Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and...

59
Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of Computational Science and Engineering National University of Singapore Email: [email protected] URL: http://www.math.nus.edu.sg/~bao Collaborators: Fong Ying Lim (IHPC, Singapore), Yanzhi Zhang (FSU) Ming-Huang Chai (NUSHS); Yongyong Cai (NUS)

Transcript of Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and...

Page 1: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Analysis and Efficient Computation for Nonlinear Eigenvalue Problems

in Quantum Physics and Chemistry

Weizhu Bao

Department of Mathematics& Center of Computational Science and Engineering

National University of SingaporeEmail: [email protected]

URL: http://www.math.nus.edu.sg/~bao

Collaborators: Fong Ying Lim (IHPC, Singapore), Yanzhi Zhang (FSU) Ming-Huang Chai (NUSHS); Yongyong Cai (NUS)

Page 2: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Outline

MotivationSingularly perturbed nonlinear eigenvalue problemsExistence, uniqueness & nonexistenceAsymptotic approximationsNumerical methods & resultsExtension to systemsConclusions

Page 3: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Motivation: NLS

The nonlinear Schrodinger (NLS) equation

– t : time & : spatial coordinate (d=1,2,3)– : complex-valued wave function– : real-valued external potential– : interaction constant

• =0: linear; >0: repulsive interaction • <0: attractive interaction

2 21( , ) ( ) | |

2ti x t V x

( R )dx

( , )x t

( )V x

0

4 ( 1)( . ., )sa Ne g

a

Page 4: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Motivation

In quantum physics & nonlinear optics: – Interaction between particles with quantum effect– Bose-Einstein condensation (BEC): bosons at low temperature

– Superfluids: liquid Helium,

– Propagation of laser beams, …….

In plasma physics; quantum chemistry; particle physics; biology; materials science (DFT, KS theory,…); ….

Conservation laws2 2 22

0 0

2 2 4

02

( ) : ( , ) ( ,0) ( ) : ( ) ( 1),

1( ) : ( , ) ( ) ( , ) ( , ) ( )

2

N x t d x x d x x d x N

E x t V x x t x t d x E

Page 5: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Motivation

Stationary states (ground & excited states)

Nonlinear eigenvalue problems: Find

Time-independent NLS or Gross-Pitaevskii equation (GPE):Eigenfunctions are– Orthogonal in linear case & Superposition is valid for dynamics!!– Not orthogonal in nonlinear case !!!! No superposition for dynamics!!!

2 2

2 2

1( ) ( ) ( ) ( ) | ( ) | ( ), R

2

( ) 0, ; : | (x) | 1

dx x V x x x x x

x x dx

( , ) s.t. ( , ) ( ) i tx t x e

Page 6: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Motivation

The eigenvalue is also called as chemical potential

– With energy

Special solutions– Soliton in 1D with attractive interaction– Vortex states in 2D

4( ) ( ) | (x) |2

E dx

2 2 41( ) [ | ( ) | ( )| ( ) | | ( ) | ]

2 2x V x x x dxE

( ) ( ) immx f r e

Page 7: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Motivation

Ground state: Non-convex minimization problem

– Euler-Lagrange equation Nonlinear eigenvalue problem

Theorem (Lieb, etc, PRA, 02’) – Existence d-dimensions (d=1,2,3):– Positive minimizer is unique in d-dimensions (d=1,2,3)!!– No minimizer in 3D (and 2D) when– Existence in 1D for both repulsive & attractive – Nonuniquness in attractive interaction – quantum phase transition!!!!

| |0 & lim ( )

xV x

( ) min ( ) | 1, | 0, ( )g xS

E E S E

cr0 ( 0)

Page 8: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Symmetry breaking in ground state

Attractive interaction with double-well potential2 2

2 2 2

1( ) ''( ) ( ) ( ) | ( ) | ( ), with | ( ) | 1

2

( ) ( ) & : positive 0 negative

x x V x x x x x dx

V x U x a

Page 9: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Motivation

Excited states:Open question: (Bao & W. Tang, JCP, 03’; Bao, F. Lim & Y. Zhang, Bull Int. Math, 06’)

