๋Ÿผ์˜ ๊ณต๊ทน๋ฅ ์„, ฮตp๋Š”

์นผ๋Ÿผ ๋‚ด ๊ณ ์ •์ƒ ์ž…์ž์˜ ๊ณต๊ทน๋ฅ ์„ ์˜๋ฏธํ•œ๋‹ค.

์‹ (1)๋ฅผ ํ†ตํ•ด ํ‰ํ˜•์ƒ์ˆ˜(K)๋ฅผ ๊ฒฐ์ •ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ x์ถ•์„ L/u0, y์ถ•์„

(ฮผ1โˆ’t

0)/(1โˆ’ฮตe)์œผ๋กœ ํ•˜์—ฌ ๋„์‹ํ™” ํ–ˆ์„ ๋•Œ, ๊ธฐ์šธ๊ธฐ๋Š” ํ‰ํ˜•์ƒ์ˆ˜(K)๋ฅผ

์˜๋ฏธํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ t0๋Š” ๊ณ ์ •์ƒ๊ณผ์˜ ์ƒํ˜ธ์ž‘์šฉ์ด ์—†๋Š” ์šฉ์งˆ์ด ์šฉ์ถœ๋˜๋Š”

์‹œ๊ฐ„์ธ hold-up time์„ ์˜๋ฏธํ•˜๋ฉฐ ์‹ (2)์™€ ๊ฐ™์ด ์“ธ ์ˆ˜ ์žˆ๋‹ค.

(2)

Second central moment๋Š” ์‹ (3)-(8)์„ ํ†ตํ•ด ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค.

(3)

(4)

(5)

(6)

(7)

(8)

์—ฌ๊ธฐ์„œ DL์€ ์ถ•๋ฐฉํ–ฅ๋ถ„์‚ฐ๊ณ„์ˆ˜(axial dispersion coefficient), kf๋Š” ์™ธ

๋ถ€๋ฌผ์งˆ์ „๋‹ฌ๊ณ„์ˆ˜(external mass transfer coefficient), De๋Š” ์ž…์ž๋‚ด๋ถ€

ํ™•์‚ฐ๊ณ„์ˆ˜(intra-particle diffusivity), Rp๋Š” ๊ณ ์ •์ƒ ์ž…์ž์˜ ๋ฐ˜์ง€๋ฆ„์ด๋‹ค.

ฮด๋Š” second central moment์—์„œ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋ฌผ์งˆ์ „๋‹ฌ๊ณผ์ •์˜ ์˜ํ–ฅ์„

๋‚˜ํƒ€๋‚ด๋ฉฐ, ์ด ๋•Œ ํ•˜์ฒจ์ž๋กœ ์“ฐ์ธ ax, f, d, ads๋Š” ๊ฐ๊ฐ ์ถ• ๋ฐฉํ–ฅ ํ™•์‚ฐ,

ฮผ1

Ce t( )t td0

โˆž

โˆซ

Ce t( ) td0

โˆž

โˆซ-------------------------

L

u0

----- ฮตe 1 ฮตeโ€“( ) ฮตp 1 ฮตpโ€“( )K+{ }+[ ]= =

t0 L/u0( ) ฮตe 1 ฮตeโ€“( )ฮตp+{ }=

ฮผ2

Ce t( ) t ฮผ1โ€“( )2 td0

โˆž

โˆซ

Ce t( ) td0

โˆž

โˆซ-------------------------------------------

2L

u0

------ ฮดax ฮดf ฮดd ฮดads+ + +( )= =

ฮด0 ฮตe 1 ฮตeโ€“( ) ฮตp 1 ฮตpโ€“( )K+{ }+=

ฮดax

ฮตeDL

u0

2-----------ฮด0

2=

ฮดf 1 ฮตeโ€“( )Rp

3kf-------

โŽ โŽ โŽ› โŽž ฮตp 1 ฮตpโ€“( )K+{ }2

=

ฮดd 1 ฮตeโ€“( )Rp

2

15De

------------โŽ โŽ โŽ› โŽž ฮตp 1 ฮตpโ€“( )K+{ }2

=

ฮดads 1 ฮตeโ€“( ) 1 ฮตpโ€“( )K

2

k------

โŽ โŽ โŽ› โŽž=

Page 3: Analysis of Cyclic Adenosine Monophosphate (cAMP ...

์—ญ์ƒ ํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ์—์„œ ๋ชจ๋ฉ˜ํŠธ ๋ฐฉ๋ฒ•๊ณผ van Deemter ์‹์„ ์ด์šฉํ•œ ๊ณ ๋ฆฌํ˜• ์•„๋ฐ๋…ธ์‹  ์ผ์ธ์‚ฐ์˜ ๋ถ„๋ฆฌํŠน์„ฑ ์—ฐ๊ตฌ 725

Korean Chem. Eng. Res., Vol. 53, No. 6, December, 2015

์™ธ๋ถ€๋ฌผ์งˆ์ „๋‹ฌ, ์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ, ํกยทํƒˆ์ฐฉ์˜ ๋ชจ๋ฉ˜ํŠธ๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ์นผ๋Ÿผ

์•ˆ์—์„œ ์šฉ์งˆ์˜ ๋ฌผ์งˆ์ „๋‹ฌ ๊ฑฐ๋™์€ ์ถ• ๋ฐฉํ–ฅ ํ™•์‚ฐ, ์™ธ๋ถ€๋ฌผ์งˆ์ „๋‹ฌ, ์ž…์ž

๋‚ด๋ถ€ํ™•์‚ฐ, ํกยทํƒˆ์ฐฉ์˜ ์ˆœ์„œ๋กœ ์ด๋ฃจ์–ด์ง€๋Š”๋ฐ(Fig. 1), ์—ญ์ƒํฌ๋กœ๋งˆํ† ๊ทธ

๋ž˜ํ”ผ์—์„œ ํกยทํƒˆ์ฐฉ์˜ ๋ฐ˜์‘์†๋„๊ฐ€ ๋งค์šฐ ๋น ๋ฅด๊ธฐ ๋•Œ๋ฌธ์— ๋ชจ๋ฉ˜ํŠธ ๊ฐ’์„

๋ฌด์‹œํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํก์ฐฉ ๋ฐ ํƒˆ์ฐฉ ๋ฐ˜์‘์†๋„๋ฅผ ์ œ์™ธํ•œ

์„ธ ๊ฐ€์ง€ kinetic์— ๋Œ€ํ•ด์„œ๋งŒ ๊ณ ๋ คํ•˜์˜€๋‹ค.

์œ ์ฒด๋กœ๋ถ€ํ„ฐ ๊ณ ์ •์ƒ ์ž…์ž๋กœ ๋ฌผ์งˆ์ด ์ด๋™ํ•  ๋•Œ์˜ ์™ธ๋ถ€๋ฌผ์งˆ์ „๋‹ฌ๊ณ„

์ˆ˜์ธ kf๋ฅผ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•œ Wilson-Geankoplis ์‹์„ ์‹ (9)์—

๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

(9)

(10)

(11)

(12)

์‹ (9)์— ์‹ (10)-(12)๋ฅผ ๋Œ€์ž…ํ•˜์—ฌ kf๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ฯp๋Š” ์นผ๋Ÿผ ๋‚ด

๊ณ ์ •์ƒ ์ž…์ž์˜ ๋ฐ€๋„, ฮท๋Š” ์ด๋™์ƒ์˜ ์ ๋„๋ฅผ ์˜๋ฏธํ•œ๋‹ค.

์ด๋™์ƒ ๋‚ด ์šฉ์งˆ๋ถ„์žํ™•์‚ฐ๊ณ„์ˆ˜(molecular diffusivity, Dm)์€ Wilke-

Chang ์‹์œผ๋กœ ๊ฒฐ์ •ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์‹ (13)๊ณผ ๊ฐ™๋‹ค.

