Acara 4 Granulometri

63
Analisis Granulometri Sedimen Acara 4 Tim Asisten SURVEI DAN PEMETAAN GEOMORFOLOGI

description

science

Transcript of Acara 4 Granulometri

  • Analisis Granulometri Sedimen

    Acara 4

    Tim Asisten

    SURVEI DAN PEMETAAN GEOMORFOLOGI

  • References

  • References (internet)International Journal of Sediment ResearchJournal of Sedimentary GeologyLibgen.infohttp://en.bookfi.org/Indonesian Journal of Geographyhttp://www.nat-hazards-earth-syst-sci.net (Natural Hazard)Journal Earth Surface Processes and LandformsJournal Landform AnalysisGeomorphology Journal (Elsevier)Journal of Coastal Research

  • Why sediment analysis important?

    Geomorphological processesSource (provenant),

    Entrainment, transportation

    Facies and Depositional environment

  • Facies and depositional environments

    1. To interpret coastal stratigraphy and sea-levelfluctuations

    2. To trace glacial sediment transport and the cycling ofglacial sediments from land to sea

    3. By marine geochemists to understand the fluxes,cycles, budgets, sources, and sinks of chemicalelements in nature

    4. To understand the mass physical (geotechnical)properties of seafloor sediment, i.e., the degree towhich these sediments are likely to undergoslumping, sliding, or other deformation

    Grain-size data are used in a variety of other ways (summarized by Syvitski, 1991 in Boggs, 2006):

  • Facies and depositional environments

    Facies analysis is the interpretation of strata in terms of depositional environments (or depositional systems), commonly based on a wide variety of observations

    Facies associations constitute several facies that occur in combination, and typically represent one depositional environment (note that very few individual facies are diagnostic for one specific setting!)

    Facies successions (or facies sequences) are faciesassociations with a characteristic vertical order

    Walthers Law (1894) states that two different faciesfound superimposed on one another and not separated by an unconformity, must have been deposited adjacent to each other at a given point in time

    Taken from McLemore

  • Facies and depositional environments

    Different depositional environments exhibit different grain size distributions

    Glacial sediments

    poorly sorted

    River sediments moderately sorted

    Beach sediments well sorted

    Folk (1980)

  • Depositional Environment

  • Depositional Environment

  • Depositional Environment

    Clastic vs. Carbonate Depositional Systems

    Short and Long Depositional Systems

    Taken from Christensen

  • Depositional Environment

    Taken from McLemore

  • Sediment types

    Terrigenous Clastics (TC) Detrital Particles

    Derived from pre-existing rocks

    Derived external to the depositional basin

    Transported by surface processes to the site of deposition

    Particulate Residues: quartz, feldspar, rock fragments, etc(unaltered rock forming mineral/rock grains)

    Secondary Minerals: minerals new-formed in the surface weathering environment: clay minerals, oxides, amorphous silica, etc

    Taken from Christensen

  • Sediment types

    Allochemical Particles formed in situ at the site of deposition; of chemical/ biochemical origin Carbonates: ooids, fossil

    fragments, pellets, lithoclasts

    Glauconite, phosphate :in situauthigenic/particulate minerals

    Biogenic sediments: pelagic tests, siliceous and calcareous

    Taken from Christensen

  • Sediment types

    Orthochemical Components Chemical Precipitates

    Secondary cement

    Primary chemical sediments: halite, etc

    Organic Particulate Material (detrital organic matter ) terrestrial and particulate

    marine pelagic

    95% found in mudrocks and indicative of low Eh and low current strength

    Laminated Castile Formation basinal evaporites. Dark laminae are calcite plus organic matter; light laminae are gypsum (Peter Scholle)

    Coal

    Taken from Christensen

  • Sediment types

    Pyroclasts particles fragmented and transported by volcanic

    processes Tephra: tuff deposits

    Volcanic mudflows: lahar and volcanic breccia deposits

    Tephra VolcanicAsh

    Taken from Christensen

  • Sediment analysis

    In this part, we only study

    clastic sediment

    Clastic sediment consists of grains and particles that were eroded from weathered rocks and then were transported and deposited in loose, unconsolidated layers atthe Earths surface.(Thompson and Turk,1997)

  • Grain size

    Ukuran Butir merupakan sifat dasar material sedimen yang mempengaruhiproses transport dan deposisi. Analisis ukuran butir memberikan petunjukpenting mengenai asal muasal sedimen, sejarah sedimen-transport dankondisi pengendapan (Folk and Ward, 1957; Friedman, 1979; Bui et al, 1990)

    Grain> 2mm 0,064mm - 2mm 0,004mm 0, 064mm slate

  • Sediment analysis

    Gravel-Size (Pebbles & Cobbles)(> 2 mm)

  • Sediment analysis

    Sand

    (1/16 - 2 mm)

  • Sediment analysis

    Mud

    (< 63mm = < 1/16 mm)

    Taken from Christensen

  • Methods of measuring grain size data

    Boggs, 2006

  • Describing Clastic sediment

    Taken from Christensen

    Description Size

    Texture

    Fabric (kemas)

    Analysis

    Maturity Textural

    Compositional

    Different parents, different environments, different paths,different depositional processes

    sediment characteristics

  • Describing Clastic sediment

    Defining equations for a sediment with respect to mineralogy andgeometrical properties. (After Griffiths 1967, Pettijohn et al. 1972).

