Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I...

37
27.11.2018 1 Advanced Imaging Techniques Diffusion Imaging Prof. Dr. Frank G. Zöllner Computer Assisted Clinical Medicine Medical Faculty Mannheim Heidelberg University Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Germany [email protected] www.ma.uni-heidelberg.de/inst/cbtm/ckm Diffusion MRI I Slide 2/18 I 07.03.2018 Learning Goals introduction to perfusion imaging basic MRI principles -> Physics of Imaging Techniques Goals: 1. How does the technique work ? 2. What kind of images do we receive? 3. Where is this applied to ? Slides of the lectures at https://www.umm.uni-heidelberg.de/inst/cbtm/ckm/lehre/index.html

Transcript of Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I...

Page 1: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

1

Advanced Imaging TechniquesDiffusion Imaging

Prof. Dr. Frank G. ZöllnerComputer Assisted Clinical MedicineMedical Faculty Mannheim Heidelberg University

Theodor-Kutzer-Ufer 1-3D-68167 Mannheim, Germany

[email protected]/inst/cbtm/ckm

Diffusion MRI I Slide 2/18 I 07.03.2018

Learning Goals

� introduction to perfusion imaging

� basic MRI principles -> Physics of Imaging Techniques

� Goals:

1. How does the technique work ?

2. What kind of images do we receive?

3. Where is this applied to ?

� Slides of the lectures at https://www.umm.uni-heidelberg.de/inst/cbtm/ckm/lehre/index.html

Page 2: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

2

Diffusion MRI I Slide 3/18 I 07.03.2018

Reading� Le Bihan D, et al. MR imaging of intravoxel incoherent motions:

application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.

� Glenn GR, Kuo L-W, Chao Y-P, et al. Mapping the orientation of white matter fiber bundles: a comparative study of diffusion tensor imaging, diffusional kurtosis imaging, and diffusion spectrum imaging. AJNR Am J Neuroradiol 2016; 37:1216-1222.

� Hagmann P, Jonasson L, Maeder P, et al. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. RadioGraphics 2006; 25:S205-223.

� Hori M, Aoki S, Fukunaga I, et al. A new diffusion metric, diffusion kurtosis imaging, used in the serial examination of a patient with stroke. Acta Radiologica Short Reports 2012;1:2 DOI: 10.1258/arsr.2011.110024

� Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53:1432-1440.

Diffusion MRI I Slide 4/18 I 07.03.2018

Reading� Jensen JH, Helpern JA. MRI quantification of non-gaussian water

diffusion by kurtosis analysis. NMR Biomed 2010; 23:698-710.

� Yablonskiy DA, Sukstanskii AL. Theoretical models of the diffusion weighted MR signal. NMR Biomed 2010; 23:661-681.

� Andrew J. Steven, Jiachen Zhuo, and Elias R. Melhem. Diffusion Kurtosis Imaging: An Emerging Technique for Evaluating the Microstructural Environment of the Brain. Am J Roentgen 2014 202:1, W26-W33

� Johansen-Berg and Behrens. Diffusion MRI, Academic Press, 632 pages, ISBN: 9780123964601

� Jones. Diffusion Mri: Theory, Methods and Applications, Oxford University Press; ISBN: 978-0195369779

Page 3: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

3

Diffusion MRI I Slide 5/18 I 07.03.2018

Content

• Principle of Diffusion

• Apparent Diffusion Coefficient (ADC)

• Diffusion Tensor Imaging (DTI)

• Intravoxel Incoherent Motion (IVIM)

• Diffusion Kurtosis Imaging (DKI)

Diffusion MRI I Slide 6/18 I 07.03.2018

• Diffusion: Random movement ofmolecules/atoms due to Brownian motion(temperature)

• Diffusion coefficient D:

• Measure for amount of movement

• Dwater = 10-3 mm²/s 9 µm „wandering“ in 40 ms

• Diffusion in tissue is complexand holds information abouttissue structure and function