(13)

์‹ (13)์˜ ํ•˜์ฒจ์ž sv, a๋Š” ๊ฐ๊ฐ ์šฉ๋งค์™€ ์šฉ์งˆ์„ ์˜๋ฏธํ•œ๋‹ค[23]. Vb๋Š”

๋“๋Š”์ ์—์„œ์˜ ๋ชฐ๋ถ€ํ”ผ, ฮฑ๋Š” ํšŒํ•ฉ๋„(degree of aggregation), M์€ ๋ถ„

์ž๋Ÿ‰์ด๋‹ค.

HETP(Htotal)๋Š” ์ด๋ก ๋‹จ์ˆ˜(N) ๋˜๋Š” ์„ธ ๊ฐ€์ง€ ๋ฌผ์งˆ์ „๋‹ฌ๊ณผ์ •์„ ํ†ตํ•ด

๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ก ๋‹จ์ˆ˜๋ฅผ ํ†ตํ•œ ๊ณ„์‚ฐ๋ฒ•์€ ์‹ (14), (15)์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

(14)

(15)

์นผ๋Ÿผ ๋‚ด ์„ธ ๊ฐ€์ง€ ๋ฌผ์งˆ์ „๋‹ฌ๊ณผ์ •์„ ์ด์šฉํ•˜์—ฌ HETP๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ•์€

์‹ (16)๊ณผ ๊ฐ™๋‹ค.

(16)

Hax์˜ ์˜ํ–ฅ์€ ์œ ๋Ÿ‰์— ์˜์กด์ ์ธ Hf์™€ ๊ณ ์ •์ƒ ๋‚ด๋ถ€์—์„œ ์šฉ์งˆ๋ถ„์ž์˜

ํ™•์‚ฐ์ด๋™์„ ์˜๋ฏธํ•˜๋Š” Hd์™€๋Š” ๋ถ„๋ฆฌํ•˜์—ฌ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์‹ (16)์„

์‹ (17)๋กœ ๊ณ ์ณ ๋‹ค์‹œ ์“ธ ์ˆ˜ ์žˆ๋‹ค.

(17)

๊ตฌํ˜•์ž…์ž๋กœ ์ฑ„์›Œ์ ธ ์žˆ๋Š” HPLC ์นผ๋Ÿผ์˜ ์ถ•๋ฐฉํ–ฅ๋ถ„์‚ฐ๊ณ„์ˆ˜(DL)์€ ๋ถ„

์žํ™•์‚ฐ๊ณผ ์—๋””ํ™•์‚ฐ(eddy diffusion)์œผ๋กœ ๊ตฌ์„ฑ๋œ ์ถ• ๋ฐฉํ–ฅ ๋ถ„์‚ฐ์œผ๋กœ๋ถ€

ํ„ฐ ์œ ์ถ”ํ•˜์—ฌ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ์ˆ˜์‹ํ™”ํ•˜๋ฉด ์‹ (18)๊ณผ ๊ฐ™๋‹ค.

(18)

์—ฌ๊ธฐ์„œ ฮณ1๊ณผ ฮณ

2๋Š” geometrical coefficient๋กœ ๊ตฌํ˜•์ž…์ž๋กœ ์ฑ„์›Œ์ง„ ์นผ๋Ÿผ

์—์„œ ๋ณดํ†ต 0.7๊ณผ 0.5๋กœ ์“ด๋‹ค[4].

์‹ (17), (18)์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์‹ (19)๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ผ๋ฐ˜์ ์œผ๋กœ

์‹ (19)๊ฐ€ ๋งŽ์ด ์“ฐ์ธ๋‹ค.

(19)

์‹ (19)๋Š” Htotal - Hf์™€ ์œ ๋Ÿ‰๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์„ธ ๊ฐœ์˜ ๊ณ„์ˆ˜ A, B, C๋ฅผ ๋„

์ž…ํ•˜์—ฌ ๋‚˜ํƒ€๋‚ธ van Deemter ์‹์ด๋‹ค.

์ด๋Ÿฌํ•œ ๋ชจ๋ฉ˜ํŠธ ๋ฐฉ๋ฒ•์€ ์—ญ์ƒ HPLC, ์ด์˜จ๊ตํ™˜ํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ, ๊ธฐ

์ฒดํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ๋ฅผ ์ด์šฉํ•œ ๋ชจ๋ฉ˜ํŠธ ๋ถ„์„์— ๋‹ค์–‘ํ•˜๊ฒŒ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค

[24-27].

3. ์‹ค ํ—˜

3-1. ์‹คํ—˜์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ•

์‹คํ—˜์— ์‚ฌ์šฉํ•œ ์ด๋™์ƒ์€ ๋ฉ”ํƒ„์˜ฌ(SAMCHUN, Korea)๊ณผ 3์ฐจ ์ฆ๋ฅ˜

์ˆ˜๋ฅผ ๊ฐ๊ฐ 10/90, 20/80, 30/70์˜ ๋ถ€ํ”ผ๋น„๋กœ ํ˜ผํ•ฉํ•˜์—ฌ ๋งŒ๋“  ๋ฉ”ํƒ„์˜ฌ 10,

20, 30% ์šฉ์•ก์ด๋‹ค. ๊ฐ๊ฐ์˜ ์šฉ๋งค 1 L์— potassium phosphate monobasic

(SIGMA, USA) 6.8045 g์„ ์ฒจ๊ฐ€ํ•˜์—ฌ 0.05 M์˜ ์™„์ถฉ์šฉ์•ก์„ ๋งŒ๋“ค๊ณ ,

hydrogen chloride(SAMCHUN, Korea)๋ฅผ ์ด์šฉํ•˜์—ฌ pH๋ฅผ 4.75ยฑ0.01๋กœ

๋งž์ถ”์—ˆ๋‹ค.

์‹คํ—˜์—์„œ ์‚ฌ์šฉํ•œ ์ƒ˜ํ”Œ์€ cyclic adenosine monophosphate(SIGMA,

USA) ๋ถ„๋ง์„ ๊ฐ๊ฐ 3.29, 13.2, 23.0 ฮผg์”ฉ 3์ฐจ ์ฆ๋ฅ˜์ˆ˜ 10 ml์— ์šฉํ•ด

์‹œ์ผœ 1.0, 4.0, 7.0 mM๋กœ ๋งŒ๋“ค์—ˆ๋‹ค.

3-2. HPLC ์‹คํ—˜

์ด ์‹คํ—˜์—์„œ ์‚ฌ์šฉํ•œ HPLC ์‹œ์Šคํ…œ์€ Fig. 2์— ๊ฐœ๋žต์ ์œผ๋กœ ๋‚˜ํƒ€

๋‚ด์—ˆ๋‹ค. Valve(Beckman, USA)์— ์ƒ˜ํ”Œ 20 ฮผL๋ฅผ ์ฃผ์ž…ํ•œ ๋’ค 110B

solvent delivery module pump(Beckman, USA)๋ฅผ ์ด์šฉํ•˜์—ฌ ์ด๋™์ƒ์ด

์นผ๋Ÿผ์œผ๋กœ ํ๋ฅด๋„๋ก ํ•˜์˜€๋‹ค. ์นผ๋Ÿผ์€ ๊ณ ์ •์ƒ ์ž…์ž์˜ ์ง๊ฒฝ์ด 5 ฮผm์ธ

Vydac ODS(4.6ร—250 mm, The Nest Group, USA)๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ

783A programmable absorbance detector(Applied Biosystems, USA)๋ฅผ

์ด์šฉํ•˜์—ฌ 280 nm์˜ ํŒŒ์žฅ์—์„œ cAMP๋ฅผ ๊ฒ€์ถœํ•˜์˜€๋‹ค. ๊ฒ€์ถœ๋œ ์ „๊ธฐ์ 

Sh1.09

ฮตe----------

โŽ โŽ โŽ› โŽžSc

1/3Rep

1/3=

Sh2kfRep

Dm

----------------=

Scฮท

ฯpDm

-------------=

Rep2u0Rpฯp

ฮท--------------------=

Dm

7.4 108โ€“T ฮฑsvMsvร—

ฮทsvVb a,

0.6-----------------------------------------------=

N 16tR

wb

------โŽ โŽ โŽ› โŽž

2

=

Htotal

L

N----=

Htotal

ฮผ2

2

ฮผ1

-----โŽ โŽ โŽ› โŽžL

2ฮตeDL

u0

--------------2ฮดf

ฮด0

2-------u0

2ฮดd

ฮด0

2--------u0+ + Hax Hf Hd+ += = =

Htotal Hfโ€“ Hax Hd+2ฮตeDL

u0

--------------2ฮดd

ฮด0

2--------u0+= =

DL ฮณ1Dm ฮณ2dpu0+=

Htotal Hfโ€“2ฮตeฮณ1Dm

u0

-------------------- 2ฮตeฮณ2dp

2ฮดd

ฮด0

2--------u0+ +

B

u0

----- A Cu0+ += =

Fig. 1. Scheme of mass transfer processes in the column.