Continuous normalized gradient flow:

– Mass conservation & energy diminishing

,,, 321

???????)()()(

)()()(

,,,

21

21

21

g

g

g

EEE

2 22

0 0

( (., ))1( , ) ( ) | | , 0,

2 || (., ) ||

( ,0) ( ) with || ( ) || 1.

t

tx t V x t

t

x x x

Page 10: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Singularly Perturbed NEP

For bounded with box potential for

– Singularly perturbed NEP

– Eigenvalue or chemical potential

– Leading asymptotics of the previous NEP

22 21

: , , | ( ) | 1x dx

22 2( ) ( ) | ( ) | ( ), ,

2

( ) 0,

x x x x x

x x

1

4

22 4

1( ) ( ) | (x) | (1)

2

1( ) | | (1), 0 1

2 2

E dx O

E dx O

( ) ( ) ( ) & ( ) ( ) ( ), 1O E E O

Page 11: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Singularly Perturbed NEP

For whole space with harmonic potential for

– Singularly perturbed NEP

– Eigenvalue or chemical potential

– Leading asymptotics of the previous NEP

21/ 2 / 4 1 /( 2) 2, ( ) ( ), , : | ( ) | 1d

d d dx x x x x dx

22 2( ) ( ) ( ) ( ) | ( ) | ( ),

2dx x V x x x x x

1

4

22 2 4

1( ) ( ) | (x) | (1)

2

1( ) ( ) | | | | (1), 0 1

2 2

d

d

E dx O

E V x dx O

1 1 /( 2) 1 /( 2)( ) ( ) ( ) ( ) & ( ) ( ) ( ), 1d d d dO O E E O

Page 12: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

General Form of NEP

– Eigenvalue or chemical potential

– Energy

Three typical parameter regimes:– Linear: – Weakly interaction: – Strongly repulsive interaction:

22 2

2 2

( ) ( ) ( ) ( ) | ( ) | ( ), R2

( ) 0, ; : | ( ) | 1

dx x V x x x x x

x x x dx

4( ) ( ) | (x) |2

E dx

22 2 4( ) [ | ( ) | ( )| ( ) | | ( ) | ]

2 2x V x x x dxE

1& 0 1& | | 1

1& 0 1

Page 13: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Box Potential in 1D

The potential:The nonlinear eigenvalue problem

Case I: no interaction, i.e. – A complete set of orthonormal eigenfunctions

0, 0 1,( )

, otherwise.

xV x

22

12

0

( ) ( ) | ( ) | ( ), 0 1,2

(0) (1) 0 with | ( ) | 1

x x x x x

x dx

1& 0

2 21( ) 2 sin( ), , 1, 2,3,

2l lx l x l l

Page 14: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Box Potential in 1D

– Ground state & its energy:

– j-th-excited state & its energy

Case II: weakly interacting regime, i.e.– Ground state & its energy:

– j-th-excited state & its energy

20 0 0( ) ( ) 2 sin( ), : ( ) : ( )

2g g g g g gx x x E E

2 20 0 0( 1)

( ) ( ) 2 sin(( 1) ), : ( ) : ( )2j j j j j j

jx x j x E E

1& | | (1)o

2 20 0 03

( ) ( ) 2 sin( ), : ( ) ( ) , : ( ) ( ) 32 2 2g g g g g g g gx x x E E E

2 20 0

2 20

( 1) 3( ) ( ) 2 sin(( 1) ), : ( ) ( ) ,

2 2

( 1): ( ) ( ) 3

2

j j j j j

j j j

jx x j x E E E

j

Page 15: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Box Potential in 1D

Case III: Strongly interacting regime, i.e.– Thomas-Fermi approximation, i.e. drop the diffusion term

