An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its...

262
An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture and Related Topics in Knot Theory Indian Institute of Science Education and Research, Pune 21st December, 2018 Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 1 / 45

Transcript of An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its...

Page 1: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

An Introduction to the Volume Conjectureand its generalizations, III

Hitoshi Murakami

Tohoku University

Workshop on Volume Conjecture and Related Topics in Knot TheoryIndian Institute of Science Education and Research, Pune

21st December, 2018

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 1 / 45

Page 2: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Outline

1 Linear skein theory

2 Colored Jones polynomial of a torus knot

3 Chern–Simons invariant

4 CS of torus knots

5 Reidemeister torsion

6 Reidemeister torsion of

7 CJ, CS, and Reidemeister for torus knots

8 Parametrized VC for

9 CS of

10 Reidemeister torsion of

11 Generalizations of the Volume Conjecture

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 2 / 45

Page 3: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Linear skein theory

Kauffman bracket

Kauffman bracket ⟨|D|⟩ for an unoriented link diagram |D| is defined as⟨ ⟩= A

⟨ ⟩+ A−1

⟨ ⟩,

⟨Uc⟩ = (−A2 − A−2)c (U: c-component trivial link idagram).

If D presents K , the N-colored Jones polynomial JN(K ; q) is defined as

((−1)N−1AN2−1

)−w(D)⟨

N−1|D|

∆N−1

∣∣∣∣∣∣∣q:=A4

,

w(D) is the writhe (:= # −# ) of D,

∆k := (−1)k A2(k+1)−A−2(k+1)

A2−A−2 =

⟨k

⟩,

k := k−1

1−(∆k−2

∆k−1

) k−11

k−11

k−2 . (Jones–Wenzl idempotent)

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 3 / 45

Page 4: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Linear skein theory

Kauffman bracketKauffman bracket ⟨|D|⟩ for an unoriented link diagram |D| is defined as

⟨ ⟩= A

⟨ ⟩+ A−1

⟨ ⟩,

⟨Uc⟩ = (−A2 − A−2)c (U: c-component trivial link idagram).

If D presents K , the N-colored Jones polynomial JN(K ; q) is defined as

((−1)N−1AN2−1

)−w(D)⟨

N−1|D|

∆N−1

∣∣∣∣∣∣∣q:=A4

,

w(D) is the writhe (:= # −# ) of D,

∆k := (−1)k A2(k+1)−A−2(k+1)

A2−A−2 =

⟨k

⟩,

k := k−1

1−(∆k−2

∆k−1

) k−11

k−11

k−2 . (Jones–Wenzl idempotent)

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 3 / 45

Page 5: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Linear skein theory

Kauffman bracketKauffman bracket ⟨|D|⟩ for an unoriented link diagram |D| is defined as⟨ ⟩

= A⟨ ⟩

+ A−1⟨ ⟩

,

⟨Uc⟩ = (−A2 − A−2)c (U: c-component trivial link idagram).

If D presents K , the N-colored Jones polynomial JN(K ; q) is defined as

((−1)N−1AN2−1

)−w(D)⟨

N−1|D|

∆N−1

∣∣∣∣∣∣∣q:=A4

,

w(D) is the writhe (:= # −# ) of D,

∆k := (−1)k A2(k+1)−A−2(k+1)

A2−A−2 =

⟨k

⟩,

k := k−1

1−(∆k−2

∆k−1

) k−11

k−11

k−2 . (Jones–Wenzl idempotent)

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 3 / 45

Page 6: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Linear skein theory

Kauffman bracketKauffman bracket ⟨|D|⟩ for an unoriented link diagram |D| is defined as⟨ ⟩

= A⟨ ⟩

+ A−1⟨ ⟩

,

⟨Uc⟩ = (−A2 − A−2)c (U: c-component trivial link idagram).

If D presents K , the N-colored Jones polynomial JN(K ; q) is defined as

((−1)N−1AN2−1

)−w(D)⟨

N−1|D|

∆N−1

∣∣∣∣∣∣∣q:=A4

,

w(D) is the writhe (:= # −# ) of D,

∆k := (−1)k A2(k+1)−A−2(k+1)

A2−A−2 =

⟨k

⟩,

k := k−1

1−(∆k−2

∆k−1

) k−11

k−11

k−2 . (Jones–Wenzl idempotent)

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 3 / 45

Page 7: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Linear skein theory

Kauffman bracketKauffman bracket ⟨|D|⟩ for an unoriented link diagram |D| is defined as⟨ ⟩

= A⟨ ⟩

+ A−1⟨ ⟩

,

⟨Uc⟩ = (−A2 − A−2)c (U: c-component trivial link idagram).

If D presents K , the N-colored Jones polynomial JN(K ; q) is defined as

((−1)N−1AN2−1

)−w(D)⟨

N−1|D|

∆N−1

∣∣∣∣∣∣∣q:=A4

,

w(D) is the writhe (:= # −# ) of D,

∆k := (−1)k A2(k+1)−A−2(k+1)

A2−A−2 =

⟨k

⟩,

k := k−1

1−(∆k−2

∆k−1

) k−11

k−11

k−2 . (Jones–Wenzl idempotent)

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 3 / 45

Page 8: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Linear skein theory

Kauffman bracketKauffman bracket ⟨|D|⟩ for an unoriented link diagram |D| is defined as⟨ ⟩

= A⟨ ⟩

+ A−1⟨ ⟩

,

⟨Uc⟩ = (−A2 − A−2)c (U: c-component trivial link idagram).

If D presents K , the N-colored Jones polynomial JN(K ; q) is defined as

((−1)N−1AN2−1

)−w(D)⟨

N−1|D|

∆N−1

∣∣∣∣∣∣∣q:=A4

,

w(D) is the writhe (:= # −# ) of D,

∆k := (−1)k A2(k+1)−A−2(k+1)

A2−A−2 =

⟨k

⟩,

k := k−1

1−(∆k−2

∆k−1

) k−11

k−11

k−2 . (Jones–Wenzl idempotent)

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 3 / 45

Page 9: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Linear skein theory

Kauffman bracketKauffman bracket ⟨|D|⟩ for an unoriented link diagram |D| is defined as⟨ ⟩

= A⟨ ⟩

+ A−1⟨ ⟩

,

⟨Uc⟩ = (−A2 − A−2)c (U: c-component trivial link idagram).

If D presents K , the N-colored Jones polynomial JN(K ; q) is defined as

((−1)N−1AN2−1

)−w(D)⟨

N−1|D|

∆N−1

∣∣∣∣∣∣∣q:=A4

,

w(D) is the writhe (:= # −# ) of D,

∆k := (−1)k A2(k+1)−A−2(k+1)

A2−A−2 =

⟨k

⟩,

k := k−1

1−(∆k−2

∆k−1

) k−11

k−11

k−2 . (Jones–Wenzl idempotent)

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 3 / 45

Page 10: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Linear skein theory

Kauffman bracketKauffman bracket ⟨|D|⟩ for an unoriented link diagram |D| is defined as⟨ ⟩

= A⟨ ⟩

+ A−1⟨ ⟩

,

⟨Uc⟩ = (−A2 − A−2)c (U: c-component trivial link idagram).

If D presents K , the N-colored Jones polynomial JN(K ; q) is defined as

((−1)N−1AN2−1

)−w(D)⟨

N−1|D|

∆N−1

∣∣∣∣∣∣∣q:=A4

,

w(D) is the writhe (:= # −# ) of D,

∆k := (−1)k A2(k+1)−A−2(k+1)

A2−A−2 =

⟨k

⟩,

k := k−1

1−(∆k−2

∆k−1

) k−11

k−11

k−2 . (Jones–Wenzl idempotent)

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 3 / 45

Page 11: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Linear skein theory

By linear skein theory (Blanchet–Habegger–Masbaum–Vogel), we have

1

pq

r

:=p

q

r

xy

z

for appropriate x , y , z ,

2 θ(k , k, 2c) :=2c

k

k

3k

k=∑

0≤c≤k

∆2c

θ(k, k, 2c)k

k 2c

k

k,

42c

k

k

= (−1)c−kA−2k+2c+2c2−k2

2c

k

k

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 4 / 45

Page 12: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Linear skein theory

By linear skein theory (Blanchet–Habegger–Masbaum–Vogel), we have

1

pq

r

:=p

q

r

xy

z

for appropriate x , y , z ,

2 θ(k , k, 2c) :=2c

k

k

3k

k=∑

0≤c≤k

∆2c

θ(k, k, 2c)k

k 2c

k

k,

42c

k

k

= (−1)c−kA−2k+2c+2c2−k2

2c

k

k

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 4 / 45

Page 13: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Linear skein theory

By linear skein theory (Blanchet–Habegger–Masbaum–Vogel), we have

1

pq

r

:=p

q

r

xy

z

for appropriate x , y , z ,

2 θ(k , k, 2c) :=2c

k

k

3k

k=∑

0≤c≤k

∆2c

θ(k, k, 2c)k

k 2c

k

k,

42c

k

k

= (−1)c−kA−2k+2c+2c2−k2

2c

k

k

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 4 / 45

Page 14: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Linear skein theory

By linear skein theory (Blanchet–Habegger–Masbaum–Vogel), we have

1

pq

r

:=p

q

r

xy

z

for appropriate x , y , z ,

2 θ(k , k, 2c) :=2c

k

k

3k

k=∑

0≤c≤k

∆2c

θ(k, k, 2c)k

k 2c

k

k,

42c

k

k

= (−1)c−kA−2k+2c+2c2−k2

2c

k

k

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 4 / 45

Page 15: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Linear skein theory

By linear skein theory (Blanchet–Habegger–Masbaum–Vogel), we have

1

pq

r

:=p

q

r

xy

z

for appropriate x , y , z ,

2 θ(k , k, 2c) :=2c

k

k

3k

k=∑

0≤c≤k

∆2c

θ(k, k, 2c)k

k 2c

k

k,

42c

k

k

= (−1)c−kA−2k+2c+2c2−k2

2c

k

k

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 4 / 45

Page 16: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Linear skein theory

By linear skein theory (Blanchet–Habegger–Masbaum–Vogel), we have

1

pq

r

:=p

q

r

xy

z

for appropriate x , y , z ,

2 θ(k , k, 2c) :=2c

k

k

3k

k=∑

0≤c≤k

∆2c

θ(k, k, 2c)k

k 2c

k

k,

42c

k

k

= (−1)c−kA−2k+2c+2c2−k2

2c

k

k

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 4 / 45

Page 17: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Colored Jones polynomial of a torus knot

T (2, 2a+ 1) :=

}2a+1

: torus knot of type (2, 2a+ 1).⟨N−1

⟩=

N−1∑c=0

∆2c

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

=N−1∑c=0

∆2c

((−1)c−N+1A−2(N−1)+2c+2c2−(N−1)2

)2a+1

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

⟩=

N−1∑c=0

(−1)c−N+1A(2a+1)(2c2+2c−N2+1)A2(2c+1) − A−2(2c+1)

A2 − A−2.

So we have

JN(T (2, 2a+ 1); q) =(−1)N−1q−(2a+1)(N2−1)/2

qN/2 − q−N/2

×N−1∑c=0

(−1)cq(2a+1)(c2+c)/2(q(2c+1)/2 − q−(2c+1)/2

).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 5 / 45

Page 18: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Colored Jones polynomial of a torus knot

T (2, 2a+ 1) :=

}2a+1

: torus knot of type (2, 2a+ 1).

⟨N−1

⟩=

N−1∑c=0

∆2c

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

=N−1∑c=0

∆2c

((−1)c−N+1A−2(N−1)+2c+2c2−(N−1)2

)2a+1

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

⟩=

N−1∑c=0

(−1)c−N+1A(2a+1)(2c2+2c−N2+1)A2(2c+1) − A−2(2c+1)

A2 − A−2.

So we have

JN(T (2, 2a+ 1); q) =(−1)N−1q−(2a+1)(N2−1)/2

qN/2 − q−N/2

×N−1∑c=0

(−1)cq(2a+1)(c2+c)/2(q(2c+1)/2 − q−(2c+1)/2

).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 5 / 45

Page 19: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Colored Jones polynomial of a torus knot

T (2, 2a+ 1) :=

}2a+1

: torus knot of type (2, 2a+ 1).⟨N−1

=N−1∑c=0

∆2c

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

=N−1∑c=0

∆2c

((−1)c−N+1A−2(N−1)+2c+2c2−(N−1)2

)2a+1

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

⟩=

N−1∑c=0

(−1)c−N+1A(2a+1)(2c2+2c−N2+1)A2(2c+1) − A−2(2c+1)

A2 − A−2.

So we have

JN(T (2, 2a+ 1); q) =(−1)N−1q−(2a+1)(N2−1)/2

qN/2 − q−N/2

×N−1∑c=0

(−1)cq(2a+1)(c2+c)/2(q(2c+1)/2 − q−(2c+1)/2

).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 5 / 45

Page 20: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Colored Jones polynomial of a torus knot

T (2, 2a+ 1) :=

}2a+1

: torus knot of type (2, 2a+ 1).⟨N−1

⟩=

N−1∑c=0

∆2c

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

=N−1∑c=0

∆2c

((−1)c−N+1A−2(N−1)+2c+2c2−(N−1)2

)2a+1

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

⟩=

N−1∑c=0

(−1)c−N+1A(2a+1)(2c2+2c−N2+1)A2(2c+1) − A−2(2c+1)

A2 − A−2.

So we have

JN(T (2, 2a+ 1); q) =(−1)N−1q−(2a+1)(N2−1)/2

qN/2 − q−N/2

×N−1∑c=0

(−1)cq(2a+1)(c2+c)/2(q(2c+1)/2 − q−(2c+1)/2

).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 5 / 45

Page 21: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Colored Jones polynomial of a torus knot

T (2, 2a+ 1) :=

}2a+1

: torus knot of type (2, 2a+ 1).⟨N−1

⟩=

N−1∑c=0

∆2c

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

=N−1∑c=0

∆2c

((−1)c−N+1A−2(N−1)+2c+2c2−(N−1)2

)2a+1

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

=N−1∑c=0

(−1)c−N+1A(2a+1)(2c2+2c−N2+1)A2(2c+1) − A−2(2c+1)

A2 − A−2.

So we have

JN(T (2, 2a+ 1); q) =(−1)N−1q−(2a+1)(N2−1)/2

qN/2 − q−N/2

×N−1∑c=0

(−1)cq(2a+1)(c2+c)/2(q(2c+1)/2 − q−(2c+1)/2

).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 5 / 45

Page 22: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Colored Jones polynomial of a torus knot

T (2, 2a+ 1) :=

}2a+1

: torus knot of type (2, 2a+ 1).⟨N−1

⟩=

N−1∑c=0

∆2c

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

=N−1∑c=0

∆2c

((−1)c−N+1A−2(N−1)+2c+2c2−(N−1)2

)2a+1

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

⟩=

N−1∑c=0

(−1)c−N+1A(2a+1)(2c2+2c−N2+1)A2(2c+1) − A−2(2c+1)

A2 − A−2.

So we have

JN(T (2, 2a+ 1); q) =(−1)N−1q−(2a+1)(N2−1)/2

qN/2 − q−N/2

×N−1∑c=0

(−1)cq(2a+1)(c2+c)/2(q(2c+1)/2 − q−(2c+1)/2

).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 5 / 45

Page 23: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Colored Jones polynomial of a torus knot

T (2, 2a+ 1) :=

}2a+1

: torus knot of type (2, 2a+ 1).⟨N−1

⟩=

N−1∑c=0

∆2c

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

=N−1∑c=0

∆2c

((−1)c−N+1A−2(N−1)+2c+2c2−(N−1)2

)2a+1

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

⟩=

N−1∑c=0

(−1)c−N+1A(2a+1)(2c2+2c−N2+1)A2(2c+1) − A−2(2c+1)

A2 − A−2.

So we have

JN(T (2, 2a+ 1); q) =(−1)N−1q−(2a+1)(N2−1)/2

qN/2 − q−N/2

×N−1∑c=0

(−1)cq(2a+1)(c2+c)/2(q(2c+1)/2 − q−(2c+1)/2

).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 5 / 45

Page 24: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Colored Jones polynomial of a torus knot

T (2, 2a+ 1) :=

}2a+1

: torus knot of type (2, 2a+ 1).⟨N−1

⟩=

N−1∑c=0

∆2c

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

=N−1∑c=0

∆2c

((−1)c−N+1A−2(N−1)+2c+2c2−(N−1)2

)2a+1

θ(N − 1,N − 1, 2c)

⟨N−1

N−1

N−1

N−1

2c

⟩=

N−1∑c=0

(−1)c−N+1A(2a+1)(2c2+2c−N2+1)A2(2c+1) − A−2(2c+1)

A2 − A−2.

So we have

JN(T (2, 2a+ 1); q) =(−1)N−1q−(2a+1)(N2−1)/2

qN/2 − q−N/2

×N−1∑c=0

(−1)cq(2a+1)(c2+c)/2(q(2c+1)/2 − q−(2c+1)/2

).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 5 / 45

Page 25: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, I

Replacing t with exp(ξ/N) (Re ξ = 0, Im ξ > 0), we have

JN(T (2, 2a+ 1); eξ/N)

=(−1)N−1 exp

[−(2a+1)(N2−1)ξ

2N − ξN

(2a+18 + 1

2(2a+1)

)]2 sinh(ξ/2)

× (Σ+ − Σ−),

where

Σ± =N−1∑c=0

(−1)c exp

[(2a+ 1)ξ

2N

(c +

2a+ 1± 2

2(2a+ 1)

)2].

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 6 / 45

Page 26: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, I

Replacing t with exp(ξ/N) (Re ξ = 0, Im ξ > 0), we have

JN(T (2, 2a+ 1); eξ/N)

=(−1)N−1 exp

[−(2a+1)(N2−1)ξ

2N − ξN

(2a+18 + 1

2(2a+1)

)]2 sinh(ξ/2)

× (Σ+ − Σ−),

where

Σ± =N−1∑c=0

(−1)c exp

[(2a+ 1)ξ

2N

(c +

2a+ 1± 2

2(2a+ 1)

)2].

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 6 / 45

Page 27: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, I

Replacing t with exp(ξ/N) (Re ξ = 0, Im ξ > 0), we have

JN(T (2, 2a+ 1); eξ/N)

=(−1)N−1 exp

[−(2a+1)(N2−1)ξ

2N − ξN

(2a+18 + 1

2(2a+1)

)]2 sinh(ξ/2)

× (Σ+ − Σ−),

where

Σ± =N−1∑c=0

(−1)c exp

[(2a+ 1)ξ

2N

(c +

2a+ 1± 2

2(2a+ 1)

)2].

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 6 / 45

Page 28: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, I

Replacing t with exp(ξ/N) (Re ξ = 0, Im ξ > 0), we have

JN(T (2, 2a+ 1); eξ/N)

=(−1)N−1 exp

[−(2a+1)(N2−1)ξ

2N − ξN

(2a+18 + 1

2(2a+1)

)]2 sinh(ξ/2)

× (Σ+ − Σ−),

where

Σ± =N−1∑c=0

(−1)c exp

[(2a+ 1)ξ

2N

(c +

2a+ 1± 2

2(2a+ 1)

)2].

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 6 / 45

Page 29: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, II

We use the following formula:√α

π

∫Cexp(−αx2 + px) dx = exp

(p2

),

where C is a line passing though the origin. Putting α := N2(2a+1)ξ ,

p := c + 2a+1±22(2a+1) and C := {t exp(π

√−1/4) | t ∈ R}, we have

Σ± =

√N

2(2a+ 1)ξπ

×N−1∑c=0

(−1)c∫Cexp

[−N

2(2a+ 1)ξx2 +

(c +

2a+ 1± 2

2(2a+ 1)

)x

]dx

=

√N

2(2a+ 1)ξπ

×∫Cexp

[−N

2(2a+ 1)ξx2]exp

(±x

2a+ 1

)(1− (−1)NeNx

ex/2 + e−x/2

)dx .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 7 / 45

Page 30: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, IIWe use the following formula:

√α

π

∫Cexp(−αx2 + px) dx = exp

(p2

),

where C is a line passing though the origin. Putting α := N2(2a+1)ξ ,

p := c + 2a+1±22(2a+1) and C := {t exp(π

√−1/4) | t ∈ R}, we have

Σ± =

√N

2(2a+ 1)ξπ

×N−1∑c=0

(−1)c∫Cexp

[−N

2(2a+ 1)ξx2 +

(c +

2a+ 1± 2

2(2a+ 1)

)x

]dx

=

√N

2(2a+ 1)ξπ

×∫Cexp

[−N

2(2a+ 1)ξx2]exp

(±x

2a+ 1

)(1− (−1)NeNx

ex/2 + e−x/2

)dx .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 7 / 45

Page 31: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, IIWe use the following formula:√

α

π

∫Cexp(−αx2 + px) dx = exp

(p2

),

where C is a line passing though the origin.

