afdlkipobkdelcalbofhtii - Group HMS · NUPO=...

9
NUOT SWrucWural Analysis of HisWorical ConsWrucWions – Jerzy Jasieńko (ed) © 2012 DPNH ProcławH PolandH ISSN 0860-2395H ISBN 978-83-7125-216-7 afAdlkAi pTobkdTe lc AalBb BofCh tAii sincenzo diamundo N , dian miero iignola O , Andrea mrota P , daetano Manfredi Q ABpToACT mrevious experimental studies showed that the ratio between mortar and brick mechanical properties EiKeK strengthI stiffness and voung modulusF influences not only the design approaches Ein terms of basic assumptions and analytical models eKgK homogenizationF but also the global response of the masonry walls in term of strength and ductilityK A specific analysis is herein presented in the case of earth bricks or adobe constructionsI highlighting main issues and variability in the behavior of seismic resisting walls varying the properties EiKeK soil compositionI curingF of the materials used for the adobe productionK heywords: Adobe, Masonry walls, cinite element method, konlinear analysis, peismic vulnerability NK fkTolarCTflk barth is one of the oldest and most widespread construction material used in the construction of buildings for thousands of yearsK barth can be considered as the cheapest material readily available for constructionK ft has been used extensively for wall constructions around the worldK qhe popularity of adobe is also related to the low level of skill and technology required for the production of the bricks and constructions and inherent properties of earth that is an efficient heat and sound insulating materialK Adobe earth construction was copious in the ancient world and examples in many different places have been discovered so that preservation of historicI or even archeologicalI structures is nowadays a rising awarenessK aespite the numerous advantagesI adobe constructions are prone to damage under seismic actionsK rnfortunately research on the structural behavior of adobe buildings is inadequate so farK qhe seismic behavior of adobe masonry walls is related to the inJplane shear behaviorK qhe typical failure mode is the EdiagonalF cracking modeK qhis occurs when the principal tensile stresses developed in the wall under a combination of vertical and horizontal loads exceed the tensile strength of the adobe materialK qhe seismic characterization of the masonry structural element is generally carried out through direct shear tests or diagonal compression testsK qhe diagonal compression test is a research test method that covers determination of the diagonal tensile or shear strength of masonry assemblages by loading them in compression along one diagonalI thus causing a diagonal tension failure with the specimen splitting apart parallel to the direction of load xNzK qhis test allows evaluating the effects of variables such as type of masonry unitI mortarI workmanshipI etcK xOzK OK prMMAov lc bumbofMbkTAi lrTClMbp OKNK Test setup bxperimental diagonal compression tests on adobe wall panels are presented by quranly and paritas OMNN xPzK All the tested panels were subjected to diagonal compressive loads Ecompressive edge loadF acting in the plane of wall and forming a QR° angle with the direction of the mortar bed joints; geometry of a tested panel is reproduced in EcigK NFK qhe specimens were built with the global size EUM × UM cm O F and bricks size ENNKR × NMKR × ONKR cm P F as shown in EcigK NF but with different adobe N mhKaK ptudentI rnivK of kaples cederico ffI aeptK of ptructural bngineeringI vincenzoKgiamundo]uninaKit O Assistant mrofessorI rnivK of kaples cederico ffI aeptK of ptructural bngineeringI glignola]uninaKit P Associate mrofessorI rnivK of kaples cederico ffI aeptK of ptructural bngineeringI aprota]uninaKit Q cull mrofessorI rnivK of kaples cederico ffI aeptK of ptructural bngineeringI gamanfre]uninaKit

Transcript of afdlkipobkdelcalbofhtii - Group HMS · NUPO=...

=

NUOT=

SWrucWural Analysis of HisWorical ConsWrucWions – Jerzy Jasieńko (ed) © 2012 DPNH ProcławH PolandH ISSN 0860-2395H ISBN 978-83-7125-216-7

afAdlkAi pTobkdTe lc AalBb BofCh tAii sincenzo diamundoN, dian miero iignolaO, Andrea mrotaP, daetano ManfrediQ ABpToACT =mrevious= experimental=studies= showed= that= the=ratio=between=mortar=and=brick=mechanical=properties=EiKeK= strengthI= stiffness= and=voung=modulusF= influences=not= only= the= design= approaches= Ein= terms= of=basic= assumptions= and= analytical= models= eKgK= homogenizationF= but= also= the= global= response= of= the=masonry=walls= in=term=of=strength=and=ductilityK=A=specific=analysis= is=herein=presented=in=the=case=of=earth=bricks=or=adobe=constructionsI=highlighting=main=issues=and=variability=in=the=behavior=of=seismic=resisting=walls=varying=the=properties=EiKeK=soil=compositionI=curingF=of=the=materials=used=for=the=adobe=productionK= heywords: Adobe, Masonry walls, cinite element method, konlinear analysis,