Diagnostic value

Principle of Diffusion

30 µm

Page 4: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

4

Diffusion MRI I Slide 7/18 I 07.03.2018

J = diffusion flux [mol/m^2/s]D = diffusion constant [m^2/s]C = concentration [mol/m^3]

Free Diffusion• 1st Fick´s Law

• 2nd Fick´s Law (Diffusion)

• mean square deviation

Diffusion MRI I Slide 8/18 I 07.03.2018

Principle of DWI by MRI

Phase in the rotating coordinate system is constant

position of spins in the rotatingcoordinate system

after 90°pulse

Page 5: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

5

Diffusion MRI I Slide 9/18 I 07.03.2018

Principle of DWI by MRI

1.Gradient � Spins aquire phase relativ t rot. coordinate system

Spin system without diffusion gradient

Diffusion MRI I Slide 10/18 I 07.03.2018

Principle of DWI by MRI

Spin system without diffusion

2.Gradient � Phase rephased � similar to gradient echo

Page 6: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

6

Diffusion MRI I Slide 11/18 I 07.03.2018

Principle of DWI by MRI

Spin system with diffusion

1.Gradient � Spins acquire phase relativ to rot. coordinate system

Diffusion MRI I Slide 12/18 I 07.03.2018

Principle of DWI by MRI

Spin system with diffusion

Diffusion occurs in between gradientplayout� Spins changelocation

Page 7: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

7

Diffusion MRI I Slide 13/18 I 07.03.2018

Principle of DWI by MRI

2.Gradient � Spins not completely rephased � Signal loss

Spin system with diffusion

Diffusion MRI I Slide 14/18 I 07.03.2018

• Gradients G make rotation frequencydependend on spatial position

� � � ∙ � � � ∙ �

• If spins change position (diffusion) firstand second gradient have different effects

Signal attenuation/loss

Apparent Diffusion Coefficient (ADC) Model

x

Page 8: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

8

Diffusion MRI I Slide 15/18 I 07.03.2018

Bloch Equations with Diffusion

(without relaxation)

(isotrop and homogen.)Equation of transport

Diffusion MRI I Slide 16/18 I 07.03.2018

Bloch Equations with Diffusion

Page 9: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

9

Diffusion MRI I Slide 17/18 I 07.03.2018

Signal loss and b-value

Strength of diffusions weighting:

B-value a sequence parameter

Integral devided into 3 parts

Diffusion MRI I Slide 18/18 I 07.03.2018

DWI Imaging Sequence

Page 10: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

10

Diffusion MRI I Slide 19/18 I 07.03.2018

DWI Imaging Sequence - EPI

Diffusion MRI I Slide 20/18 I 07.03.2018

DWI Imaging Sequence - EPI

Friedli et al. Scientific Reports volume 6 , 30088 (2016)

Page 11: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

11

Diffusion MRI I Slide 21/18 I 07.03.2018

• Gradients G make rotation frequencydependend on spatial position

� � � ∙ � � � ∙ �

• If spins change position (diffusion) firstand second gradient have different effects

Signal attenuation/loss

Apparent Diffusion Coefficient (ADC) Model

• „b-value“ = b(G, δ, ∆) determinesimpact of signal loss due todiffusion

• assuming equal diffusion in all directions (isotropic)

� � ∙ ���∙���

⇒ �� / � � �� ∙ ���

with Apparent Diffusion CoefficientADC

Diffusion MRI I Slide 22/18 I 07.03.2018

Apparent Diffusion Coefficient (ADC) Model

� � ∙ ���∙���

�� / � � �� ∙ ���

Page 12: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

12

Diffusion MRI I Slide 23/18 I 07.03.2018

White Matter

• Consists of highly directional neurion fibres (anisotropic)

Anisotropic Diffusion

Mosby's Medical Dictionary, 8th edition. © 2009, Elsevier.