Putting α := N2(2a+1)ξ ,

p := c + 2a+1±22(2a+1) and C := {t exp(π

√−1/4) | t ∈ R}, we have

Σ± =

√N

2(2a+ 1)ξπ

×N−1∑c=0

(−1)c∫Cexp

[−N

2(2a+ 1)ξx2 +

(c +

2a+ 1± 2

2(2a+ 1)

)x

]dx

=

√N

2(2a+ 1)ξπ

×∫Cexp

[−N

2(2a+ 1)ξx2]exp

(±x

2a+ 1

)(1− (−1)NeNx

ex/2 + e−x/2

)dx .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 7 / 45

Page 32: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, IIWe use the following formula:√

α

π

∫Cexp(−αx2 + px) dx = exp

(p2

),

where C is a line passing though the origin. Putting α := N2(2a+1)ξ ,

p := c + 2a+1±22(2a+1) and C := {t exp(π

√−1/4) | t ∈ R}, we have

Σ± =

√N

2(2a+ 1)ξπ

×N−1∑c=0

(−1)c∫Cexp

[−N

2(2a+ 1)ξx2 +

(c +

2a+ 1± 2

2(2a+ 1)

)x

]dx

=

√N

2(2a+ 1)ξπ

×∫Cexp

[−N

2(2a+ 1)ξx2]exp

(±x

2a+ 1

)(1− (−1)NeNx

ex/2 + e−x/2

)dx .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 7 / 45

Page 33: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, IIWe use the following formula:√

α

π

∫Cexp(−αx2 + px) dx = exp

(p2

),

where C is a line passing though the origin. Putting α := N2(2a+1)ξ ,

p := c + 2a+1±22(2a+1) and C := {t exp(π

√−1/4) | t ∈ R}, we have

Σ± =

√N

2(2a+ 1)ξπ

×N−1∑c=0

(−1)c∫Cexp

[−N

2(2a+ 1)ξx2 +

(c +

2a+ 1± 2

2(2a+ 1)

)x

]dx

=

√N

2(2a+ 1)ξπ

×∫Cexp

[−N

2(2a+ 1)ξx2]exp

(±x

2a+ 1

)(1− (−1)NeNx

ex/2 + e−x/2

)dx .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 7 / 45

Page 34: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, IIWe use the following formula:√

α

π

∫Cexp(−αx2 + px) dx = exp

(p2

),

where C is a line passing though the origin. Putting α := N2(2a+1)ξ ,

p := c + 2a+1±22(2a+1) and C := {t exp(π

√−1/4) | t ∈ R}, we have

Σ± =

√N

2(2a+ 1)ξπ

×N−1∑c=0

(−1)c∫Cexp

[−N

2(2a+ 1)ξx2 +

(c +

2a+ 1± 2

2(2a+ 1)

)x

]dx

=

√N

2(2a+ 1)ξπ

×∫Cexp

[−N

2(2a+ 1)ξx2]exp

(±x

2a+ 1

)(1− (−1)NeNx

ex/2 + e−x/2

)dx .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 7 / 45

Page 35: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, III

Σ+ − Σ−

=

√N

2(2a+ 1)ξπ

×(∫

C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξx2]dx

− (−1)N∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξx2 + Nx

]dx

)=(−1)N−1

√N

2(2a+ 1)ξπ

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξx2 + Nx

]dx ,

since the the first integrand is an odd function.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 8 / 45

Page 36: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, III

Σ+ − Σ−

=

√N

2(2a+ 1)ξπ

×(∫

C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξx2]dx

− (−1)N∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξx2 + Nx

]dx

)

=(−1)N−1

√N

2(2a+ 1)ξπ

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξx2 + Nx

]dx ,

since the the first integrand is an odd function.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 8 / 45

Page 37: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, III

Σ+ − Σ−

=

√N

2(2a+ 1)ξπ

×(∫

C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξx2]dx

− (−1)N∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξx2 + Nx

]dx

)=(−1)N−1

√N

2(2a+ 1)ξπ

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξx2 + Nx

]dx ,

since the the first integrand is an odd function.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 8 / 45

Page 38: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, III

Σ+ − Σ−

=

√N

2(2a+ 1)ξπ

×(∫

C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξx2]dx

− (−1)N∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξx2 + Nx

]dx

)=(−1)N−1

√N

2(2a+ 1)ξπ

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξx2 + Nx

]dx ,

since the the first integrand is an odd function.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 8 / 45

Page 39: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, IV

Integral in Σ+ − Σ−

=e(2a+1)ξN/2

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξ

(x − (2a+ 1)ξ

)2]dx .

Let C be the line parallel to C that passes through (2a+ 1)ξ. By theresidue theorem

Integral above

=

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξ

(x − (2a+ 1)ξ

)2]dx

+ 2π√−1∑k

Res(f (x); x = (2k + 1)π

√−1),

where f (x) :=sinh( x

2a+1)

cosh( x2) exp

[−N

2(2a+1)ξ

(x − (2a+ 1)ξ

)2]and

(2k + 1)π√−1 is between C and C .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 9 / 45

Page 40: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, IV

Integral in Σ+ − Σ−

=e(2a+1)ξN/2

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξ

(x − (2a+ 1)ξ

)2]dx .

Let C be the line parallel to C that passes through (2a+ 1)ξ. By theresidue theorem

Integral above

=

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξ

(x − (2a+ 1)ξ

)2]dx

+ 2π√−1∑k

Res(f (x); x = (2k + 1)π

√−1),

where f (x) :=sinh( x

2a+1)

cosh( x2) exp

[−N

2(2a+1)ξ

(x − (2a+ 1)ξ

)2]and

(2k + 1)π√−1 is between C and C .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 9 / 45

Page 41: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, IV

Integral in Σ+ − Σ−

=e(2a+1)ξN/2

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξ

(x − (2a+ 1)ξ

)2]dx .

Let C be the line parallel to C that passes through (2a+ 1)ξ.

By theresidue theorem

Integral above

=

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξ

(x − (2a+ 1)ξ

)2]dx

+ 2π√−1∑k

Res(f (x); x = (2k + 1)π

√−1),

where f (x) :=sinh( x

2a+1)

cosh( x2) exp

[−N

2(2a+1)ξ

(x − (2a+ 1)ξ

)2]and

(2k + 1)π√−1 is between C and C .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 9 / 45

Page 42: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, IV

Integral in Σ+ − Σ−

=e(2a+1)ξN/2

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξ

(x − (2a+ 1)ξ

)2]dx .

Let C be the line parallel to C that passes through (2a+ 1)ξ. By theresidue theorem

Integral above

=

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξ

(x − (2a+ 1)ξ

)2]dx

+ 2π√−1∑k

Res(f (x); x = (2k + 1)π

√−1),

where f (x) :=sinh( x

2a+1)

cosh( x2) exp

[−N

2(2a+1)ξ

(x − (2a+ 1)ξ

)2]and

(2k + 1)π√−1 is between C and C .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 9 / 45

Page 43: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, V

=

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξ

(x − (2a+ 1)ξ

)2]dx

+ 2π√−1∑k

(−1)k2 sin

((2k + 1)π

2a+ 1

)× exp

[−N

2(2a+ 1)ξ

((2k + 1)π

√−1− (2a+ 1)ξ

)2].

Putting y := x − (2a+ 1)ξ, the integral becomes∫C

sinh( y+(2a+1)ξ2a+1 )

cosh( y+(2a+1)ξ2 )

exp

[−N

2(2a+ 1)ξy2]dy

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 10 / 45

Page 44: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, V

=

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξ

(x − (2a+ 1)ξ

)2]dx

+ 2π√−1∑k

(−1)k2 sin

((2k + 1)π

2a+ 1

)× exp

[−N

2(2a+ 1)ξ

((2k + 1)π

√−1− (2a+ 1)ξ

)2].

Putting y := x − (2a+ 1)ξ, the integral becomes∫C

sinh( y+(2a+1)ξ2a+1 )

cosh( y+(2a+1)ξ2 )

exp

[−N

2(2a+ 1)ξy2]dy

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 10 / 45

Page 45: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, V

=

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξ

(x − (2a+ 1)ξ

)2]dx

+ 2π√−1∑k

(−1)k2 sin

((2k + 1)π

2a+ 1

)× exp

[−N

2(2a+ 1)ξ

((2k + 1)π

√−1− (2a+ 1)ξ

)2].

Putting y := x − (2a+ 1)ξ, the integral becomes

∫C

sinh( y+(2a+1)ξ2a+1 )

cosh( y+(2a+1)ξ2 )

exp

[−N

2(2a+ 1)ξy2]dy

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 10 / 45

Page 46: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, V

=

∫C

sinh( x2a+1)

cosh( x2 )exp

[−N

2(2a+ 1)ξ

(x − (2a+ 1)ξ

)2]dx

+ 2π√−1∑k

(−1)k2 sin

((2k + 1)π

2a+ 1

)× exp

[−N

2(2a+ 1)ξ

((2k + 1)π

√−1− (2a+ 1)ξ

)2].

Putting y := x − (2a+ 1)ξ, the integral becomes∫C

sinh( y+(2a+1)ξ2a+1 )

cosh( y+(2a+1)ξ2 )

exp

[−N

2(2a+ 1)ξy2]dy

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 10 / 45

Page 47: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Saddle point method

Now we use the following technique to study the integral.

Theorem (Saddle point method)

Cθ := {t exp(θ√−1)}.

H: a complex number with Re(H−1 exp(2θ

√−1)

)> 0.

We have ∫Cθ

g(ζ) exp

[−Nζ2

H

]dζ ∼

N→∞

√πH

Ng(0),

where f (N) ∼N→∞

g(N) ⇔ f (N)/g(N) → 1 (N → ∞).

Note that the assumption Re(H−1 exp(2θ

√−1)

)> 0 is to make the

integral converge.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 11 / 45

Page 48: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Saddle point method

Now we use the following technique to study the integral.

Theorem (Saddle point method)

Cθ := {t exp(θ√−1)}.

H: a complex number with Re(H−1 exp(2θ

√−1)

)> 0.

We have ∫Cθ

g(ζ) exp

[−Nζ2

H

]dζ ∼

N→∞

√πH

Ng(0),

where f (N) ∼N→∞

g(N) ⇔ f (N)/g(N) → 1 (N → ∞).

Note that the assumption Re(H−1 exp(2θ

√−1)

)> 0 is to make the

integral converge.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 11 / 45

Page 49: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Saddle point method

Now we use the following technique to study the integral.

Theorem (Saddle point method)

Cθ := {t exp(θ√−1)}.

H: a complex number with Re(H−1 exp(2θ

√−1)

)> 0.

We have ∫Cθ

g(ζ) exp

[−Nζ2

H

]dζ ∼

N→∞

√πH

Ng(0),

where f (N) ∼N→∞

g(N) ⇔ f (N)/g(N) → 1 (N → ∞).

Note that the assumption Re(H−1 exp(2θ

√−1)

)> 0 is to make the

integral converge.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 11 / 45

Page 50: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Saddle point method

Now we use the following technique to study the integral.

Theorem (Saddle point method)

Cθ := {t exp(θ√−1)}.

H: a complex number with Re(H−1 exp(2θ

√−1)

)> 0.

We have ∫Cθ

g(ζ) exp

[−Nζ2

H

]dζ ∼

N→∞

√πH

Ng(0),

where f (N) ∼N→∞

g(N) ⇔ f (N)/g(N) → 1 (N → ∞).

Note that the assumption Re(H−1 exp(2θ

√−1)

)> 0 is to make the

integral converge.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 11 / 45

Page 51: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Saddle point method

Now we use the following technique to study the integral.

Theorem (Saddle point method)

Cθ := {t exp(θ√−1)}.

H: a complex number with Re(H−1 exp(2θ

√−1)

)> 0.

We have ∫Cθ

g(ζ) exp

[−Nζ2

H

]dζ ∼

N→∞

√πH

Ng(0),

where f (N) ∼N→∞

g(N) ⇔ f (N)/g(N) → 1 (N → ∞).

Note that the assumption Re(H−1 exp(2θ

√−1)

)> 0 is to make the

integral converge.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 11 / 45

Page 52: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Saddle point method

Now we use the following technique to study the integral.

Theorem (Saddle point method)

Cθ := {t exp(θ√−1)}.

H: a complex number with Re(H−1 exp(2θ

√−1)

)> 0.

We have ∫Cθ

g(ζ) exp

[−Nζ2

H

]dζ ∼

N→∞

√πH

Ng(0),

where f (N) ∼N→∞

g(N) ⇔ f (N)/g(N) → 1 (N → ∞).

Note that the assumption Re(H−1 exp(2θ

√−1)

)> 0 is to make the

integral converge.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 11 / 45

Page 53: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Saddle point method

Now we use the following technique to study the integral.

Theorem (Saddle point method)

Cθ := {t exp(θ√−1)}.

H: a complex number with Re(H−1 exp(2θ

√−1)

)> 0.

We have ∫Cθ

g(ζ) exp

[−Nζ2

H

]dζ ∼

N→∞

√πH

Ng(0),

where f (N) ∼N→∞

g(N) ⇔ f (N)/g(N) → 1 (N → ∞).

Note that the assumption Re(H−1 exp(2θ

√−1)

)> 0 is to make the

integral converge.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 11 / 45

Page 54: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, VI

Applying the saddle point method, the integral becomes∫C

sinh( y+(2a+1)ξ2a+1 )

cosh( y+(2a+1)ξ2 )

exp

[−N

2(2a+ 1)ξy2]dy

∼N→∞

√2(2a+ 1)πξ

N

sinh (ξ)

cosh( (2a+1)ξ2 )

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 12 / 45

Page 55: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, VI

Applying the saddle point method, the integral becomes

∫C

sinh( y+(2a+1)ξ2a+1 )

cosh( y+(2a+1)ξ2 )

exp

[−N

2(2a+ 1)ξy2]dy

∼N→∞

√2(2a+ 1)πξ

N

sinh (ξ)

cosh( (2a+1)ξ2 )

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 12 / 45

Page 56: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, VI

Applying the saddle point method, the integral becomes∫C

sinh( y+(2a+1)ξ2a+1 )

cosh( y+(2a+1)ξ2 )

exp

[−N

2(2a+ 1)ξy2]dy

∼N→∞

√2(2a+ 1)πξ

N

sinh (ξ)

cosh( (2a+1)ξ2 )

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 12 / 45

Page 57: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, VII

Therefore we finally have the following formula (K. Hikami & HM).

JN(T (2, 2a+ 1); exp(ξ/N)

)∼

N→∞

1

∆ (T (2, 2a+ 1); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

exp

[N

ξSk(ξ)

]√N

ξτk ,

where ∆(K ; t) is the Alexander polynomial of a knot K and

Sk(ξ) :=−((2k + 1)π

√−1− (2a+ 1)ξ

)22(2a+ 1)

,

τk := (−1)k4 sin

((2k+1)π2a+1

)√

2(2a+ 1).

Note that ∆(T (2, 2a+ 1); t) =

(t2a+1 − t−(2a+1)

) (t1/2 − t−1/2

)(t(2a+1)/2 − t−(2a+1)/2

)(t − t−1)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 13 / 45

Page 58: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, VIITherefore we finally have the following formula (K. Hikami & HM).

JN(T (2, 2a+ 1); exp(ξ/N)

)∼

N→∞

1

∆ (T (2, 2a+ 1); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

exp

[N

ξSk(ξ)

]√N

ξτk ,

where ∆(K ; t) is the Alexander polynomial of a knot K and

Sk(ξ) :=−((2k + 1)π

√−1− (2a+ 1)ξ

)22(2a+ 1)

,

τk := (−1)k4 sin

((2k+1)π2a+1

)√

2(2a+ 1).

Note that ∆(T (2, 2a+ 1); t) =

(t2a+1 − t−(2a+1)

) (t1/2 − t−1/2

)(t(2a+1)/2 − t−(2a+1)/2

)(t − t−1)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 13 / 45

Page 59: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, VIITherefore we finally have the following formula (K. Hikami & HM).

JN(T (2, 2a+ 1); exp(ξ/N)

)∼

N→∞

1

∆ (T (2, 2a+ 1); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

exp

[N

ξSk(ξ)

]√N

ξτk ,

where ∆(K ; t) is the Alexander polynomial of a knot K and

Sk(ξ) :=−((2k + 1)π

√−1− (2a+ 1)ξ

)22(2a+ 1)

,

τk := (−1)k4 sin

((2k+1)π2a+1

)√

2(2a+ 1).

Note that ∆(T (2, 2a+ 1); t) =

(t2a+1 − t−(2a+1)

) (t1/2 − t−1/2

)(t(2a+1)/2 − t−(2a+1)/2

)(t − t−1)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 13 / 45

Page 60: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, VIITherefore we finally have the following formula (K. Hikami & HM).

JN(T (2, 2a+ 1); exp(ξ/N)

)∼

N→∞

1

∆ (T (2, 2a+ 1); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

exp

[N

ξSk(ξ)

]√N

ξτk ,

where ∆(K ; t) is the Alexander polynomial of a knot K and

Sk(ξ) :=−((2k + 1)π

√−1− (2a+ 1)ξ

)22(2a+ 1)

,

τk := (−1)k4 sin

((2k+1)π2a+1

)√

2(2a+ 1).

Note that ∆(T (2, 2a+ 1); t) =

(t2a+1 − t−(2a+1)

) (t1/2 − t−1/2

)(t(2a+1)/2 − t−(2a+1)/2

)(t − t−1)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 13 / 45

Page 61: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Colored Jones polynomial of a torus knot

Asymptotic behavior of the colored Jones polynomial, VIITherefore we finally have the following formula (K. Hikami & HM).

JN(T (2, 2a+ 1); exp(ξ/N)

)∼

N→∞

1

∆ (T (2, 2a+ 1); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

exp

[N

ξSk(ξ)

]√N

ξτk ,

where ∆(K ; t) is the Alexander polynomial of a knot K and

Sk(ξ) :=−((2k + 1)π

√−1− (2a+ 1)ξ

)22(2a+ 1)

,

τk := (−1)k4 sin

((2k+1)π2a+1

)√

2(2a+ 1).

Note that ∆(T (2, 2a+ 1); t) =

(t2a+1 − t−(2a+1)

) (t1/2 − t−1/2

)(t(2a+1)/2 − t−(2a+1)/2

)(t − t−1)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 13 / 45

Page 62: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

SL(2;C) Chern–Simons invariant for closed three-manifolds

M: closed three-manifold,X (M): the SL(2;C) character variety of M (set of the characters of

representations: π1(M) → SL(2;C) Tr−→ C),csM : X (M) → C (mod Z): SL(2;C) Chern–Simons invariant defined asfollows.

Definition

ρ : π1(M) → SL(2;C),A: sl(2;C)-valued 1-form on M with dA+ A ∧ A = 0 (A defines a flatconnection on M × SL(2;C)) such that it induces a representationρ : π1(M) → SL(2;C) by holonomy.

csM([ρ]) :=1

8π2

∫MTr(A ∧ dA+

2

3A ∧ A ∧ A) ∈ C (mod Z).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 14 / 45

Page 63: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

SL(2;C) Chern–Simons invariant for closed three-manifolds

M: closed three-manifold,

X (M): the SL(2;C) character variety of M (set of the characters of

representations: π1(M) → SL(2;C) Tr−→ C),csM : X (M) → C (mod Z): SL(2;C) Chern–Simons invariant defined asfollows.

Definition

ρ : π1(M) → SL(2;C),A: sl(2;C)-valued 1-form on M with dA+ A ∧ A = 0 (A defines a flatconnection on M × SL(2;C)) such that it induces a representationρ : π1(M) → SL(2;C) by holonomy.

csM([ρ]) :=1

8π2

∫MTr(A ∧ dA+

2

3A ∧ A ∧ A) ∈ C (mod Z).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 14 / 45

Page 64: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

SL(2;C) Chern–Simons invariant for closed three-manifolds

M: closed three-manifold,X (M): the SL(2;C) character variety of M (set of the characters of

representations: π1(M) → SL(2;C) Tr−→ C),

csM : X (M) → C (mod Z): SL(2;C) Chern–Simons invariant defined asfollows.

Definition

ρ : π1(M) → SL(2;C),A: sl(2;C)-valued 1-form on M with dA+ A ∧ A = 0 (A defines a flatconnection on M × SL(2;C)) such that it induces a representationρ : π1(M) → SL(2;C) by holonomy.

csM([ρ]) :=1

8π2

∫MTr(A ∧ dA+

2

3A ∧ A ∧ A) ∈ C (mod Z).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 14 / 45

Page 65: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

SL(2;C) Chern–Simons invariant for closed three-manifolds

M: closed three-manifold,X (M): the SL(2;C) character variety of M (set of the characters of

representations: π1(M) → SL(2;C) Tr−→ C),csM : X (M) → C (mod Z): SL(2;C) Chern–Simons invariant defined asfollows.

Definition

ρ : π1(M) → SL(2;C),A: sl(2;C)-valued 1-form on M with dA+ A ∧ A = 0 (A defines a flatconnection on M × SL(2;C)) such that it induces a representationρ : π1(M) → SL(2;C) by holonomy.

csM([ρ]) :=1

8π2

∫MTr(A ∧ dA+

2

3A ∧ A ∧ A) ∈ C (mod Z).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 14 / 45

Page 66: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

SL(2;C) Chern–Simons invariant for closed three-manifolds

M: closed three-manifold,X (M): the SL(2;C) character variety of M (set of the characters of

representations: π1(M) → SL(2;C) Tr−→ C),csM : X (M) → C (mod Z): SL(2;C) Chern–Simons invariant defined asfollows.

Definition

ρ : π1(M) → SL(2;C),

A: sl(2;C)-valued 1-form on M with dA+ A ∧ A = 0 (A defines a flatconnection on M × SL(2;C)) such that it induces a representationρ : π1(M) → SL(2;C) by holonomy.

csM([ρ]) :=1

8π2

∫MTr(A ∧ dA+

2

3A ∧ A ∧ A) ∈ C (mod Z).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 14 / 45

Page 67: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

SL(2;C) Chern–Simons invariant for closed three-manifolds

M: closed three-manifold,X (M): the SL(2;C) character variety of M (set of the characters of

representations: π1(M) → SL(2;C) Tr−→ C),csM : X (M) → C (mod Z): SL(2;C) Chern–Simons invariant defined asfollows.

Definition

ρ : π1(M) → SL(2;C),A: sl(2;C)-valued 1-form on M with dA+ A ∧ A = 0 (A defines a flatconnection on M × SL(2;C)) such that it induces a representationρ : π1(M) → SL(2;C) by holonomy.

csM([ρ]) :=1

8π2

∫MTr(A ∧ dA+

2

3A ∧ A ∧ A) ∈ C (mod Z).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 14 / 45

Page 68: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

SL(2;C) Chern–Simons invariant for closed three-manifolds

M: closed three-manifold,X (M): the SL(2;C) character variety of M (set of the characters of

representations: π1(M) → SL(2;C) Tr−→ C),csM : X (M) → C (mod Z): SL(2;C) Chern–Simons invariant defined asfollows.