peismic vulnerability NK fkTolarCTflk =barth= is= one= of= the= oldest= and= most= widespread= construction= material= used= in= the= construction= of=buildings=for=thousands=of=yearsK=barth=can=be=considered=as=the=cheapest=material=readily=available=for=constructionK= ft= has=been=used=extensively=for=wall=constructions=around=the=worldK=qhe=popularity=of=adobe=is=also=related=to=the=low=level=of=skill=and=technology=required=for= the=production=of=the=bricks=and= constructions= and= inherent= properties= of= earth= that= is= an= efficient= heat= and= sound= insulating=materialK= Adobe=earth=construction=was=copious= in=the=ancient= world=and=examples= in=many=different=places= have= been= discovered= so= that= preservation= of= historicI= or= even= archeologicalI= structures= is=nowadays= a= rising= awarenessK= aespite= the= numerous= advantagesI= adobe= constructions= are= prone= to=damage=under=seismic=actionsK=rnfortunately=research=on=the=structural=behavior=of=adobe=buildings=is=inadequate =so =farK =qhe =seismic =behavior =of =adobe =masonry =walls =is =related =to =the =inJplane =shear =behaviorK= qhe=typical= failure=mode= is= the=EdiagonalF= cracking=modeK=qhis=occurs=when=the=principal=tensile=stresses=developed=in=the=wall=under=a=combination=of=vertical=and=horizontal=loads=exceed=the=tensile=strength=of=the=adobe=materialK=qhe=seismic=characterization=of=the=masonry=structural=element=is= generally= carried= out= through= direct= shear= tests= or= diagonal= compression= testsK= qhe= diagonal=compression=test= is=a=research=test= method=that= covers=determination=of= the=diagonal= tensile=or= shear=strength=of=masonry=assemblages=by=loading=them=in=compression=along=one=diagonalI=thus=causing=a=diagonal=tension=failure=with=the=specimen=splitting=apart=parallel=to=the=direction=of=load=xNzK=qhis=test=allows=evaluating=the=effects=of=variables=such=as=type=of=masonry=unitI=mortarI=workmanshipI=etcK=xOzK==OK prMMAov lc bumbofMbkTAi lrTClMbp

OKNK Test setup bxperimental=diagonal=compression=tests=on=adobe=wall=panels=are=presented=by=quranly=and=paritas=OMNN=xPzK=All=the=tested=panels=were=subjected=to=diagonal=compressive=loads=Ecompressive=edge=loadF=acting= in= the= plane= of= wall= and= forming= a= QR°= angle= with= the= direction= of= the= mortar= bed= joints;=geometry=of=a= tested=panel= is= reproduced= in= EcigK=NFK=qhe=specimens= were=built= with= the=global= size=EUM=×=UM=cmOF=and=bricks=size=ENNKR=×=NMKR=×=ONKR=cmPF= as= shown=in=EcigK=NF=but= with=different=adobe=================================================N=mhKaK=ptudentI=rnivK=of=kaples=cederico=ffI=aeptK=of=ptructural=bngineeringI=vincenzoKgiamundo]uninaKit=O=Assistant=mrofessorI=rnivK=of=kaples=cederico=ffI=aeptK=of=ptructural=bngineeringI=glignola]uninaKit=P=Associate=mrofessorI=rnivK=of=kaples=cederico=ffI=aeptK=of=ptructural=bngineeringI=aprota]uninaKit=Q=cull=mrofessorI=rnivK=of=kaples=cederico=ffI=aeptK=of=ptructural=bngineeringI=gamanfre]uninaKit=

=

NUOU=

soil= composition= and= curing= for= both= the= bricks= and= the= mortarK= qhe= mortar= height= and= width= are=respectively=NM==cm=and=NNKR=cm=for=all=the=specimensK==