Page 4: Analysis of Cyclic Adenosine Monophosphate (cAMP ...

726 ์ด์ผ์†ก ยท ๊ณ ๊ด€์˜ ยท ๊น€์ธํ˜ธ

Korean Chem. Eng. Res., Vol. 53, No. 6, December, 2015

์‹ ํ˜ธ๋ฅผ Autochro data module(Younglin, Korea)์„ ์ด์šฉํ•˜์—ฌ ๋””์ง€ํ„ธ ์‹ 

ํ˜ธ๋กœ ๋ฐ”๊ฟ” ์‹œ๊ฐํ™”ํ•˜์˜€๋‹ค.

์‹คํ—˜์€ ๊ฐ๊ฐ ์„ธ ๊ฐ€์ง€ ์ด๋™์ƒ(๋ฉ”ํƒ„์˜ฌ 10, 20, 30%), ์ƒ˜ํ”Œ ๋†๋„

(1.0, 4.0, 7.0 mM), ์œ ๋Ÿ‰(0.5, 1.0, 1.5 mL/min)์œผ๋กœ ํ•˜์—ฌ 27๊ฐ€์ง€ ๊ฒฝ

์šฐ์— ๋Œ€ํ•œ ํฌ๋กœ๋งˆํ† ๊ทธ๋žจ์„ ์–ป์—ˆ๋‹ค.

4. ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ

๋ชจ๋ฉ˜ํŠธ ๋ถ„์„์„ ์œ„ํ•˜์—ฌ GR model์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. First moment๋Š”

ํ‰ํ˜•์ƒ์ˆ˜(K)์™€ ๊ด€๊ณ„๋˜๋ฉฐ ์‹ (1)์„ ํ†ตํ•ด ๊ณ„์‚ฐ๋œ ์šฉ์ถœ ์‹œ๊ฐ„์„ ์˜๋ฏธํ•œ

๋‹ค. RP-HPLC์—์„œ second moment๋Š” ์ถ•๋ฐฉํ–ฅ๋ถ„์‚ฐ, ๋‚ด๋ถ€๋ฌผ์งˆ์ „๋‹ฌ,

์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ์„ ๊ฐ€๋ฆฌํ‚ค๋ฉฐ HETP ๊ฐ’์„ ๊ฒฐ์ •ํ•œ๋‹ค. ๋ถ„์žํ™•์‚ฐ๊ณ„์ˆ˜(Dm)๋Š”

์‹ (13)์— ๋‚˜ํƒ€๋‚ธ Wilke-Chang ์‹, ์ถ•๋ฐฉํ–ฅ๋ถ„์‚ฐ๊ณ„์ˆ˜(DL)๋Š” ์‹ (18)์„

ํ†ตํ•ด ๊ฒฐ์ •ํ•˜๋ฉฐ ์™ธ๋ถ€๋ฌผ์งˆ์ „๋‹ฌ๊ณ„์ˆ˜(kf)๋Š” Wilson-Geankoplis ์‹์„

ํ†ตํ•ด ๊ณ„์‚ฐํ•œ๋‹ค. ์‹ (16)์— ๋‚˜ํƒ€๋‚ธ Htotal์—์„œ Hax๊ณผ Hf๋ฅผ ๋นผ์ฃผ์–ด Hd

๊ฐ’์„ ๊ตฌํ•œ ํ›„, ์‹ (7)์„ ํ†ตํ•ด ์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ๊ณ„์ˆ˜(De)๋ฅผ ๊ณ„์‚ฐํ•˜์˜€๋‹ค.

Fig. 3์€ ๋ฉ”ํƒ„์˜ฌ 20%์˜ ์ด๋™์ƒ์—์„œ ์„ธ ๊ฐ€์ง€ ๋‹ค๋ฅธ ์šฉ์งˆ ๋†๋„์— ๋Œ€

ํ•œ first moment๊ฐ’์„ ๋ณด์—ฌ์ค€๋‹ค. (ฮผ1โˆ’t

0)/(1โˆ’ฮตe)๊ณผ L/u

0์— ๊ด€ํ•ด ์ง์„ ์„

๋„์‹ํ™”ํ•˜์—ฌ ํ‰ํ˜•์ƒ์ˆ˜(K)๋ฅผ ๊ณ„์‚ฐํ•œ ๊ฒฐ๊ณผ, K๊ฐ’์€ 0.91์ด๊ณ  ํŽธ์ฐจ๋Š”

ยฑ0.061์ด์—ˆ๋‹ค. ์ด๋Š” ๋™์ผํ•œ ์ด๋™์ƒ์˜ ์กฐ๊ฑด์—์„œ ์šฉ์งˆ์˜ ๋†๋„์ฐจ์ด๋Š”

ํฌ๋กœ๋งˆํ† ๊ทธ๋žจ์˜ ํ‰ํ˜•์ƒ์ˆ˜์— ํฐ ์˜ํ–ฅ์„ ์ฃผ์ง€ ์•Š์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ์„ธ

๊ฐ€์ง€ ์ด๋™์ƒ์—์„œ ํ•˜๋‚˜์˜ ์šฉ์งˆ ๋†๋„์— ๋Œ€ํ•œ first moment์™€ ์œ ๋Ÿ‰ ์‚ฌ

์ด์˜ ๊ด€๊ณ„๋ฅผ Fig. 4์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. K๊ฐ’์€ ์ด๋™์ƒ์— ๋”ฐ๋ผ ๋ฉ”ํƒ„์˜ฌ 10,

20, 30%์—์„œ ๊ฐ๊ฐ 4.05, 0.91, 0.30์ด๋‹ค. ๊ทธ๋ž˜ํ”„์—์„œ ๋ฉ”ํƒ„์˜ฌ์˜ ๋ถ€ํ”ผ

๋ถ„์œจ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ํ‰ํ˜•์ƒ์ˆ˜๊ฐ€ ์ž‘์•„์กŒ๊ณ , ๋”ฐ๋ผ์„œ ์šฉ์ถœ ์‹œ๊ฐ„์ด

๊ฐ์†Œํ•œ๋‹ค. ์ด๋Š” ๋ฉ”ํƒ„์˜ฌ์˜ ๋ถ€ํ”ผ๋ถ„์œจ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ด๋™์ƒ์˜ ๊ทน์„ฑ

๋„(polarity)๊ฐ€ ๊ฐ์†Œํ•จ์œผ๋กœ์จ ๊ทน์„ฑ์„ ๋ ๋Š”(polar) cAMP์™€ ์ด๋™์ƒ๊ฐ„

์˜ ๊ฒฐํ•ฉ๋ ฅ์ด ๊ฐ์†Œํ•˜๊ณ , ๊ทน์„ฑ์„ ๋ ์ง€ ์•Š๋Š”(non-polar) ๊ณ ์ •์ƒ๊ณผ ์ด๋™

์ƒ๊ฐ„์˜ ํก์ฐฉ๋ ฅ์ด ์ฆ๊ฐ€ํ•˜์—ฌ ์ƒ๋Œ€์ ์œผ๋กœ cAMP-๊ณ ์ •์ƒ์˜ ํก์ฐฉ๋ ฅ์„

๊ฐ์†Œ์‹œํ‚ค๋ฉฐ ๊ณ ์ •์ƒ์— ํก์ฐฉํ•˜๋Š” ์‹œ๊ฐ„์„ ์งง๊ฒŒ ๋งŒ๋“œ๋Š” ๊ฒƒ์œผ๋กœ ํ•ด์„๋œ

๋‹ค. ๋”ฐ๋ผ์„œ first moment๋Š” ์šฉ์งˆ์˜ ๋†๋„์™€ ์ƒ๊ด€์—†์ด ์ด๋™์ƒ์˜ ์กฐ์„ฑ์—

์˜ํ–ฅ์„ ๋ฐ›์œผ๋ฉฐ ์œ ๋Ÿ‰ ๋˜๋Š” ์ด๋™์ƒ์˜ ๋ฉ”ํƒ„์˜ฌ ๋ถ€ํ”ผ๋ถ„์œจ์ด ๊ฐ์†Œํ•˜๋ฉด

first moment๊ฐ€ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค.