Definition

ρ : π1(M) → SL(2;C),A: sl(2;C)-valued 1-form on M with dA+ A ∧ A = 0 (A defines a flatconnection on M × SL(2;C)) such that it induces a representationρ : π1(M) → SL(2;C) by holonomy.

csM([ρ]) :=1

8π2

∫MTr(A ∧ dA+

2

3A ∧ A ∧ A) ∈ C (mod Z).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 14 / 45

Page 69: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

Chern–Simons for knot complements

M: a knot complement (∂M is a torus).

csM : X (M) → Hom(π1(∂M),C)× C∗/ ∼,

∼:

(s, t; z) ∼ (s + 1, t; z exp(−8π

√−1t)),

(s, t; z) ∼ (s, t + 1; z exp(8π√−1s)),

(s, t; z) ∼ (−s,−t; z).

csM∪∂M′([ρ]) = zz ′ (csM([ρ∣∣M]) = [s, t; z ], csM′([ρ

∣∣M′ ]) = [s,−t; z ′]).

ρ : π1(M) → SL(2;C): representation such that

ρ : meridian →(eu/2 ∗0 e−u/2

), longitude →

(ev/2 ∗0 e−v/2

).

Define CSu,v ([ρ]) so that

csM([ρ]) =

[u

4π√−1

,v

4π√−1

; exp

(2

π√−1

CSu,v ([ρ])

)].

CSu,v ([ρ]) is defined modulo π2Z.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 15 / 45

Page 70: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

Chern–Simons for knot complementsM: a knot complement (∂M is a torus).

csM : X (M) → Hom(π1(∂M),C)× C∗/ ∼,

∼:

(s, t; z) ∼ (s + 1, t; z exp(−8π

√−1t)),

(s, t; z) ∼ (s, t + 1; z exp(8π√−1s)),

(s, t; z) ∼ (−s,−t; z).

csM∪∂M′([ρ]) = zz ′ (csM([ρ∣∣M]) = [s, t; z ], csM′([ρ

∣∣M′ ]) = [s,−t; z ′]).

ρ : π1(M) → SL(2;C): representation such that

ρ : meridian →(eu/2 ∗0 e−u/2

), longitude →

(ev/2 ∗0 e−v/2

).

Define CSu,v ([ρ]) so that

csM([ρ]) =

[u

4π√−1

,v

4π√−1

; exp

(2

π√−1

CSu,v ([ρ])

)].

CSu,v ([ρ]) is defined modulo π2Z.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 15 / 45

Page 71: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

Chern–Simons for knot complementsM: a knot complement (∂M is a torus).

csM : X (M) → Hom(π1(∂M),C)× C∗/ ∼,

∼:

(s, t; z) ∼ (s + 1, t; z exp(−8π

√−1t)),

(s, t; z) ∼ (s, t + 1; z exp(8π√−1s)),

(s, t; z) ∼ (−s,−t; z).

csM∪∂M′([ρ]) = zz ′ (csM([ρ∣∣M]) = [s, t; z ], csM′([ρ

∣∣M′ ]) = [s,−t; z ′]).

ρ : π1(M) → SL(2;C): representation such that

ρ : meridian →(eu/2 ∗0 e−u/2

), longitude →

(ev/2 ∗0 e−v/2

).

Define CSu,v ([ρ]) so that

csM([ρ]) =

[u

4π√−1

,v

4π√−1

; exp

(2

π√−1

CSu,v ([ρ])

)].

CSu,v ([ρ]) is defined modulo π2Z.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 15 / 45

Page 72: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

Chern–Simons for knot complementsM: a knot complement (∂M is a torus).

csM : X (M) → Hom(π1(∂M),C)× C∗/ ∼,

∼:

(s, t; z) ∼ (s + 1, t; z exp(−8π

√−1t)),

(s, t; z) ∼ (s, t + 1; z exp(8π√−1s)),

(s, t; z) ∼ (−s,−t; z).

csM∪∂M′([ρ]) = zz ′ (csM([ρ∣∣M]) = [s, t; z ], csM′([ρ

∣∣M′ ]) = [s,−t; z ′]).

ρ : π1(M) → SL(2;C): representation such that

ρ : meridian →(eu/2 ∗0 e−u/2

), longitude →

(ev/2 ∗0 e−v/2

).

Define CSu,v ([ρ]) so that

csM([ρ]) =

[u

4π√−1

,v

4π√−1

; exp

(2

π√−1

CSu,v ([ρ])

)].

CSu,v ([ρ]) is defined modulo π2Z.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 15 / 45

Page 73: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

Chern–Simons for knot complementsM: a knot complement (∂M is a torus).

csM : X (M) → Hom(π1(∂M),C)× C∗/ ∼,

∼:

(s, t; z) ∼ (s + 1, t; z exp(−8π

√−1t)),

(s, t; z) ∼ (s, t + 1; z exp(8π√−1s)),

(s, t; z) ∼ (−s,−t; z).

csM∪∂M′([ρ]) = zz ′ (csM([ρ∣∣M]) = [s, t; z ], csM′([ρ

∣∣M′ ]) = [s,−t; z ′]).

ρ : π1(M) → SL(2;C): representation such that

ρ : meridian →(eu/2 ∗0 e−u/2

), longitude →

(ev/2 ∗0 e−v/2

).

Define CSu,v ([ρ]) so that

csM([ρ]) =

[u

4π√−1

,v

4π√−1

; exp

(2

π√−1

CSu,v ([ρ])

)].

CSu,v ([ρ]) is defined modulo π2Z.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 15 / 45

Page 74: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

Chern–Simons for knot complementsM: a knot complement (∂M is a torus).

csM : X (M) → Hom(π1(∂M),C)× C∗/ ∼,

∼:

(s, t; z) ∼ (s + 1, t; z exp(−8π

√−1t)),

(s, t; z) ∼ (s, t + 1; z exp(8π√−1s)),

(s, t; z) ∼ (−s,−t; z).

csM∪∂M′([ρ]) = zz ′ (csM([ρ∣∣M]) = [s, t; z ], csM′([ρ

∣∣M′ ]) = [s,−t; z ′]).

ρ : π1(M) → SL(2;C): representation such that

ρ : meridian →(eu/2 ∗0 e−u/2

), longitude →

(ev/2 ∗0 e−v/2

).

Define CSu,v ([ρ]) so that

csM([ρ]) =

[u

4π√−1

,v

4π√−1

; exp

(2

π√−1

CSu,v ([ρ])

)].

CSu,v ([ρ]) is defined modulo π2Z.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 15 / 45

Page 75: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

Chern–Simons for knot complementsM: a knot complement (∂M is a torus).

csM : X (M) → Hom(π1(∂M),C)× C∗/ ∼,

∼:

(s, t; z) ∼ (s + 1, t; z exp(−8π

√−1t)),

(s, t; z) ∼ (s, t + 1; z exp(8π√−1s)),

(s, t; z) ∼ (−s,−t; z).

csM∪∂M′([ρ]) = zz ′ (csM([ρ∣∣M]) = [s, t; z ], csM′([ρ

∣∣M′ ]) = [s,−t; z ′]).

ρ : π1(M) → SL(2;C): representation such that

ρ : meridian →(eu/2 ∗0 e−u/2

), longitude →

(ev/2 ∗0 e−v/2

).

Define CSu,v ([ρ]) so that

csM([ρ]) =

[u

4π√−1

,v

4π√−1

; exp

(2

π√−1

CSu,v ([ρ])

)].

CSu,v ([ρ]) is defined modulo π2Z.Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 15 / 45

Page 76: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

How to calculate csM([ρ])

M: a knot complement.

ρt : π1(M) → SL(2;C): path of representations (0 ≤ t ≤ 1).

ρt : meridian →(eut/2 ∗0 e−ut/2

), longitude →

(evt/2 ∗0 e−vt/2

).

csM([ρt ]) =

[ut

4π√−1

,vt

4π√−1

; zt

]

Theorem (P. Kirk & E. Klassen (1993))

z1z0

= exp

[√−1

∫ 1

0

(ut

d vtd t

− vtd utd t

)dt

]

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 16 / 45

Page 77: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

How to calculate csM([ρ])

M: a knot complement.

ρt : π1(M) → SL(2;C): path of representations (0 ≤ t ≤ 1).

ρt : meridian →(eut/2 ∗0 e−ut/2

), longitude →

(evt/2 ∗0 e−vt/2

).

csM([ρt ]) =

[ut

4π√−1

,vt

4π√−1

; zt

]

Theorem (P. Kirk & E. Klassen (1993))

z1z0

= exp

[√−1

∫ 1

0

(ut

d vtd t

− vtd utd t

)dt

]

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 16 / 45

Page 78: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

How to calculate csM([ρ])

M: a knot complement.

ρt : π1(M) → SL(2;C): path of representations (0 ≤ t ≤ 1).

ρt : meridian →(eut/2 ∗0 e−ut/2

), longitude →

(evt/2 ∗0 e−vt/2

).

csM([ρt ]) =

[ut

4π√−1

,vt

4π√−1

; zt

]

Theorem (P. Kirk & E. Klassen (1993))

z1z0

= exp

[√−1

∫ 1

0

(ut

d vtd t

− vtd utd t

)dt

]

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 16 / 45

Page 79: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

How to calculate csM([ρ])

M: a knot complement.

ρt : π1(M) → SL(2;C): path of representations (0 ≤ t ≤ 1).

ρt : meridian →(eut/2 ∗0 e−ut/2

), longitude →

(evt/2 ∗0 e−vt/2

).

csM([ρt ]) =

[ut

4π√−1

,vt

4π√−1

; zt

]

Theorem (P. Kirk & E. Klassen (1993))

z1z0

= exp

[√−1

∫ 1

0

(ut

d vtd t

− vtd utd t

)dt

]

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 16 / 45

Page 80: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

How to calculate csM([ρ])

M: a knot complement.

ρt : π1(M) → SL(2;C): path of representations (0 ≤ t ≤ 1).

ρt : meridian →(eut/2 ∗0 e−ut/2

), longitude →

(evt/2 ∗0 e−vt/2

).

csM([ρt ]) =

[ut

4π√−1

,vt

4π√−1

; zt

]

Theorem (P. Kirk & E. Klassen (1993))

z1z0

= exp

[√−1

∫ 1

0

(ut

d vtd t

− vtd utd t

)dt

]

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 16 / 45

Page 81: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Chern–Simons invariant

How to calculate csM([ρ])

M: a knot complement.

ρt : π1(M) → SL(2;C): path of representations (0 ≤ t ≤ 1).

ρt : meridian →(eut/2 ∗0 e−ut/2

), longitude →

(evt/2 ∗0 e−vt/2

).

csM([ρt ]) =

[ut

4π√−1

,vt

4π√−1

; zt

]

Theorem (P. Kirk & E. Klassen (1993))

z1z0

= exp

[√−1

∫ 1

0

(ut

d vtd t

− vtd utd t

)dt

]

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 16 / 45

Page 82: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1)), I

y

x π1(S3 \ T (2, 2a+ 1)) = ⟨x , y | (xy)ax = y(xy)a⟩,

ρu,k : π1(S3 \ T (2, 2a+ 1)) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh u e−u/2

),

(0 ≤ k ≤ a− 1).

We will calculate csM([ρu,k ]) (following J. Dubois & R. Kashaev).

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(ωs 00 ω−s

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh ut e−ut/2

).

(ut := (1− t)(2k + 1)π√−1/(2a+ 1) + tu)

⇒α0 is trivial. α1 and β0 share the same trace (∵ β0 is upper-triangular),and so csM([α1]) = csM([β0]), and β1 = ρu,k .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 17 / 45

Page 83: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1)), I

y

x

π1(S3 \ T (2, 2a+ 1)) = ⟨x , y | (xy)ax = y(xy)a⟩,

ρu,k : π1(S3 \ T (2, 2a+ 1)) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh u e−u/2

),

(0 ≤ k ≤ a− 1).

We will calculate csM([ρu,k ]) (following J. Dubois & R. Kashaev).

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(ωs 00 ω−s

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh ut e−ut/2

).

(ut := (1− t)(2k + 1)π√−1/(2a+ 1) + tu)

⇒α0 is trivial. α1 and β0 share the same trace (∵ β0 is upper-triangular),and so csM([α1]) = csM([β0]), and β1 = ρu,k .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 17 / 45

Page 84: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1)), I

y

x π1(S3 \ T (2, 2a+ 1)) = ⟨x , y | (xy)ax = y(xy)a⟩,

ρu,k : π1(S3 \ T (2, 2a+ 1)) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh u e−u/2

),

(0 ≤ k ≤ a− 1).

We will calculate csM([ρu,k ]) (following J. Dubois & R. Kashaev).

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(ωs 00 ω−s

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh ut e−ut/2

).

(ut := (1− t)(2k + 1)π√−1/(2a+ 1) + tu)

⇒α0 is trivial. α1 and β0 share the same trace (∵ β0 is upper-triangular),and so csM([α1]) = csM([β0]), and β1 = ρu,k .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 17 / 45

Page 85: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1)), I

y

x π1(S3 \ T (2, 2a+ 1)) = ⟨x , y | (xy)ax = y(xy)a⟩,

ρu,k : π1(S3 \ T (2, 2a+ 1)) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh u e−u/2

),

(0 ≤ k ≤ a− 1).

We will calculate csM([ρu,k ]) (following J. Dubois & R. Kashaev).

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(ωs 00 ω−s

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh ut e−ut/2

).

(ut := (1− t)(2k + 1)π√−1/(2a+ 1) + tu)

⇒α0 is trivial. α1 and β0 share the same trace (∵ β0 is upper-triangular),and so csM([α1]) = csM([β0]), and β1 = ρu,k .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 17 / 45

Page 86: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1)), I

y

x π1(S3 \ T (2, 2a+ 1)) = ⟨x , y | (xy)ax = y(xy)a⟩,

ρu,k : π1(S3 \ T (2, 2a+ 1)) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh u e−u/2

),

(0 ≤ k ≤ a− 1).

We will calculate csM([ρu,k ]) (following J. Dubois & R. Kashaev).

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(ωs 00 ω−s

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh ut e−ut/2

).

(ut := (1− t)(2k + 1)π√−1/(2a+ 1) + tu)

⇒α0 is trivial. α1 and β0 share the same trace (∵ β0 is upper-triangular),and so csM([α1]) = csM([β0]), and β1 = ρu,k .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 17 / 45

Page 87: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1)), I

y

x π1(S3 \ T (2, 2a+ 1)) = ⟨x , y | (xy)ax = y(xy)a⟩,

ρu,k : π1(S3 \ T (2, 2a+ 1)) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh u e−u/2

),

(0 ≤ k ≤ a− 1).

We will calculate csM([ρu,k ]) (following J. Dubois & R. Kashaev).

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(ωs 00 ω−s

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh ut e−ut/2

).

(ut := (1− t)(2k + 1)π√−1/(2a+ 1) + tu)

⇒α0 is trivial. α1 and β0 share the same trace (∵ β0 is upper-triangular),and so csM([α1]) = csM([β0]), and β1 = ρu,k .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 17 / 45

Page 88: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1)), I

y

x π1(S3 \ T (2, 2a+ 1)) = ⟨x , y | (xy)ax = y(xy)a⟩,

ρu,k : π1(S3 \ T (2, 2a+ 1)) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh u e−u/2

),

(0 ≤ k ≤ a− 1).

We will calculate csM([ρu,k ]) (following J. Dubois & R. Kashaev).

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(ωs 00 ω−s

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh ut e−ut/2

).

(ut := (1− t)(2k + 1)π√−1/(2a+ 1) + tu)

⇒α0 is trivial. α1 and β0 share the same trace (∵ β0 is upper-triangular),and so csM([α1]) = csM([β0]), and β1 = ρu,k .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 17 / 45

Page 89: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1)), I

y

x π1(S3 \ T (2, 2a+ 1)) = ⟨x , y | (xy)ax = y(xy)a⟩,

ρu,k : π1(S3 \ T (2, 2a+ 1)) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh u e−u/2

),

(0 ≤ k ≤ a− 1).

We will calculate csM([ρu,k ]) (following J. Dubois & R. Kashaev).

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(ωs 00 ω−s

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh ut e−ut/2

).

(ut := (1− t)(2k + 1)π√−1/(2a+ 1) + tu)

⇒α0 is trivial.

α1 and β0 share the same trace (∵ β0 is upper-triangular),and so csM([α1]) = csM([β0]), and β1 = ρu,k .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 17 / 45

Page 90: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1)), I

y

x π1(S3 \ T (2, 2a+ 1)) = ⟨x , y | (xy)ax = y(xy)a⟩,

ρu,k : π1(S3 \ T (2, 2a+ 1)) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh u e−u/2

),

(0 ≤ k ≤ a− 1).

We will calculate csM([ρu,k ]) (following J. Dubois & R. Kashaev).

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(ωs 00 ω−s

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh ut e−ut/2

).

(ut := (1− t)(2k + 1)π√−1/(2a+ 1) + tu)

⇒α0 is trivial. α1 and β0 share the same trace (∵ β0 is upper-triangular),and so csM([α1]) = csM([β0]),

and β1 = ρu,k .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 17 / 45

Page 91: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1)), I

y

x π1(S3 \ T (2, 2a+ 1)) = ⟨x , y | (xy)ax = y(xy)a⟩,

ρu,k : π1(S3 \ T (2, 2a+ 1)) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh u e−u/2

),

(0 ≤ k ≤ a− 1).

We will calculate csM([ρu,k ]) (following J. Dubois & R. Kashaev).

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(ωs 00 ω−s

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

2 cos( (2k+1)π2a+1 )− 2 cosh ut e−ut/2

).

(ut := (1− t)(2k + 1)π√−1/(2a+ 1) + tu)

⇒α0 is trivial. α1 and β0 share the same trace (∵ β0 is upper-triangular),and so csM([α1]) = csM([β0]), and β1 = ρu,k .Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 17 / 45

Page 92: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1), II

longitude λ = y(xy)2ax−4a−1,

αs(λ) = ( 1 00 1 ), βt(λ) =

(−e−(2a+1)ut sinh((2a+1)ut)

sinh(ut/2)

0 −e(2a+1)ut

).

csM([αs ]) =[(2k+1)s4(2a+1) , 0;ws

],

csM([βt ]) =[

ut4π

√−1

, −2(2a+1)ut+4lπ√−1

4π√−1

; zt].

(We will choose an integer l later.)

From Kirk–Klassen’s theorem,w1

w0= 1 and

z1z0

=

exp

(√−1

∫ 1

0

((ut(−2(2a+ 1)ut

′)− (−2(2a+ 1)ut + 4lπ√−1)ut

′)dt

)= exp

(2l(u − (2k+1)π

√−1

2a+1 )).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 18 / 45

Page 93: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1), II

longitude λ = y(xy)2ax−4a−1,

αs(λ) = ( 1 00 1 ), βt(λ) =

(−e−(2a+1)ut sinh((2a+1)ut)

sinh(ut/2)

0 −e(2a+1)ut

).

csM([αs ]) =[(2k+1)s4(2a+1) , 0;ws

],

csM([βt ]) =[

ut4π

√−1

, −2(2a+1)ut+4lπ√−1

4π√−1

; zt].

(We will choose an integer l later.)

From Kirk–Klassen’s theorem,w1

w0= 1 and

z1z0

=

exp

(√−1

∫ 1

0

((ut(−2(2a+ 1)ut

′)− (−2(2a+ 1)ut + 4lπ√−1)ut

′)dt

)= exp

(2l(u − (2k+1)π

√−1

2a+1 )).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 18 / 45

Page 94: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1), II

longitude λ = y(xy)2ax−4a−1,

αs(λ) = ( 1 00 1 ), βt(λ) =

(−e−(2a+1)ut sinh((2a+1)ut)

sinh(ut/2)

0 −e(2a+1)ut

).

csM([αs ]) =[(2k+1)s4(2a+1) , 0;ws

],

csM([βt ]) =[

ut4π

√−1

, −2(2a+1)ut+4lπ√−1

4π√−1

; zt].

(We will choose an integer l later.)

From Kirk–Klassen’s theorem,w1

w0= 1 and

z1z0

=

exp

(√−1

∫ 1

0

((ut(−2(2a+ 1)ut

′)− (−2(2a+ 1)ut + 4lπ√−1)ut

′)dt

)= exp

(2l(u − (2k+1)π

√−1

2a+1 )).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 18 / 45

Page 95: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1), II

longitude λ = y(xy)2ax−4a−1,

αs(λ) = ( 1 00 1 ), βt(λ) =

(−e−(2a+1)ut sinh((2a+1)ut)

sinh(ut/2)

0 −e(2a+1)ut

).

csM([αs ]) =[(2k+1)s4(2a+1) , 0;ws

],

csM([βt ]) =[

ut4π

√−1

, −2(2a+1)ut+4lπ√−1

4π√−1

; zt].

(We will choose an integer l later.)

From Kirk–Klassen’s theorem,w1

w0= 1 and

z1z0

=

exp

(√−1

∫ 1

0

((ut(−2(2a+ 1)ut

′)− (−2(2a+ 1)ut + 4lπ√−1)ut

′)dt

)= exp

(2l(u − (2k+1)π

√−1

2a+1 )).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 18 / 45

Page 96: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1), II

longitude λ = y(xy)2ax−4a−1,

αs(λ) = ( 1 00 1 ), βt(λ) =

(−e−(2a+1)ut sinh((2a+1)ut)

sinh(ut/2)

0 −e(2a+1)ut

).

csM([αs ]) =[(2k+1)s4(2a+1) , 0;ws

],

csM([βt ]) =[

ut4π

√−1

, −2(2a+1)ut+4lπ√−1

4π√−1

; zt].