80

11.5 21.5 21.5 21.5 11,5

80

10,5

10,5

10,5

10,5

10,5

10,5

10,5

=cigK N=qested=panel=geometry=

=OKOK Material characterization qhe=mechanical=properties= are= in=part= given=by= xNz= and= in=part= achieved=by= fitting= numerical= global=experimental= dataK= qensile= and= compressive= strengths= for= different= curing= times= were= computed= by=interpolation=starting=from=the=values=suggested=in=xQzI=while=the=voung=jodulusI=bI=of=the=adobe=soil=was= achieved= by= fitting= global= response= curveI= because= such= mechanical= characterization= was=lacking=xNzK=qhe=trend=of=compression=and=tensile=strength=with=curing=time=is=shown=in=EcigK=OFI=based=on=tests=xQzK=puch=tests=provide=data=from=M=days=to=OU=days=curingI=both=for=plain=soil=and=soil=plus=NB=straw=contentK=cor=both=materialsI=the=strength=almost=doubledK===

0,00

0,25

0,50

0,75

1,00

0 7 14 21 28

Stre

ngth

rati

o

Curing days

Plain

Straw

=

cigK O=ptrength=trend=varying=curing=time==

pimilarlyI= the= trend= of= voung= modulusI= bI= varying= the= straw= content= was= given= in= refK= xRzK= qhe=experimental=trend= is=given=by=dots= in=EcigK=PF=and=a=exponential=trend= is= interpolated=in=dashed= lineK=qhe=main=outcome=is=a=descending=trend=with=straw=content;=in=particular=the=ratio=between=the=voung=modulus=for=adobe=soil=without=straw=and=with=NB=of=straw=content=is=about=MKRK==

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1

N (M

pa)

Straw (%) =

cigK P=Adobe=soil=voung=modulus=trend=varying=straw=content=

=

NUOV=

PK klkifkbAo krMbofCAi AkAivpbp

PKNK cinite-element method qo= understand= the= influence= of= the= different= constituent= materials= EiKeK= local= properties= of= soilI=compositionI= curingF= on= the= global= shear= mechanical= properties= andI= in= generalI= on= the= structural=behaviorI=a=cinite=blement=jethod=EcbjF=model=has=been=used=as=a= theoretical=toolK=qhe=cbj=model=has=been=validated=through=the=comparison=of= the=experimental=data=xPz=and=numerical=cbj=outcomesK=jicromodeling=was=adopted=and=some=parametric=analyses=were=conductedK=kumerical=twoJdimensional=analyses=have=been=performed=under=planeJstress=assumptionK=qhis=assumption=is=based=on=the=fact=that=the=width=of=the=panel=is=much=lower=than=the=other=two=dimensions=and=in=plane=load=were=appliedK=qhe=analyses= were= performed= varying= the= mechanical= parameters= for= both= the= bricks= and= the= mortar= and=different= strength= valuesI= according= also= to= curing= timeI= are= reported= in= EqabKNFK= aifferent= values= are=provided=for=plain=adobe=soil=at=different=curing=daysK=qhey=represent=different=aging=of=materials=at=time=of= testing=xPz=and=in=particularI=bricks=at=testing=time=were=OU=days=oldI=while=mortar=was=almost= freshK=pimilarly=different=compositions=were=tested=for= the=brickI=namely=with=the=addition=of=fly=ash=or=strawK=cor= comparison= purposeI= lacking= of= experimental= counterpartI= numerical= simulations= were= performed=applying= a= better= mortarI= namely= “mortar= B”= instead= of= plain= fresh= mortarI= and= considering= for= both=mortar=and=bricks=the=same=properties=due=to=long=curingI=namely=longer=than=OU=daysK=qhe=analyses= have=been=performed=by=means= of= the=qkl=afAkA=vVKQKP= codeK=qhe=simulated=panel=EcigK= QF= is= constituted= by= more= than= NPMMM= eightJnode= quadrilateral= isoparametric= plane= stress=elementsK=qhis=element=is=based=on=quadratic=interpolation=and=dauss=integrationK=

=Table N=jaterial=mechanical=properties=

=

mroperties mlain soil

mlain soil

mlain soil

cly Ash addition

NB ptraw content

Mortar B

Curing=days= M= OU= [OU= OU= OU= M=

qensile=ptrength=xkmaz= PVKO= TUKQ= VUKM= NNTKS= TUKQ= VUKM=

Compressive=ptrength=xjmaz= PKPO= SKSQ= UKPM= VKVS= SKSQ= UKPM==

=

cigK 4=qest=setupW=aF=experimentalI=bF=cinite=element=model=Ewith=meshF==

jortar= and= bricks= are= modeled= individually= without= interface= elements= between= themI= according= to=total= strain= model= coupled= with= the= rotating= crack= stressJstrain= relationship= approachK= keglecting=interface= elements= is= mainly= due= to= the= lack= of= experimental= properties= however= it= was= already=successfully= employed= in=previous= studies= xOI=SzK= fn= the=total= strain=approach=the= constitutive=model=describes=the=stress=as=a=function=of=the=strainK=fn=the=rotating=crack=approach=stressJstrain=relationships=are= evaluated= in= the= principal= directions= of= the= strain= vector= xTzK= cew= data= were= available= for=constituent=materialsI=especially=for=the=nonlinear=post=peak=phaseI=so=that=ideal=plasticity=was=assumed=