Diffusion MRI I Slide 24/18 I 07.03.2018

White Matter

• Diffusion along fibres easier than across myelinsheath

Anisotropic Diffusion

axon0,5 µm

1 µm

Beaulieu. NMR Biomed 2005

Page 13: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

13

Diffusion MRI I Slide 25/18 I 07.03.2018

Diffusion Tensor Imaging (DTI)

Diffusion ellipsoid

Diffusion tensor

Water molecule

Diffusion MRI I Slide 26/18 I 07.03.2018

Diffusion Tensor Imaging (DTI)

Diffusion Tensor

ADC = �

��� � �� ��

Fractional Anisotropy (FA):• Amount of anisotropy• Main direction• 0 " #$ " 1

https://www.intechopen.com/books/novel-frontiers-of-advanced-neuroimaging/brain-structure-mr-imaging-methods-morphometry-and-tractography

Page 14: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

14

Diffusion MRI I Slide 27/18 I 07.03.2018

Diffusion Tensor Modell

coordinate system,Eigen system

DTI equation

isotropicdiffusion

anisotropicdiffusion

Diffusion MRI I Slide 28/18 I 07.03.2018

Diffusions - Tensor Modell

world coordinate system Eigensystem

in general:

Page 15: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

15

Diffusion MRI I Slide 29/18 I 07.03.2018

Diffusions - Tensor Modell

� Eigen system

� major Eigen value:&1

� major Eigen vector: [V1 V2 V3]

Diffusion MRI I Slide 30/18 I 07.03.2018

Diffusions – Tensor Modell

rotation matrix

Eigenvectors invariant to rotation� derived quantities (z.B. Trace, fractional anisotropy (FA))

Page 16: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

16

Diffusion MRI I Slide 31/18 I 07.03.2018

Fractional anisotropy

FA Colormap

Diffusion MRI I Slide 32/18 I 07.03.2018

• Investigation of main diffusion axis of neighbouring voxels

• Similar directions can indicate fibre structures

DTI Fibretracking

https://www.cnet.com/news/hi-def-fiber-tracking-helps-pinpoint-brain-damage/

Page 17: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

17

Diffusion MRI I Slide 33/18 I 07.03.2018

Fiber tracking ( naive approach)

• Fiber tracking using the given 3D vector field• start at (1,1)• discrete iteration of the fibers voxel by voxel

� too simple, not working

Diffusion MRI I Slide 34/18 I 07.03.2018

FACT Algorithmus

� FACT = fibre assignment bycontinuous tracking

� start at (1.5,1.5)

� continuious iteration

� stopping criteria

� border of image reached

� FA < 0.2 ~ FA of grey matter

� curvature too big

Rong et al., „MRM 42:1123-1127 (1999)

Page 18: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

18

Diffusion MRI I Slide 35/18 I 07.03.2018

Euler und Runge-Kutta Algortihmengiven: discretes stanionary image, vector field / Tensor field� Fiber track trajectors represented as 3D space curve� vector r(s) parametrised by the arc length s� Evolution of r(s) by Frenet equation dr(rs)/ds= t(s)� T(s) identified by the largest eigenvector ε(r(s))

associated with the largets eigenvalue of D

� Euler / Runge-Kutta algorithm Basser at al. , MRM 44:625-632 (2000)

Diffusion MRI I Slide 36/18 I 07.03.2018

Comparison of Fiber Tracking approaches

Page 19: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

19

Diffusion MRI I Slide 37/18 I 07.03.2018

Fiber tracking

Stieltjes et al, Neuroimage, 2001

Post mortem AtlasIn Vivo DTI

Diffusion MRI I Slide 38/18 I 07.03.2018

Corpus Callosum

Page 20: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

20

Diffusion MRI I Slide 39/18 I 07.03.2018

Fornix

Diffusion MRI I Slide 40/18 I 07.03.2018

Fiber tracks in Tumors

Capsula internaanterior

Schlüter et al., CURAC 2005

Page 21: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

21

Diffusion MRI I Slide 41/18 I 07.03.2018

Risk assessment of structures?