(We will choose an integer l later.)

From Kirk–Klassen’s theorem,w1

w0= 1 and

z1z0

=

exp

(√−1

∫ 1

0

((ut(−2(2a+ 1)ut

′)− (−2(2a+ 1)ut + 4lπ√−1)ut

′)dt

)= exp

(2l(u − (2k+1)π

√−1

2a+1 )).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 18 / 45

Page 97: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1), II

longitude λ = y(xy)2ax−4a−1,

αs(λ) = ( 1 00 1 ), βt(λ) =

(−e−(2a+1)ut sinh((2a+1)ut)

sinh(ut/2)

0 −e(2a+1)ut

).

csM([αs ]) =[(2k+1)s4(2a+1) , 0;ws

],

csM([βt ]) =[

ut4π

√−1

, −2(2a+1)ut+4lπ√−1

4π√−1

; zt].

(We will choose an integer l later.)

From Kirk–Klassen’s theorem,w1

w0= 1 and

z1z0

=

exp

(√−1

∫ 1

0

((ut(−2(2a+ 1)ut

′)− (−2(2a+ 1)ut + 4lπ√−1)ut

′)dt

)= exp

(2l(u − (2k+1)π

√−1

2a+1 )).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 18 / 45

Page 98: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1), III

• csM([α1]) = csM([β0]) and w1 = w0 = 1.⇒ [

2k + 1

4(2a+ 1), 0; 1

]=

[u0

4π√−1

,−2(2a+ 1)u0 + 4lπ

√−1

4π√−1

; z0

]=

[2k + 1

4(2a+ 1), l − 2k + 1

2; z0

].

From the equivalence relation, we have[2k + 1

4(2a+ 1), 0; 1

]∼[

2k + 1

4(2a+ 1), l − 2k + 1

2; exp

(2(2k + 1)(l − k − 1/2)π

√−1

2a+ 1

)].

⇒ z0 = exp(2(2k+1)(l−k−1/2)π

√−1

2a+1

)and

z1 = z0 exp(2l(u − (2k+1)π

√−1

2a+1 ))= exp

(2lu − (2k+1)2π

√−1

2a+1 )).

⇒ CSu,v ([ρu,k ]) = luπ√−1 + (2k+1)2π2

2(2a+1) (mod π2Z) withv := −2(2a+ 1)u + 4lπ

√−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 19 / 45

Page 99: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1), III• csM([α1]) = csM([β0]) and w1 = w0 = 1.

⇒ [2k + 1

4(2a+ 1), 0; 1

]=

[u0

4π√−1

,−2(2a+ 1)u0 + 4lπ

√−1

4π√−1

; z0

]=

[2k + 1

4(2a+ 1), l − 2k + 1

2; z0

].

From the equivalence relation, we have[2k + 1

4(2a+ 1), 0; 1

]∼[

2k + 1

4(2a+ 1), l − 2k + 1

2; exp

(2(2k + 1)(l − k − 1/2)π

√−1

2a+ 1

)].

⇒ z0 = exp(2(2k+1)(l−k−1/2)π

√−1

2a+1

)and

z1 = z0 exp(2l(u − (2k+1)π

√−1

2a+1 ))= exp

(2lu − (2k+1)2π

√−1

2a+1 )).

⇒ CSu,v ([ρu,k ]) = luπ√−1 + (2k+1)2π2

2(2a+1) (mod π2Z) withv := −2(2a+ 1)u + 4lπ

√−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 19 / 45

Page 100: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1), III• csM([α1]) = csM([β0]) and w1 = w0 = 1.⇒ [

2k + 1

4(2a+ 1), 0; 1

]=

[u0

4π√−1

,−2(2a+ 1)u0 + 4lπ

√−1

4π√−1

; z0

]=

[2k + 1

4(2a+ 1), l − 2k + 1

2; z0

].

From the equivalence relation, we have[2k + 1

4(2a+ 1), 0; 1

]∼[

2k + 1

4(2a+ 1), l − 2k + 1

2; exp

(2(2k + 1)(l − k − 1/2)π

√−1

2a+ 1

)].

⇒ z0 = exp(2(2k+1)(l−k−1/2)π

√−1

2a+1

)and

z1 = z0 exp(2l(u − (2k+1)π

√−1

2a+1 ))= exp

(2lu − (2k+1)2π

√−1

2a+1 )).

⇒ CSu,v ([ρu,k ]) = luπ√−1 + (2k+1)2π2

2(2a+1) (mod π2Z) withv := −2(2a+ 1)u + 4lπ

√−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 19 / 45

Page 101: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1), III• csM([α1]) = csM([β0]) and w1 = w0 = 1.⇒ [

2k + 1

4(2a+ 1), 0; 1

]=

[u0

4π√−1

,−2(2a+ 1)u0 + 4lπ

√−1

4π√−1

; z0

]=

[2k + 1

4(2a+ 1), l − 2k + 1

2; z0

].

From the equivalence relation, we have

[2k + 1

4(2a+ 1), 0; 1

]∼[

2k + 1

4(2a+ 1), l − 2k + 1

2; exp

(2(2k + 1)(l − k − 1/2)π

√−1

2a+ 1

)].

⇒ z0 = exp(2(2k+1)(l−k−1/2)π

√−1

2a+1

)and

z1 = z0 exp(2l(u − (2k+1)π

√−1

2a+1 ))= exp

(2lu − (2k+1)2π

√−1

2a+1 )).

⇒ CSu,v ([ρu,k ]) = luπ√−1 + (2k+1)2π2

2(2a+1) (mod π2Z) withv := −2(2a+ 1)u + 4lπ

√−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 19 / 45

Page 102: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1), III• csM([α1]) = csM([β0]) and w1 = w0 = 1.⇒ [

2k + 1

4(2a+ 1), 0; 1

]=

[u0

4π√−1

,−2(2a+ 1)u0 + 4lπ

√−1

4π√−1

; z0

]=

[2k + 1

4(2a+ 1), l − 2k + 1

2; z0

].

From the equivalence relation, we have[2k + 1

4(2a+ 1), 0; 1

]∼[

2k + 1

4(2a+ 1), l − 2k + 1

2; exp

(2(2k + 1)(l − k − 1/2)π

√−1

2a+ 1

)].

⇒ z0 = exp(2(2k+1)(l−k−1/2)π

√−1

2a+1

)and

z1 = z0 exp(2l(u − (2k+1)π

√−1

2a+1 ))= exp

(2lu − (2k+1)2π

√−1

2a+1 )).

⇒ CSu,v ([ρu,k ]) = luπ√−1 + (2k+1)2π2

2(2a+1) (mod π2Z) withv := −2(2a+ 1)u + 4lπ

√−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 19 / 45

Page 103: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1), III• csM([α1]) = csM([β0]) and w1 = w0 = 1.⇒ [

2k + 1

4(2a+ 1), 0; 1

]=

[u0

4π√−1

,−2(2a+ 1)u0 + 4lπ

√−1

4π√−1

; z0

]=

[2k + 1

4(2a+ 1), l − 2k + 1

2; z0

].

From the equivalence relation, we have[2k + 1

4(2a+ 1), 0; 1

]∼[

2k + 1

4(2a+ 1), l − 2k + 1

2; exp

(2(2k + 1)(l − k − 1/2)π

√−1

2a+ 1

)].

⇒ z0 = exp(2(2k+1)(l−k−1/2)π

√−1

2a+1

)

and

z1 = z0 exp(2l(u − (2k+1)π

√−1

2a+1 ))= exp

(2lu − (2k+1)2π

√−1

2a+1 )).

⇒ CSu,v ([ρu,k ]) = luπ√−1 + (2k+1)2π2

2(2a+1) (mod π2Z) withv := −2(2a+ 1)u + 4lπ

√−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 19 / 45

Page 104: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1), III• csM([α1]) = csM([β0]) and w1 = w0 = 1.⇒ [

2k + 1

4(2a+ 1), 0; 1

]=

[u0

4π√−1

,−2(2a+ 1)u0 + 4lπ

√−1

4π√−1

; z0

]=

[2k + 1

4(2a+ 1), l − 2k + 1

2; z0

].

From the equivalence relation, we have[2k + 1

4(2a+ 1), 0; 1

]∼[

2k + 1

4(2a+ 1), l − 2k + 1

2; exp

(2(2k + 1)(l − k − 1/2)π

√−1

2a+ 1

)].

⇒ z0 = exp(2(2k+1)(l−k−1/2)π

√−1

2a+1

)and

z1 = z0 exp(2l(u − (2k+1)π

√−1

2a+1 ))= exp

(2lu − (2k+1)2π

√−1

2a+1 )).

⇒ CSu,v ([ρu,k ]) = luπ√−1 + (2k+1)2π2

2(2a+1) (mod π2Z) withv := −2(2a+ 1)u + 4lπ

√−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 19 / 45

Page 105: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Calculation of csM for S3 \ T (2, 2a + 1), III• csM([α1]) = csM([β0]) and w1 = w0 = 1.⇒ [

2k + 1

4(2a+ 1), 0; 1

]=

[u0

4π√−1

,−2(2a+ 1)u0 + 4lπ

√−1

4π√−1

; z0

]=

[2k + 1

4(2a+ 1), l − 2k + 1

2; z0

].

From the equivalence relation, we have[2k + 1

4(2a+ 1), 0; 1

]∼[

2k + 1

4(2a+ 1), l − 2k + 1

2; exp

(2(2k + 1)(l − k − 1/2)π

√−1

2a+ 1

)].

⇒ z0 = exp(2(2k+1)(l−k−1/2)π

√−1

2a+1

)and

z1 = z0 exp(2l(u − (2k+1)π

√−1

2a+1 ))= exp

(2lu − (2k+1)2π

√−1

2a+1 )).

⇒ CSu,v ([ρu,k ]) = luπ√−1 + (2k+1)2π2

2(2a+1) (mod π2Z) withv := −2(2a+ 1)u + 4lπ

√−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 19 / 45

Page 106: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Colored Jones and Chern–Simons for T (2, 2a + 1)

Let us compare:

CSu,v ([ρu,k ]) = luπ√−1 + (2k+1)2π2

2(2a+1)

Sk(ξ) =−((2k+1)π

√−1−(2a+1)ξ

)22(2a+1) .

Put ξ = 2π√−1 + u.

Sk(2π√−1+ u)− uπ

√−1− 1

4uvk =

(2k + 1)2π2

2(2a+ 1)+ (k − 2a− 1)uπ

√−1

(mod π2Z).

with

vk := 2d Sk(2π

√−1 + u)

d u− 2π

√−1

= −2(2a+ 1)u − 4(2a+ 1− k)π√−1.

If we put l := k − 2a− 1, then

CSu,vk = Sk(2π√−1 + u)− uπ

√−1− 1

4uvk .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 20 / 45

Page 107: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Colored Jones and Chern–Simons for T (2, 2a + 1)

Let us compare:

CSu,v ([ρu,k ]) = luπ√−1 + (2k+1)2π2

2(2a+1)

Sk(ξ) =−((2k+1)π

√−1−(2a+1)ξ

)22(2a+1) .

Put ξ = 2π√−1 + u.

Sk(2π√−1+ u)− uπ

√−1− 1

4uvk =

(2k + 1)2π2

2(2a+ 1)+ (k − 2a− 1)uπ

√−1

(mod π2Z).

with

vk := 2d Sk(2π

√−1 + u)

d u− 2π

√−1

= −2(2a+ 1)u − 4(2a+ 1− k)π√−1.

If we put l := k − 2a− 1, then

CSu,vk = Sk(2π√−1 + u)− uπ

√−1− 1

4uvk .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 20 / 45

Page 108: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Colored Jones and Chern–Simons for T (2, 2a + 1)

Let us compare:

CSu,v ([ρu,k ]) = luπ√−1 + (2k+1)2π2

2(2a+1)

Sk(ξ) =−((2k+1)π

√−1−(2a+1)ξ

)22(2a+1) .

Put ξ = 2π√−1 + u.

Sk(2π√−1+ u)− uπ

√−1− 1

4uvk =

(2k + 1)2π2

2(2a+ 1)+ (k − 2a− 1)uπ

√−1

(mod π2Z).

with

vk := 2d Sk(2π

√−1 + u)

d u− 2π

√−1

= −2(2a+ 1)u − 4(2a+ 1− k)π√−1.

If we put l := k − 2a− 1, then

CSu,vk = Sk(2π√−1 + u)− uπ

√−1− 1

4uvk .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 20 / 45

Page 109: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of torus knots

Colored Jones and Chern–Simons for T (2, 2a + 1)

Let us compare:

CSu,v ([ρu,k ]) = luπ√−1 + (2k+1)2π2

2(2a+1)

Sk(ξ) =−((2k+1)π

√−1−(2a+1)ξ

)22(2a+1) .

Put ξ = 2π√−1 + u.

Sk(2π√−1+ u)− uπ

√−1− 1

4uvk =

(2k + 1)2π2

2(2a+ 1)+ (k − 2a− 1)uπ

√−1

(mod π2Z).

with

vk := 2d Sk(2π

√−1 + u)

d u− 2π

√−1

= −2(2a+ 1)u − 4(2a+ 1− k)π√−1.

If we put l := k − 2a− 1, then

CSu,vk = Sk(2π√−1 + u)− uπ

√−1− 1

4uvk .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 20 / 45

Page 110: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion

Definition of the Reidemeister torsion, I

ρ : π1(S3 \ K ) → SL(2;C).

S3 \ K : universal cover of S3 \ K .

C∗(S3 \ K ;Z): Z[π1(S3 \K )]-module via the covering transformation.

sl(2;C) : Z[π1(S3 \ K )]-module via adjoint action of ρ;x ∈ π1(S

3 \ K ) acts on A ∈ sl(2;C) as x · A := ρ(x)−1Aρ(x).

C∗ : C∗(S3 \ K )⊗Z[π1(S3\K)] sl(2;C): chain complex with∂i : Ci → Ci−1 boundary operator.

H∗ : homology group of the chain complex above.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 21 / 45

Page 111: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion

Definition of the Reidemeister torsion, I

ρ : π1(S3 \ K ) → SL(2;C).

S3 \ K : universal cover of S3 \ K .

C∗(S3 \ K ;Z): Z[π1(S3 \K )]-module via the covering transformation.

sl(2;C) : Z[π1(S3 \ K )]-module via adjoint action of ρ;x ∈ π1(S

3 \ K ) acts on A ∈ sl(2;C) as x · A := ρ(x)−1Aρ(x).

C∗ : C∗(S3 \ K )⊗Z[π1(S3\K)] sl(2;C): chain complex with∂i : Ci → Ci−1 boundary operator.

H∗ : homology group of the chain complex above.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 21 / 45

Page 112: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion

Definition of the Reidemeister torsion, I

ρ : π1(S3 \ K ) → SL(2;C).

S3 \ K : universal cover of S3 \ K .

C∗(S3 \ K ;Z): Z[π1(S3 \K )]-module via the covering transformation.

sl(2;C) : Z[π1(S3 \ K )]-module via adjoint action of ρ;x ∈ π1(S

3 \ K ) acts on A ∈ sl(2;C) as x · A := ρ(x)−1Aρ(x).

C∗ : C∗(S3 \ K )⊗Z[π1(S3\K)] sl(2;C): chain complex with∂i : Ci → Ci−1 boundary operator.

H∗ : homology group of the chain complex above.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 21 / 45

Page 113: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion

Definition of the Reidemeister torsion, I

ρ : π1(S3 \ K ) → SL(2;C).

S3 \ K : universal cover of S3 \ K .

C∗(S3 \ K ;Z): Z[π1(S3 \K )]-module via the covering transformation.

sl(2;C) : Z[π1(S3 \ K )]-module via adjoint action of ρ;x ∈ π1(S

3 \ K ) acts on A ∈ sl(2;C) as x · A := ρ(x)−1Aρ(x).

C∗ : C∗(S3 \ K )⊗Z[π1(S3\K)] sl(2;C): chain complex with∂i : Ci → Ci−1 boundary operator.

H∗ : homology group of the chain complex above.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 21 / 45

Page 114: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion

Definition of the Reidemeister torsion, I

ρ : π1(S3 \ K ) → SL(2;C).

S3 \ K : universal cover of S3 \ K .

C∗(S3 \ K ;Z): Z[π1(S3 \K )]-module via the covering transformation.

sl(2;C) : Z[π1(S3 \ K )]-module via adjoint action of ρ;x ∈ π1(S

3 \ K ) acts on A ∈ sl(2;C) as x · A := ρ(x)−1Aρ(x).

C∗ : C∗(S3 \ K )⊗Z[π1(S3\K)] sl(2;C): chain complex with∂i : Ci → Ci−1 boundary operator.

H∗ : homology group of the chain complex above.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 21 / 45

Page 115: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion

Definition of the Reidemeister torsion, I

ρ : π1(S3 \ K ) → SL(2;C).

S3 \ K : universal cover of S3 \ K .

C∗(S3 \ K ;Z): Z[π1(S3 \K )]-module via the covering transformation.

sl(2;C) : Z[π1(S3 \ K )]-module via adjoint action of ρ;x ∈ π1(S

3 \ K ) acts on A ∈ sl(2;C) as x · A := ρ(x)−1Aρ(x).

C∗ : C∗(S3 \ K )⊗Z[π1(S3\K)] sl(2;C): chain complex with∂i : Ci → Ci−1 boundary operator.

H∗ : homology group of the chain complex above.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 21 / 45

Page 116: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion

Definition of the Reidemeister torsion, I

ρ : π1(S3 \ K ) → SL(2;C).

S3 \ K : universal cover of S3 \ K .

C∗(S3 \ K ;Z): Z[π1(S3 \K )]-module via the covering transformation.

sl(2;C) : Z[π1(S3 \ K )]-module via adjoint action of ρ;x ∈ π1(S

3 \ K ) acts on A ∈ sl(2;C) as x · A := ρ(x)−1Aρ(x).

C∗ : C∗(S3 \ K )⊗Z[π1(S3\K)] sl(2;C): chain complex with∂i : Ci → Ci−1 boundary operator.

H∗ : homology group of the chain complex above.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 21 / 45

Page 117: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion

Definition of the Reidemeister torsion, II

ci : basis of Ci , ∂i (bi ): basis of Bi−1 ,hi : basis of Hi ,˜hi : lifts of hi in

Z i .

∂1∂2C2 C1 C0

Z 2

Z 1Z 0} }}} }}}

}

}}b 1

b 2

∂2(b )2∂1(b )1

h 1

h 2

h 0

T(ρ) := ±∏2

i=0

[∂i+1(bi+1) ∪

˜hi ∪ bi

∣∣∣ ci](−1)i+1

, where [x | y ] is thedeterminant of the basis change matrix.

Under a certain codition T(ρ) is well-defined once we fix bases for H∗. Inthe following, our Reidemeister torsion T(ρ) is defined by using the basisof H1 associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 22 / 45

Page 118: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion

Definition of the Reidemeister torsion, II

ci : basis of Ci , ∂i (bi ): basis of Bi−1 ,hi : basis of Hi ,˜hi : lifts of hi in

Z i .

∂1∂2C2 C1 C0

Z 2

Z 1Z 0} }}} }}}

}

}}b 1

b 2

∂2(b )2∂1(b )1

h 1

h 2

h 0

T(ρ) := ±∏2

i=0

[∂i+1(bi+1) ∪

˜hi ∪ bi

∣∣∣ ci](−1)i+1

, where [x | y ] is thedeterminant of the basis change matrix.

Under a certain codition T(ρ) is well-defined once we fix bases for H∗. Inthe following, our Reidemeister torsion T(ρ) is defined by using the basisof H1 associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 22 / 45

Page 119: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion

Definition of the Reidemeister torsion, II

ci : basis of Ci , ∂i (bi ): basis of Bi−1 ,hi : basis of Hi ,˜hi : lifts of hi in

Z i .

∂1∂2C2 C1 C0

Z 2

Z 1Z 0} }}} }}}

}

}}b 1

b 2

∂2(b )2∂1(b )1

h 1

h 2

h 0

T(ρ) := ±∏2

i=0

[∂i+1(bi+1) ∪

˜hi ∪ bi

∣∣∣ ci](−1)i+1

, where [x | y ] is thedeterminant of the basis change matrix.

Under a certain codition T(ρ) is well-defined once we fix bases for H∗. Inthe following, our Reidemeister torsion T(ρ) is defined by using the basisof H1 associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 22 / 45

Page 120: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion

Definition of the Reidemeister torsion, II

ci : basis of Ci , ∂i (bi ): basis of Bi−1 ,hi : basis of Hi ,˜hi : lifts of hi in

Z i .

∂1∂2C2 C1 C0

Z 2

Z 1Z 0} }}} }}}

}

}}b 1

b 2

∂2(b )2∂1(b )1

h 1

h 2

h 0

T(ρ) := ±∏2

i=0

[∂i+1(bi+1) ∪

˜hi ∪ bi

∣∣∣ ci](−1)i+1

, where [x | y ] is thedeterminant of the basis change matrix.

Under a certain codition T(ρ) is well-defined once we fix bases for H∗. Inthe following, our Reidemeister torsion T(ρ) is defined by using the basisof H1 associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 22 / 45

Page 121: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

y x π1(S3 \ ) = ⟨x , y | xyx = yxy⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

1− 2 cosh u e−u/2

).

We will calculate T(ρ).

r := xyxy−1x−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1 + xy − xyxy−1x−1, ∂r

∂y = x − xyxy−1 − xyxy−1x−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 23 / 45

Page 122: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

y x

π1(S3 \ ) = ⟨x , y | xyx = yxy⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

1− 2 cosh u e−u/2

).

We will calculate T(ρ).

r := xyxy−1x−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1 + xy − xyxy−1x−1, ∂r

∂y = x − xyxy−1 − xyxy−1x−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 23 / 45

Page 123: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

y x π1(S3 \ ) = ⟨x , y | xyx = yxy⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

1− 2 cosh u e−u/2

).