• Boundary condition is NOT satisfied, i.e. • Boundary layer near the boundary

1& 0 1

TF TF TF 2 TF TF TF

1TF 2

0

TF TF TFg g g

( ) | ( ) | ( ), 0 1, ( )

| ( ) | 1

1 (x) ( ) 1, E E , 1,

2

g g g g g g

g

g g g

x x x x x

x dx

x

TF TF(0) (1) 1 0g g

Page 16: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Box Potential in 1D

– Matched asymptotic approximation• Consider near x=0, rescale• We get

• The inner solution

• Matched asymptotic approximation for ground state

, ( ) ( )g

g

x X x x

31( ) ( ) ( ), 0 ; (0) 0, lim ( ) 1

2 XX X X X X

( ) tanh( ), 0 ( ) tanh( ), 0 (1)g

g gX X X x x x o

MA MA MA

MA MA

1MA 2 MA 2 2 TF 2 2

0

( ) ( ) tanh( ) tanh( (1 )) tanh( ) , 0 1

1 | ( ) | 1 2 1 2 2 1 2 , 0 1.

g g g

g g g

g g g g

x x x x x

x dx

Page 17: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Box Potential in 1D

• Approximate energy

• Asymptotic ratios:

• Width of the boundary layer:

MA 2 21 41 2

2 3g gE E

( )O

0

1lim ,

2g

g

E

Page 18: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Box Potential in 1D

• Matched asymptotic approximation for excited states

• Approximate chemical potential & energy

• Boundary layers • Interior layers

MA[( 1) / 2]MA MA

0

MA MA[ / 2]

0

2( ) ( ) [ tanh( ( ))

1

2 1tanh( ( )) tanh( )]

1

jg

j j jl

jg g

jl

lx x x

j

lx C

j

MA 2 2 2 2

MA 2 2 2 2

1 2( 1) 1 ( 1) 2( 1) ,

1 4( 1) 1 ( 1) 2( 1) ,

2 3

j j

j j

j j j

E E j j j

( )O

Page 19: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Harmonic Oscillator Potential in 1D

The potential:The nonlinear eigenvalue problem

Case I: no interaction, i.e. – A complete set of orthonormal eigenfunctions

2

( )2

xV x

22 2( ) ( ) ( ) ( ) | ( ) | ( ), with | ( ) | 1

2x x V x x x x x dx

1& 0

2

2

2

1/ 2 / 21/ 4

20 1 2

1 1( ) (2 !) ( ), , 0,1,2,3,

2

( ) ( 1) : Hermite polynomials with

( ) 1, ( ) 2 , ( ) 4 2,

l xl l l

l xl x

l l

lx l e H x l

d eH x e

dx

H x H x x H x x

Page 20: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Harmonic Oscillator Potential in 1D

– Ground state & its energy:

– j-th-excited state & its energy

Case II: weakly interacting regime, i.e.– Ground state & its energy:

– j-th-excited state & its energy

20 / 2 0 01/ 4

1 1( ) ( ) , : ( ) : ( )

2x

g g g g g gx x e E E

20 1/ 2 / 2 0 00 01/ 4

1 ( 1)( ) ( ) (2 !) ( ), : ( ) : ( )

2j x

j j j j j j j

jx x j e H x E E

1& | | (1)o

20 / 2 0 00 01/ 4

1 1 1( ) ( ) , : ( ) ( ) , : ( ) ( )

2 2 2x

g g g g g g g gx x e E E E C C

0 0

0 0 4j j

-

( 1)( ) ( ), : ( ) ( ) ,

2 2

( 1): ( ) ( ) with C = | ( ) |

2

j j j j j j

j j j j

jx x E E E C

jC x dx

Page 21: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Harmonic Oscillator Potential in 1D

Case III: Strongly interacting regime, i.e.– Thomas-Fermi approximation, i.e. drop the diffusion term

– No boundary and interior layer– It is NOT differentiable at

1& 0 1

TF 2 TFTF TF TF TF 2 TF TF

TF 3/ 2TF 2 TF 2/3

-

/ 2, | | 2( ) ( ) ( ) | ( ) | ( ) ( )

0, otherwise

2(2 ) 1 3 1 | ( ) | ( )

3 2 2

g gg g g g g g

gg g g

x xx V x x x x x

x dx

TF2 gx

Page 22: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Harmonic Oscillator Potential in 1D