Second moment๋Š” ์„ธ ๊ฐ€์ง€ ์ „๋‹ฌ๊ณ„์ˆ˜๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ณ„์‚ฐํ•œ ๋ถ„์žํ™•์‚ฐ๊ณ„์ˆ˜(Dm), ์ถ•๋ฐฉํ–ฅ๋ถ„์‚ฐ๊ณ„์ˆ˜(DL)๋ฅผ Table 1์— ๋‚˜ํƒ€

๋‚ด์—ˆ๋‹ค. Dm์˜ ๊ฐ’์€ 8.666ร—10-4 cm2/s์—์„œ 9.895ร—10-4 cm2/s๋กœ ์ด๋™

์ƒ์˜ ๋ฉ”ํƒ„์˜ฌ ๋ถ€ํ”ผ๋ถ„์œจ์ด 10%์—์„œ 30%๋กœ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค.

DL์€ ์‹ (18)์—์„œ ๋ณผ ์ˆ˜ ์žˆ๋“ฏ์ด Dm์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ปค์ง€๊ณ , u0์™€๋Š”

์ •๋น„๋ก€๊ด€๊ณ„์ด๋‹ค. ์‹ (5)์—์„œ ์•Œ ์ˆ˜ ์žˆ๋“ฏ์ด DL์˜ ์ฆ๊ฐ€์— ๋”ฐ๋ผ axial

dispersion moment (ฮดax)์˜ ๊ฐ’์ด ์ปค์ง„๋‹ค. ฮดax์˜ ๊ฐ’์˜ ์ฆ๊ฐ€๋Š” ์นผ๋Ÿผ ๋‚ด์—์„œ

๋ถ„์‚ฐ์˜ ์˜ํ–ฅ ์ฆ๊ฐ€๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ ์ด๋Š” ์šฉ์ถœ ํ”ผํฌ์˜ ํญ์„ ๋” ๋„“๊ฒŒ ๋งŒ๋“ 

๋‹ค. ์ด์™€ ๊ฐ™์€ ๊ฒฝํ–ฅ์€ ์ด์ „ ์—ฐ๊ตฌ[5,28]์—์„œ๋„ ๋ณผ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

Fig. 2. HPLC system.

Fig. 3. First moment plot of cAMP at various concentration (Meth-

anol/Water=20/80 vol.%).

Fig. 4. Plots of the first moment at various mobile phases with a sol-

ute concentration, 1.0 mM.

Table 1. Molecular diffusivity calculated by the Wilke-Chang equation

at each mobile phase, axial dispersion coefficients according

to the mobile phase and flow rate, and external mass transfer

coefficients obtained by the Wilson-Geankoplis equation

Superficial velocity

[cm/s]

Vol.% of methanol

10 20 30

Dm ร— 104 [cm2/s] - 8.666 9.270 9.895

DL ร— 104 [cm2/s]

0.050 6.191 6.615 7.052

0.100 6.317 6.740 7.177

0.150 6.442 6.865 7.302

kf ร— 102 [cm2/s]

0.050 4.808 4.821 4.819

0.100 3.029 3.037 3.036

0.150 2.311 2.318 2.317

Page 5: Analysis of Cyclic Adenosine Monophosphate (cAMP ...

์—ญ์ƒ ํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ์—์„œ ๋ชจ๋ฉ˜ํŠธ ๋ฐฉ๋ฒ•๊ณผ van Deemter ์‹์„ ์ด์šฉํ•œ ๊ณ ๋ฆฌํ˜• ์•„๋ฐ๋…ธ์‹  ์ผ์ธ์‚ฐ์˜ ๋ถ„๋ฆฌํŠน์„ฑ ์—ฐ๊ตฌ 727

Korean Chem. Eng. Res., Vol. 53, No. 6, December, 2015

Wilson-Geankoplis ์‹์„ ์™ธ๋ถ€๋ฌผ์งˆ์ „๋‹ฌ๊ณ„์ˆ˜(kf)๋ฅผ ๊ณ„์‚ฐํ•˜๋Š”๋ฐ ์‚ฌ

์šฉํ•˜์˜€๊ณ  ๊ณ„์‚ฐํ•œ kf๊ฐ’์€ Table 1์— ์ •๋ฆฌํ•˜์˜€๋‹ค. ์ด๋™์ƒ์˜ ๋ฉ”ํƒ„์˜ฌ

๋ถ€ํ”ผ๋ถ„์œจ์„ ๊ณ ์ •์‹œํ‚ค๊ณ  ์œ ๋Ÿ‰์„ ์ฆ๊ฐ€์‹œํ‚ค๋ฉด kf๊ฐ’์ด ๊ฐ์†Œํ•˜๋Š” ๋ฐ˜๋ฉด,

์œ ๋Ÿ‰์„ ๊ณ ์ •์‹œํ‚ค๊ณ  ๋ฉ”ํƒ„์˜ฌ์˜ ๋ถ€ํ”ผ๋ถ„์œจ์„ ์ฆ๊ฐ€์‹œํ‚ค๋ฉด kf์˜ ๊ฐ’์€ ์ฆ๊ฐ€

ํ›„ ๊ฐ์†Œํ•œ๋‹ค. ์ด๋Š” ์‹ (9)-(12)๋ฅผ kf์— ๋Œ€ํ•ด ์ •๋ฆฌํ•˜์—ฌ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋‹ค.

kf๋ฅผ ์ •๋ฆฌํ•˜์—ฌ ๋‹ค์‹œ ์“ฐ๋ฉด kf = I (I๋Š” ์ƒ์ˆ˜)์ด๋‹ค. ์ด๋™

์ƒ์˜ ๋ฉ”ํƒ„์˜ฌ ๋ถ€ํ”ผ๋ถ„์œจ์„ ๊ณ ์ •์‹œํ‚ค๊ณ  ์œ ๋Ÿ‰์„ ์ฆ๊ฐ€์‹œํ‚ค๋ฉด ์ด๋™์ƒ์˜

์กฐ์„ฑ๊ณผ ๊ด€๋ จ์ด ์žˆ๋Š” Msv, ฮฑsv, ฮทsv๋Š” ๋ชจ๋‘ ์ƒ์ˆ˜๊ฐ€ ๋˜์–ด kf = m

(m์€ ์ƒ์ˆ˜) ํ˜•ํƒœ์˜ ๊ฐ์†Œํ•จ์ˆ˜๊ฐ€ ๋˜์–ด ์œ ๋Ÿ‰์˜ ์ฆ๊ฐ€์— ๋”ฐ๋ผ kf๊ฐ’์ด ๊ฐ

์†Œํ•œ๋‹ค. ๋ฐ˜๋Œ€๋กœ ์œ ๋Ÿ‰์„ ๊ณ ์ •์‹œํ‚ค๊ณ  ์ด๋™์ƒ์˜ ๋ฉ”ํƒ„์˜ฌ ๋ถ€ํ”ผ๋ถ„์œจ์„ ์ฆ