We will calculate T(ρ).

r := xyxy−1x−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1 + xy − xyxy−1x−1, ∂r

∂y = x − xyxy−1 − xyxy−1x−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 23 / 45

Page 124: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

y x π1(S3 \ ) = ⟨x , y | xyx = yxy⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

1− 2 cosh u e−u/2

).

We will calculate T(ρ).

r := xyxy−1x−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1 + xy − xyxy−1x−1, ∂r

∂y = x − xyxy−1 − xyxy−1x−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 23 / 45

Page 125: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

y x π1(S3 \ ) = ⟨x , y | xyx = yxy⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

1− 2 cosh u e−u/2

).

We will calculate T(ρ).r := xyxy−1x−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1 + xy − xyxy−1x−1, ∂r

∂y = x − xyxy−1 − xyxy−1x−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 23 / 45

Page 126: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

y x π1(S3 \ ) = ⟨x , y | xyx = yxy⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

1− 2 cosh u e−u/2

).

We will calculate T(ρ).r := xyxy−1x−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).

c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1 + xy − xyxy−1x−1, ∂r

∂y = x − xyxy−1 − xyxy−1x−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 23 / 45

Page 127: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

y x π1(S3 \ ) = ⟨x , y | xyx = yxy⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

1− 2 cosh u e−u/2

).

We will calculate T(ρ).r := xyxy−1x−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1 + xy − xyxy−1x−1, ∂r

∂y = x − xyxy−1 − xyxy−1x−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 23 / 45

Page 128: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

y x π1(S3 \ ) = ⟨x , y | xyx = yxy⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

1− 2 cosh u e−u/2

).

We will calculate T(ρ).r := xyxy−1x−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1 + xy − xyxy−1x−1, ∂r

∂y = x − xyxy−1 − xyxy−1x−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 23 / 45

Page 129: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

y x π1(S3 \ ) = ⟨x , y | xyx = yxy⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

1− 2 cosh u e−u/2

).

We will calculate T(ρ).r := xyxy−1x−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)

∂r∂x = 1 + xy − xyxy−1x−1, ∂r

∂y = x − xyxy−1 − xyxy−1x−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 23 / 45

Page 130: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

y x π1(S3 \ ) = ⟨x , y | xyx = yxy⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

1− 2 cosh u e−u/2

).

We will calculate T(ρ).r := xyxy−1x−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1 + xy − xyxy−1x−1, ∂r

∂y = x − xyxy−1 − xyxy−1x−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 23 / 45

Page 131: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , II

∂2 is given by the 6× 3 matrix(Ad(∂r∂x

)Ad(

∂r∂y

)) =

(I3 + YX − X−1Y−1XYX

X − Y−1XYX − Y−1X−1Y−1XYX

), where X (Y ,

resp.) is the adjoint of ρ(x) (ρ(y), resp.).

∂1 is given by the 3× 6 matrix((X − I3) (Y − I3)

).

X =

e−u 2e−u/2 −1

0 1 −eu/2

0 0 eu

,

Y =

e−u 0 0

e−u/2(1− 2 cosh u) 1 0

−(1− 2 cosh u)2 −2eu/2(1− 2 cosh u) eu

.

⇒ H2 = H1 = C and H0 = {0}.So dimB2 = 3− 1 = 2, and dimB1 = 6− 1− 2 = 3.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 24 / 45

Page 132: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , II

∂2 is given by the 6× 3 matrix(Ad(∂r∂x

)Ad(

∂r∂y

)) =

(I3 + YX − X−1Y−1XYX

X − Y−1XYX − Y−1X−1Y−1XYX

), where X (Y ,

resp.) is the adjoint of ρ(x) (ρ(y), resp.).

∂1 is given by the 3× 6 matrix((X − I3) (Y − I3)

).

X =

e−u 2e−u/2 −1

0 1 −eu/2

0 0 eu

,

Y =

e−u 0 0

e−u/2(1− 2 cosh u) 1 0

−(1− 2 cosh u)2 −2eu/2(1− 2 cosh u) eu

.

⇒ H2 = H1 = C and H0 = {0}.So dimB2 = 3− 1 = 2, and dimB1 = 6− 1− 2 = 3.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 24 / 45

Page 133: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , II

∂2 is given by the 6× 3 matrix(Ad(∂r∂x

)Ad(

∂r∂y

)) =

(I3 + YX − X−1Y−1XYX

X − Y−1XYX − Y−1X−1Y−1XYX

), where X (Y ,

resp.) is the adjoint of ρ(x) (ρ(y), resp.).

∂1 is given by the 3× 6 matrix((X − I3) (Y − I3)

).

X =

e−u 2e−u/2 −1

0 1 −eu/2

0 0 eu

,

Y =

e−u 0 0

e−u/2(1− 2 cosh u) 1 0

−(1− 2 cosh u)2 −2eu/2(1− 2 cosh u) eu

.

⇒ H2 = H1 = C and H0 = {0}.So dimB2 = 3− 1 = 2, and dimB1 = 6− 1− 2 = 3.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 24 / 45

Page 134: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , II

∂2 is given by the 6× 3 matrix(Ad(∂r∂x

)Ad(

∂r∂y

)) =

(I3 + YX − X−1Y−1XYX

X − Y−1XYX − Y−1X−1Y−1XYX

), where X (Y ,

resp.) is the adjoint of ρ(x) (ρ(y), resp.).

∂1 is given by the 3× 6 matrix((X − I3) (Y − I3)

).

X =

e−u 2e−u/2 −1

0 1 −eu/2

0 0 eu

,

Y =

e−u 0 0

e−u/2(1− 2 cosh u) 1 0

−(1− 2 cosh u)2 −2eu/2(1− 2 cosh u) eu

.

⇒ H2 = H1 = C and H0 = {0}.So dimB2 = 3− 1 = 2, and dimB1 = 6− 1− 2 = 3.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 24 / 45

Page 135: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , II

∂2 is given by the 6× 3 matrix(Ad(∂r∂x

)Ad(

∂r∂y

)) =

(I3 + YX − X−1Y−1XYX

X − Y−1XYX − Y−1X−1Y−1XYX

), where X (Y ,

resp.) is the adjoint of ρ(x) (ρ(y), resp.).

∂1 is given by the 3× 6 matrix((X − I3) (Y − I3)

).

X =

e−u 2e−u/2 −1

0 1 −eu/2

0 0 eu

,

Y =

e−u 0 0

e−u/2(1− 2 cosh u) 1 0

−(1− 2 cosh u)2 −2eu/2(1− 2 cosh u) eu

.

⇒ H2 = H1 = C and H0 = {0}.

So dimB2 = 3− 1 = 2, and dimB1 = 6− 1− 2 = 3.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 24 / 45

Page 136: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , II

∂2 is given by the 6× 3 matrix(Ad(∂r∂x

)Ad(

∂r∂y

)) =

(I3 + YX − X−1Y−1XYX

X − Y−1XYX − Y−1X−1Y−1XYX

), where X (Y ,

resp.) is the adjoint of ρ(x) (ρ(y), resp.).

∂1 is given by the 3× 6 matrix((X − I3) (Y − I3)

).

X =

e−u 2e−u/2 −1

0 1 −eu/2

0 0 eu

,

Y =

e−u 0 0

e−u/2(1− 2 cosh u) 1 0

−(1− 2 cosh u)2 −2eu/2(1− 2 cosh u) eu

.

⇒ H2 = H1 = C and H0 = {0}.So dimB2 = 3− 1 = 2, and dimB1 = 6− 1− 2 = 3.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 24 / 45

Page 137: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , III

˜h2 =

eu/2

−10

1− 2 cosh u

={[∂(S3 \ IntN( )

)⊗ P]

}, where

[∂(S3 \ IntN( )

)] is the fundamental class, and P is invariant

under the adjoint actions of the meridian x and the longitude.

˜h1 =

2eu/2

eu − 10000

= {[x ⊗ P]}.

⇒ T(ρ) = ±1

2.

By using twisted Alexander polynomial (Y. Yamaguchi, T. Kitano,J. Porti, etc.), we can also prove T(ρu,k) = ± 2a+1

8 sin2(

(2k+1)π2(2a+1)

) .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 25 / 45

Page 138: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , III

˜h2 =

eu/2

−10

1− 2 cosh u

={[∂(S3 \ IntN( )

)⊗ P]

}, where

[∂(S3 \ IntN( )

)] is the fundamental class, and P is invariant

under the adjoint actions of the meridian x and the longitude.

˜h1 =

2eu/2

eu − 10000

= {[x ⊗ P]}.

⇒ T(ρ) = ±1

2.

By using twisted Alexander polynomial (Y. Yamaguchi, T. Kitano,J. Porti, etc.), we can also prove T(ρu,k) = ± 2a+1

8 sin2(

(2k+1)π2(2a+1)

) .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 25 / 45

Page 139: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , III

˜h2 =

eu/2

−10

1− 2 cosh u

={[∂(S3 \ IntN( )

)⊗ P]

}, where

[∂(S3 \ IntN( )

)] is the fundamental class, and P is invariant

under the adjoint actions of the meridian x and the longitude.

˜h1 =

2eu/2

eu − 10000

= {[x ⊗ P]}.

⇒ T(ρ) = ±1

2.

By using twisted Alexander polynomial (Y. Yamaguchi, T. Kitano,J. Porti, etc.), we can also prove T(ρu,k) = ± 2a+1

8 sin2(

(2k+1)π2(2a+1)

) .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 25 / 45

Page 140: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , III

˜h2 =

eu/2

−10

1− 2 cosh u

={[∂(S3 \ IntN( )

)⊗ P]

}, where

[∂(S3 \ IntN( )

)] is the fundamental class, and P is invariant

under the adjoint actions of the meridian x and the longitude.

˜h1 =

2eu/2

eu − 10000

= {[x ⊗ P]}.

⇒ T(ρ) = ±1

2.

By using twisted Alexander polynomial (Y. Yamaguchi, T. Kitano,J. Porti, etc.), we can also prove T(ρu,k) = ± 2a+1

8 sin2(

(2k+1)π2(2a+1)

) .

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 25 / 45

Page 141: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , III

˜h2 =

eu/2

−10

1− 2 cosh u

={[∂(S3 \ IntN( )

)⊗ P]

}, where

[∂(S3 \ IntN( )

)] is the fundamental class, and P is invariant

under the adjoint actions of the meridian x and the longitude.

˜h1 =

2eu/2

eu − 10000

= {[x ⊗ P]}.

⇒ T(ρ) = ±1

2.

By using twisted Alexander polynomial (Y. Yamaguchi, T. Kitano,J. Porti, etc.), we can also prove T(ρu,k) = ± 2a+1

8 sin2(

(2k+1)π2(2a+1)

) .Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 25 / 45

Page 142: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CJ, CS, and Reidemeister for torus knots

CJ, CS, and Reidemeister for T (2, 2a + 1)

We have proved:

JN(T (2, 2a+ 1); exp(ξ/N)

)∼

N→∞

1

∆ (T (2, 2a+ 1); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

exp

[N

ξSk(ξ)

]√N

ξτk ,

where

∆(K ; t): Alexander polynomial,

Sk(ξ): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ−2k : Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 26 / 45

Page 143: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CJ, CS, and Reidemeister for torus knots

CJ, CS, and Reidemeister for T (2, 2a + 1)

We have proved:

JN(T (2, 2a+ 1); exp(ξ/N)

)∼

N→∞

1

∆ (T (2, 2a+ 1); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

exp

[N

ξSk(ξ)

]√N

ξτk ,

where

∆(K ; t): Alexander polynomial,

Sk(ξ): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ−2k : Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 26 / 45

Page 144: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CJ, CS, and Reidemeister for torus knots

CJ, CS, and Reidemeister for T (2, 2a + 1)

We have proved:

JN(T (2, 2a+ 1); exp(ξ/N)

)∼

N→∞

1

∆ (T (2, 2a+ 1); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

exp

[N

ξSk(ξ)

]√N

ξτk ,

where

∆(K ; t): Alexander polynomial,

Sk(ξ): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ−2k : Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 26 / 45

Page 145: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CJ, CS, and Reidemeister for torus knots

CJ, CS, and Reidemeister for T (2, 2a + 1)

We have proved:

JN(T (2, 2a+ 1); exp(ξ/N)

)∼

N→∞

1

∆ (T (2, 2a+ 1); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

exp

[N

ξSk(ξ)

]√N

ξτk ,

where

∆(K ; t): Alexander polynomial,

Sk(ξ): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ−2k : Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 26 / 45

Page 146: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CJ, CS, and Reidemeister for torus knots

CJ, CS, and Reidemeister for T (2, 2a + 1)

We have proved:

JN(T (2, 2a+ 1); exp(ξ/N)

)∼

N→∞

1

∆ (T (2, 2a+ 1); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

exp

[N

ξSk(ξ)

]√N

ξτk ,

where

∆(K ; t): Alexander polynomial,

Sk(ξ): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ−2k : Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 26 / 45

Page 147: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CJ, CS, and Reidemeister for torus knots

CJ, CS, and Reidemeister for T (2, 2a + 1)

We have proved:

JN(T (2, 2a+ 1); exp(ξ/N)

)∼

N→∞

1

∆ (T (2, 2a+ 1); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

exp

[N

ξSk(ξ)

]√N

ξτk ,

where

∆(K ; t): Alexander polynomial,

Sk(ξ): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ−2k : Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 26 / 45

Page 148: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CJ, CS, and Reidemeister for torus knots

Colored Jones for u = 0, T (2, 2a + 1)

Theorem (R. Kashaev & O. Tirkkonen (2000), J. Dubois &R. Kashaev (2007))

JN(T (2, 2a+ 1); exp(2π

√−1/N)

)∼

N→∞

π3/2

4(2a+ 1)

(N

2π√−1

)3/2

×

2(2a+1)−1∑k=1

(−1)k+1k2τk exp

[Sk(2π

√−1)

(N

2π√−1

)] ,

where

Sk(ξ) :=−(2kπ

√−1−2(2a+1)ξ)

2

8(2a+1) : Chern–Simons invariant,

τ−2k := 2a+1

8 sin2(kπ/(2a+1)): Reidemeister torsion.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 27 / 45

Page 149: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CJ, CS, and Reidemeister for torus knots

Colored Jones for u = 0, T (2, 2a + 1)

Theorem (R. Kashaev & O. Tirkkonen (2000), J. Dubois &R. Kashaev (2007))

JN(T (2, 2a+ 1); exp(2π

√−1/N)

)∼

N→∞

π3/2

4(2a+ 1)

(N

2π√−1

)3/2

×

2(2a+1)−1∑k=1

(−1)k+1k2τk exp

[Sk(2π

√−1)

(N

2π√−1

)] ,

where

Sk(ξ) :=−(2kπ

√−1−2(2a+1)ξ)

2

8(2a+1) : Chern–Simons invariant,

τ−2k := 2a+1

8 sin2(kπ/(2a+1)): Reidemeister torsion.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 27 / 45

Page 150: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CJ, CS, and Reidemeister for torus knots

Colored Jones for u = 0, T (2, 2a + 1)

Theorem (R. Kashaev & O. Tirkkonen (2000), J. Dubois &R. Kashaev (2007))

JN(T (2, 2a+ 1); exp(2π

√−1/N)

)∼

N→∞

π3/2

4(2a+ 1)

(N

2π√−1

)3/2

×

2(2a+1)−1∑k=1

(−1)k+1k2τk exp

[Sk(2π

√−1)

(N

2π√−1

)] ,

where

Sk(ξ) :=−(2kπ

√−1−2(2a+1)ξ)

2

8(2a+1) : Chern–Simons invariant,

τ−2k := 2a+1

8 sin2(kπ/(2a+1)): Reidemeister torsion.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 27 / 45

Page 151: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CJ, CS, and Reidemeister for torus knots

Colored Jones for u = 0, T (2, 2a + 1)

Theorem (R. Kashaev & O. Tirkkonen (2000), J. Dubois &R. Kashaev (2007))

JN(T (2, 2a+ 1); exp(2π

√−1/N)

)∼

N→∞

π3/2

4(2a+ 1)

(N

2π√−1

)3/2

×

2(2a+1)−1∑k=1

(−1)k+1k2τk exp

[Sk(2π

√−1)

(N

2π√−1

)] ,

where

Sk(ξ) :=−(2kπ

√−1−2(2a+1)ξ)

2

8(2a+1) : Chern–Simons invariant,

τ−2k := 2a+1

8 sin2(kπ/(2a+1)): Reidemeister torsion.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 27 / 45

Page 152: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , Iξ := 2π

√−1 + u with u > 0: small.

We will study the asymptotic behavior of JN( ; exp(ξ/N)).By K. Habiro and T. Le

JN

(; q)=

N−1∑k=0

q−kNk∏

l=1

(1− qN−l

)(1− qN+l

).

For a complex number γ with Re(γ) > 0, define the quantum dilogarithm(L. Faddeev):

Sγ(z) := exp

(1

4

∫C

ezt

t sinh(πt) sinh(γt)dt

),

where C :=Re

Im

O

and |Re(z)| < π + Re(γ).

Note: Sπ/N = exp(

N2π

√−1

Li2(−e√−1z) + O(1/N)

)(N → ∞).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 28 / 45

Page 153: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , Iξ := 2π

√−1 + u with u > 0: small.

We will study the asymptotic behavior of JN( ; exp(ξ/N)).

By K. Habiro and T. Le

JN

(; q)=

N−1∑k=0

q−kNk∏

l=1

(1− qN−l

)(1− qN+l

).

For a complex number γ with Re(γ) > 0, define the quantum dilogarithm(L. Faddeev):

Sγ(z) := exp

(1

4

∫C

ezt

t sinh(πt) sinh(γt)dt

),

where C :=Re

Im

O

and |Re(z)| < π + Re(γ).

Note: Sπ/N = exp(

N2π

√−1

Li2(−e√−1z) + O(1/N)

)(N → ∞).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 28 / 45

Page 154: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , Iξ := 2π

√−1 + u with u > 0: small.

We will study the asymptotic behavior of JN( ; exp(ξ/N)).By K. Habiro and T. Le

JN

(; q)=

N−1∑k=0

q−kNk∏

l=1

(1− qN−l

)(1− qN+l

).

For a complex number γ with Re(γ) > 0, define the quantum dilogarithm(L. Faddeev):

Sγ(z) := exp

(1

4

∫C

ezt

t sinh(πt) sinh(γt)dt

),

where C :=Re

Im

O

and |Re(z)| < π + Re(γ).

Note: Sπ/N = exp(

N2π

√−1

Li2(−e√−1z) + O(1/N)

)(N → ∞).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 28 / 45

Page 155: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , Iξ := 2π

√−1 + u with u > 0: small.

We will study the asymptotic behavior of JN( ; exp(ξ/N)).By K. Habiro and T. Le

JN

(; q)=

N−1∑k=0

q−kNk∏

l=1

(1− qN−l

)(1− qN+l

).

For a complex number γ with Re(γ) > 0, define the quantum dilogarithm(L. Faddeev):

Sγ(z) := exp

(1

4

∫C

ezt

t sinh(πt) sinh(γt)dt

),

where C :=Re

Im

O

and |Re(z)| < π + Re(γ).

Note: Sπ/N = exp(

N2π

√−1

Li2(−e√−1z) + O(1/N)

)(N → ∞).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 28 / 45

Page 156: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , Iξ := 2π

√−1 + u with u > 0: small.

We will study the asymptotic behavior of JN( ; exp(ξ/N)).By K. Habiro and T. Le

JN

(; q)=

N−1∑k=0

q−kNk∏

l=1

(1− qN−l

)(1− qN+l

).

For a complex number γ with Re(γ) > 0, define the quantum dilogarithm(L. Faddeev):

Sγ(z) := exp

(1

4

∫C

ezt

t sinh(πt) sinh(γt)dt

),

where C :=Re

Im

O

and |Re(z)| < π + Re(γ).

Note: Sπ/N = exp(

N2π

√−1

Li2(−e√−1z) + O(1/N)

)(N → ∞).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 28 / 45

Page 157: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , II

Lemma

For |Re(z)| < π, (1 + e√−1z)Sγ(z + γ) = Sγ(z − γ).

Putting γ := ξ2√−1N

= (2π −√−1u)/(2N) and z := π −

√−1u − 2lγ, we

have

(1+e√−1(π−

√−1u−2lγ))Sγ(π−

√−1u−2lγ+γ) = Sγ(π−

√−1u−2lγ−γ)

and so k∏l=1

(1− e(N−l)ξ/N) =k∏

l=1

Sγ(π −√−1u − (2l + 1)γ))

Sγ(π −√−1u − (2l − 1)γ)

=Sγ(π −

√−1u − (2k + 1)γ)

Sγ(π −√−1u − γ)

.

We also havek∏

l=1

(1− e(N+l)ξ/N) =Sγ(π −

√−1u + γ)

Sγ(π −√−1u + (2k + 1)γ)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 29 / 45

Page 158: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , II

Lemma

For |Re(z)| < π, (1 + e√−1z)Sγ(z + γ) = Sγ(z − γ).

Putting γ := ξ2√−1N

= (2π −√−1u)/(2N) and z := π −

√−1u − 2lγ, we

have

(1+e√−1(π−

√−1u−2lγ))Sγ(π−

√−1u−2lγ+γ) = Sγ(π−

√−1u−2lγ−γ)

and so k∏l=1

(1− e(N−l)ξ/N) =k∏

l=1

Sγ(π −√−1u − (2l + 1)γ))

Sγ(π −√−1u − (2l − 1)γ)

=Sγ(π −

√−1u − (2k + 1)γ)

Sγ(π −√−1u − γ)

.

We also havek∏

l=1

(1− e(N+l)ξ/N) =Sγ(π −

√−1u + γ)

Sγ(π −√−1u + (2k + 1)γ)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 29 / 45

Page 159: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , II

Lemma

For |Re(z)| < π, (1 + e√−1z)Sγ(z + γ) = Sγ(z − γ).