Diffusion MRI I Slide 42/18 I 07.03.2018

• Fiberkissing/Crossing

• Fibertracking: choice of parameters

ROIs Tracking FA

Fib

ers

Stieltjes B et al., Neuroimage, 2001

Problems of Fiber Tracking

Page 22: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

22

Diffusion MRI I Slide 43/18 I 07.03.2018

Noise & Accuracy of Fiber tracks

� Image data generally noisy

� errors of noise add up

� smoothing reduces noise but blurrs the image

Basser et al., MRM 44:625-632 (2000)

Diffusion MRI I Slide 44/18 I 07.03.2018

Fiber Tractography : Seeding points

� Seed location� Regional seed methods

To extract a specificpathway or mappingtracts from a specificregion

� Whole-brain seedmethods

To generate nearly all possible pathways

Higher redundancy in the pathways

Page 23: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

23

Diffusion MRI I Slide 45/18 I 07.03.2018

• Histogram analysis

• Voxel based analysis (VBA)

• ROI analysis

Qunatification in DTI

Diffusion MRI I Slide 46/18 I 07.03.2018

• a lot of work for larger patient groups/ cohorts

• structures are not alwayseasy to define

• poor reproducibility, inter-and intrareader variability

• meaningful, if it is knownwhere the pathology is to beexpected

• can be used for welldelimited structures

• simple, transparent methodology

-

ROI-Analyse (1)

+

Page 24: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

24

Diffusion MRI I Slide 47/18 I 07.03.2018

FA = 0.76

FA = 0.64

ROI-Analyse (2)

Diffusion MRI I Slide 48/18 I 07.03.2018

Schlüter et al., IEEE 2004

multivariate Gaussian

multivariate Gaussian

Ev 1

Ev 2

Ev 3 multivariate Gaussian

multivariate Gaussian

equally distributed linear mixture

equally distributed linear mixture

Semi-automatic ROI-Analysis

Page 25: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

25

Diffusion MRI I Slide 49/18 I 07.03.2018

fiber density at CC (1)

1Schlüter et al., IEEE 2004

Diffusion MRI I Slide 50/18 I 07.03.2018

Stieltjes et al., ECR 2005

fiber density in CC (2)

Page 26: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

26

Diffusion MRI I Slide 51/18 I 07.03.2018

Water moves inside capillary bed (perfusion)

Randomly orientedcapillaries

Same effect on the MRI signal as diffusion in the tissue

• Two compartments: inside and outside vascular system (both free diffusion)

• Resulting motion referred to aspseudo-diffusion (D* > ADC)

Intravoxel Incoherent Motion (IVIM) Model

[image from: Le Bihan et al.,Radiology, 1988, 168, 497-505]

Diffusion MRI I Slide 52/18 I 07.03.2018

Water moves inside capillary bed (perfusion)

Randomly orientedcapillaries

Same effect on the MRI signal as diffusion in the tissue

• Two compartments: inside and outside vascular system (both free diffusion)

• Resulting motion referred to aspseudo-diffusion (D* > ADC)

Intravoxel Incoherent Motion (IVIM) Model

Effectprimarily

present forlow b-values

IVIM

Range

ADC

Range

Page 27: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

27

Diffusion MRI I Slide 53/18 I 07.03.2018

IVIM (Intravoxel Incoherent Motion) theory

• perfusion influences the DWI signal decay

• IVIM: Perfusion can be described as a pseudo diffusion process

• under following conditions:

• several capillaries in a voxel

• random orientation of the capillaries

• long diffusion time compared to the travel time in a capillary segment

Diffusion MRI I Slide 54/18 I 07.03.2018

IVIM in the past

• The IVIM theory was first introduced in 1988 by Le Bihan

• Studies were focused on the brain and the IVIM effect was minimal (low perfusion fraction f≈5 %)

• The origin of the biexponential signal decay was discussed controversially

• “Diffusion, Perfusion=Confusion?”

Page 28: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

28

Diffusion MRI I Slide 55/18 I 07.03.2018

IVIM in the present

t [years]2000 2008

Liver: Luciani, RadiologyWake up call: Le Bihan

Pancreas: Lee, MRI

Kidney: Theony, Radiology

Pancreas: Lemke, Invest. Rad.