๊ฐ€์‹œํ‚ค๋ฉด, ์ด๋กœ ์ธํ•ด ๊ฐ’์ด ์ฆ๊ฐ€ํ•˜๋Š” Msv์˜ ์˜ํ–ฅ์œผ๋กœ ๊ฐ’์ด ์ฆ๊ฐ€ํ•˜์ง€

๋งŒ ๋ถ€ํ”ผ๋ถ„์œจ์˜ ์ฆ๊ฐ€๋กœ ๊ฐ’์ด ๊ฐ์†Œํ•˜๋Š” ฮฑsv์™€ ฮทsv์˜ ๊ฐ์†Œ๋Ÿ‰์ด ๋” ํฌ๊ธฐ ๋•Œ

๋ฌธ์— kf๊ฐ’์€ ๊ฐ์†Œํ•œ๋‹ค. ๋ฉ”ํƒ„์˜ฌ ๋ถ€ํ”ผ๋ถ„์œจ์— ๋”ฐ๋ฅธ Msv, ฮฑsv, ฮทsv ๊ฐ๊ฐ์˜ ๊ฐ’

๊ณผ ๊ณฑ์€ Table 2์— ์ •๋ฆฌํ•˜์˜€๊ณ  ฮฑsv๋Š” ๋ณด๊ณ ๋œ ๋ฌธํ—Œ[23]์„ ํ†ตํ•ด ๊ตฌํ•˜

์˜€๋‹ค. ์‹ (6)์—์„œ ๋ณด๋“ฏ์ด kf๊ฐ’์˜ ๊ฐ์†Œ๋Š” external moment ฮดf์˜ ๊ฐ’์„

์ฆ๊ฐ€์‹œํ‚ค๋ฉฐ ์œ ๋Ÿ‰์˜ ์ฆ๊ฐ€์™€ ์ด๋™์ƒ์˜ ์กฐ์„ฑ๋ณ€ํ™”๋ฅผ ํ†ตํ•ด ๊ณ ์ •์ƒ ๋ฐ”๊นฅ์˜

์ด๋™์ƒ ํ•„๋ฆ„ ๋‘๊ป˜๊ฐ€ ๊ฐ์†Œํ•  ๊ฒƒ์œผ๋กœ ์ถ”์ธก๋œ๋‹ค.

์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ์€ ์‹ (7)์„ ํ†ตํ•ด ์•Œ ์ˆ˜ ์žˆ๊ณ  intra-particle diffusion

moment (ฮดd)๋Š” ์‹ (14)-(16)์„ ํ†ตํ•ด ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. Table 3์— ์šฉ์งˆ์˜

๋†๋„, ์œ ๋Ÿ‰, ์ด๋™์ƒ์˜ ๋ฉ”ํƒ„์˜ฌ ๋ถ€ํ”ผ๋ถ„์œจ์— ๋”ฐ๋ฅธ ์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ๊ณ„์ˆ˜

(De)์˜ ๊ฐ’์„ ์ •๋ฆฌํ•˜์˜€๋‹ค. De์˜ ๊ฐ’์€ ์ด๋™์ƒ์˜ ๋ฉ”ํƒ„์˜ฌ ๋ถ€ํ”ผ๋ถ„์œจ์—

์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ, ์šฉ์งˆ์˜ ๋†๋„๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๊ฐ์†Œํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด

์ธ ๋ฐ˜๋ฉด ์œ ๋Ÿ‰๊ณผ์˜ ๋‘๋“œ๋Ÿฌ์ง„ ๊ฒฝํ–ฅ์„ฑ์„ ๋ณด์ด์ง€ ์•Š์•˜๋‹ค. ์ด๋Š” ์šฉ๋งค์˜

๋ฉ”ํƒ„์˜ฌ ๋ถ€ํ”ผ๋ถ„์œจ๊ณผ ์šฉ์งˆ์˜ ๋†๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๋ฉด ์ž…์ž์˜ ์„ธ๊ณต(pore) ์•ˆ

์—์„œ ์šฉ์งˆ์˜ ์šด๋™์†๋„๊ฐ€ ๊ฐ์†Œํ•˜์—ฌ ํ™•์‚ฐ์†๋„๊ฐ€ ๊ฐ์†Œํ•˜๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ

๋ณด์ธ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฉ”ํƒ„์˜ฌ์˜ ๋ถ€ํ”ผ๋ถ„์œจ์ด ์ปค์ง€๊ฑฐ๋‚˜ ์šฉ์งˆ์˜ ๋†๋„๊ฐ€ ์ฆ๊ฐ€

ํ•˜๋ฉด intra-particle diffusion moment (ฮดd)์˜ ๊ฐ’์€ ๊ฐ์†Œํ•˜์˜€๋‹ค.

Fig. 5๋Š” 4.0 mM์˜ cAMP๋ฅผ ์„ธ ๊ฐ€์ง€ ๋‹ค๋ฅธ ์ด๋™์ƒ์˜ ๋†๋„ ์กฐ๊ฑด์—

์„œ ์‹คํ—˜ํ•˜์—ฌ ์–ป์€ Htotal-Hf์™€ u0์˜ ๊ด€๊ณ„๋ฅผ ๋„์‹ํ™”ํ•œ ๊ฒƒ์ด๋‹ค. u

0๊ฐ€ ์•ฝ

0.02 cm/s๋ณด๋‹ค ์ž‘์€ ๋ฒ”์œ„์—์„œ๋Š” ๊ณก์„ ์ด ๊ฑฐ์˜ ์„ ํ˜•์ด๋ฉฐ ์ด๋™์ƒ์˜ ๋†

๋„์˜ ์ฐจ์ด์— ์˜ํ•œ ๋šœ๋ ทํ•œ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š๋Š”๋‹ค. ํ•˜์ง€๋งŒ ์œ ๋Ÿ‰์ด

์•ฝ 0.02 cm/s๋ณด๋‹ค ์ปค์ ธ ๊ทธ๋ž˜ํ”„์˜ ๋ณ€๊ณก์ ์„ ์ง€๋‚˜๋Š” ์ง€์ ๋ถ€ํ„ฐ ๊ธฐ์šธ๊ธฐ

์˜ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚˜๋ฉฐ, ์ด ๊ธฐ์šธ๊ธฐ๋Š” ์ด๋™์ƒ ๋†๋„์˜ ๋น„์™€ ๋น„๋ก€ํ–ˆ๋‹ค. ์‹

(19)๋ฅผ ํ†ตํ•ด ๊ณ„์‚ฐํ•œ van Deemter coefficient A, B, C๋Š” Table 4์— ์ •

๋ฆฌํ•˜์˜€๋‹ค. A, B, C๊ฐ’์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ HETP์˜ ๊ฐ’์— ๊ฐ€์žฅ ํฌ๊ฒŒ ๊ธฐ์—ฌ

ํ•˜๋Š” ๊ฐ’์€ ์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ๊ณผ ๊ด€๋ จ๋œ C๊ฐ’์ด์—ˆ๋‹ค.

Fig. 6๋Š” ๋ฉ”ํƒ„์˜ฌ ๋ถ€ํ”ผ๋ถ„์œจ 20%์˜ ์ด๋™์ƒ๊ณผ ์„ธ ๊ฐ€์ง€ ๋‹ค๋ฅธ ์šฉ์งˆ์˜

๋†๋„์— ๊ด€ํ•œ HETP ๊ณก์„ ์ด๊ณ  ์ด ์กฐ๊ฑด์—์„œ ๊ณ„์‚ฐํ•œ van Deemter

coefficient A, B, C๋Š” Table 5์— ์ •๋ฆฌํ•˜์˜€๋‹ค. Table 3์—์„œ ๋ณผ ์ˆ˜ ์žˆ

Msvฮฑsvฮทsv

u0

----------------------------โŽ โŽ โŽ› โŽž

2/3

1u0

----( )2/3

Table 2. Values of molecular weight, degree of aggregation, and viscosity

at each mobile phase

Vol.% of methanol

10 20 30

Msv [g/mol] 19.442 20.824 22.226

ฮฑsv 2.5593 2.5111 2.4546

ฮทsv [g/molยทs] 0.009385 0.008998 0.008610

ฮฑsvยทMsvยทฮทsv 0.4670 0.4705 0.4697

Table 3. The intra-particle diffusivity according to flow rate, mobile

phase, and solute concentration

solute

concentration

superficial velocity

[cm/s]

Vol.% of methanol

10 20 30

Deร—106

[cm2/s]

1.0 mM

0.050 57.93 11.72 4.155

0.100 50.37 13.00 4.093

0.150 44.08 12.36 4.035

4.0 mM

0.050 27.01 8.422 3.252

0.100 31.99 10.41 3.460

0.150 28.58 9.495 3.801

7.0 mM

0.050 19.86 7.579 2.929

0.100 25.24 8.137 2.928

0.150 21.58 7.357 2.629

Fig. 5. Correlation between HETP and the flow rate upon chang-

ing the methanol ratio of the mobile phase.