Putting γ := ξ2√−1N

= (2π −√−1u)/(2N) and z := π −

√−1u − 2lγ, we

have

(1+e√−1(π−

√−1u−2lγ))Sγ(π−

√−1u−2lγ+γ) = Sγ(π−

√−1u−2lγ−γ)

and so k∏l=1

(1− e(N−l)ξ/N) =k∏

l=1

Sγ(π −√−1u − (2l + 1)γ))

Sγ(π −√−1u − (2l − 1)γ)

=Sγ(π −

√−1u − (2k + 1)γ)

Sγ(π −√−1u − γ)

.

We also havek∏

l=1

(1− e(N+l)ξ/N) =Sγ(π −

√−1u + γ)

Sγ(π −√−1u + (2k + 1)γ)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 29 / 45

Page 160: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , II

Lemma

For |Re(z)| < π, (1 + e√−1z)Sγ(z + γ) = Sγ(z − γ).

Putting γ := ξ2√−1N

= (2π −√−1u)/(2N) and z := π −

√−1u − 2lγ, we

have

(1+e√−1(π−

√−1u−2lγ))Sγ(π−

√−1u−2lγ+γ) = Sγ(π−

√−1u−2lγ−γ)

and so k∏l=1

(1− e(N−l)ξ/N) =k∏

l=1

Sγ(π −√−1u − (2l + 1)γ))

Sγ(π −√−1u − (2l − 1)γ)

=Sγ(π −

√−1u − (2k + 1)γ)

Sγ(π −√−1u − γ)

.

We also havek∏

l=1

(1− e(N+l)ξ/N) =Sγ(π −

√−1u + γ)

Sγ(π −√−1u + (2k + 1)γ)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 29 / 45

Page 161: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , II

Lemma

For |Re(z)| < π, (1 + e√−1z)Sγ(z + γ) = Sγ(z − γ).

Putting γ := ξ2√−1N

= (2π −√−1u)/(2N) and z := π −

√−1u − 2lγ, we

have

(1+e√−1(π−

√−1u−2lγ))Sγ(π−

√−1u−2lγ+γ) = Sγ(π−

√−1u−2lγ−γ)

and so k∏l=1

(1− e(N−l)ξ/N) =k∏

l=1

Sγ(π −√−1u − (2l + 1)γ))

Sγ(π −√−1u − (2l − 1)γ)

=Sγ(π −

√−1u − (2k + 1)γ)

Sγ(π −√−1u − γ)

.

We also havek∏

l=1

(1− e(N+l)ξ/N) =Sγ(π −

√−1u + γ)

Sγ(π −√−1u + (2k + 1)γ)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 29 / 45

Page 162: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , III

JN( ; exp(ξ/N))

=Sγ(−π −

√−1u + γ)

Sγ(π −√−1u − γ)

N−1∑k=0

e−ku Sγ(π −√−1u − (2k + 1)γ)

Sγ(−π −√−1u + (2k + 1)γ)

.

Putting gN(w) := e−Nuw Sγ(π−√−1u+

√−1ξw)

Sγ(−π−√−1u−

√−1ξw)

, JN( ; exp(ξ/N)) is equal

toSγ(−π −

√−1u + γ)

Sγ(π −√−1u − γ)

√−1Neu/N

2

∫Ptan(Nπw)gN(w) dw ,

from the residue theorem, where P isthe dotted parallelogram. Note thatgN is defined between the two parallellines and that the poles of tan(Nπw)inside P are 1

2N ,32N , . . . ,

2N−12N .

Re

Im

O

1

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 30 / 45

Page 163: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , IIIJN( ; exp(ξ/N))

=Sγ(−π −

√−1u + γ)

Sγ(π −√−1u − γ)

N−1∑k=0

e−ku Sγ(π −√−1u − (2k + 1)γ)

Sγ(−π −√−1u + (2k + 1)γ)

.

Putting gN(w) := e−Nuw Sγ(π−√−1u+

√−1ξw)

Sγ(−π−√−1u−

√−1ξw)

, JN( ; exp(ξ/N)) is equal

toSγ(−π −

√−1u + γ)

Sγ(π −√−1u − γ)

√−1Neu/N

2

∫Ptan(Nπw)gN(w) dw ,

from the residue theorem, where P isthe dotted parallelogram. Note thatgN is defined between the two parallellines and that the poles of tan(Nπw)inside P are 1

2N ,32N , . . . ,

2N−12N .

Re

Im

O

1

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 30 / 45

Page 164: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , IIIJN( ; exp(ξ/N))

=Sγ(−π −

√−1u + γ)

Sγ(π −√−1u − γ)

N−1∑k=0

e−ku Sγ(π −√−1u − (2k + 1)γ)

Sγ(−π −√−1u + (2k + 1)γ)

.

Putting gN(w) := e−Nuw Sγ(π−√−1u+

√−1ξw)

Sγ(−π−√−1u−

√−1ξw)

, JN( ; exp(ξ/N)) is equal

to

Sγ(−π −√−1u + γ)

Sγ(π −√−1u − γ)

√−1Neu/N

2

∫Ptan(Nπw)gN(w) dw ,

from the residue theorem, where P isthe dotted parallelogram. Note thatgN is defined between the two parallellines and that the poles of tan(Nπw)inside P are 1

2N ,32N , . . . ,

2N−12N .

Re

Im

O

1

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 30 / 45

Page 165: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , IIIJN( ; exp(ξ/N))

=Sγ(−π −

√−1u + γ)

Sγ(π −√−1u − γ)

N−1∑k=0

e−ku Sγ(π −√−1u − (2k + 1)γ)

Sγ(−π −√−1u + (2k + 1)γ)

.

Putting gN(w) := e−Nuw Sγ(π−√−1u+

√−1ξw)

Sγ(−π−√−1u−

√−1ξw)

, JN( ; exp(ξ/N)) is equal

toSγ(−π −

√−1u + γ)

Sγ(π −√−1u − γ)

√−1Neu/N

2

∫Ptan(Nπw)gN(w) dw ,

from the residue theorem, where P isthe dotted parallelogram. Note thatgN is defined between the two parallellines and that the poles of tan(Nπw)inside P are 1

2N ,32N , . . . ,

2N−12N .

Re

Im

O

1

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 30 / 45

Page 166: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , IV

Since

tan(x +√−1y) = 1√

−1e√−1x−y−e−

√−1x+y

e√−1x−y+e−

√−1x+y

{√−1 (y → ∞),

−√−1 (y → −∞),

G±,N :=

∫P±

tan(Nπw)gN(w) dw ∼N→∞

±√−1

∫P±

gN(w) dw

where P+ (P−, resp.) is the upper (lower, resp.) half parallelogram.

SinceSγ(−π−

√−1u+γ)

Sγ(π−√−1u−γ)

= e2π√

−1uN/ξ

eu−1 , we have

JN( ; exp(ξ/N)) ∼N→∞

√−1N

e2π√−1uN/ξ − 1

4 sinh(u/2)(G+,N + G−,N).

Now we havegN(w) ∼

N→∞exp(NΦ(w))

with

Φ(w) :=1

ξ

(Li2(e

u−ξw )− Li2(eu+ξw )− uw

).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 31 / 45

Page 167: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , IVSince

tan(x +√−1y) = 1√

−1e√−1x−y−e−

√−1x+y

e√−1x−y+e−

√−1x+y

{√−1 (y → ∞),

−√−1 (y → −∞),

G±,N :=

∫P±

tan(Nπw)gN(w) dw ∼N→∞

±√−1

∫P±

gN(w) dw

where P+ (P−, resp.) is the upper (lower, resp.) half parallelogram.

SinceSγ(−π−

√−1u+γ)

Sγ(π−√−1u−γ)

= e2π√

−1uN/ξ

eu−1 , we have

JN( ; exp(ξ/N)) ∼N→∞

√−1N

e2π√−1uN/ξ − 1

4 sinh(u/2)(G+,N + G−,N).

Now we havegN(w) ∼

N→∞exp(NΦ(w))

with

Φ(w) :=1

ξ

(Li2(e

u−ξw )− Li2(eu+ξw )− uw

).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 31 / 45

Page 168: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , IVSince

tan(x +√−1y) = 1√

−1e√−1x−y−e−

√−1x+y

e√−1x−y+e−

√−1x+y

{√−1 (y → ∞),

−√−1 (y → −∞),

G±,N :=

∫P±

tan(Nπw)gN(w) dw ∼N→∞

±√−1

∫P±

gN(w) dw

where P+ (P−, resp.) is the upper (lower, resp.) half parallelogram.

SinceSγ(−π−

√−1u+γ)

Sγ(π−√−1u−γ)

= e2π√

−1uN/ξ

eu−1 , we have

JN( ; exp(ξ/N)) ∼N→∞

√−1N

e2π√−1uN/ξ − 1

4 sinh(u/2)(G+,N + G−,N).

Now we havegN(w) ∼

N→∞exp(NΦ(w))

with

Φ(w) :=1

ξ

(Li2(e

u−ξw )− Li2(eu+ξw )− uw

).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 31 / 45

Page 169: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , IVSince

tan(x +√−1y) = 1√

−1e√−1x−y−e−

√−1x+y

e√−1x−y+e−

√−1x+y

{√−1 (y → ∞),

−√−1 (y → −∞),

G±,N :=

∫P±

tan(Nπw)gN(w) dw ∼N→∞

±√−1

∫P±

gN(w) dw

where P+ (P−, resp.) is the upper (lower, resp.) half parallelogram.

SinceSγ(−π−

√−1u+γ)

Sγ(π−√−1u−γ)

= e2π√

−1uN/ξ

eu−1 , we have

JN( ; exp(ξ/N)) ∼N→∞

√−1N

e2π√−1uN/ξ − 1

4 sinh(u/2)(G+,N + G−,N).

Now we havegN(w) ∼

N→∞exp(NΦ(w))

with

Φ(w) :=1

ξ

(Li2(e

u−ξw )− Li2(eu+ξw )− uw

).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 31 / 45

Page 170: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , IVSince

tan(x +√−1y) = 1√

−1e√−1x−y−e−

√−1x+y

e√−1x−y+e−

√−1x+y

{√−1 (y → ∞),

−√−1 (y → −∞),

G±,N :=

∫P±

tan(Nπw)gN(w) dw ∼N→∞

±√−1

∫P±

gN(w) dw

where P+ (P−, resp.) is the upper (lower, resp.) half parallelogram.

SinceSγ(−π−

√−1u+γ)

Sγ(π−√−1u−γ)

= e2π√

−1uN/ξ

eu−1 , we have

JN( ; exp(ξ/N)) ∼N→∞

√−1N

e2π√−1uN/ξ − 1

4 sinh(u/2)(G+,N + G−,N).

Now we havegN(w) ∼

N→∞exp(NΦ(w))

with

Φ(w) :=1

ξ

(Li2(e

u−ξw )− Li2(eu+ξw )− uw

).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 31 / 45

Page 171: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , IVSince

tan(x +√−1y) = 1√

−1e√−1x−y−e−

√−1x+y

e√−1x−y+e−

√−1x+y

{√−1 (y → ∞),

−√−1 (y → −∞),

G±,N :=

∫P±

tan(Nπw)gN(w) dw ∼N→∞

±√−1

∫P±

gN(w) dw

where P+ (P−, resp.) is the upper (lower, resp.) half parallelogram.

SinceSγ(−π−

√−1u+γ)

Sγ(π−√−1u−γ)

= e2π√

−1uN/ξ

eu−1 , we have

JN( ; exp(ξ/N)) ∼N→∞

√−1N

e2π√−1uN/ξ − 1

4 sinh(u/2)(G+,N + G−,N).

Now we havegN(w) ∼

N→∞exp(NΦ(w))

with

Φ(w) :=1

ξ

(Li2(e

u−ξw )− Li2(eu+ξw )− uw

).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 31 / 45

Page 172: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , V

Therefore

G±,N ∼N→∞

±√−1

∫P±

exp(NΦ(w)) dw

and G+,N + G−,N = −2√−1

∫P−

exp(NΦ(w)) dw

since Φ(w) is analytic.

Contour plot of Φ

1

0.5

-0.5

-1

0

0 0.2 0.4 0.6 0.8 1

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 32 / 45

Page 173: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , VTherefore

G±,N ∼N→∞

±√−1

∫P±

exp(NΦ(w)) dw

and G+,N + G−,N = −2√−1

∫P−

exp(NΦ(w)) dw

since Φ(w) is analytic.

Contour plot of Φ

1

0.5

-0.5

-1

0

0 0.2 0.4 0.6 0.8 1

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 32 / 45

Page 174: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , VI

Theorem (Saddle Point Method)

Assume that

1 d h(z0)/dz = 0 and d2 h(z0)/dz2 = 0.

2 Im h(z) is constant for z in some neighborhood of z0.3 Re h(z) takes its strict maximum along Γ at z0.

Then ∫Γexp(Nh(z)

)dz ∼

N→∞

√2π exp

(Nh(z0)

)√N√

−d2 h(z0)/dz2.

Saddle point w0 of Φ1

0.5

-0.5

-1

0

0 0.2 0.4 0.6 0.8 1

∫P−

exp(NΦ(w)) dw

∼N→∞

√2π exp(NΦ(w0))√

N√

−d2Φ(w0)/dw2,

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 33 / 45

Page 175: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , VI

Theorem (Saddle Point Method)

Assume that

1 d h(z0)/dz = 0 and d2 h(z0)/dz2 = 0.

2 Im h(z) is constant for z in some neighborhood of z0.3 Re h(z) takes its strict maximum along Γ at z0.

Then ∫Γexp(Nh(z)

)dz ∼

N→∞

√2π exp

(Nh(z0)

)√N√

−d2 h(z0)/dz2.

Saddle point w0 of Φ1

0.5

-0.5

-1

0

0 0.2 0.4 0.6 0.8 1

∫P−

exp(NΦ(w)) dw

∼N→∞

√2π exp(NΦ(w0))√

N√

−d2Φ(w0)/dw2,

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 33 / 45

Page 176: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , VI

Theorem (Saddle Point Method)

Assume that

1 d h(z0)/dz = 0 and d2 h(z0)/dz2 = 0.

2 Im h(z) is constant for z in some neighborhood of z0.3 Re h(z) takes its strict maximum along Γ at z0.

Then ∫Γexp(Nh(z)

)dz ∼

N→∞

√2π exp

(Nh(z0)

)√N√

−d2 h(z0)/dz2.

Saddle point w0 of Φ1

0.5

-0.5

-1

0

0 0.2 0.4 0.6 0.8 1

∫P−

exp(NΦ(w)) dw

∼N→∞

√2π exp(NΦ(w0))√

N√

−d2Φ(w0)/dw2,

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 33 / 45

Page 177: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , VI

Theorem (Saddle Point Method)

Assume that

1 d h(z0)/dz = 0 and d2 h(z0)/dz2 = 0.

2 Im h(z) is constant for z in some neighborhood of z0.3 Re h(z) takes its strict maximum along Γ at z0.

Then ∫Γexp(Nh(z)

)dz ∼

N→∞

√2π exp

(Nh(z0)

)√N√

−d2 h(z0)/dz2.

Saddle point w0 of Φ1

0.5

-0.5

-1

0

0 0.2 0.4 0.6 0.8 1

∫P−

exp(NΦ(w)) dw

∼N→∞

√2π exp(NΦ(w0))√

N√

−d2Φ(w0)/dw2,

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 33 / 45

Page 178: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , VII

Theorem (Yokota & HM (2007), HM (2011))

For u with 0 < u < log(3+

√5

2

), we have

JN(

; exp((2π√−1 + u)/N)

)∼

N→∞

√−π

2 sinh(u/2)τ(u)

√N

2π√−1 + u

exp

(N

2π√−1 + u

S(u)

).

S(u) := Li2(eu−φ(u))− Li2(e

u+φ(u))− uφ(u). (Li2: dilogarithm)

φ(u) := arccosh(cosh(u)− 1/2).

τ(u) :=√

2√(eu+e−u+1)(eu+e−u−3)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 34 / 45

Page 179: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , VII

Theorem (Yokota & HM (2007), HM (2011))

For u with 0 < u < log(3+

√5

2

), we have

JN(

; exp((2π√−1 + u)/N)

)∼

N→∞

√−π

2 sinh(u/2)τ(u)

√N

2π√−1 + u

exp

(N

2π√−1 + u

S(u)

).

S(u) := Li2(eu−φ(u))− Li2(e

u+φ(u))− uφ(u). (Li2: dilogarithm)

φ(u) := arccosh(cosh(u)− 1/2).

τ(u) :=√

2√(eu+e−u+1)(eu+e−u−3)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 34 / 45

Page 180: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , VII

Theorem (Yokota & HM (2007), HM (2011))

For u with 0 < u < log(3+

√5

2

), we have

JN(

; exp((2π√−1 + u)/N)

)∼

N→∞

√−π

2 sinh(u/2)τ(u)

√N

2π√−1 + u

exp

(N

2π√−1 + u

S(u)

).

S(u) := Li2(eu−φ(u))− Li2(e

u+φ(u))− uφ(u). (Li2: dilogarithm)

φ(u) := arccosh(cosh(u)− 1/2).

τ(u) :=√

2√(eu+e−u+1)(eu+e−u−3)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 34 / 45

Page 181: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , VII

Theorem (Yokota & HM (2007), HM (2011))

For u with 0 < u < log(3+

√5

2

), we have

JN(

; exp((2π√−1 + u)/N)

)∼

N→∞

√−π

2 sinh(u/2)τ(u)

√N

2π√−1 + u

exp

(N

2π√−1 + u

S(u)

).

S(u) := Li2(eu−φ(u))− Li2(e

u+φ(u))− uφ(u). (Li2: dilogarithm)

φ(u) := arccosh(cosh(u)− 1/2).

τ(u) :=√

2√(eu+e−u+1)(eu+e−u−3)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 34 / 45

Page 182: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Parametrized VC for

Asymptotic behavior of CJ for , VII

Theorem (Yokota & HM (2007), HM (2011))

For u with 0 < u < log(3+

√5

2

), we have

JN(

; exp((2π√−1 + u)/N)

)∼

N→∞

√−π

2 sinh(u/2)τ(u)

√N

2π√−1 + u

exp

(N

2π√−1 + u

S(u)

).

S(u) := Li2(eu−φ(u))− Li2(e

u+φ(u))− uφ(u). (Li2: dilogarithm)

φ(u) := arccosh(cosh(u)− 1/2).

τ(u) :=√

2√(eu+e−u+1)(eu+e−u−3)

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 34 / 45

Page 183: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate csM([ρ]).

Put τ := arccosh(3/2), so that d(τ) = 0.

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(esτ/2 0

0 e−sτ/2

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

−d(ut) e−ut/2

). (ut := (1− t)τ + tu)

⇒ α0 is trivial, α1 and β0 share the same trace, β1 = ρ.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 35 / 45

Page 184: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate csM([ρ]).

Put τ := arccosh(3/2), so that d(τ) = 0.

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(esτ/2 0

0 e−sτ/2

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

−d(ut) e−ut/2

). (ut := (1− t)τ + tu)

⇒ α0 is trivial, α1 and β0 share the same trace, β1 = ρ.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 35 / 45

Page 185: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate csM([ρ]).

Put τ := arccosh(3/2), so that d(τ) = 0.

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(esτ/2 0

0 e−sτ/2

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

−d(ut) e−ut/2

). (ut := (1− t)τ + tu)

⇒ α0 is trivial, α1 and β0 share the same trace, β1 = ρ.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 35 / 45

Page 186: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate csM([ρ]).

Put τ := arccosh(3/2), so that d(τ) = 0.

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(esτ/2 0

0 e−sτ/2

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

−d(ut) e−ut/2

). (ut := (1− t)τ + tu)

⇒ α0 is trivial, α1 and β0 share the same trace, β1 = ρ.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 35 / 45

Page 187: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate csM([ρ]).

Put τ := arccosh(3/2), so that d(τ) = 0.

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(esτ/2 0

0 e−sτ/2

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

−d(ut) e−ut/2

). (ut := (1− t)τ + tu)

⇒ α0 is trivial, α1 and β0 share the same trace, β1 = ρ.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 35 / 45

Page 188: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate csM([ρ]).

Put τ := arccosh(3/2), so that d(τ) = 0.

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(esτ/2 0

0 e−sτ/2

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

−d(ut) e−ut/2

). (ut := (1− t)τ + tu)

⇒ α0 is trivial, α1 and β0 share the same trace, β1 = ρ.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 35 / 45

Page 189: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate csM([ρ]).

Put τ := arccosh(3/2), so that d(τ) = 0.

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(esτ/2 0

0 e−sτ/2

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

−d(ut) e−ut/2

). (ut := (1− t)τ + tu)

⇒ α0 is trivial, α1 and β0 share the same trace, β1 = ρ.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 35 / 45

Page 190: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate csM([ρ]).

Put τ := arccosh(3/2), so that d(τ) = 0.

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(esτ/2 0

0 e−sτ/2

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

−d(ut) e−ut/2

). (ut := (1− t)τ + tu)

⇒ α0 is trivial, α1 and β0 share the same trace, β1 = ρ.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 35 / 45

Page 191: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate csM([ρ]).

Put τ := arccosh(3/2), so that d(τ) = 0.

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(esτ/2 0

0 e−sτ/2

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

−d(ut) e−ut/2

). (ut := (1− t)τ + tu)

⇒ α0 is trivial,

α1 and β0 share the same trace, β1 = ρ.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 35 / 45

Page 192: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate csM([ρ]).

Put τ := arccosh(3/2), so that d(τ) = 0.

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(esτ/2 0

0 e−sτ/2

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

−d(ut) e−ut/2

). (ut := (1− t)τ + tu)

⇒ α0 is trivial, α1 and β0 share the same trace,

β1 = ρ.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 35 / 45

Page 193: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate csM([ρ]).