– Thomas-Fermi approximation for first excited state

• Jump at x=0!• Interior layer at x=0

TF TF TF TF 2 TF1 1 1 1 1

TF 2 TFTF 1 1

1

TF 3/ 2TF 2 TF 2/31

1 1 1

-

( ) ( ) ( ) | ( ) | ( )

sign( ) / 2, 0 | | 2( )

0, otherwise

2(2 ) 1 3 1 | ( ) | ( )

3 2 2

x V x x x x

x x xx

x dx

Page 23: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Harmonic Oscillator Potential in 1D

– Matched asymptotic approximation

– Width of interior layer:

MA1MA MA

1 1MA MA 2 MA1 1 1

| |tanh( ) 0 | | 2

( ) 2 / 2

0 otherwise

x xx x

x x

( )O

Page 24: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Thomas-Fermi (or semiclassical) limit

In 1D with strongly repulsive interaction– Box potential

– Harmonic potential

In 1D with strongly attractive interaction

0

1 ??? ??? : ( ) ???g g g gE

0 1,11 0 1 1( ) 1

0 0,1 2g g g g

xx W E

x

0 2 00

0 2/3 0 2/3

/ 2, | | 2( ) ( ) [0,0.5)

0, otherwise

3 3 1 3( ) , ( )

10 2 2 2

g gg g

g g g g

x xx x C

E E

1 0 1/2 2

0

0

( ) ( )

( ) ( )g g g gx x x L E

V x V x x

Page 25: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Numerical methods

Runge-Kutta method: (M. Edwards and K. Burnett, Phys. Rev. A, 95’)

Analytical expansion: (R. Dodd, J. Res. Natl. Inst. Stan., 96’)

Explicit imaginary time method: (S. Succi, M.P. Tosi et. al., PRE, 00’)

Minimizing by FEM: (Bao & W. Tang, JCP, 02’)

Normalized gradient flow: (Bao & Q. Du, SIAM Sci. Comput., 03’)

– Backward-Euler + finite difference (BEFD)– Time-splitting spectral method (TSSP)

Gauss-Seidel iteration method: (W.W. Lin et al., JCP, 05’) Continuation method: W. W. Lin, etc., C. S. Chien, etc

( )E

Page 26: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Imaginary time method

Idea: Steepest decent method + Projection

– The first equation can be viewed as choosing in GPE– For linear case: (Bao & Q. Du, SIAM Sci. Comput., 03’)

– For nonlinear case with small time step, CNGF

22 2

1

11

1

0 0

( )1( , ) ( ) | | ,

2 2

( , )( , ) , 0,1,2,

|| ( , ) ||

( ,0) (x) with || ( ) || 1.

t n n

nn

n

Ex t V x t t t

xx t n

x

x x

tt

1( (., ) ) ( (., ) ) ( (., 0) )n nE t E t E

it

0

1

2 1̂

??)()(

)()ˆ(

)()ˆ(

01

11

01

EE

EE

EE

g

Page 27: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Normalized gradient glow

Idea: letting time step go to 0 (Bao & Q. Du, SIAM Sci. Comput., 03’)

– Energy diminishing

– Numerical Discretizations• BEFD: Energy diminishing & monotone (Bao & Q. Du, SIAM Sci. Comput., 03’)

• TSSP: Spectral accurate with splitting error (Bao & Q. Du, SIAM Sci. Comput., 03’)

• BESP: Spectral accuracy in space & stable (Bao, I. Chern & F. Lim, JCP, 06’)

• Uniformly convergent method (Bao&Chai, Comm. Comput. Phys, 07’)

22 2

2

0 0

( (., ))( , ) ( ) | | , 0,

2 || (., ) ||

( ,0) ( ) with || ( ) || 1.

t

tx t V x t

t

x x x

0|| (., ) || || || 1, ( (., )) 0, 0d

t E t td t

Page 28: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Ground states

Numerical results (Bao&W. Tang, JCP, 03’; Bao, F. Lim & Y. Zhang, 06’)

– Box potential• 1D-states 1D-energy 2D-surface 2D-contour

– Harmonic oscillator potential:

• 1D 2D-surface 2D-contour – Optical lattice potential:

• 1D 2D-surface 2D-contour 3D next

otherwise;100)( xxV

2/xV(x) 2

2 2( ) / 2 12sin (4 )V x x x

Page 29: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 30: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 31: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 32: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 33: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 34: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 35: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 36: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 37: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 38: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 39: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 40: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Extension to rotating BEC

BEC in rotation frame(Bao, H. Wang&P. Markowich,Comm. Math. Sci., 04’)

Ground state: existence & uniqueness, quantized vortex

– In 2D: In a rotational frame &With a fast rotation & optical lattice

– In 3D: With a fast rotationnext

2 2

2 2

1( ) [ ( ) | | ] ,

2

: | (x) | 1d

dzx V x L x

dx

: ( ) , ,z y x y xL xp yp i x y i L x P P i

: ( ) min ( ), | 1, ( )g gS

E E E S E

Page 41: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 42: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 43: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 44: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

back

Page 45: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Extension to two-component

Two-component (Bao, MMS, 04’)

Ground state

– Existence & uniqueness– Quantized vortices & fractional index– Numerical methods & results: Crarter & domain wall

2 2 21 1 11 1 12 2 1

2 2 22 2 21 1 22 2 2

2 22 21 1 2 2

1( ) [ ( ) | | | | ]

21

( ) [ ( ) | | | | ]2

| ( ) | , | ( ) | 1 0 1d d

z

z

x V x L

x V x L

x dx x dx

1 2 1 2: ( ) min ( ), ( , ) | , 1 , ( )g gS

E E E S E

Page 46: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Results

Theorem – Assumptions

• No rotation & Confining potential• Repulsive interaction

– Results• Existence & Positive minimizer is unique

– No minimizer in 3D when

Nonuniquness in attractive interaction in 1D Quantum phase transition in rotating frame

| |lim ( )x

V x

11 220 or 0

211 12 22 11 11 22 12, , 0 or 0 & 0

0

Page 47: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.
Page 48: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Two-component with an external driving field

Two-component (Bao & Cai, 09’)

Ground state

– Existence & uniqueness (Bao & Cai, 09’)

– Limiting behavior & Numerical methods – Numerical results: Crarter & domain wall

2 2 21 11 1 12 2 1 2

2 2 22 21 1 22 2 2 1

2 2 2 21 2 1 2

1( ) [ ( ) | | | | ]

21

( ) [ ( ) | | | | ]2

| ( ) | | ( ) | 1d

z

z

x V x L

x V x L

x x dx

1 2: ( ) min ( ), ( , ) | 1, ( )g g SE E E S E

Page 49: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Theorem (Bao & Cai, 09’)

– No rotation & confining potential &

– Existence of ground state!! – Uniqueness in the form under

– At least two different ground states under– quantum phase transition

– Limiting behavior

211 11 22 12 12 11 220 & 0 or & 0

12 11 22 0 0 00 & 0 & ( , ) for 0

211 12 22 11 11 22 12, , 0 or 0 & 0

1 2(| |, sign( ) | |)g gg

1 2

1 2

1 2

| | | | & | |

| | 0 & | |

| | & | | 0

g g g

g g g

g g g

Page 50: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Extension to spin-1

Spin-1 BEC (Bao & Wang, SINUM, 07’; Bao & Lim, SISC 08’, PRE 08’)

– Continuous normalized gradient flow (Bao & Wang, SINUM, 07’)

– Normalized gradient flow (Bao & Lim, SISC 08’)• Gradient flow + third projection relation

2 * 21 1 1 0 1 1 1 0

2 *0 0 1 1 0 1 1 0

2 * 21 1 1 0 1 1 1 0

2 2 2 2 2 21 0 1 1 0 1

1( ) [ ( ) ] ( )

21

2 [ ( ) ] ( ) 22

1( ) [ ( ) ] ( )

2

[| ( ) | ( ) | ( ) | ]

n s s

n s s

n s s

V x g g g

V x g g g

V x g g g

x x x

2 2 2 21 1 1 1

1,

[| ( ) | | ( ) | ] ( 1 1)

d

d

dx

x x dx M M

Page 51: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Quantum phase transition

