Analysis and Implementation of Coupled Diode...

39
1 IEEE IEEE 802.3 802.3 DTE Power via MDI DTE Power via MDI Analysis and Implementation of Coupled Diode Detection Analysis and Implementation of Coupled Diode Detection Presented by PowerDsine: Amir Lehr - [email protected] Yair Darshan - [email protected] Avinoam Levy - [email protected] Ilan Atias - [email protected] David Pincu - [email protected] Ronen Heldman - [email protected]

Transcript of Analysis and Implementation of Coupled Diode...

1

IEEE IEEE 802.3802.3 DTE Power via MDI DTE Power via MDIAnalysis and Implementation of Coupled Diode DetectionAnalysis and Implementation of Coupled Diode Detection

Presented by PowerDsine:Amir Lehr - [email protected] Darshan - [email protected] Levy - [email protected] Atias - [email protected] Pincu - [email protected] Heldman - [email protected]

2Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Coupled Diode MethodDefining parameters for cost-effective implementation

! PD Section! Isolating Circuit

! PSE (Switch, Mid-Span)! Probing signal feeding methods with coupling transformer! Two transformers implementation! Single transformer implementation! Silicon implementation

Acknowledgment to Rick Brooks & Larry Miller / Nortel Their previous work is used as the baseline for this presentation

3Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

PD Section - Isolating Diode Bridge Rectifier

! Advantages! Simple! Polarity insensitive.! Low Cost

! Issues to address! Power & voltage drop (1Wmax, 3Vmax), reduces PD available power ! Transmitted pulse amplitude is limited to 4Vd, practical value about 2Vmax.! Actual detected pulse amplitude is approximately 1V

4Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

PD section- Enhanced Isolating Circuit

! Reliable implementation must include an Under Voltage protection circuit as part of the PD power supply input*

! The UV circuitry may be utilized as the isolation block between the Coupled Diode signature element and the PD power supply

* Refer to the PowerDsine IEEE 802.3af May 2000 presentation

5Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

PD Section - Isolation Circuitry

DC/DC Converter

C1470uF

R1

2K

R3100K

C21uF

D4D1N4148

D7D1N4002

D2

D1N4002

D1D1N4002

D6D1N4002

D5D1N4002

D3D1N4002

R2+

-

Coupled Diode

(-)

(+)

IsolatingCircuit

6Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

PD Section - Enhanced Isolation Circuitry

* Hysteresis circuitry may be added for setting different On/Off thresholds

DC/DC Converter

D4

R110.5K-0805

R546.4K-0805

M1IRLW530A

C2470uF

C11uF

R4100K

R2

2K

D1

D1N4148

D5D1N4002

D3

DIODE

D2

C31uF

R3

Z=12V

VZ=33V

-

+

(+)

(-)

Isolator & UnderVoltage Lock Out

Coupled DiodeCircuit

7Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

PD section - Enhanced Isolating Circuitry

! Utilizing the existing UVLO

! Increases PD available power by reducing diodes power/voltage drop

! Probing pulses amplitude value range can be widen to improve signal to noise ratio and lower detected pulse sensitivity to circuit elements tolerance

! Lab testing confirms that the detected pulse shape is highly similar to one measured using the Diode Bridge

8Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

PSE - Pulse Amplitude Limitations

Setup A

Nortel proposed setup

! Mid-Span solution architecture

Setup B

Power is Phantom fed through standard data transformer module including integrated data path common mode filter

! Switch solution architecture

! Common mode filter inductance may vary in range of 2-120uH (depends on application, vendors etc.)

0

0

..

Dataout

.

.PSE

Dataout

+

DTE

Coupleddiodecircuit

.

Isolatorcircuit

.

.

Data in

.

.

Data in

.

Load

.

probingsignalIN2/OUT1

probingsignalIN1/OUT2

.

..

..

0

0

..

..

..

..

+

..

. .