Table 4. Van Deemter coefficient upon changing the composition of the

mobile phase at one solute concentration, 4.0 mM

vol.% of methanol

10 20 30

A 0.000348 0.000348 0.000348

B 0.000844 0.000903 0.000964

C 0.852 1.698 2.098

Fig. 6. Correlation between HETP and the flow rate upon changing

the solute concentration on mobile phase composition (Methanol/

Water = 20/80 vol.%).

Page 6: Analysis of Cyclic Adenosine Monophosphate (cAMP ...

728 ์ด์ผ์†ก ยท ๊ณ ๊ด€์˜ ยท ๊น€์ธํ˜ธ

Korean Chem. Eng. Res., Vol. 53, No. 6, December, 2015

๋“ฏ์ด ์šฉ์งˆ์˜ ๋†๋„๋Š” ์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ๊ณ„์ˆ˜(De)์— ํฐ ์˜ํ–ฅ์„ ์ฃผ๋ฉฐ, ์‹

(7)๊ณผ ์‹ (17)์„ ํ†ตํ•ด ์šฉ์งˆ์˜ ๋†๋„๋ณ€ํ™”๋Š” HETP๊ฐ’์—์„œ ์ค‘์š”ํ•œ ๋ณ€์ˆ˜์ž„์„

์•Œ ์ˆ˜ ์žˆ๋‹ค. ํ•œํŽธ, ์šฉ์งˆ๋ถ„์ž์˜ ๋†๋„์ฐจ์ด์— ์˜ํ•œ De์˜ ๊ฐ’์˜ ๋ณ€ํ™”๋ณด๋‹ค

์ด๋™์ƒ์˜ ๋†๋„๋ณ€ํ™”์— ์˜ํ•œ De์˜ ๋ณ€ํ™”๊ฐ€ ๋” ํฌ๊ธฐ ๋•Œ๋ฌธ์— Fig. 6๋ณด๋‹ค

Fig. 5์˜ ๊ณก์„ ์˜ ํŽธ์ฐจ๊ฐ€ ๋” ํฌ๋‹ค. van Deemter coefficient A์˜ ๊ฐ’์€

Table 4, 5์—์„œ ๊ฐ™์€ ๊ฐ’์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. Table 5์—์„œ๋Š” B๊ฐ’์€ ์ผ์ •ํ•œ

๋ฐ˜๋ฉด Table 4์—์„œ๋Š” ์ด๋™์ƒ์˜ ๋ฉ”ํƒ„์˜ฌ ๋ถ€ํ”ผ๋ถ„์œจ์— ๋”ฐ๋ผ ์ฆ๊ฐ€ํ•˜์—ฌ

Fig. 5์—์„œ ๋ณ€๊ณก์ ์˜ ์œ„์น˜๋ฅผ ๋†’์˜€๋‹ค. C๊ฐ’์˜ ๋ณ€ํ™”๋Š” Table 4๋ณด๋‹ค

Table 5์—์„œ ๋” ํฌ๋‹ค. ์ด๋Š” HETP์˜ ๊ฐ’์ด ์ด๋™์ƒ์˜ ์กฐ์„ฑ๋ณด๋‹ค ์šฉ์งˆ

์˜ ๋†๋„์— ๋” ์˜์กด์ ์ž„์„ ๋ณด์—ฌ์ฃผ๋ฉฐ ์—ฌ๊ธฐ์„œ ๊ฐ€์žฅ ํฐ ์š”์ธ์€ ๋ถ„์ž๋‚ด

๋ถ€ํ™•์‚ฐ์ž„์„ ๋ฐ˜์ฆํ•œ๋‹ค. ์ฆ‰ ์นผ๋Ÿผ ์•ˆ์—์„œ ๋†’์€ ์šฉ์งˆ์˜ ๋†๋„๋Š” ์นผ๋Ÿผ์˜

๋ถ„๋ฆฌ๋Šฅ์„ ๊ฐ์†Œ์‹œ์ผœ HETP์˜ ๊ฐ’์ด ์ปค์ง€๊ณ  ์šฉ์ถœ๋˜๋Š” ํ”ผํฌ์˜ ํญ์ด ๋„“

์–ด์ง์„ ์˜๋ฏธํ•œ๋‹ค.

Fig. 7์€ 4.0 mM์˜ cAMP๋ฅผ ๋ฉ”ํƒ„์˜ฌ 20%์˜ ์ด๋™์ƒ ์กฐ๊ฑด์—์„œ ์‹ค

ํ—˜ํ•˜์—ฌ ์–ป์€ ๊ฒฐ๊ณผ๋กœ, HETP์˜ ๊ฐ’์„ ๊ฒฐ์ •ํ•˜๋Š” ์„ธ ๊ฐ€์ง€ ๋ฌผ์งˆ์ „๋‹ฌ๋ฐฉ๋ฒ•

์˜ ์˜ํ–ฅ์€ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์™ธ๋ถ€๋ฌผ์งˆ์ „๋‹ฌ๊ณผ ๊ด€๋ จ๋œ Hf ๊ฐ’์€ ๊ฑฐ์˜ 0์ด๋ฏ€๋กœ

HETP๊ฐ’์— ๋ฏธ๋ฏธํ•œ ์˜ํ–ฅ์„ ๋ผ์นœ๋‹ค. ์ถ•๋ฐฉํ–ฅํ™•์‚ฐ๊ณผ ๊ด€๋ จ๋œ Hax๊ฐ’์€ u0

๊ฐ€ ์•ฝ 0.02 cm/s ์ดํ•˜์˜, ์ฆ‰ ์œ ๋Ÿ‰์ด ์ž‘์€ ์กฐ๊ฑด์—์„œ HETP๊ฐ’์— ํฐ ์˜

ํ–ฅ์„ ๋ผ์น˜๋‹ค๊ฐ€ ๊ทธ ์˜ํ–ฅ์€ ์œ ๋Ÿ‰์˜ ์ฆ๊ฐ€์— ์˜ํ•ด ์ ์  ์ž‘์•„์ง„๋‹ค. ์ž…์ž

๋‚ด๋ถ€ํ™•์‚ฐ์„ ๋‚˜ํƒ€๋‚ด๋Š” Cu0๋Š” ๋น„๊ต์  ํฐ ๊ฐ’์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด์„œ Htotal์€

๋ณ€๊ณก์  ์ดํ›„๋กœ ์ง์„ ์˜ ํ˜•ํƒœ๋กœ ์ฆ๊ฐ€ํ•˜๋ฉฐ ์ด๋ฅผ ํ†ตํ•ด ์šฉ์ถœ ํ”ผํฌ์˜ ๋ 

๋„“ํž˜ ํ˜„์ƒ์€ ์œ ๋Ÿ‰์— ์ข…์†์ ์ž„์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์šฉ์งˆ์„ ๊ฐ€์žฅ ํšจ๊ณผ์ ์œผ

๋กœ ๋ถ„๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ์œ ๋Ÿ‰์€ HETP์˜ ๊ฐ’์ด ๊ฐ€์žฅ ์ž‘์€ ์ง€์ ์—์„œ ๊ฐ–๋Š”