Liver: Patel, JMRI

Muscle: Karampinos, JMRI

Kidney: Zhang, Radiology

Abdomen: Yamada, MRI

Prostate: Riches, RadiologyAnimals: Duong, MRM

2004

IVIM technique can help differentiating lesions from benign tissue in the abdomen

however

IVIM perfusion parameters are not in agreement with parameters obtained from other imaging techniques (DCE, Ultrasound, CT)

The question of the optimal b-value distribution is not answered yet

Diffusion MRI I Slide 56/18 I 07.03.2018

IVIM equation

• both the diffusion and the pseudodiffusion due to perfusion contibute to the signal attenuation

D: Diffusion constant

D*: Pseudodiffusion coefficient du to perfusion

f: Perfusion fraction

Page 29: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

29

Diffusion MRI I Slide 57/18 I 07.03.2018

IVIM in the abdomen

Blood Suppression Lemke et al., submitted. in MRM

Diffusion MRI I Slide 58/18 I 07.03.2018

IVIM in pancreas carcinoma

Healthy pancreas:

Patient with pancreas carcinoma:

Lemke et al., Invest. Radiology, 2009

Page 30: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

30

Diffusion MRI I Slide 59/18 I 07.03.2018

Errors due to bad choice of b-values

b-values too low:

• Curve „fits well to data“, but only because ofextra degree of freedom

• No reasonable signal course

• Fit parameters strongly deviate from groundtruth

SNR for high b-values not sufficient:

• No reasonable signal course (noise corrupts fit)

• Fit parameters strongly deviate from ground truth

Diffusion MRI I Slide 60/18 I 07.03.2018

Optimization of the b-value distribution

•IVIM parameters of the liver, kidney, brain were used

• Rician noise was added to the simulated signal

• Process was repeated N=5000 times and σ was calculated

• serial optimization approach starting with 3 b-values{b=0, 40, 1000 s/mm²}

• distribution with minimal σ was chosen as the newoptimal distribution and iterated consecutively up to100 b-values

Page 31: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

31

Diffusion MRI I Slide 61/18 I 07.03.2018

Comparison to recently used b-value distributions(in vivo)

b=0 s/mm² D f D*

{bsum }

{blit }

• In agreement with the simulations, the D*-map suffers from low image quality due to a high variance

• However, the image quality of the D-, f-, and D*-map calculated from the distribution bsum show an improved image quality compared to the corresponding maps calculated from blit

Diffusion MRI I Slide 62/18 I 07.03.2018

Diffusion Kurtosis Imaging (DKI)

� standard diffusion weighted imaging (DWI) assume that diffusionwater molecules follows a Gaussian (normal) distribution.

� true for pure liquids and gels

� incorrect for complex biological tissues with cell membranes thatcreate compartments and barriers to diffusion

� Non-Gaussian behavior becomes more noticeable when strongergradients (higher b-values) and longer echo times are used

Page 32: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

32

Diffusion MRI I Slide 63/18 I 07.03.2018

Diffusion Kurtosis Imaging (DKI)

� Non-Gaussian behavior becomes more noticeable when strongergradients (higher b-values) and longer echo times are used

� dimensionless parameter K, is a long recognized statistical metric forquantifying the shape of a probability distribution

� Gaussian distribution has K = 0

� more "peaked" and with less weighton their "shoulders" typically have a positive kurtosis (K>0)

Diffusion MRI I Slide 64/18 I 07.03.2018

Diffusion Kurtosis Imaging (DKI)

� Comparison of b-value range for different DWI measurements

Page 33: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

33

Diffusion MRI I Slide 65/18 I 07.03.2018

Diffusion Kurtosis Imaging (DKI)

� Imaging procedure

� similar to DWI, but employ higher b-values >= 1500 s/mm^2

� SNR an issue at high b-values -> averaging

� increased TEs needed to run diffusion gradients

� Data processing

S = Soe−bD + b²D²K/6

Diffusion MRI I Slide 66/18 I 07.03.2018

Clinical Application of ADC Model

Stroke

Page 34: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

34

Diffusion MRI I Slide 67/18 I 07.03.2018

DWI of pancreas – healthy volunteer

b = 400 s/mm²b = 0 s/mm²

ADC [µm²/s]

ADC = 1650 µm²/s

Diffusion MRI I Slide 68/18 I 07.03.2018

DWI of patient with pancreas ca

Page 35: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

35

Diffusion MRI I Slide 69/18 I 07.03.2018

IVIM Application - Brain

Cancer: Glioblastoma

[Federau, Christian and Kieran O'Brien. NMR in Biomedicine 28.1 (2015): 9-16.]