Coupleddiodecircuit

Isolatorcircuit Load

probingsignalIN1/OUT2

probingsignalIN2/OUT1

DTEPSE

9Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Detected Pulse Shape Vs. Link Length

Setup A: Link length=0-100m, 5m steps Ti me

4. 9000ms 4. 9050ms 4. 9100ms 4. 9150ms4. 8954ms 4. 9193msV( C11: 2)

- 1. 00V

0V

1. 00V

1. 58V

10Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Detected Pulse Shape vs. Link Length

Ti me

4 . 9000ms 4 . 9050ms 4 . 9100ms 4 . 9150ms4 . 8957ms 4 . 9193msV( R9: 2)

- 0 . 50V

0V

0. 50V

1. 00V

1. 28V

Setup B: Link length = 100m, 0-100uH Common Mode inductance, 5uH steps

Refer to Annex C for details

11Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Recommendations

Setup A: ! Detected signal shape changes within acceptable detected and processed

range

Setup B:! Pulse leading edge changes significantly with series inductance! Pulse sampling time should be positioned close to tailing edge for robust

detection

Note! While power over MDI is supplied the Common Mode filter inductance that is

located inside the link will be significantly reduced due to core saturation. This may affect common mode noise rejection. Consider locating Common Mode filter external to the link side

12Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

PSE Detection Circuitry Implementations

! Proposed coupled diode concept requires two coupling transformers

! Questions! Can we reduce it to single transformer?! Can we find solutions that can fit on Silicon?

! Goal: ! Specifying pulse shape parameters which do not limit the implementation

methods

13Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.Two Transformers Circuitry Can We Reduce it to a single Coupling Transformer?

Limits max. probing signal pulse width

Limits min. probing signal pulse width

Drive_Trafo

Drive_Trafo

IN1

IN2

OUT1

OUT2

Drive_Trafo0

Drive_Trafo

IN1

IN2

OUT1

OUT2

TX_Data_trafo

TX_Data_trafo

TDP

TDCT

TDN

TXP

TXN

TXCT

RX_Data_trafo

RX_Data_trafo

RXN

RXCT

RXP

RDN

RDP

RDCT

RX_Data_trafo0

RX_Data_trafo

RXN

RXCT

RXP

RDN

RDP

RDCT

TX_Data_trafo0

TX_Data_trafo

TDP

TDCT

TDN

TXP

TXN

TXCT

0

0

0

0

0

0

0

bbb

Chassis

Chassis

Chassis

DTE_N

DTE_N

DTE_P

DTE_N

aaa

R25{R_Line*Length}

21

C10

{0.5*C_Line*Length}

D1

D1N4148

C30.01u

R26{R_Line*Length}

21

R9100

R27{R_Line*Length}

21

R28{R_Line*Length}

21

V3

0V

R2310MEG

D2

D1N4148

R250

R750

R1450

R1950

C41U

R102k

R11100k

L66{L_Line*Length}

C210n

V1

C610n

R410meg

R1610meg

V2

D9

D1N4002

D8

D1N4002

D7

D1N4002

D6

D1N4002

D5

D1N4002

D4

D1N4002

R310meg

R610meg

R1510meg

R1810meg

R2410MEG

C9220uF

R29117

R8{Rdrive}

R21

{Rdrive}

R3010MEG

C112.7n

R13

0.001

R32

0.1

C122.7nF

L1

100uH

C5220U

R12

1k

R310.2

R5100

L65{L_Line*Length}

PARAMETERS:

k_data = 0.998

L_cm = 100u

Rdrive = 12Vdrive = 3.3

L_Drive = 1.2mHN_Drive = 1

Length = 100

L_data = 350u

K_Drive = 0.9997

L_data1 = 350u

C_Line = 15pFL_Line = 0.3uHR_Line = 0.125

R17100

L67{L_Line*Length}

L68{L_Line*Length}

C80.01u

D3

D1N4148

R22100

C13{0.5*C_Line*Length}

R2075

C71n

R175

C11n

/m (Scaled)/m (Scaled)/m (Scaled)

m

14Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Simplified Two Transformer Circuitry Representation

Sensed voltage wave shape is within acceptable distortion level while Lm>> Total Series impedance (Refer to Annex A for details)

Vab

t

0

0

V2_OUTV1_IN

V2_IN

V1_OUTV3

0Vdc

C2{C_Line*Length}

L1

{L_Line*Length}

L2

{L_Line*Length}

C3{C_Line*Length}

C11uF

R2100K

R12KD1

D1N4148

V1

D2D1N4148

R4100

D3D1N4148

R3100

V2

L7L_cm

L8L_cm

Series Voltage Feed

Lm Lm

LmLm

a

bLow Impedance

PSE

DTELINK

High Impedance

T1

T2

Simplified detection elements model during detection mode.

15Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.Two Transformer Circuit - Test Results Setup A & B measurements,100m Cat 5 UTP cable

Diode non-conducting direction Diode conducting direction

Shorted load Open load

16Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.Two Transformer Circuit - Test Results Setup A & B measurements,100m Cat 5 FTP cable

Diode non-conducting direction Diode conducting direction

Shorted load Open load

17Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.Two Transformer Circuit - Test Results Setup A & B measurements,0.2m Cat 5 FTP/UTP cable

Diode non-conducting direction Diode conducting direction

18Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Two Transformer Circuit - Test Results

! Measured results confirm those presented by Rick Brooks & Larry Miller / Nortel at the July 2000 meeting

! The detected signal is affected by the Cat 5 cable equivalent input capacitance between pairs (by-passing Coupled Diode Signature element)

! Simple High Pass filter at receive side can improve performance

19Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Reduction to Single Transformer Circuit

Limits min. probing signal pulse width

Limits max. probing signal pulse width

Drive_Trafo0

Drive_Trafo

IN1

IN2

OUT1

OUT2

RX_Data_trafo2

RX_Data_trafo

RXN

RXCT

RXP

RDN

RDP

RDCT

TX_Data_trafo1

TX_Data_trafo

TDP

TDCT

TDN

TXP

TXN

TXCT

RX_Data_trafo1

RX_Data_trafo

RXN

RXCT

RXP

RDN

RDP

RDCT

TX_Data_trafo2

TX_Data_trafo

TDP

TDCT

TDN

TXP

TXN

TXCT

0

0

0

0

0

0

0

0

bbb

Chassis

Chassis

Chassis

DTE_N

DTE_P

DTE_N

aaa

DTE_N

V2_IN_V1_OUT

V1_IN_V2_OUT

C10

{0.5*C_Line*Length}

L66{L_Line*Length}

C1122nF

V2

R21{Rdrive}

R8{Rdrive}

R32

0.1

C1222nF

R25{R_Line*Length}

21

R26{R_Line*Length}

21

R27{R_Line*Length}

21

R28{R_Line*Length}

21

V3

0V

R2310MEG

D2

D1N4148

R250

R750

R1450

R1950

R102k

C41UR11

100k

C210n

C610n

R410meg

R1610meg

V1

D9

D1N4002

D8

D1N4002D7

D1N4002

R310meg

D6

D1N4002

D5

D1N4002

D4

D1N4002

R610meg

R1510meg

R1810meg

R2410MEG

C9220uF

R29117

R3010MEG

L1

100uH

R13

0.001

C5220U

R12

1k

R5100

PARAMETERS:

k_data = 0.998

L_cm = 100U

Rdrive = 100Vdrive = 2

L_Drive = 5mHN_Drive = 1

Length = 100

L_data = 350u

K_Drive = 0.9997

L_data1 = 350u

C_Line = 15pL_Line = 0.3uHR_Line = 0.125

R17100

R2075

C71n

R175

C11n

D3

D1N4148

R310.2

L65{L_Line*Length}

L67{L_Line*Length}

L68{L_Line*Length}

C13{0.5*C_Line*Length}

D11

D1N4148

/m (Scaled)/m (Scaled)/m

m

20Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Simplified Single Transformer Circuit Model

Sensed voltage wave shape is within acceptable distortion level while Im << Ishort(Refer to Annex B for details)

Vab

t

0

V2_OUT

V1_OUTV2 R5100

V1 R4100

V3

0Vdc

C2{C_Line*Length}

L1

{L_Line*Length}

L2

{L_Line*Length}

C3{C_Line*Length}

D1D1N4148

R12K

R2100K

C11UF

L7L_cm

Series Voltage Feed ,Current Sense.

Lma

bLow Impedance

PSE

DTELINK

High Impedance

Lm

T1

Simplified detection elements model during detection mode.

21Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Single Transformer Circuit - Concept Principles

! Coupling transformer primary inputs are driven with two low impedance pulse source introducing 180 degree phase shift.

! Sensing Primary current for short / open condition (Coupled diode is conducting or reversed biased)

! Primary winding is always closed circuit to ground.! Clean and noise-free pulse shape at secondary.