Put τ := arccosh(3/2), so that d(τ) = 0.

αs : a path of Abelian representations (0 ≤ s ≤ 1).

x , y 7→(esτ/2 0

0 e−sτ/2

).

βt : a path of non-Abelian representations (0 ≤ t ≤ 1).

x 7→(eut/2 1

0 e−ut/2

), y 7→

(eut/2 0

−d(ut) e−ut/2

). (ut := (1− t)τ + tu)

⇒ α0 is trivial, α1 and β0 share the same trace, β1 = ρ.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 35 / 45

Page 194: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , II

csM([α0]) = 1, csM([α1]) = csM([β0]),

longitude λ = xy−1xyx−2yxy−1x−1,αs(λ) = ( 1 0

0 1 ),

βt(λ) =

(ℓ(ut) 2 cosh(ut/2)

√(2 cosh ut + 1)(2 cosh ut − 3)

0 ℓ(ut)−1

),

(ℓ(u) := cosh(2u)− cosh u−1+sinh u√

(2 cosh u + 1)(2 cosh u − 3)).

csM([αs ]) =[

sτ4π

√−1

, 0;wt

], csM([βt ]) =

[ut

4π√−1

, v(ut)

4π√−1

; zt].

v(u) := 2d S(u)d u −2π

√−1 = 4 log(1−eu+φ(u))−2u−2φ(u)−2π

√−1.

Note: exp(v(u)/2) = −ℓ(u).

From Kirk–Klassen’s theorem,w1

w0= 1,

z1z0

= exp(√

−12π

∫ 10 ((ut × (v(ut))

′ − v(ut)× u′t) dt)

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 36 / 45

Page 195: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , II

csM([α0]) = 1,

csM([α1]) = csM([β0]),

longitude λ = xy−1xyx−2yxy−1x−1,αs(λ) = ( 1 0

0 1 ),

βt(λ) =

(ℓ(ut) 2 cosh(ut/2)

√(2 cosh ut + 1)(2 cosh ut − 3)

0 ℓ(ut)−1

),

(ℓ(u) := cosh(2u)− cosh u−1+sinh u√

(2 cosh u + 1)(2 cosh u − 3)).

csM([αs ]) =[

sτ4π

√−1

, 0;wt

], csM([βt ]) =

[ut

4π√−1

, v(ut)

4π√−1

; zt].

v(u) := 2d S(u)d u −2π

√−1 = 4 log(1−eu+φ(u))−2u−2φ(u)−2π

√−1.

Note: exp(v(u)/2) = −ℓ(u).

From Kirk–Klassen’s theorem,w1

w0= 1,

z1z0

= exp(√

−12π

∫ 10 ((ut × (v(ut))

′ − v(ut)× u′t) dt)

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 36 / 45

Page 196: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , II

csM([α0]) = 1, csM([α1]) = csM([β0]),

longitude λ = xy−1xyx−2yxy−1x−1,αs(λ) = ( 1 0

0 1 ),

βt(λ) =

(ℓ(ut) 2 cosh(ut/2)

√(2 cosh ut + 1)(2 cosh ut − 3)

0 ℓ(ut)−1

),

(ℓ(u) := cosh(2u)− cosh u−1+sinh u√

(2 cosh u + 1)(2 cosh u − 3)).

csM([αs ]) =[

sτ4π

√−1

, 0;wt

], csM([βt ]) =

[ut

4π√−1

, v(ut)

4π√−1

; zt].

v(u) := 2d S(u)d u −2π

√−1 = 4 log(1−eu+φ(u))−2u−2φ(u)−2π

√−1.

Note: exp(v(u)/2) = −ℓ(u).

From Kirk–Klassen’s theorem,w1

w0= 1,

z1z0

= exp(√

−12π

∫ 10 ((ut × (v(ut))

′ − v(ut)× u′t) dt)

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 36 / 45

Page 197: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , II

csM([α0]) = 1, csM([α1]) = csM([β0]),

longitude λ = xy−1xyx−2yxy−1x−1,

αs(λ) = ( 1 00 1 ),

βt(λ) =

(ℓ(ut) 2 cosh(ut/2)

√(2 cosh ut + 1)(2 cosh ut − 3)

0 ℓ(ut)−1

),

(ℓ(u) := cosh(2u)− cosh u−1+sinh u√

(2 cosh u + 1)(2 cosh u − 3)).

csM([αs ]) =[

sτ4π

√−1

, 0;wt

], csM([βt ]) =

[ut

4π√−1

, v(ut)

4π√−1

; zt].

v(u) := 2d S(u)d u −2π

√−1 = 4 log(1−eu+φ(u))−2u−2φ(u)−2π

√−1.

Note: exp(v(u)/2) = −ℓ(u).

From Kirk–Klassen’s theorem,w1

w0= 1,

z1z0

= exp(√

−12π

∫ 10 ((ut × (v(ut))

′ − v(ut)× u′t) dt)

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 36 / 45

Page 198: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , II

csM([α0]) = 1, csM([α1]) = csM([β0]),

longitude λ = xy−1xyx−2yxy−1x−1,αs(λ) = ( 1 0

0 1 ),

βt(λ) =

(ℓ(ut) 2 cosh(ut/2)

√(2 cosh ut + 1)(2 cosh ut − 3)

0 ℓ(ut)−1

),

(ℓ(u) := cosh(2u)− cosh u−1+sinh u√

(2 cosh u + 1)(2 cosh u − 3)).

csM([αs ]) =[

sτ4π

√−1

, 0;wt

], csM([βt ]) =

[ut

4π√−1

, v(ut)

4π√−1

; zt].

v(u) := 2d S(u)d u −2π

√−1 = 4 log(1−eu+φ(u))−2u−2φ(u)−2π

√−1.

Note: exp(v(u)/2) = −ℓ(u).

From Kirk–Klassen’s theorem,w1

w0= 1,

z1z0

= exp(√

−12π

∫ 10 ((ut × (v(ut))

′ − v(ut)× u′t) dt)

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 36 / 45

Page 199: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , II

csM([α0]) = 1, csM([α1]) = csM([β0]),

longitude λ = xy−1xyx−2yxy−1x−1,αs(λ) = ( 1 0

0 1 ),

βt(λ) =

(ℓ(ut) 2 cosh(ut/2)

√(2 cosh ut + 1)(2 cosh ut − 3)

0 ℓ(ut)−1

),

(ℓ(u) := cosh(2u)− cosh u−1+sinh u√

(2 cosh u + 1)(2 cosh u − 3)).

csM([αs ]) =[

sτ4π

√−1

, 0;wt

], csM([βt ]) =

[ut

4π√−1

, v(ut)

4π√−1

; zt].

v(u) := 2d S(u)d u −2π

√−1 = 4 log(1−eu+φ(u))−2u−2φ(u)−2π

√−1.

Note: exp(v(u)/2) = −ℓ(u).

From Kirk–Klassen’s theorem,w1

w0= 1,

z1z0

= exp(√

−12π

∫ 10 ((ut × (v(ut))

′ − v(ut)× u′t) dt)

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 36 / 45

Page 200: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , II

csM([α0]) = 1, csM([α1]) = csM([β0]),

longitude λ = xy−1xyx−2yxy−1x−1,αs(λ) = ( 1 0

0 1 ),

βt(λ) =

(ℓ(ut) 2 cosh(ut/2)

√(2 cosh ut + 1)(2 cosh ut − 3)

0 ℓ(ut)−1

),

(ℓ(u) := cosh(2u)− cosh u−1+sinh u√

(2 cosh u + 1)(2 cosh u − 3)).

csM([αs ]) =[

sτ4π

√−1

, 0;wt

], csM([βt ]) =

[ut

4π√−1

, v(ut)

4π√−1

; zt].

v(u) := 2d S(u)d u −2π

√−1 = 4 log(1−eu+φ(u))−2u−2φ(u)−2π

√−1.

Note: exp(v(u)/2) = −ℓ(u).

From Kirk–Klassen’s theorem,w1

w0= 1,

z1z0

= exp(√

−12π

∫ 10 ((ut × (v(ut))

′ − v(ut)× u′t) dt)

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 36 / 45

Page 201: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , II

csM([α0]) = 1, csM([α1]) = csM([β0]),

longitude λ = xy−1xyx−2yxy−1x−1,αs(λ) = ( 1 0

0 1 ),

βt(λ) =

(ℓ(ut) 2 cosh(ut/2)

√(2 cosh ut + 1)(2 cosh ut − 3)

0 ℓ(ut)−1

),

(ℓ(u) := cosh(2u)− cosh u−1+sinh u√

(2 cosh u + 1)(2 cosh u − 3)).

csM([αs ]) =[

sτ4π

√−1

, 0;wt

], csM([βt ]) =

[ut

4π√−1

, v(ut)

4π√−1

; zt].

v(u) := 2d S(u)d u −2π

√−1 = 4 log(1−eu+φ(u))−2u−2φ(u)−2π

√−1.

Note: exp(v(u)/2) = −ℓ(u).

From Kirk–Klassen’s theorem,

w1

w0= 1,

z1z0

= exp(√

−12π

∫ 10 ((ut × (v(ut))

′ − v(ut)× u′t) dt)

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 36 / 45

Page 202: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , II

csM([α0]) = 1, csM([α1]) = csM([β0]),

longitude λ = xy−1xyx−2yxy−1x−1,αs(λ) = ( 1 0

0 1 ),

βt(λ) =

(ℓ(ut) 2 cosh(ut/2)

√(2 cosh ut + 1)(2 cosh ut − 3)

0 ℓ(ut)−1

),

(ℓ(u) := cosh(2u)− cosh u−1+sinh u√

(2 cosh u + 1)(2 cosh u − 3)).

csM([αs ]) =[

sτ4π

√−1

, 0;wt

], csM([βt ]) =

[ut

4π√−1

, v(ut)

4π√−1

; zt].

v(u) := 2d S(u)d u −2π

√−1 = 4 log(1−eu+φ(u))−2u−2φ(u)−2π

√−1.

Note: exp(v(u)/2) = −ℓ(u).

From Kirk–Klassen’s theorem,w1

w0= 1,

z1z0

= exp(√

−12π

∫ 10 ((ut × (v(ut))

′ − v(ut)× u′t) dt)

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 36 / 45

Page 203: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , II

csM([α0]) = 1, csM([α1]) = csM([β0]),

longitude λ = xy−1xyx−2yxy−1x−1,αs(λ) = ( 1 0

0 1 ),

βt(λ) =

(ℓ(ut) 2 cosh(ut/2)

√(2 cosh ut + 1)(2 cosh ut − 3)

0 ℓ(ut)−1

),

(ℓ(u) := cosh(2u)− cosh u−1+sinh u√

(2 cosh u + 1)(2 cosh u − 3)).

csM([αs ]) =[

sτ4π

√−1

, 0;wt

], csM([βt ]) =

[ut

4π√−1

, v(ut)

4π√−1

; zt].

v(u) := 2d S(u)d u −2π

√−1 = 4 log(1−eu+φ(u))−2u−2φ(u)−2π

√−1.

Note: exp(v(u)/2) = −ℓ(u).

From Kirk–Klassen’s theorem,w1

w0= 1,

z1z0

= exp(√

−12π

∫ 10 ((ut × (v(ut))

′ − v(ut)× u′t) dt)

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 36 / 45

Page 204: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , III

csM depends only on trace, csM([α1]) = csM([β0]) and w1 = w0 = 1.⇒ [

τ

4π√−1

, 0; 1

]=

[u0

4π√−1

,v(u0)

4π√−1

; z0

]=

4π√−1

,−2π

√−1

4π√−1

; z0

]=

4π√−1

, 0; eτz0

].

⇒ z0 = e−τ and

z1 = e−τ exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1))

.

Therefore

CSu,v(u)([ρ]) = S(u)− uπ√−1− 1

4uv(u).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 37 / 45

Page 205: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , III

csM depends only on trace, csM([α1]) = csM([β0]) and w1 = w0 = 1.

⇒ [τ

4π√−1

, 0; 1

]=

[u0

4π√−1

,v(u0)

4π√−1

; z0

]=

4π√−1

,−2π

√−1

4π√−1

; z0

]=

4π√−1

, 0; eτz0

].

⇒ z0 = e−τ and

z1 = e−τ exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1))

.

Therefore

CSu,v(u)([ρ]) = S(u)− uπ√−1− 1

4uv(u).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 37 / 45

Page 206: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , III

csM depends only on trace, csM([α1]) = csM([β0]) and w1 = w0 = 1.⇒ [

τ

4π√−1

, 0; 1

]=

[u0

4π√−1

,v(u0)

4π√−1

; z0

]=

4π√−1

,−2π

√−1

4π√−1

; z0

]=

4π√−1

, 0; eτz0

].

⇒ z0 = e−τ and

z1 = e−τ exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1))

.

Therefore

CSu,v(u)([ρ]) = S(u)− uπ√−1− 1

4uv(u).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 37 / 45

Page 207: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , III

csM depends only on trace, csM([α1]) = csM([β0]) and w1 = w0 = 1.⇒ [

τ

4π√−1

, 0; 1

]=

[u0

4π√−1

,v(u0)

4π√−1

; z0

]=

4π√−1

,−2π

√−1

4π√−1

; z0

]=

4π√−1

, 0; eτz0

].

⇒ z0 = e−τ

and

z1 = e−τ exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1))

.

Therefore

CSu,v(u)([ρ]) = S(u)− uπ√−1− 1

4uv(u).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 37 / 45

Page 208: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , III

csM depends only on trace, csM([α1]) = csM([β0]) and w1 = w0 = 1.⇒ [

τ

4π√−1

, 0; 1

]=

[u0

4π√−1

,v(u0)

4π√−1

; z0

]=

4π√−1

,−2π

√−1

4π√−1

; z0

]=

4π√−1

, 0; eτz0

].

⇒ z0 = e−τ and

z1 = e−τ exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1))

.

Therefore

CSu,v(u)([ρ]) = S(u)− uπ√−1− 1

4uv(u).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 37 / 45

Page 209: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , III

csM depends only on trace, csM([α1]) = csM([β0]) and w1 = w0 = 1.⇒ [

τ

4π√−1

, 0; 1

]=

[u0

4π√−1

,v(u0)

4π√−1

; z0

]=

4π√−1

,−2π

√−1

4π√−1

; z0

]=

4π√−1

, 0; eτz0

].

⇒ z0 = e−τ and

z1 = e−τ exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1))

.

Therefore

CSu,v(u)([ρ]) = S(u)− uπ√−1− 1

4uv(u).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 37 / 45

Page 210: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

CS of

Calculation of csM for S3 \ , III

csM depends only on trace, csM([α1]) = csM([β0]) and w1 = w0 = 1.⇒ [

τ

4π√−1

, 0; 1

]=

[u0

4π√−1

,v(u0)

4π√−1

; z0

]=

4π√−1

,−2π

√−1

4π√−1

; z0

]=

4π√−1

, 0; eτz0

].

⇒ z0 = e−τ and

z1 = e−τ exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1− 2τπ

√−1))

= exp(√

−12π

(uv(u)− 4S(u) + 4uπ

√−1))

.

Therefore

CSu,v(u)([ρ]) = S(u)− uπ√−1− 1

4uv(u).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 37 / 45

Page 211: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate T(ρ).

r := xy−1x−1yxy−1xyx−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1−xy−1x−1+xy−1x−1y+xy−1x−1yxy−1−xy−1x−1yxy−1xyx−1,∂r∂y = −xy−1 + xy−1x−1 − xy−1x−1yxy−1 + xy−1x−1yxy−1x −xy−1x−1yxy−1xyx−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 38 / 45

Page 212: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate T(ρ).

r := xy−1x−1yxy−1xyx−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1−xy−1x−1+xy−1x−1y+xy−1x−1yxy−1−xy−1x−1yxy−1xyx−1,∂r∂y = −xy−1 + xy−1x−1 − xy−1x−1yxy−1 + xy−1x−1yxy−1x −xy−1x−1yxy−1xyx−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 38 / 45

Page 213: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate T(ρ).

r := xy−1x−1yxy−1xyx−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1−xy−1x−1+xy−1x−1y+xy−1x−1yxy−1−xy−1x−1yxy−1xyx−1,∂r∂y = −xy−1 + xy−1x−1 − xy−1x−1yxy−1 + xy−1x−1yxy−1x −xy−1x−1yxy−1xyx−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 38 / 45

Page 214: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate T(ρ).

r := xy−1x−1yxy−1xyx−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1−xy−1x−1+xy−1x−1y+xy−1x−1yxy−1−xy−1x−1yxy−1xyx−1,∂r∂y = −xy−1 + xy−1x−1 − xy−1x−1yxy−1 + xy−1x−1yxy−1x −xy−1x−1yxy−1xyx−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 38 / 45

Page 215: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate T(ρ).

r := xy−1x−1yxy−1xyx−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1−xy−1x−1+xy−1x−1y+xy−1x−1yxy−1−xy−1x−1yxy−1xyx−1,∂r∂y = −xy−1 + xy−1x−1 − xy−1x−1yxy−1 + xy−1x−1yxy−1x −xy−1x−1yxy−1xyx−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 38 / 45

Page 216: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate T(ρ).r := xy−1x−1yxy−1xyx−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1−xy−1x−1+xy−1x−1y+xy−1x−1yxy−1−xy−1x−1yxy−1xyx−1,∂r∂y = −xy−1 + xy−1x−1 − xy−1x−1yxy−1 + xy−1x−1yxy−1x −xy−1x−1yxy−1xyx−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 38 / 45

Page 217: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate T(ρ).r := xy−1x−1yxy−1xyx−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).

c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1−xy−1x−1+xy−1x−1y+xy−1x−1yxy−1−xy−1x−1yxy−1xyx−1,∂r∂y = −xy−1 + xy−1x−1 − xy−1x−1yxy−1 + xy−1x−1yxy−1x −xy−1x−1yxy−1xyx−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 38 / 45

Page 218: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate T(ρ).r := xy−1x−1yxy−1xyx−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1−xy−1x−1+xy−1x−1y+xy−1x−1yxy−1−xy−1x−1yxy−1xyx−1,∂r∂y = −xy−1 + xy−1x−1 − xy−1x−1yxy−1 + xy−1x−1yxy−1x −xy−1x−1yxy−1xyx−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 38 / 45

Page 219: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate T(ρ).r := xy−1x−1yxy−1xyx−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1−xy−1x−1+xy−1x−1y+xy−1x−1yxy−1−xy−1x−1yxy−1xyx−1,∂r∂y = −xy−1 + xy−1x−1 − xy−1x−1yxy−1 + xy−1x−1yxy−1x −xy−1x−1yxy−1xyx−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 38 / 45

Page 220: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate T(ρ).r := xy−1x−1yxy−1xyx−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)

∂r∂x = 1−xy−1x−1+xy−1x−1y+xy−1x−1yxy−1−xy−1x−1yxy−1xyx−1,∂r∂y = −xy−1 + xy−1x−1 − xy−1x−1yxy−1 + xy−1x−1yxy−1x −xy−1x−1yxy−1xyx−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 38 / 45

Page 221: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , I

π1(S3 \ ) = ⟨x , y | xy−1x−1yx = yxy−1x−1y⟩,

ρ : π1(S3 \ ) → SL(2;C),

x 7→(eu/2 1

0 e−u/2

), y 7→

(eu/2 0

−d(u) e−u/2

)(d(u) := cosh u − 3

2 + 12

√(2 cosh u + 1)(2 cosh u − 3)).

We will calculate T(ρ).r := xy−1x−1yxy−1xyx−1y−1.

E := ( 0 10 0 ), H :=

(1 00 −1

), F := ( 0 0

1 0 ): basis of sl(2;C).c2 = {r ⊗ E , r ⊗ H, r ⊗ F} (r : lift of r)

c1 = {x ⊗ E , x ⊗ H, x ⊗ F , y ⊗ E , y ⊗ H, y ⊗ F} (x , y : lifts of x , y)

c0 = {p ⊗ E , p ⊗ H, p ⊗ F} (p : lift of the basepoint p)∂r∂x = 1−xy−1x−1+xy−1x−1y+xy−1x−1yxy−1−xy−1x−1yxy−1xyx−1,∂r∂y = −xy−1 + xy−1x−1 − xy−1x−1yxy−1 + xy−1x−1yxy−1x −xy−1x−1yxy−1xyx−1y−1.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 38 / 45

Page 222: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , II

∂2 is given by the 6× 3 matrix

∂r∂x

∂r∂y

∣∣∣∣∣∣x=X ,y=Y

.

∂1 is given by the 3× 6 matrix((X − I3) (Y − I3)

).

X =

e−u 2e−u/2 −1

0 1 −eu/2

0 0 eu

,

Y =

e−u 0 0

−e−u/2d(u) 1 0

−d(u)2 2eu/2d(u) eu

.

⇒ H2 = H1 = C and H0 = {0}. So dimB2 = 2, and dimB1 = 3

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 39 / 45

Page 223: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , II

∂2 is given by the 6× 3 matrix

∂r∂x

∂r∂y

∣∣∣∣∣∣x=X ,y=Y

.

∂1 is given by the 3× 6 matrix((X − I3) (Y − I3)

).

X =

e−u 2e−u/2 −1

0 1 −eu/2

0 0 eu

,

Y =

e−u 0 0

−e−u/2d(u) 1 0

−d(u)2 2eu/2d(u) eu

.

⇒ H2 = H1 = C and H0 = {0}. So dimB2 = 2, and dimB1 = 3

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 39 / 45

Page 224: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , II

∂2 is given by the 6× 3 matrix

∂r∂x

∂r∂y

∣∣∣∣∣∣x=X ,y=Y

.

∂1 is given by the 3× 6 matrix((X − I3) (Y − I3)

).