Stroke

[Federau, C., Kieran O‘Brien, et al. Neuroradiology 56.8 (2014): 629-635.]

Diffusion MRI I Slide 70/18 I 07.03.2018

Registration Segmentation

Applications of IVIM - Body

ProstatePancreatitis

Page 36: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

36

Diffusion MRI I Slide 71/18 I 07.03.2018

DKI Application - Brain

traumtic brain injury Grade 2 astrocytoma (AS 2), grade 3 astrocytoma (AS 3), andglioblastoma multiforme (GBM)

Steven et al. Am J Roentgen 2014

Diffusion MRI I Slide 72/18 I 07.03.2018

DKI Application - Body

Prostate bladder CA

Rosenkrantz et al. J Magn Reson Image 2015

Page 37: Advanced Imaging Techniques · 2018. 11. 27. · 27.11.2018 2 Diffusion MRI I Slide 3/18 I 07.03.2018 Reading Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application

27.11.2018

37

Diffusion MRI I Slide 73/18 I 07.03.2018

DKI Application

Rosenkrantz et al. J Magn Reson Image 2015

First author Year Maximal b‐valuea Organ Pathology Comment

Quentin 2012 800 Prostate CancerRosenkrantz 2012 2000 Prostate CancerRosenkrantz 2013 2000 Prostate CancerBourne 2014 2104 Prostate — Ex vivoMazzoni 2014 2300 Prostate CancerQuentin 2014 1000 Prostate CancerSuo 2014 2000 Prostate CancerTamura 2014 1500 Prostate CancerToivonen 2014 2000 Prostate CancerRoethke 2015 2000 Prostate CancerJambor 2015 2000 Prostate CancerPanagiotaki 2015 3000 Prostate CancerMerisaari 2015 2000 Prostate CancerJansen 2010 1500 Head and neck SCCLu 2012 1448 Head and neck SCC nodal

metastasesYuan 2014 1500 Head and neck Nasopharyngeal

carcinomaChen 2015 1500 Head and neck Nasopharyngeal

carcinomaIima 2014 2500 Breast Cancer; other

benign lesions

Nogueira 2014 3000 Breast Cancer; other benign lesions

Wu 2014 2000 Breast Cancer; other benign lesions

Trampel 2006 0.15 Lung Small airway disease

Used hyperpolarized

3He

Heusch 2013 2000 Lung Nonsmall‐cell lung cancer

Part of18

F‐FDG PET/MRI

Pentang 2014 600 Kidney —Huang 2015 1000 Kidney —Rosenkrantz 2012 2000 Liver Hepatocellular

carcinomaEx vivo liver explants

Anderson 2014 3500 Liver Fibrosis Ex vivo murine specimens

Goshima 2015 2000 Liver Hepatocellular carcinoma

Suo 2015 2000 Bladder CancerMarschar 2015 5600 Calf muscle —Lohezic 2014 10000 Myocardium Ex vivo rat

specimens; Q‐space imaging

Yamada 2015 7163 Esophagus Cancer Ex vivo; Q‐space imaging

Filli 2014 800 Whole body —

Diffusion MRI I Slide 74/18 I 07.03.2018

Summary

� DWI measures water movement in tissue by MRI

� change in signal due to uncomplete rephasing of the moving spins

� structural restrictions reflected by higher signal loss

� properties of DW gradients given by b-value (“diffusion strength”)

� different models to evaluate the diffusion

� ADC

� IVIM

� Kurtosis

� choice of b-values must match quantification

� DTI, diffusion weighted imaging combined with weighting of spatial direction

� allows to tract structures

� broad range of clinical applications