! Pulse parameters requirements are compatible with 2 transformer solution

22Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Single Transformer Circuit - Simulation! Setup: 100m Cat 5 UTP cable! Cable parameters measured between pairs 4/5 to 7/8 and 1/2 to 3/6

V1_IN V2_OUT

V1_OUT V2_IN Ti me

4. 70ms 4. 75ms 4. 80ms 4. 85ms 4. 90ms 4. 95ms 5. 00msV( V2_I N_V1_OUT)

- 4 . 0V

0V

4. 0V

SEL>>

V( V1_I N_V2_OUT)- 4 . 0V

0V

4. 0V

23Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.Single Transformer Circuit - MeasurementsSetup A & B, 100m Cat 5, UTP cable

Diode non-conducting direction Diode conducting direction

Shorted load Open load

24Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.Single Transformer Circuit - MeasurementsSetup: Mid-Span,100m Cat 5 FTP cable

Diode non-conducting direction Diode conducting direction

Shorted load Open load

25Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.Single Transformer Circuit - MeasurementsSetup: Mid-Span, 20cm Cat 5 UTP cable

Diode non-conducting direction Diode conducting direction

Shorted load Open load

26Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Single Transformer Circuit - Conclusions

! Utilizing a single coupling transformer is feasible

! Similar results were observed for both A and B setup

27Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Comparison Between Single / Double Transformers

*Further investigation and testing should be performed to evaluate impact on cost and footprint

Probing signal sensing methodParameter Single Transformer Double TransformerMin. Primary inductance 4mH 1.350mHOperating mode Voltage pulse transformer Voltage pulse transformerFootprint about 0.6X 1" x 0.5" = XCost TBD TBD

28Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Coupled Diode Implementation Limitations

! Series voltage pulses feeding requires coupling transformers

! Implementing this scheme without using coupling transformers must utilize a different type of probing pulse feeding method

! Parallel voltage pulse feeding is required to allow future Silicon implementation

29Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

RX_Data_trafo2

RX_Data_trafo

RXN

RXCT

RXP

RDN

RDP

RDCT

TX_Data_trafo1

TX_Data_trafo

TDP

TDCT

TDN

TXP

TXN

TXCT

RX_Data_trafo1

RX_Data_trafo

RXN

RXCT

RXP

RDN

RDP

RDCT

TX_Data_trafo2

TX_Data_trafo

TDP

TDCT

TDN

TXP

TXN

TXCT

0

0

0

0

0

0

Chassis

Chassis

Chassis

DTE_N

DTE_P

DTE_N

DTE_N

VP1 V_PORT

VP2

C10

{0.5*C_Line*Length}

L66{L_Line*Length}

V2

D3D1N4002

R32

0.1

R25{R_Line*Length}

21

R26{R_Line*Length}

21

R27{R_Line*Length}

21

R28{R_Line*Length}

21

V30V

R2310MEG

D1

D1N4148

R1150

R750

R1450

R1950

R12k

C11UR2

100k

C210n

C610n

R410meg

R1610meg

V1

D9

D1N4002

D8

D1N4002D7

D1N4002

R310meg

D6

D1N4002

D5

D1N4002

D4

D1N4002

R610meg

R1510meg

R1810meg

R2410MEG

C9220uF

R29117

R3010MEG

R5100

C50.47uF

R17100

PARAMETERS:

k_data = 0.998

L_cm = 5u

Rdrive = 100Vdrive = 2

Length = 100

L_data = 350uL_data1 = 350u

C_Line = 15pL_Line = 0.3uHR_Line = 0.125

T_rise = 10uT_fall = 10uT_per = 8msT_delay = 6msT_ch = 5msT_dch = 100u

R2075

C71n

R1075

C41n

R12100

R310.2

L65{L_Line*Length}

L67{L_Line*Length}

L68{L_Line*Length}

C13{0.5*C_Line*Length}

D2D1N4148

M5

2N7000

R9

10

/m (Scaled)/m (Scaled)/mm

Transformer-less Implementation

Limits minimum pulse width

Switch, Current limit protection etc.

30Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.Simplified Transformer-less Implementation Model

T i me

0 s 5 ms 1 0 ms 1 5 ms 2 0 msV( V_ P ORT )

0 V

1 . 0 V

2 . 0 V

S E L > >

V( VP 2 )- 1 0 V

0 V

1 0 VV( VP 1 )

- 2 . 0 V

0 V

2 . 0 V

Sampling points

VP1

VP2

V_PORT

VP1

VP2

V_PORT

V2

D3D1N4002

D1D1N4148

V30V R2

100k

C11U

R12k

V1

C50.47U

R12

100

R310.1

R910

M5

M2N7000

D2D1N4148

Isolatingcircuit

DTE PS

Parallel Voltage Feed-Voltage Sense

31

Transformer-less Implementation - Waveforms

dT1 dT2 dT3 dT4 dT1 dT1: Diode is at non-conduction direction, Cap is charged to V1.dT2: Port output pulse voltage peak is sensed for V1±TBD% within dT2 gape.dT3: Diode is in conducting direction, by shorting the port for limited time dT3.dT4: Port output pulse voltage valley is sensed for V2=0.7V ±TBD% within dT4 gape.!All other digital pulse manipulation and processing apply to this concept as well and are conceptually similar to Series Feed solutions (with the transformers…)