๋‹ค. Fig. 6์—์„œ ์ด๋™์ƒ์˜ ๋ฉ”ํƒ„์˜ฌ ๋ถ€ํ”ผ๋ถ„์œจ์ด 20%์ด๊ณ  cAMP์˜ ๋†

๋„๊ฐ€ ๊ฐ๊ฐ 1.0, 4.0, 7.0 mM์ผ ๋•Œ HEPT๊ฐ’์ด ๊ฐ€์žฅ ์ž‘์€ ๊ณณ์—์„œ์˜

์œ ๋Ÿ‰์€ ๊ฐ๊ฐ 0.30, 0.22, 0.19 mL/min์œผ๋กœ, ์ด ์กฐ๊ฑด์—์„œ ๊ฐ€์žฅ ํšจ๊ณผ

์ ์œผ๋กœ cAMP๋ฅผ ๋ถ„๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค. HETP์—์„œ ๋ฌผ์งˆ์ „๋‹ฌ๋ฐฉ๋ฒ•์˜ ์˜ํ–ฅ์€

Hd, Hax, Hf์˜ ์ˆœ์œผ๋กœ ํฌ๋ฉฐ ์ด๋Ÿฌํ•œ ๊ฒฝํ–ฅ์€ ๊ธฐ์ฒด ํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ์—

๋Œ€ํ•ด ๋ณด๊ณ ๋œ ๋ฌธํ—Œ[29]์—์„œ๋„ ๋ณผ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

5. ๊ฒฐ ๋ก 

๋ชจ๋ฉ˜ํŠธ ๋ถ„์„๊ณผ van Deemter ๊ทธ๋ž˜ํ”„๋ฅผ ์ด์šฉํ•˜์—ฌ ํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ๋ฅผ

์ด์šฉํ•œ cAMP ๋ถ„๋ฆฌ์˜ ์ •๋Ÿ‰์ , ์ •์„ฑ์  ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. RP-

HPLC ์‹คํ—˜์„ ํ†ตํ•ด ํ‰ํ˜•์ƒ์ˆ˜ K์™€ ์„ธ ๊ฐ€์ง€ ๋ฌผ์งˆ์ „๋‹ฌ๊ณ„์ˆ˜๋ฅผ ์–ป์—ˆ์œผ

๋ฉฐ van Deemter ์‹์„ ์ด์šฉํ•˜์—ฌ HETP์™€ ์œ ๋Ÿ‰๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํŒŒ์•…ํ•˜์˜€

๋‹ค. ํ‰ํ˜•์ƒ์ˆ˜ K๋Š” ์ด๋™์ƒ์˜ ๋ฉ”ํƒ„์˜ฌ ๋ถ€ํ”ผ๋ถ„์œจ 10%, 20%, 30%๋กœ ์ฆ

๊ฐ€ํ•  ๋•Œ ์šฉ์งˆ์˜ ๋†๋„์™€ ๊ด€๊ณ„์—†์ด ๊ฐ๊ฐ 4.05, 0.91, 0.30์˜ ๊ฐ’์„ ๊ฐ€์กŒ

๋‹ค. Wilke-Chang ์‹์„ ํ†ตํ•ด ๊ตฌํ•œ ๋ถ„์žํ™•์‚ฐ๊ณ„์ˆ˜(Dm)๋Š” ์ด๋™์ƒ์˜ ๋ฉ”

ํƒ„์˜ฌ ๋ถ„์œจ์ด ์ปค์งˆ์ˆ˜๋ก ์ฆ๊ฐ€ํ–ˆ๊ณ . ์ถ•๋ฐฉํ–ฅ๋ถ„์‚ฐ๊ณ„์ˆ˜(DL)๋Š” Dm๊ณผ ์œ ๋Ÿ‰์—

๋น„๋ก€ํ–ˆ๋‹ค. ์™ธ๋ถ€๋ฌผ์งˆ์ „๋‹ฌ๊ณ„์ˆ˜(kf)๋Š” Wilson-Geankoplis ์‹์œผ๋กœ ๊ตฌํ–ˆ

๊ณ , ๊ทธ ๊ฐ’์€ ์œ ๋Ÿ‰์˜ ์ฆ๊ฐ€์— ๋”ฐ๋ผ ๊ฐ์†Œํ•˜์ง€๋งŒ ์ด๋™์ƒ์˜ ๋ฉ”ํƒ„์˜ฌ ๋ถ€ํ”ผ

๋ถ„์œจ์ด ์ปค์งˆ์ˆ˜๋ก ์ฆ๊ฐ€ํ•˜๋‹ค๊ฐ€ ์‹์—์„œ ํšŒํ•ฉ๋„ ฮฑ์™€ ์ ๋„ ฮท๊ฐ’์˜ ๊ฐ์†Œ

๋Ÿ‰์ด ์ปค์ง€๋ฉด ๊ทธ ๊ฐ’์ด ์ž‘์•„์ง„๋‹ค. ์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ๊ณ„์ˆ˜(De)๋Š” ์ด๋™์ƒ์˜

๋ฉ”ํƒ„์˜ฌ ๋ถ€ํ”ผ๋ถ„์œจ๊ณผ ์šฉ์งˆ์˜ ๋†๋„ ์ฆ๊ฐ€์— ๋”ฐ๋ผ ๊ฐ์†Œํ•œ๋‹ค. HETP๊ฐ’์—

๋Š” ์ž…์ž๋‚ด๋ถ€ํ™•์‚ฐ, ์ถ•๋ฐฉํ–ฅ๋ถ„์‚ฐ, ์™ธ๋ถ€๋ฌผ์งˆ์ „๋‹ฌ์˜ ์ˆœ์„œ๋กœ ํฐ ์˜ํ–ฅ์„

์ค€๋‹ค. ๋”ฐ๋ผ์„œ ์ตœ์„ ์˜ ๋ถ„๋ฆฌ ์กฐ๊ฑด์„ ์ฐพ๊ธฐ ์œ„ํ•ด ์ด๋™์ƒ์˜ ์กฐ์„ฑ์„ ๋ฐ”๊พธ

๋Š” ๊ฒƒ๋ณด๋‹ค ์šฉ์งˆ์˜ ๋†๋„ ๋˜๋Š” ์œ ๋Ÿ‰๋ณ€ํ™”๋ฅผ ํ†ตํ•ด ๋ถ„์ž๋‚ด๋ถ€ํ™•์‚ฐ์„ ์กฐ์ ˆ

ํ•˜๋Š” ๊ฒƒ์ด ๋” ํšจ๊ณผ์ ์ด๋‹ค[30].

๊ฐ ์‚ฌ

๋ณธ ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญ์—ฐ๊ตฌ์žฌ๋‹จ ๊ธฐ์ดˆ์—ฐ๊ตฌ ํ”„๋กœ๊ทธ๋žจ์— ์˜ํ•ด ์ง€์›๋˜์—ˆ์œผ

๋ฉฐ ์ด์— ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค.

Nomenclatures

Ce(t) : Concentration profiles of the sample at the exit of the column

u0

: Superficial velocity

L : Column length

K : Adsorption equilibrium constant

DL : Axial dispersion coefficient

Rp : Radius of particle

kf : External mass transfer coefficient

De : Inter-particle diffusivity

dp : Particle diameter

Dm : molecular diffusivity

Sh : Sherwood number

Sc : Schmidt number

Rep : Reynolds number of a particle

T : Absolute temperature

M : Molecular weight

Vb : Molar volume at the normal boiling point

tR : Retention time

wb : Peak width

N : Plate number of the column

ฮตe : Void fraction of a column

Table 5. Van Deemter coefficient upon changing the cAMP concentration

at one mobile phase (Methanol/Water=20/80 vol.%)

Concentration of cAMP

1.0 mM 4.0 mM 7.0 mM

A 0.000348 0.000348 0.000348

B 0.000903 0.000903 0.000903

C 0.938 1.698 2.462

Fig. 7. Contribution of each mass component to the Htotal

with a sol-

ute concentration, 4.0 mM(Methanol/Water = 20/80 vol.%).

Page 7: Analysis of Cyclic Adenosine Monophosphate (cAMP ...