=

NUPM=

in=compressionI= while=in=tension=two=limit=cases=were=consideredI= namely=ideal=plasticity=and=brittle=failureK=All=the=analyses=were=performed=under=displacement=control=measuring=inJplane=deformations=and= evolution= of= reacting= stressesK= qhe= diagonal= compressive= axial= load= has= been= appliedI= as=a=displacement= loadI= through= two= wooden= supportsK= qhe= supports= have= been= modeled= at= the= two=opposite=corners=of=the=panel=EcigK=QF=according=to=experimental=test=setup=xNzK=qhese=wooden=supports=have=been=also=modeled=by=means=of=eightJnode=quadrilateral=isoparametric=plane=stress=elementK=As=a=boundary=condition=the=bases=were=fixedK=

=PKOK kumerical test program marametric= cbj= analyses= were= compared= to= experimental= tests= xNzK= sariable= parameters= were= the=mechanical =properties =of =the =soil =and =the =softening =model =in =tensionK =fn =particular =five =cases =were =consideredI= each= one= including= both= an= ideal= tensile= plastic= behavior= and= a= brittle= tensile= failureI=namelyW=

– plain=testedW=the=wall=is=made=of=plain=adobe=bricks=OU=ddK=curing=and=fresh=plain=mortar=EiKeK=M=ddK=curingFI=voung=modulus=for=both=materials=is=OM=jma=based=on=experimental=data=fitting;=

– straw=testedW=the=wall=is=made=of=adobe=bricks=OU=ddK=curing=with=NB=straw=content=and=fresh=plain=mortar=EiKeK=M=ddK=curingFI=voung=modulus=for=brick=is=NMM=jma=while=for=mortar=is=OMM=jmaI=it=is=based=on=experimental=data=fitting=accounting=for=the=ratio=MKR=due=to=straw=content=Esee=cigK=OF;=

– fly=ash=testedW=the=wall=is=made=of=adobe=bricks=OU=ddK=curing=with=NMB=fly=ash=content=and=fresh=plain= mortar= EiKeK= M=ddK= curingFI= voung= modulus= for= both= materials= is= RM=jma= based= on=experimental=data=fitting;=

– long=termW=this=wallI=not=tested=in=realityI=is=made=of=plain=adobe=bricks=and=plain=mortar=after=long=curing=time=EiKeK=curing=time=higher=than=about=OU=ddKF;=voung=moduli=were=the=same=as=the=first=caseI=for=comparison=purpose;=

– mortar= BW=this=wallI= not= tested=in= realityI= is= considered=for= comparison=only=purpose=with=plain=tested=wall;=the=wall=is=made=of=plain=adobe=bricks=OU=ddK=curing=and=a=better=mortar=compared=to=plain=soil;=voung=moduli=were=the=same=as=the=first=caseI=for=comparison=purposeK=

4K bumbofMbkTAi-TeblobTfCAi ClMmAofplk =qhe= behavior= of= adobe= wall= panel= was= analyzed= Evarying= softening= models= and= mechanical=parametersF= in= terms= of= loadJdisplacement= curveI= shear= stressJaverage= diagonal= strain= curveI= shear=stressJaverage=shear=strain=curveI=moisson=ratioJdisplacement=and=phear=modulusJdisplacement=curvesK=According= to= Apqj= bRNVJUN= xNz= standard= methodI= the= shear= stressI= τI= has= been= obtained= as=τ===MKTMT=sLAnI=were=s===diagonal=load=and=An===net=section=area=of=the=uncracked=section=of=the=panel=EAn===MKMVO=mO= in =the=present =caseFK =qhe=average=vertical =and=horizontal =strainsI =εv=and=εh= have=been=computed=as=the=average=displacement=along=the=compressive=and=tensile=diagonalsI=respectivelyI=over=the=same=gauge=length=EQMM=mmFK=qhe=shear= strainI=γI=according=to=Apqj=bRNVJUN=xNzI= is=γ===εv+εhK=qhe=phear= modulusI= dI= and= the=moisson=ratioI= νI=were=computed=according= to= the=wellJknown=solid=mechanics=relationshipI=respectively=as=ν===Jεh/εv=and=d===τ/γI=where=b=is=the=voung=jodulusK===