Ti me

0 s 2 ms 4 ms 6 ms 8 ms 1 0 ms 1 1 msV( V_ P ORT)

0 V

1 . 0 V

2 . 0 V

S EL> >

V( VP 2 )- 1 0 V

0 V

1 0 VV( VP 1 )

- 2 . 0 V

0 V

2 . 0 VVP1

VP2

V_PORT

V1V2

32Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Transformer-less solution - Concept Principles

! Parallel probing signal feeding method

! AC coupled diode elements are detected by two pulse sources with different characteristics.

! Detected signal is unique function of coupled diode elements values.

! Immunity to ambiguous detection is ensured by pseudo randomly changing pulse width on both pulse sources.! In addition to behavioral signature detection, higher level of

detection reliability can be achieved by utilizing the forward and reversed AC coupled diode time constant network.

33Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Comparison between probing signal Implementation methods

Parameters-DTE side Single Transformer Double Transformer With Out TransformerCoupled diode elements No Change No Change No ChangeCoupled diode elements values No Change No Change No ChangeParameters-PSE sidePulse amplitude No Change No Change No ChangePulse width 5uS 5uS 5uS to 5mSPulse Frequency 5Khz - 25Khz 5Khz - 25Khz 100Hz - 2KHzImunity to false detection Digital Processing Digital Processing Digital ProcessingImpact on EMI No Change No Change BetterPulse manipulation and processing concept No Change No Change No ChangeImunity to ESD(See separate presentation) No Change No Change No ChangeOther Interface hardware(Data path) No Change No Change No ChangeParameters-SystemPSE to DTE competability No Change No Change No ChangeIntegration into Silicon NA NA PossibleCost Reduction limited limited PossibleFootprint Reduction limited limited PossiblePort to GND isolation achieved by Coupling transformer Coupling transformer 48V DC/DC conv.Port to Port Isolation achieved by Coupling transformer Coupling transformer 48V DC/DC conv.

& 48V DC/DC conv. & 48V DC/DC conv.

34Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Implication on Detection Parameters Specifications

! Same coupled diode signature circuit is used in all probing signal feeding methods

! Proposed coupled diode and pulse parameters specifications should not limit implementation methods

! Transformers and silicon implementations will be feasible if a wider range of parameters be specified:! Frequency ( 5Khz to 25Khz and 100Hz to 2Khz)

! Pulse width (5uS, 5uS to 5ms)

! Pulse Amplitude TBD

! Pulse average power (TBD mW max.)

! Successful detection if TBDmin to 256max consecutive positive detection cycles where received.

35Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

What next?

! Additional investigation and testing are needed! Optimizing total detection time

! Setting pulse width and duty cycle range as function of Coupled Diode element values.

! Lab tests and further theoretical analysis to find if discovery process can be fooled.

! With acknowledgments to Vladimir Portonov & Alon Ferenz for their help.

36Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Annex A - Two Transformer solutionRequirements from coupling transformer ! Im = Coupling transformer primary magnetizing current! Isc = Coupling transformer secondary current during diode conduction mode.! Zt = Total series impedance off whole link during diode conduction mode. Zt = 40-

80Ohm! Vt = Coupling transformer secondary peak voltage! pw = Probing pulse width! F = Probing pulse frequency! Duty = pw*F! Ls = series inductance caused by link inductance + common mode filter inductance

located in the data transformer.! Ls = 30-150uH! Allowing 10% loss on detected pulse amplitude due to voltage drop on high impedance

series elements.! Lm/(Lm+Ls) = 0.9 => Lm>9Ls! Idrive_avg = 0.5Im*Duty = 0.5*Duty*Vt*Duty/(F*Lm) = 0.5*Duty^2*Vt/(F*Lm)! Lm>0.5*Duty^2*Vt/(Idrive_avg*F)! Lm> max{9Ls , 0.5*Duty^2*Vt/(Idrive_avg*F) } =1.350mH

37Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Annex B - Single Transformer solutionRequirements From Coupling transformer! Im = Coupling transformer primary magnetizing current! Isc = Coupling transformer secondary current during diode conduction mode.! Zt = Total series impedance off whole link during diode conduction mode. Zt = 40-80Ohm! Vt = Coupling transformer secondary peak voltage! pw = Probing pulse width! F = Probing pulse frequency! Duty = pw*F! Ls = series inductance caused by link inductance + common mode filter inductance located

in the data transformer! For keeping detection resolution within safe margin: Im<Isc / 10! Isc = Vt/Zt = 25mA - 50mA! Lm>Vt/(Im/pw) = 2/(0.1*25mA/5uS)=4mH! Lm>4mH

38Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Annex C - Setup B Electrical Model for Circuit Elements During Detection Mode

Drive_Trafo

Drive_Trafo

IN1

IN2

OUT1

OUT2

Drive_Trafo0

Drive_Trafo

IN1

IN2

OUT1

OUT2

TX_Data_trafo

TX_Data_trafo

TDP

TDCT

TDN

TXP

TXN

TXCT

RX_Data_trafo

RX_Data_trafo

RXN

RXCT

RXP

RDN

RDP

RDCT

RX_Data_trafo0

RX_Data_trafo

RXN

RXCT

RXP

RDN

RDP

RDCT

TX_Data_trafo0

TX_Data_trafo

TDP

TDCT

TDN

TXP

TXN

TXCT

0

0

0

0

0

0

0

bbb

Chassis

Chassis

Chassis

DTE_N

DTE_N

DTE_P

DTE_N

aaa

C30.01u

D1

D1N4148

C10

{0.5*C_Line*Length}

R25{R_Line*Length}

21

R28{R_Line*Length}

21

R27{R_Line*Length}

21

R9100

R26{R_Line*Length}

21

V3

0V

R2310MEG

R1950

R1450

R750

R250

D2

D1N4148

R11100k

R102k

C41U

L66{L_Line*Length}

C210n

V1

C610n

R410meg

R1610meg

V2

D4

D1N4002

D5

D1N4002

D6

D1N4002

D7

D1N4002

D8

D1N4002

D9

D1N4002

R1810meg

R1510meg

R610meg

R310meg

R2410MEG

R29117

C9220uF

R21

{Rdrive}

R8{Rdrive}

R3010MEG

C112.7n

R13

0.001

R32

0.1

C122.7nF

C5220U

L1

100uH

R12

1k

R310.2

R5100

PARAMETERS:

k_data = 0.998

L_cm = 100u

Rdrive = 12Vdrive = 3.3

L_Drive = 1.2mHN_Drive = 1

Length = 100

L_data = 350u

K_Drive = 0.9997

L_data1 = 350u

C_Line = 15pFL_Line = 0.3uHR_Line = 0.125

L65{L_Line*Length}

R17100

L67{L_Line*Length}

L68{L_Line*Length}

C13{0.5*C_Line*Length}

R22100

D3

D1N4148

C80.01u

C71n

R2075

C11n

R175

/m (Scaled)/m (Scaled)/m (Scaled)

m

39Analysis of Coupled Diode Detection, Yair Darshan, PowerDsine, Rev-001

IEEE 802.3af, Sep. 2000.

Annex C - Cont.

L11{L_data}

L12{L_data}

K K4

COUPLING = {k_data}K_Linear

L17{L_data}

L16{L_data}

L13{L_cm}

L14{L_cm}

L10{L_data1}

L15{L_data1}

K K5

COUPLING = {k_data}K_Linear

K K6

COUPLING = {k_data}K_Linear

R38

0.1

R340.1

R330.1

R350.1

R31

0.5

R36

0.5

R37

0.5

R32

0.5TDP

TDCT

TDN

TXP

TXN

TXCTTx_Data_Trafo

L8{L_data} L9

{L_data}

L4{L_data}

L5{L_data}

L6{L_cm}

L7{L_cm}

K K2

COUPLING = {k_data}K_Linear

K K3

COUPLING = {k_data}K_Linear

R30

0.1

R27

0.1

R25

0.5

R28

0.5

R29

0.5

R26

0.5

RXN

RXCT

RXP

RDN

RDP

RDCT

Rx_Data_Trafo

L2{L_Drive}

L3

{L_Drive*N_Drive*N_Drive}

K K1

COUPLING = {K_Drive}K_Linear

R1

1

R2

1

C1

20PF

C2

20PF

IN1

IN2

OUT1

OUT2

Drive_Trafo