Ferromagnetic gs <0 Antiferromagnetic gs > 0

Page 52: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Dipolar Quantum Gas

Experimental setup – Molecules meet to form dipoles – Cool down dipoles to ultracold – Hold in a magnetic trap – Dipolar condensation – Degenerate dipolar quantum gas

Experimental realization– Chroimum (Cr52)– 2005@Univ. Stuttgart, Germany– PRL, 94 (2005) 160401

Big-wave in theoretical studyA. Griesmaier,et al., PRL, 94 (2005)160401

Page 53: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Mathematical Model

Gross-Pitaevskii equation (re-scaled)

– Trap potential– Interaction constants– Long-range dipole-dipole interaction kernel

References:– L. Santos, et al. PRL 85 (2000), 1791-1797– S. Yi & L. You, PRA 61 (2001), 041604(R); D. H. J. O’Dell, PRL 92 (2004), 250401

2 2ext dip

1( , ) ( ) | | | | ( , )

2i x t V x U x tt

3( , )x t x

2 2 2 2 2 2ext

1( )

2 x y zV z x y z 2

0 dip

20 0

4 (short-range), (long-range)

3s

mNN a

a a

2 2 23

dip 3 3

3 1 3( ) / | | 3 1 3cos ( )( ) , fixed & satisfies | | 1

4 | | 4 | |

n x xU x n n

x x

Page 54: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Mathematical Model

Mass conservation (Normalization condition)

Energy conservation

Long-range interaction kernel:– It is highly singular near the origin !! At singularity near the origin !! – Its Fourier transform reads

• No limit near origin in phase space !! • Bounded & no limit at far field too !!• Physicists simply drop the second singular term in phase space near origin!!• Locking phenomena in computation !!

3 3

2 22( ) : ( , ) ( , ) ( ,0) 1N t t x t d x x d x

3

2 2 4 2 2ext dip 0

1( ( , )) : | | ( ) | | | | ( | | ) | | ( )

2 2 2E t V x U d x E

23

dip 2

3( )( ) 1

| |

nU

3

1

| |O

x

Page 55: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

A New Formulation

Using the identity (O’Dell et al., PRL 92 (2004), 250401, Parker et al., PRA 79 (2009), 013617)

Dipole-dipole interaction becomes

Gross-Pitaevskii-Poisson type equations (Bao,Cai & Wang, JCP, 10’)

Energy

2ext

2

| |

1( , ) ( ) ( ) | | 3 ( , )

2

( , ) | ( , ) | , lim ( , ) 0

n n

x

i x t V x x tt

x t x t x t

2 2

dip dip3 2 2

3 3( ) 1 3( )( ) 1 ( ) 3 ( ) 1

4 4 | |n n

n x nU x x U

r r r

2 2 2 2dip

1| | | | 3 & | | | |

4n nUr

3

2 2 4 2ext

1 3( ( , )) : | | ( ) | | | | | |

2 2 2 nE t V x d x

| | & & ( )n n n n nr x n

Page 56: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Ground State Results

Theorem (Existence, uniqueness & nonexistence) (Bao, Cai & Wang, JCP, 10’) – Assumptions

– Results• There exists a ground state if • Positive ground state is uniqueness

• Nonexistence of ground state, i.e. – Case I: – Case II:

3ext ext

| |( ) 0, & lim ( ) (confinement potential)

xV x x V x

g S 0 &2

00| | with i

g ge

lim ( )SE

0 0 & or

2

Page 57: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.
Page 58: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.
Page 59: Analysis and Efficient Computation for Nonlinear Eigenvalue Problems in Quantum Physics and Chemistry Weizhu Bao Department of Mathematics & Center of.

Conclusions

Analytical study– Leading asymptotics of energy and chemical potential– Existence, uniqueness & quantum phase transition!!– Thomas-Fermi approximation– Matched asymptotic approximation– Boundary & interior layers and their widths

Numerical study– Normalized gradient flow– Numerical results

Extension to rotating, multi-component, spin-1, dipolar cases.