=

cigK R=bxperimental=failure=mode=Eplain=adobe=soilF=

=

NUPN=

cor=each=analysisI=the=failure=modes=were=also=checked=by=means=of=the=crack=patternsK=bxperimental=failure= mode= mainly= involved= cracking= and= detachment= of= lateral= corners= of= the= panelI= outside= the=compressed= strut= between= the= two= wooden= loading= supportsI= as= shown= in= EcigK= RFK= kumerical= tests=mainly=reproduced=the=same=cracking=patternI=but=the=spreading=of=cracks=Esmeared=crack=strain=field=in=numerical= simulationsFI= depends= mainly= on=post= peak= tensile= behavior= of= soilK= fn= next= figures= solid=signs=represent= experimental=dataI=while=continuous=and=dashed= lines=represent=brittle=and= ideal=post=peak=tensile=behaviorI=respectivelyK=A=small=cross=remarks=the=failure=point=for=brittle=materialK=

=4KNK cbM modelW plain tested qhe=plain=tested=panel=is=almost=homogeneous=panelI=in=the=sense=that=mortar=and=bricks=are=made=of=the=same=materialK=eoweverI=different=curing=times=differentiate=the=two=materialsW=mortar=is=almost=freshI=while=bricks=are=cured=for=OU=ddKI=so=that=their= strengthI=both=in=tension=and=compression=was=higherK= According= to= EcigK= SF= crack= pattern= almost= involved= vertical= lines= connecting= the= wooden=supportsK=dlobal=response=in=terms=of=corceLaisplacement=highlights=an=almost=linear=behaviorI=and=brittle= material= seems= to= better= catch= experimental= failureI= both= in= terms= of= crack= pattern= and= of=failure=loadK==

= =Crack pattern (brittle in tension) Crack pattern (ideal in tension)

0

10

20

30

40

50

0 5 10 15 20 25

Forc

e [k

N]

Misplacement [mm]

x brittle failure

ideal curve

experimental

=

0.00

0.10

0.20

0.30

0.40

-0.02 0 0.02 0.04

t [M

Pa]

eh [mm/mm] ev [mm/mm]

x brittle failurex brittle failure x brittle failure

=

9.19.29.3

0 5 10 15 20 25

G [M

Pa]

Misplacement [mm]

brittleideal

=

0

0.1

0.2

0.3

0.4

0 0.02 0.04 0.06

t [M

Pa]

g [mm/mm]

x brittle failure

=

0.2

0.22

0 5 10 15 20 25

n [-]

Misplacement [mm]

brittleideal

= =

cigK S=bxperimentalJtheoretical=comparison=Eplain=adobe=soilF==

4KOK cbM modelW straw tested qhe= straw= tested= panelI= converselyI= is= not= homogeneous= panelW= mortar= and= bricks= have= different=stiffnessK=jortar=has=no=straw=contentI=soI=according=to=EcigK=OFI=its=voung=modulus=is=almost=doubled=if=compared=to=bricksI=having=NB=straw=contentK=citting=of=experimental=elastic=global=curve=leads=to=a=voung=modulus=of=bricks=about=R=times=higher=compared=to=previous=testK=eoweverI=the=modulus=of=bricks =smaller =than =mortar =produces =a =wider =crack =pattern =Esee =cigK =TF =compared =to =previous =testK =dlobal= response= in= terms= of= corceLaisplacement= highlights= an= almost= linear= behaviorI= and= brittle=

=

NUPO=

material=failure=matches=experimental=yielding=pointK=qhe=second=less=stiff=branch=is=almost=related=to=a=global=damageI=as=highlighted=by=sharp=change=in=shear=modulusI=dI=and=moisson=ratioI=νI=behaviorK=qhe=scatter=after=S=mm=displacement=is=mainly=due=to=the=ideal=behavior= in=compression=of=materialsI=while=a=softening=behavior= in=compression=can=be=expected;=however=the=limited=knowledge=in=terms=of=experimental=characterization=of=basic=materials=does=not=allow=to=better=fit=the=curve=up=to=failureK=fn=any=case=the=main=differenceI=compared=to=previous= testI=is=the=voung=modulus=Ewhile=strength=of=bricks=and=mortar=is=the=sameFI=and=the=global=effect=is=not=only=an=increase=of=shear=stiffness=Eabout=R=times=higher=as=the=increase=of=voung=jodulus=of=bricksFI=but=also=an=increase=of=shear=strengthI=about=PMBK=qhis= increase= in=global= shear= strength= is= not= related= to= any= increase=of= strength=of= constituent=materialsI=but=only=to=an=increase=of=voung=jodulusK==