์—ญ์ƒ ํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ์—์„œ ๋ชจ๋ฉ˜ํŠธ ๋ฐฉ๋ฒ•๊ณผ van Deemter ์‹์„ ์ด์šฉํ•œ ๊ณ ๋ฆฌํ˜• ์•„๋ฐ๋…ธ์‹  ์ผ์ธ์‚ฐ์˜ ๋ถ„๋ฆฌํŠน์„ฑ ์—ฐ๊ตฌ 729

Korean Chem. Eng. Res., Vol. 53, No. 6, December, 2015

ฮตp : Porosity

ฮผ1

: First absolute moment

ฮผ2

: Second central moment

ฮณ : Geometrical coefficient

ฮท : Viscosity

ฮฑ : Degree of aggregation

References

1. Miyabe, K. and Suzuki, M., โ€œChromatography of Liquid-phase

Adsorption on Octadecylsilyl-silica Gel,โ€ AIChE J., 38, 901-910

(1992).

2. Miyabe, K. and Guiochon, G., โ€œMeasurement of the Parameters

of the Mass Transfer Kinetics in High Performance Liquid

Chromatography,โ€ J. Sep. Sci., 26, 155-173(2003).

3. Miyabe, K., โ€œMoment Analysis of Chromatograpic Behavior in

Reversed-phase Liquid Chromatography,โ€ J. Sep. Sci., 32, 757-

770(2009).

4. Choi, D. Y. and Row, K. H., โ€œEstimation of Kinetic and Rate

Parameters of Peptides by Moment Analysis,โ€ J. Ind. Eng. Chem.,

10, 1052-1057(2004).

5. Wilson, E. J. and Geankoplis, C. J., โ€œLiquid Mass Transfer at

Very Low Reynolds Numbers in Packed Beds,โ€ Ind. Eng. Chem.

Fundamen, 5, 9-14(1966).

6. Grushka, E., Snyder, L. R. and Knox, J. H., โ€œAdvances in Band

Spreading Theories,โ€ J. Chromatogr. Sci., 13, 25-37(1975).

7. Seirafi, H. A. and Smith, J. M., โ€œMass Transfer and Adsorption in

Liquid Full and Trickle Beds,โ€ AIChE J., 26, 711-717(1980).

8. Gunn, D. J., โ€œAxial and Radial Dispersion in Fixed Beds,โ€ Chem.

Eng. Sci., 42, 363-373(1987).

9. Tallarek, U., Albert, K., Bayer, E. and Guiochon, G., โ€œMeasure-

ment of Transverse and Axial Apparent Dispersion Coefficient

in Packed Beds,โ€ AIChE J., 42, 3041-3054(1996).

10. Tallarek, U., Bayer, E. and Guiochon, G., โ€œStudy of Dispersion

in Packed Chromatographic Columns Field Gradient Nuclear

Magnetic Resonance,โ€ J. Am. Chem. Soc., 120, 1494-1505(1998).

11. Tallarek, U., Bayer, E., Dusschoten, D. V., Scheenen, T, As, V.

H., Guiochon, G. and Neue, U. D., โ€œDynamic NMR Microscopy

of Chromatographic Columns,โ€ AIChE J., 44, 1962-1975(1998).

12. Tallarek, U., Dusschoten, D. V., As, V. H., Guiochon, G. and Bayer,

E., โ€œMass Transfer in Chromatographic Columns Studied by PFG

NMR,โ€ Magn. Reson., 16, 699-702(1998).

13. Tallarek, U., Dusschoten, D. V., As, H. V., Bayer, E. and Guiochon,

G., โ€œStudy of Transport Phenomena in Chromatograpic Columns

by Pulsed Field Gradient NMR,โ€ J. Phys. Chem. B., 102, 3489-

3497(1998).

14. Sajonz, P., Guan-Sajonz, H., Zhong, G. and Guiochon, G., โ€œAppli-

cation of the Shock Layer Theory to the Determination of the Mass

Transfer Rate Coefficient and its Concentration Dependence for

Proteins on Anion Exchange Columns,โ€ Biotechnol. Prog., 13,

170-178(1997).

15. Sajonz, P., Kele, M., Zhong, G., Sellergen, B. and Guiochon, G.,

โ€œStudy of the Thermodynamics and Mass Transfer Kinetics of

Two Enantiomers on a Polymeric Imprinted Stationary Phase,โ€

J. Chromatogr. A, 810, 1-17(1998).

16. Miyabe, K. and Guiochon, G., โ€œKinetic Study of the Concentraion

Dependence of the Mass Transfer Rate Coefficient in Anion-

exchange Chromatography of Bovine Serum Albumin,โ€ Biotech-

nol. Prog., 15, 740-752(1999).

17. Miyabe, K., Canazzini, A., Gritti, F., Kele, M. and Guiochon, G.,

โ€œMoment Analysis of Mass Transfer Kinetics in Silica Monolithic

Columns,โ€ Anal. Chem., 75, 6975-6986(2003).

18. Miyabe, K. and Guiochon, G., โ€œSurface Diffusion in Reversed-phase

Liquid Chromatography,โ€ J. Chromatogr. A., 1217, 1713-1734(2010).

19. Gritti, F. and Guiochon, G., โ€œImportance of Sample Intraparticle

Diffusivity in Investigations of the Mass Transfer Mechanism in

Liquid Chromatography,โ€ AIChE J., 57, 346-358(2011).

20. Silva Jr, I. J. D., Veredas, D., Carpes, M. J. S. and Santana, C.

C., โ€œChromatographic Separation of Bupivacaine Enantiomers

by HPLC: Parameter Estimation of Equilibrium and Mass Trans-

fer Under Linear Conditions,โ€ Adsorption, 11, 123-129(2005).

21. Spoto, G., Whitehead, E., Ferraro, A., Di, Terlizzi PM., Turano,

C. and Riva, F., โ€œA Reverse-phase HPLC Method for cAMP

Phosphodiesterase Activity,โ€ Anal. Biochem., 196, 207-210(1991).

22. Zhang, Y., Lu, P., Wang, H., Zhang, J., Li, H. and Liu, J., โ€œSimul-

taneous HPLC Determination of cAMP and cGMP in Commercial

Jujube Juice Concentrate,โ€ Food Science, 30, 321-322(2009).

23. Miyabe, K. and Isogai, R., โ€œEstimation of Molecular Diffusivity

in Liquid Phase Systems by the Wilke-Chang Equation,โ€ J. Chro-

matogr. A., 1218, 6639-6645(2011).

24. Choi, D. Y. and Row, K. H., โ€œEstimation of Kinetic and Rate

Parameters of Peptides by Moment Analysis,โ€ J. Ind. Eng. Chem.,

10, 1052-1057(2004).

25. Won, H. J. and Kim, I. H., โ€œPrediction of Formic Acid Chro-

matogram in Gradient Elution Chromatography,โ€ Biotechnol. Bio-

process Eng., 6, 31-36(2001).

26. Kim, J. T. and Kim, I. H., โ€œPulse Response Test in Medium Pres-

sure Protein Chromatography,โ€ Korean J. Chem. Eng., 15, 575-

579(1998).

27. Wang, Y. J. and Gerard, C., โ€œThe Use of Moment Analysis in

Inverse Gas Chromatography,โ€ Macromolecules, 22, 3781-3788(1989).

28. Lee, C. H., Kang, J. H. and Row, K. H., โ€œParameter Estimation

of Perillyl Alcohol in RP-HPLC by Moment Analysis,โ€ Biotech-

nol. Bioprocess Eng., 7, 16-20(2002).

29. Ra, Y. J., Jung, Y. A. and Row, K. H., โ€œFactors Affecting HETP

in Capillary Gas Chromatography,โ€ Korean J. Biotechnol. Bio-

eng., 17, 88-92(2002).

30. Park, I. S. and Ahn, D. Y., โ€œEstimation of Mass Transfer Parameters

of Large-pore Particles by Chromatography,โ€ Korean Chem. Eng.

Res., 27, 331-338(1989).