X =

e−u 2e−u/2 −1

0 1 −eu/2

0 0 eu

,

Y =

e−u 0 0

−e−u/2d(u) 1 0

−d(u)2 2eu/2d(u) eu

.

⇒ H2 = H1 = C and H0 = {0}. So dimB2 = 2, and dimB1 = 3

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 39 / 45

Page 225: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , II

∂2 is given by the 6× 3 matrix

∂r∂x

∂r∂y

∣∣∣∣∣∣x=X ,y=Y

.

∂1 is given by the 3× 6 matrix((X − I3) (Y − I3)

).

X =

e−u 2e−u/2 −1

0 1 −eu/2

0 0 eu

,

Y =

e−u 0 0

−e−u/2d(u) 1 0

−d(u)2 2eu/2d(u) eu

.

⇒ H2 = H1 = C and H0 = {0}. So dimB2 = 2, and dimB1 = 3

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 39 / 45

Page 226: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , III

˜h2 =

2eu/2(d(u)− eu + 1)

−2d(u)

2e−u/2(eu − 1)d(u)

={[∂(S3 \ IntN( )

)⊗ P]

},

where [∂(S3 \ IntN( )

)] is the fundamental class, and P is

invariant under the adjoint actions of the meridian x and thelongitude.

˜h1 =

2eu/2

eu − 10000

= {[x ⊗ P]}.

⇒ T(ρ) = ±√

(2 cosh u + 1)(2 cosh u − 3)

2.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 40 / 45

Page 227: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , III

˜h2 =

2eu/2(d(u)− eu + 1)

−2d(u)

2e−u/2(eu − 1)d(u)

={[∂(S3 \ IntN( )

)⊗ P]

},

where [∂(S3 \ IntN( )

)] is the fundamental class, and P is

invariant under the adjoint actions of the meridian x and thelongitude.

˜h1 =

2eu/2

eu − 10000

= {[x ⊗ P]}.

⇒ T(ρ) = ±√

(2 cosh u + 1)(2 cosh u − 3)

2.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 40 / 45

Page 228: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , III

˜h2 =

2eu/2(d(u)− eu + 1)

−2d(u)

2e−u/2(eu − 1)d(u)

={[∂(S3 \ IntN( )

)⊗ P]

},

where [∂(S3 \ IntN( )

)] is the fundamental class, and P is

invariant under the adjoint actions of the meridian x and thelongitude.

˜h1 =

2eu/2

eu − 10000

= {[x ⊗ P]}.

⇒ T(ρ) = ±√

(2 cosh u + 1)(2 cosh u − 3)

2.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 40 / 45

Page 229: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , III

˜h2 =

2eu/2(d(u)− eu + 1)

−2d(u)

2e−u/2(eu − 1)d(u)

={[∂(S3 \ IntN( )

)⊗ P]

},

where [∂(S3 \ IntN( )

)] is the fundamental class, and P is

invariant under the adjoint actions of the meridian x and thelongitude.

˜h1 =

2eu/2

eu − 10000

= {[x ⊗ P]}.

⇒ T(ρ) = ±√

(2 cosh u + 1)(2 cosh u − 3)

2.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 40 / 45

Page 230: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , III

˜h2 =

2eu/2(d(u)− eu + 1)

−2d(u)

2e−u/2(eu − 1)d(u)

={[∂(S3 \ IntN( )

)⊗ P]

},

where [∂(S3 \ IntN( )

)] is the fundamental class, and P is

invariant under the adjoint actions of the meridian x and thelongitude.

˜h1 =

2eu/2

eu − 10000

= {[x ⊗ P]}.

⇒ T(ρ) = ±√

(2 cosh u + 1)(2 cosh u − 3)

2.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 40 / 45

Page 231: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Reidemeister torsion of

Calculation of T for S3 \ , III

˜h2 =

2eu/2(d(u)− eu + 1)

−2d(u)

2e−u/2(eu − 1)d(u)

={[∂(S3 \ IntN( )

)⊗ P]

},

where [∂(S3 \ IntN( )

)] is the fundamental class, and P is

invariant under the adjoint actions of the meridian x and thelongitude.

˜h1 =

2eu/2

eu − 10000

= {[x ⊗ P]}.

⇒ T(ρ) = ±√

(2 cosh u + 1)(2 cosh u − 3)

2.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 40 / 45

Page 232: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Jones, Chern–Simons, and Reidemeister for

For ξ = 2π√−1 + u with 0 < u < log

(3+

√5

2

), we have

JN(

; exp(ξ/N))

∼N→∞

√−π

2 sinh(u/2)τ(u)

√N

ξexp

(N

ξS(u)

),

where

S(u): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ(u)−2: Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 41 / 45

Page 233: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Jones, Chern–Simons, and Reidemeister for

For ξ = 2π√−1 + u with 0 < u < log

(3+

√5

2

), we have

JN(

; exp(ξ/N))

∼N→∞

√−π

2 sinh(u/2)τ(u)

√N

ξexp

(N

ξS(u)

),

where

S(u): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ(u)−2: Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 41 / 45

Page 234: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Jones, Chern–Simons, and Reidemeister for

For ξ = 2π√−1 + u with 0 < u < log

(3+

√5

2

), we have

JN(

; exp(ξ/N))

∼N→∞

√−π

2 sinh(u/2)τ(u)

√N

ξexp

(N

ξS(u)

),

where

S(u): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ(u)−2: Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 41 / 45

Page 235: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Jones, Chern–Simons, and Reidemeister for

For ξ = 2π√−1 + u with 0 < u < log

(3+

√5

2

), we have

JN(

; exp(ξ/N))

∼N→∞

√−π

2 sinh(u/2)τ(u)

√N

ξexp

(N

ξS(u)

),

where

S(u): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ(u)−2: Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 41 / 45

Page 236: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Colored Jones for u = 0,

Theorem (J. Andersen & S. Hansen (2006))

JN( ; exp(2π√−1/N))

∼N→∞

2π3/2

(√−3

2

)−1/2(N

2π√−1

)3/2

exp

(N

2π√−1

×√−1Vol(E )

).

√−32 : Reidemeister torsion.

√−1Vol(E ): Chern–Simons invariant.

both associated with the holonomy representation (that defines thecomplete hyperbolic structure for S3 \ E ).

Similar results holds for hyperboli knots up to six crossings (T. Ohtsuki,Ohtsuki & Y. Yokota). ⇒ Refinement of VC (S. Gukov & H. Murakami,Ohtsuki).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 42 / 45

Page 237: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Colored Jones for u = 0,

Theorem (J. Andersen & S. Hansen (2006))

JN( ; exp(2π√−1/N))

∼N→∞

2π3/2

(√−3

2

)−1/2(N

2π√−1

)3/2

exp

(N

2π√−1

×√−1Vol(E )

).

√−32 : Reidemeister torsion.

√−1Vol(E ): Chern–Simons invariant.

both associated with the holonomy representation (that defines thecomplete hyperbolic structure for S3 \ E ).

Similar results holds for hyperboli knots up to six crossings (T. Ohtsuki,Ohtsuki & Y. Yokota). ⇒ Refinement of VC (S. Gukov & H. Murakami,Ohtsuki).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 42 / 45

Page 238: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Colored Jones for u = 0,

Theorem (J. Andersen & S. Hansen (2006))

JN( ; exp(2π√−1/N))

∼N→∞

2π3/2

(√−3

2

)−1/2(N

2π√−1

)3/2

exp

(N

2π√−1

×√−1Vol(E )

).

√−32 : Reidemeister torsion.

√−1Vol(E ): Chern–Simons invariant.

both associated with the holonomy representation (that defines thecomplete hyperbolic structure for S3 \ E ).

Similar results holds for hyperboli knots up to six crossings (T. Ohtsuki,Ohtsuki & Y. Yokota). ⇒ Refinement of VC (S. Gukov & H. Murakami,Ohtsuki).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 42 / 45

Page 239: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Colored Jones for u = 0,

Theorem (J. Andersen & S. Hansen (2006))

JN( ; exp(2π√−1/N))

∼N→∞

2π3/2

(√−3

2

)−1/2(N

2π√−1

)3/2

exp

(N

2π√−1

×√−1Vol(E )

).

√−32 : Reidemeister torsion.

√−1Vol(E ): Chern–Simons invariant.

both associated with the holonomy representation (that defines thecomplete hyperbolic structure for S3 \ E ).

Similar results holds for hyperboli knots up to six crossings (T. Ohtsuki,Ohtsuki & Y. Yokota). ⇒ Refinement of VC (S. Gukov & H. Murakami,Ohtsuki).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 42 / 45

Page 240: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Colored Jones for u = 0,

Theorem (J. Andersen & S. Hansen (2006))

JN( ; exp(2π√−1/N))

∼N→∞

2π3/2

(√−3

2

)−1/2(N

2π√−1

)3/2

exp

(N

2π√−1

×√−1Vol(E )

).

√−32 : Reidemeister torsion.

√−1Vol(E ): Chern–Simons invariant.

both associated with the holonomy representation (that defines thecomplete hyperbolic structure for S3 \ E ).

Similar results holds for hyperboli knots up to six crossings (T. Ohtsuki,Ohtsuki & Y. Yokota). ⇒ Refinement of VC (S. Gukov & H. Murakami,Ohtsuki).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 42 / 45

Page 241: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Colored Jones for u = 0,

Theorem (J. Andersen & S. Hansen (2006))

JN( ; exp(2π√−1/N))

∼N→∞

2π3/2

(√−3

2

)−1/2(N

2π√−1

)3/2

exp

(N

2π√−1

×√−1Vol(E )

).

√−32 : Reidemeister torsion.

√−1Vol(E ): Chern–Simons invariant.

both associated with the holonomy representation (that defines thecomplete hyperbolic structure for S3 \ E ).

Similar results holds for hyperboli knots up to six crossings (T. Ohtsuki,Ohtsuki & Y. Yokota). ⇒ Refinement of VC (S. Gukov & H. Murakami,Ohtsuki).

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 42 / 45

Page 242: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Parametrization of VC for a hyperbolic knot

Volume Conjecture ⇒JN(K ; exp(2π

√−1/N))

∼N→∞

exp

[(√−1Vol(S3 \ K ) + something

)( N

2π√−1

)]× (polynomial in N).

Conjecture (Dimofte & Gukov (2010), HM (2011))

K: hyperbolic knotξ = 2π

√−1 + u with u = 0 a small complex number.

JN(K ; exp(ξ/N)

)∼

N→∞

√−π

2 sinh(u/2)τ(u)

(N

ξ

)1/2

exp

(N

ξS(u)

),

where

S(u): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ(u)−2: Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 43 / 45

Page 243: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Parametrization of VC for a hyperbolic knotVolume Conjecture ⇒

JN(K ; exp(2π√−1/N))

∼N→∞

exp

[(√−1Vol(S3 \ K ) + something

)( N

2π√−1

)]× (polynomial in N).

Conjecture (Dimofte & Gukov (2010), HM (2011))

K: hyperbolic knotξ = 2π

√−1 + u with u = 0 a small complex number.

JN(K ; exp(ξ/N)

)∼

N→∞

√−π

2 sinh(u/2)τ(u)

(N

ξ

)1/2

exp

(N

ξS(u)

),

where

S(u): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ(u)−2: Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 43 / 45

Page 244: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Parametrization of VC for a hyperbolic knotVolume Conjecture ⇒

JN(K ; exp(2π√−1/N))

∼N→∞

exp

[(√−1Vol(S3 \ K ) + something

)( N

2π√−1

)]× (polynomial in N).

Conjecture (Dimofte & Gukov (2010), HM (2011))

K: hyperbolic knotξ = 2π

√−1 + u with u = 0 a small complex number.

JN(K ; exp(ξ/N)

)∼

N→∞

√−π

2 sinh(u/2)τ(u)

(N

ξ

)1/2

exp

(N

ξS(u)

),

where

S(u): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ(u)−2: Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 43 / 45

Page 245: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Parametrization of VC for a hyperbolic knotVolume Conjecture ⇒

JN(K ; exp(2π√−1/N))

∼N→∞

exp

[(√−1Vol(S3 \ K ) + something

)( N

2π√−1

)]× (polynomial in N).

Conjecture (Dimofte & Gukov (2010), HM (2011))

K: hyperbolic knotξ = 2π

√−1 + u with u = 0 a small complex number.

JN(K ; exp(ξ/N)

)∼

N→∞

√−π

2 sinh(u/2)τ(u)

(N

ξ

)1/2

exp

(N

ξS(u)

),

where

S(u): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ(u)−2: Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 43 / 45

Page 246: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Parametrization of VC for a hyperbolic knotVolume Conjecture ⇒

JN(K ; exp(2π√−1/N))

∼N→∞

exp

[(√−1Vol(S3 \ K ) + something

)( N

2π√−1

)]× (polynomial in N).

Conjecture (Dimofte & Gukov (2010), HM (2011))

K: hyperbolic knotξ = 2π

√−1 + u with u = 0 a small complex number.

JN(K ; exp(ξ/N)

)∼

N→∞

√−π

2 sinh(u/2)τ(u)

(N

ξ

)1/2

exp

(N

ξS(u)

),

where

S(u): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ(u)−2: Reidemeister torsion associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 43 / 45

Page 247: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Parametrization of VC for a hyperbolic knotVolume Conjecture ⇒

JN(K ; exp(2π√−1/N))

∼N→∞

exp

[(√−1Vol(S3 \ K ) + something

)( N

2π√−1

)]× (polynomial in N).

Conjecture (Dimofte & Gukov (2010), HM (2011))

K: hyperbolic knotξ = 2π

√−1 + u with u = 0 a small complex number.

JN(K ; exp(ξ/N)

)∼

N→∞

√−π

2 sinh(u/2)τ(u)

(N

ξ

)1/2

exp

(N

ξS(u)

),

where

S(u): defines the Chern–Simons invariant associated with themeridian and the longitude.

τ(u)−2: Reidemeister torsion associated with the meridian.Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 43 / 45

Page 248: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Jones, Chern–Simons, and Reidemeister for T (p, q)

For the torus knot T (p, q) (p, q > 0), K. Hikami & HM proved

JN(T (p, q); exp(ξ/N)

)∼

N→∞

1

∆ (T (p, q); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

τρk

√N

ξexp

[N

ξSρk (ξ)

],

where

∆(K ; t): Alexander polynomial,

{ρk}: the set of irreducible representations of π1 to SL(2;C),Sρk (ξ): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2ρk

: Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 44 / 45

Page 249: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Jones, Chern–Simons, and Reidemeister for T (p, q)

For the torus knot T (p, q) (p, q > 0), K. Hikami & HM proved

JN(T (p, q); exp(ξ/N)

)∼

N→∞

1

∆ (T (p, q); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

τρk

√N

ξexp

[N

ξSρk (ξ)

],

where

∆(K ; t): Alexander polynomial,

{ρk}: the set of irreducible representations of π1 to SL(2;C),Sρk (ξ): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2ρk

: Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 44 / 45

Page 250: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Jones, Chern–Simons, and Reidemeister for T (p, q)

For the torus knot T (p, q) (p, q > 0), K. Hikami & HM proved

JN(T (p, q); exp(ξ/N)

)∼

N→∞

1

∆ (T (p, q); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

τρk

√N

ξexp

[N

ξSρk (ξ)

],

where

∆(K ; t): Alexander polynomial,

{ρk}: the set of irreducible representations of π1 to SL(2;C),Sρk (ξ): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2ρk

: Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 44 / 45

Page 251: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Jones, Chern–Simons, and Reidemeister for T (p, q)

For the torus knot T (p, q) (p, q > 0), K. Hikami & HM proved

JN(T (p, q); exp(ξ/N)

)∼

N→∞

1

∆ (T (p, q); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

τρk

√N

ξexp

[N

ξSρk (ξ)

],

where

∆(K ; t): Alexander polynomial,

{ρk}: the set of irreducible representations of π1 to SL(2;C),Sρk (ξ): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2ρk

: Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 44 / 45

Page 252: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Jones, Chern–Simons, and Reidemeister for T (p, q)

For the torus knot T (p, q) (p, q > 0), K. Hikami & HM proved

JN(T (p, q); exp(ξ/N)

)∼

N→∞

1

∆ (T (p, q); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

τρk

√N

ξexp

[N

ξSρk (ξ)

],

where

∆(K ; t): Alexander polynomial,

{ρk}: the set of irreducible representations of π1 to SL(2;C),Sρk (ξ): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2ρk

: Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 44 / 45

Page 253: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Jones, Chern–Simons, and Reidemeister for T (p, q)

For the torus knot T (p, q) (p, q > 0), K. Hikami & HM proved

JN(T (p, q); exp(ξ/N)

)∼

N→∞

1

∆ (T (p, q); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

τρk

√N

ξexp

[N

ξSρk (ξ)

],

where

∆(K ; t): Alexander polynomial,

{ρk}: the set of irreducible representations of π1 to SL(2;C),

Sρk (ξ): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2ρk

: Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 44 / 45

Page 254: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Jones, Chern–Simons, and Reidemeister for T (p, q)

For the torus knot T (p, q) (p, q > 0), K. Hikami & HM proved

JN(T (p, q); exp(ξ/N)

)∼

N→∞

1

∆ (T (p, q); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

τρk

√N

ξexp

[N

ξSρk (ξ)

],

where

∆(K ; t): Alexander polynomial,

{ρk}: the set of irreducible representations of π1 to SL(2;C),Sρk (ξ): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2ρk

: Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 44 / 45

Page 255: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Jones, Chern–Simons, and Reidemeister for T (p, q)

For the torus knot T (p, q) (p, q > 0), K. Hikami & HM proved

JN(T (p, q); exp(ξ/N)

)∼

N→∞

1

∆ (T (p, q); exp(ξ))+

√−π

2 sinh(ξ/2)

∑k

τρk

√N

ξexp

[N

ξSρk (ξ)

],

where

∆(K ; t): Alexander polynomial,

{ρk}: the set of irreducible representations of π1 to SL(2;C),Sρk (ξ): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2ρk

: Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 44 / 45

Page 256: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Speculation

Speculation

K: any knot, ξ = 2π√−1 + u.

JN(K ; exp(ξ/N))

∼N→∞

1

∆(K ; exp(ξ))+

ck2 sinh(ξ/2)

∑ρk

τk(u)

(N

ξ

)dk/2

exp

(N

ξSk(u)

),

where

∆(K ; t): Alexander polynomial,

ck and dk are constants,

{ρk}: irreducible representations of π1 to SL(2;C),Sk(u): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2k : Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 45 / 45

Page 257: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Speculation

Speculation

K: any knot, ξ = 2π√−1 + u.

JN(K ; exp(ξ/N))

∼N→∞

1

∆(K ; exp(ξ))+

ck2 sinh(ξ/2)

∑ρk

τk(u)

(N

ξ

)dk/2

exp

(N

ξSk(u)

),

where

∆(K ; t): Alexander polynomial,

ck and dk are constants,

{ρk}: irreducible representations of π1 to SL(2;C),Sk(u): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2k : Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 45 / 45

Page 258: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Speculation

Speculation

K: any knot, ξ = 2π√−1 + u.

JN(K ; exp(ξ/N))

∼N→∞

1

∆(K ; exp(ξ))+

ck2 sinh(ξ/2)

∑ρk

τk(u)

(N

ξ

)dk/2

exp

(N

ξSk(u)

),

where

∆(K ; t): Alexander polynomial,

ck and dk are constants,

{ρk}: irreducible representations of π1 to SL(2;C),Sk(u): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2k : Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 45 / 45

Page 259: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Speculation

Speculation

K: any knot, ξ = 2π√−1 + u.

JN(K ; exp(ξ/N))

∼N→∞

1

∆(K ; exp(ξ))+

ck2 sinh(ξ/2)

∑ρk

τk(u)

(N

ξ

)dk/2

exp

(N

ξSk(u)

),

where

∆(K ; t): Alexander polynomial,

ck and dk are constants,

{ρk}: irreducible representations of π1 to SL(2;C),Sk(u): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2k : Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 45 / 45

Page 260: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Speculation

Speculation

K: any knot, ξ = 2π√−1 + u.

JN(K ; exp(ξ/N))

∼N→∞

1

∆(K ; exp(ξ))+

ck2 sinh(ξ/2)

∑ρk

τk(u)

(N

ξ

)dk/2

exp

(N

ξSk(u)

),

where

∆(K ; t): Alexander polynomial,

ck and dk are constants,

{ρk}: irreducible representations of π1 to SL(2;C),

Sk(u): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2k : Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 45 / 45

Page 261: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Speculation

Speculation

K: any knot, ξ = 2π√−1 + u.

JN(K ; exp(ξ/N))

∼N→∞

1

∆(K ; exp(ξ))+

ck2 sinh(ξ/2)

∑ρk

τk(u)

(N

ξ

)dk/2

exp

(N

ξSk(u)

),

where

∆(K ; t): Alexander polynomial,

ck and dk are constants,

{ρk}: irreducible representations of π1 to SL(2;C),Sk(u): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2k : Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 45 / 45

Page 262: An Introduction to the Volume Conjecture and its ...An Introduction to the Volume Conjecture and its generalizations, III Hitoshi Murakami Tohoku University Workshop on Volume Conjecture

Generalizations of the Volume Conjecture

Speculation

Speculation

K: any knot, ξ = 2π√−1 + u.

JN(K ; exp(ξ/N))

∼N→∞

1

∆(K ; exp(ξ))+

ck2 sinh(ξ/2)

∑ρk

τk(u)

(N

ξ

)dk/2

exp

(N

ξSk(u)

),

where

∆(K ; t): Alexander polynomial,

ck and dk are constants,

{ρk}: irreducible representations of π1 to SL(2;C),Sk(u): defines the Chern–Simons invariant of ρk associated with themeridian and the longitude,

τ−2k : Reidemeister torsion of ρk associated with the meridian.

Hitoshi Murakami (Tohoku University ) Volume Conjecture, III IISER, Pune, 21st December, 2018 45 / 45