===

=

Crack pattern (brittle in tension) Crack pattern (ideal in tension)

0

10

20

30

40

50

60

0 5 10 15

Forc

e [k

N]

Misplacement [mm]

x brittle failure

ideal curve

experimental

=

0

0.25

0.5

-0.005 0.000 0.005 0.010

t [M

Pa]

eh [mm/mm] ev [mm/mm]

x brittle failurex brittle failure

=

394245

0 5 10 15

G [M

Pa]

Misplacement [mm]

brittle ideal

=

0

0.25

0.5

0 0.005 0.01 0.015

t [M

Pa]

g [mm/mm]

x brittle failure

=

0.2

0.3

0.4

0 5 10 15

n [-

]

Misplacement [mm]

brittle

ideal

= =

cigK T=bxperimentalJtheoretical=comparison=Ebricks=having=NB=straw=contentF==

4KPK cbM modelW fly ash tested qhe=fly=ash=tested=panel=is=again=almost=a=homogeneous=panel=as=the=first=plain=oneI=in=the=sense=that=mortar=and=bricks=have=the=same=voung=jodulusK=eoweverI=a=different=strength=differentiates=the=two=materialsW=mortar=is=the=same=as=in=previous=testsI=almost=freshI=while=bricks=cured=for=OU=ddKI=so=that=their= strengthI=both=in= tension=and=compression=was=much=higher= Enot=only=due=to=OU=ddK=curingI=but=also=due=to=fly=ash=additionFK=citting=of=experimental=elastic=global=curve=leads=to=a=voung=modulus=of=bricks=about =OKR=times=higher =compared=to=first =testK =qhe=crack=pattern=Esee=cigK =UF =is =similar =to =first =plain=soil=testK=fn=this=case=the=second=less=stiff=branch=starts=before=major=cracking=Eand=before=brittle=material=failureF=and=the=scatter=after=about=P=mm=displacement=is=mainly=due=to=the=ideal=behavior= in=compression=of=materialsK=fn=any=case=the=main=differenceI=compared=to=first=testI=is=the=higher=voung=

=

NUPP=

modulus=Eabout=OKR=times=higherF=and=the=higher=strength=of=bricks=Eabout=RMB=higherFI=and=the=global=effect= is= not= only=an= increase=of=shear= stiffnessI=dI= Eabout=OKR= times=higherFI=but=also=an= increase=of=shear=strengthI=being=almost=TMB=higherK=fn=this=caseI=the=global=effect=of=shear=strength=increase=Eabout=TMB=compared=to=first=caseFI=is=almost=comparable= to= the= increase= of= brick= strength= Eabout= RMBF= emphasized= by= the= increase= of= voung=modulus=of=materials= Eas= in=previous=case=the= increase=of=voung=modulus=alone=was=able=to=slightly=increase=the=strengthF;=the=mortar=is=always=the=same=in=last=three=analysesK==

= =Crack pattern (brittle in tension) Crack pattern (ideal in tension)

0

10

20

30

40

50

60

0 5 10 15 20

Forc

e [k

N]

Misplacement [mm]

ideal curve

x brittle failure

exprerimental

=

0.00

0.20

0.40

0.60

-0.01 0.00 0.01 0.02

t [M

Pa]

eh [mm/mm] ev [mm/mm]

x brittle failure

x brittle failure

=

20

22

24

0 5 10 15 20

G [M

Pa]

Misplacement [mm]

idealbrittle

=

0

0.1

0.2

0.3

0.4

0.00 0.01 0.02

t [M

Pa]

g [mm/mm]

x brittle failure

=

0.1

0.2

0.3

0 5 10 15 20

n [-

]

