Agricultural productivity in Ethiopian Nile and interventions

1
FU Berlin For more information contact: (e-mail) Adress: [email protected] http://www.iwmi.cgiar.org/africa/east_africa/ Improved Agricultural Water Management In the Nile Basin Farming system Tef Barley Wheat Maize Sorghum Finger Millet Faba bean Field pea Average Tef based single cropping 8.24 9.21 10.4 16.8 9.18 4.98 10.33 6.83 9.50 Barley based single cropping 8.97 14.81 12.23 18.05 12.88 10.97 12.06 8.78 12.34 Sorghum based single cropping 8.66 10.28 11.62 14.01 11.96 9.59 11.87 9.09 10.89 Sorghum based shifting cultivation 7.26 4.89 6.46 20.68 10.93 6.53 6.00 2.66 8.18 Maize based schifting cultivation 5.77 5.18 6.53 20.38 13.72 6.86 5.17 3.69 8.41 Maize based single cropping 7.28 6.25 7.13 22.04 12.92 9.89 6.81 4.18 9.56 Coffee-maize complex 8.21 7.36 8.05 22.05 14.72 9.08 7.77 5.52 10.35 Barley based double cropping 7.31 9.47 9.90 8.23 8.86 1.60 10.30 6.91 7.82 Enset-root crops complex 5.70 5.11 6.52 17.41 10.12 3.58 4.93 4.36 7.22 Average 7.49 8.06 8.76 19.15 11.52 7.01 8.36 5.78 9.36 Agricultural Productivity in Ethiopian Nile and Interventions T. Erkossa and S. B. Awulachew International Water Management Institute Ethiopian part of Nile is dominated by mixed croplivestock rainfed agriculture. Agricultural productivity in the area is low due to: high temporal and spatial variation in climate, sever land degradation (Figure 1); lack of appropriate technologies; poor infrastructure & limited extension services, etc. Interventions for sustained & increased productivity and reverse the current state of land degradation are needed. This poster shows the result of study conducted to characterize the prevailing farming systems, identify suitable technologies and assess their possible impacts. Introduction Major reasons for low productivity • Poor nutrient & water storage capacity of soils due to land degradation • Water logging of Vertisols • Shortage and uneven distribution of rainfall, • Lack of suitable technologies Farming systems in the basin is characterized based on: agroecology, soil, major crops grown, degree of croplivestock interaction Current productivity of farming systems examined & productivity limiting factors identified Effects of technologies on productivity demonstrated • 2 major farming systems; mixed croplivestock & pastoral/ agropastoral identified (Fig. 2 & 3) • Major farming systems further subdivided to make ten subsystems • Cereal based system composed of single cropping, double cropping and shifting cultivation subsystems • Average crop productivity under current management is less than 1 ton ha 1 (Table 1) Conclusion • Farming systems can be used as basis for technology scaling up • Use of suitable crop varieties and species, soil and water management practices significantly increase crop & livestock productivity • Integrated application of technologies can maximize the benefits of the interventions • The increased crop and livestock productivity improves the livelihood of the farming communities and ease the pressure on marginal lands, thus alleviating the current extent of land degradation Fig. 1: Land degradation major challenge Figure 2:The major farming system in BNB Table 1 Current productivity of the farming systems (100kg ha -1 ) (CSA 2007) Methodology Results Fig. 3 : Distribution of the farming systems Location Variety Improved practice Traditional practice % increment local 37.3 28.4 32 UCB 46.1 25.9 78 Beletech 39.8 26.3 51 BH_140 45.9 26.4 74 BH-660 57.6 25.8 124 Jimma kuleni 46.2 26.5 75 BH-540 48.96 29.3 67 Adet kuleni 81.8 50.6 61 BH-530 81.7 41.7 96 Pawe BH-140 76.7 41.7 84 BH-140 34.2 29 18 Bako Beletech 38.2 29 32 Figure 5: Effect of tie-ridges on productivity of some crops planted in furrows of tied ridges at Kobbo (a dry area in Nile basin) (Source: George et al., 2001) Figure 4: Effect of organic and inorganic fertilizers on yield of major cereals Source: Edwards, et al., 2006 Table 2: Effect of improve management practices on productivity of maize Impact of Technologies •Improved agronomic practices increased productivity of maize by 124% at Jimma and by 96% at Pawe (Table 2) •Use of compost increased barley and wheat yield from 1 ton ha 1 to 2.5 tons ha1 (Figure 4) •Mineral fertilizers increased yield of maize from about 1.7 tons ha 1 to 2.8 tons ha 1 (Figure 4) •Use of tieridges increased grain yield of maize, sorghum, wheat and mung beans by 50 to over 100% as compared to planting on flat beds (Figure 5) •Other studies showed draining the water logged Vertisols can increase the productivity of crops like wheat by over 100%

Transcript of Agricultural productivity in Ethiopian Nile and interventions

Page 1: Agricultural productivity in Ethiopian Nile and interventions

FU Berlin

For more information contact: (e-mail)Adress:

[email protected]

http://www.iwmi.cgiar.org/africa/east_africa/

Improved Agricultural Water Management In the Nile Basin

Farming system Tef Barley Wheat Maize Sorghum Finger

Millet Faba

bean Field

pea

Average

Tef based single cropping 8.24 9.21 10.4 16.8 9.18 4.98 10.33 6.83 9.50

Barley based single cropping 8.97 14.81 12.23 18.05 12.88 10.97 12.06 8.78 12.34

Sorghum based single cropping 8.66 10.28 11.62 14.01 11.96 9.59 11.87 9.09 10.89

Sorghum based shifting cultivation

7.26 4.89 6.46 20.68 10.93 6.53 6.00 2.66 8.18

Maize based schifting cultivation 5.77 5.18 6.53 20.38 13.72 6.86 5.17 3.69 8.41

Maize based single cropping 7.28 6.25 7.13 22.04 12.92 9.89 6.81 4.18 9.56

Coffee-maize complex 8.21 7.36 8.05 22.05 14.72 9.08 7.77 5.52 10.35

Barley based double cropping 7.31 9.47 9.90 8.23 8.86 1.60 10.30 6.91 7.82

Enset-root crops complex 5.70 5.11 6.52 17.41 10.12 3.58 4.93 4.36 7.22

Average 7.49 8.06 8.76 19.15 11.52 7.01 8.36 5.78 9.36

Agricultural Productivity in Ethiopian Nile and InterventionsT. Erkossa and S. B. Awulachew

International Water Management Institute

Ethiopian  part  of  Nile  is  dominated  by 

mixed  crop‐livestock  rainfed agriculture. 

Agricultural productivity  in  the area  is  low 

due to: high temporal and spatial variation 

in  climate,  sever  land  degradation  (Figure 

1);  lack  of  appropriate  technologies;  poor 

infrastructure &  limited extension services, 

etc. Interventions for sustained & increased 

productivity  and  reverse  the  current  state 

of  land  degradation  are  needed.    This 

poster shows the result of study conducted 

to  characterize  the  prevailing  farming 

systems,  identify suitable technologies and 

assess their possible impacts.

Introduction Major reasons for low productivity• Poor nutrient & water storage capacity of soils due to land degradation 

•Water logging of Vertisols

• Shortage and uneven distribution of rainfall,

• Lack of suitable technologies

Farming  systems  in  the  basin  is characterized based on: agro‐ecology, soil,  major  crops  grown,  degree  of crop‐livestock interactionCurrent  productivity  of  farming systems  examined  &  productivity limiting factors identifiedEffects  of    technologies  on productivity demonstrated

• 2 major  farming systems; mixed crop‐

livestock  &  pastoral/  agropastoral

identified (Fig. 2 & 3)

• Major  farming  systems  further 

subdivided to make ten subsystems

• Cereal  based  system  composed  of 

single  cropping,  double  cropping  and 

shifting cultivation sub‐systems

• Average  crop  productivity  under 

current management is less than 1 ton 

ha‐1  (Table 1) 

Conclusion• Farming systems can be used as basis for technology scaling up

• Use  of  suitable  crop  varieties  and  species,  soil  and  water 

management practices  significantly  increase  crop &    livestock 

productivity

• Integrated  application  of  technologies  can  maximize  the 

benefits of the interventions

• The  increased  crop  and  livestock  productivity  improves  the 

livelihood of  the  farming  communities  and  ease  the  pressure 

on marginal  lands,  thus  alleviating  the  current  extent  of  land 

degradation

Fig. 1: Land degradation major challenge

Figure 2:The major farming system in BNB

Table 1 Current productivity of the farming systems (100kg ha-1) (CSA 2007)

Methodology

Results

Fig. 3 : Distribution of the farming systems

Location Variety Im proved practice

Trad itiona l practice

% increm ent

loca l 37 .3 28 .4 32 U C B 46 .1 25 .9 78 B eletech 39 .8 26 .3 51 B H _140 45 .9 26 .4 74 B H -660 57 .6 25 .8 124

J im m a

ku len i 46 .2 26 .5 75 B H -540 48 .96 29 .3 67 Adet ku len i 81 .8 50 .6 61 B H -530 81 .7 41 .7 96 Paw e B H -140 76 .7 41 .7 84 B H -140 34 .2 29 18 B ako B eletech 38 .2 29 32

Figure 5: Effect of tie-ridges on productivity of some crops planted in furrows of tied ridges at Kobbo (a dry area in Nile basin) (Source: George et al., 2001)

Figure 4: Effect of organic and inorganic fertilizers on yield of major cerealsSource: Edwards, et al., 2006

Table 2: Effect of improve management practices on productivity of maize

Impact of Technologies•Improved agronomic practices increased  productivity of maize by 124% at Jimma and by 96% at Pawe (Table 2)•Use of compost increased barley and wheat yield from 1 ton ha‐1 to 2.5 tons ha‐1 (Figure 4)•Mineral fertilizers increased  yield of maize from about 1.7 tons ha‐1 to 2.8 tons ha‐1 (Figure 4)•Use of tie‐ridges  increased grain yield of maize, sorghum, wheat and mungbeans by 50 to over 100% as compared to planting on flat beds (Figure 5)•Other studies showed draining the water logged Vertisols can increase the productivity of crops like wheat by over 100%