Misplacement [mm]

brittle

ideal

= =

cigK U=bxperimentalJtheoretical=comparison=Ebricks=having=NMB=fly=ash=contentF==

=4K4K cbM modelW long term curing qhe=long=term=curing=panel=was=not=experimentally=testedI=but=it=is=analyzed=to=assess=the=influence=of=strength= of= materials= on= global= behavior= of= the= masonry= panelK= ft= is= again= almost= an= homogeneous=panel= as= the= first= plain= oneI= in= a= general= sense= that= mortar= and= bricks= have= identical= mechanical=propertiesK=qhe=strength=of=the=two=materials=is=the=sameI=corresponding=to=more=than=OU=ddK=curing=and=it= is=about=ORB=higherI=compared=to=plain=soil=bricks= EOU=ddK=curingF=and=OKR=times=higher= than=plain=soil=mortar=EM=ddK=curingFK=qhe=crack=pattern=is=almost=similar=Esee=cigK=VaF=compared=to=previous=testI=but=the=panel=presents=a=higher=strengthK=qhe=global=response=in=terms=of=corceLaisplacement=is=almost=linear= up= to= failure=point= being= the=shear= strength= almost= doubled= if= compared= to= first= test= Efor= this=reason=the=crack=pattern=only=is=shownFK=fn=any=case=the=main=differenceI=compared=to=first=testI=is=the=strength=of=materialsI=and=the=global=effect= is=an= increase=of=shear= strengthI=being=comparable=to= the=increase=of=mortar=strengthK==4KRK cbM modelW mortar B qhe=panel=with=a=better=mortar=Ecompared=to=first=testFI=was=not=tested=in=realityI=but=it=is=analyzed=to=assess=the=influence=of=strength=of=materials=on=global=behavior=of=the=masonry=panelK=ft=is=again=almost=

=

NUPQ=

a=homogeneous=panel=as=the=first=plain=one=Ehaving=identical=voung=joduli=onlyFI=but=the=strength=of=the=mortar=is=about=OKR=times=higherI=compared=to=plain=soil=mortar=EM=ddK=curingF=brick=are=the=sameK=qhe=crack=pattern=is=almost=similar=Esee=cigK=VbF=compared=to=first=testI=but=the=panel=presents=a=higher=strengthI= and=also= the= global= response= in= terms= of=corceLaisplacement= is= similar= Efor= this= reason= the=crack=pattern=only=is=shownFK=qhe=comparison=with=the=first=test=allows=to=findI=in=generalI=a=spreading=of=crack=pattern=and=higher=global=performancesI=however=an=easier=and=more=direct=comparison=can=be=made=with=previous=testK=fn=fact=the=main=differenceI=compared=to=previous=testI=is=the=strength=of=brickI=and=the=global= effect= is=a=reduction=of=shear= strength=Ealmost=OMB=smallerFI=being=comparable=to=the=reduction=of=strength=of=the=bricksK==

= = = =Crack pattern (brittle in tension) Crack pattern (ideal in tension) Crack pattern (brittle in tension) Crack pattern (ideal in tension)

aF=

==========

0

0.1

0.2

0.3

0.4

0 0.025 0.05

t [M

Pa]

g [mm/mm]

x brittle failure

=

bF=

==========

0

0.1

0.2

0.3

0.4

0 0.025 0.05

t [M

Pa]

g [mm/mm]

x brittle failure

== = =

=

cigK 9=qheoretical=crack=pattern=and=τ-γ=curvesW=aF=plain=adobe=soil=having=long=term=curing;==bF=mortar=having=higher=strength=

=RK ClkCirpflkp =barth=is=still=diffused=as=construction=material=for=many=adobe=constructions=worldwideI=especially=for=its=cheapnessK= Also= many= historic= structuresI= built= for= thousands= of= yearsI= are= now= in= the= need= of=conservationK= aespite= their= diffusionI= only= few= experimental= tests= are= availableI= hence= numerical=experimentation= is= seen= as= a= feasible= way= to= deepen= knowledge= on= seismic= behavior= of= such=constructionsK=After=validating=the=numerical=modelI=cbj=simulations=can=be=used=as=a=tool=to=increase=the=knowledge=on=the=effect=of=constituent=materials=on=global=performancesK= fn=factI=both=the=intrinsic=variability=of= soil= materialI= and= the=variability=due= to=aging=and=compositionI= jeopardize= seriously= the=seismic= performance= of= adobe= constructionsK= pcope= of= present= study= is= to= highlight= the= influence= of=mortar=and=brick=composition=and=aging=on=the=shear=performance=of=inJplane=wallsI=after=validating=the=model=based=on=experimental=testsK=A=literature=survey=clarified=the=effect=of=curing=time=on=the=strength=of= soil= materialI= namely=an= increase=of= strength=both= in= tension=and= in= compressionI= and= the=effect= of=straw= additions= on= voung= modulus= and= of= fly= ash= on= strengthK= qhen= numerical= analyses= allowed= to=highlight=the=following=effectsK=fn=EqabK=OF=ratios=are=evaluated=with=respect=to=plain=soil=testK=voung= modulus= of= bricks= is= the= driving= parameter= for= the= shear= stiffness= of= the= panelI= in= fact= the=increase =of =stiffness =of =bricks =EeKgK =NB =straw =testF =directly =reflects =into =a =proportional =increase =of =global=stiffnessI= while= the= increase=of=mortar= stiffness=has= no=comparable=effectK=eowever= the=crack=pattern=is=directly=affected=by=an=increase=of=mortar=stiffnessI=in=fact=stiffer=mortar=is=able=to=spread=the=smeared= cracking= strain= fieldK= qhe= increase= of= stiffness= is= related= to= an= increase= of= global= shear=strengthI=even=if=there=is=no=increase=of=strength=of=basic=materialsK=qhis= is= confirmed= when= increasing= the= brick= strength= only= EeKgK= NMB= fly= ash= testFI= the= global= shear=strength=increase=is=more=than=proportional=if=attributed=also=to=the=increase=of=stiffnessK=

=

NUPR=

qhe=increase=of= mortar= strength=EeKgK= equal= for=both= long=term=curing=and=better=mortar= simulationsFI=yet=having=the=same=stiffness=of=basic=materialsI=leads=to=an=increase=of=global=shear=strengthK=eowever=the=increaseI=at=global=level=Eabout=OKR=timesFI=is=nearly=proportional=to=the=mortar=strength=increaseI=at=local=level=Eabout=OKR=timesFI=but=it=is=mitigated=by=the=reduction=of=brick=strengthI=in=fact=a=reduction=of=brick= strength= of= about= OMB= corresponds= almost= proportionally= to= a= OMB= reduction= of= global= shear=strengthK=

=Table O=jain=results=of=cbj=

=

cbM Model

Material ievel Einput dataF dlobal ievel oesults Brick

ptrength oatio

Mortar ptrength

oatio

Brick ptiffness

oatio

Mortar ptiffness

oatio

d [Mmaz

τ [Mmaz

d oatio

τ oatio

mlain= N= N= N= N= VKOP= MKNRN= N= N=ptraw=NB= N= N= R= NM= QOKTR= MKNVT= QKS= NKP=

cly=Ash=NMB= NKR= N= OKR= OKR= ONKMT= MKORR= OKP= NKT=iong=Curing= NKOR= OKR= N= N= VKOP= MKPOS= N= OKO=

jortar=B= N= OKR= N= N= VKOP= MKORV= N= NKT===obcbobkCbp xNz American= pociety= for= qesting= jaterials= EApqjFK= ENVUNF= ptandard test method for diagonal

tension EshearF in masonry assemblagesK=ApTM b RNVJUNK=xOz iignola= dKmKI= mrota= AKI= janfredi= dK= EOMMVF= konlinear= analyses= of= tuff= masonry= walls=

strengthened= with= cementitious= matrixJgrid= composites gournal of Composites for Construction ApCbI=NPEQFI=ppK=OQPJORNK

xPz quranli=iKI=paritas=AK=EOMNNF=ptrengthening=the=structural=behavior=of=adobe=walls=through=the=use=of=plaster=reinforcement=meshK=Construction and Building MaterialsI=OREQFI=ppK=NTQTJNTROK

xQz quranli=iKI=ENVURF=bvaluation of some physical and mechanical properties of plain and stabilized adobe blocksK= jaster= thesis= in= civil= engineeringK= jiddle= bast= qechnical= rniversityI= AnkaraI=qurkeyK

xRz nuagliarini= bKI= ienci= pK= EOMNMF= qhe= influence= of= natural= stabilizers= and= natural= fibres= on= the=mechanical= properties= of= ancient= roman= adobe=bricksK= gournal of Cultural eeritageI= NNEPFI= ppK=PMVJPNQK

xSz iignola= dKmKI= mrota= AKI= janfredi= dK= EOMNOF= kumerical= investigation= on= the= influence= of= com=retrofit= layout=and=geometry=on=the= inJplane=behavior=of=masonry=wallsK=gournal of Composites for Construction ApCbI=fn=pressI=doiW=NMKNMSNLEApCbFCCKNVQPJRSNQKMMMMOVTK=

xTz janie =gKI =hikstra =tKmK =EOMNMF =afAkA =cinite =blement =AnalysisK =rser’s Manual release VK4KPK blement iibraryI=qkl=afAkA=bvI=aelftI=qhe=ketherlandsK