  • Clastic sediment : : Texture

    ADALAH SUATU KENAMPAKAN YANG BERHUBUNGAN DENGAN UKURAN DAN BENTUK BUTIR SERTA SUSUNANNYA (PETTIJH0N, 1975).

    Tekstur

    Ukuran butir(grain zsize)

    Bentuk (shape)

    Kebundaran(Roundness)

    Kepipihan(Sphericity)

    Pemilahan(sorting)

  • Clastic sediment :Texture

    Texture- refers to the size, shape, arrangement of the grains the make up the rock.

    Grain size- grain diameter (boulders, pebbles, cobbles, sand, silt, or clay).

    Shape- is described in terms of sphericity

    Roundness or (angularity) refers to the sharpness or smoothness of their corners.

    Taken from Santos

  • Clastic sediment Classification:Texture

    Descriptive Textural Classification Grain Size

    Udden-Wentworth grain size scale. Udden (1898) modified by Wentworth (1922)

    Because of this wide range of particle sizes, logarithmic or geometric scales are more useful for expressing size than are linear scales.

    Phi ()=-log2 (grain diameter in mm)

    naturally occurring groups;

    Gravel ~ rock fragments,

    Sand ~ individual mineral grains (particulate residues)

    Clay ~ chemical weathering products (clay minerals, etc.)

    Mud ~ particulate residues +/-chemical weathering products

    Taken from Christensen

  • Clastic sediment Classification:Texture

    Subdivided scale by factor of 2 .0039 mm clay

    .0078 mm very fine silt

    128 mm = cobbles

    256 mm = boulders

    Logarithmic (base 2) progression!

    = -log2(grain diameter in mm)

    As grain size increases, phi size decreases

    Taken from Christensen

  • Clastic sediment : Roundness

  • Clastic sediment : Sorting

    PEMILAHAN/SORTING adalah keseragamandari ukuran besar butir menyusun suatubatuan sedimen, artinya bila bila semakinseragam ukurannya dan besar butirnya makapemilahan semakin baik.

    A function of grain origin and transport historyClast Rounding: surface irregularityDue to prolonged agitation during transport and reworking

  • Clastic sediment : Sorting

    Taken from Christensen

  • Clastic sediment : Sorting

    Taken from Christensen

  • what do shape, size, sorting tell us?

    They reflect: Derivation (what were the original

    rocks, parent rocks) Process and Climate (during

    formation, Transport history, weathering)

    Post-depositional factors (diagenesis/lithification)

  • How we get the data?

    Field measurement

    (> 16 mm)

    Laboratory analysis (

  • How we get the data?: Field measurement

    Field measurement (>16 mm)

    Pengukuran panjang,lebar dan tinggi butirsedimen.

    Pengukuran bentuk butirdilakukan denganmembandingkan bentukmaterial sedimen sungaidengan komparatorkelengkungan batuan.

  • How we get the data?: Laboratory analysis

    record the weight of each sieve with its retained sediment.

    Place the sieve stack in the mechanical shaker and shake for 10minutes.

    Carefully pour the dry sediment sample into the top sieve and place the cap over it

    Sieve analysis; Dry sample

  • Sediment analysis

    Sediment analysis

    Requires description (qualitative, quantitative)

    Analysis (graphical, statistical) interpretation

  • Describing Clastics Grain size graphic analysis

    Plots Histogram of weight percentage of size fractions Frequency curve Cumulative frequency curveWhen plotted, grain size increases from right to left, fines to right, coarse to left

    Graphically represent grain size distribution mean grain size standard deviation from a normal distribution (sorting-

    sortasi) symmetry (skewness-kemencengan) flatness of curve (kurtosis-keruncingan)

    Taken from Christensen

  • Statistical/Graphic Presentation of Texture: Grain Size/Sorting

    Quantitative assessment of the % of different grain sizes in a clastics

    Mean: average particle size Mode: most abundant class size Median: 50th percentile

    Taken from Christensen

  • Statistical/Graphic Presentation of Texture: Grain Size/Sorting

  • Statistical/Graphic Presentation of Texture: Grain Size/Sorting

    Conventional phi scale showing grain size increasing to the left and decreasing to the right

  • Grading Curves

  • Why measure grain size?

    1. Grain size is important to determining the strength of currents that transported the sediment. Therefore, we need a precise measurement of size to quantitatively interpret paleohydraulicconditions.

    2. Sorting reflects the ability of the transport mechanism to segregate grains by size.

    3. Skewness reflects the ability of the transport mechanism to selectively remove coarse or fine grain sizes.

    4. It appears that grain size distributions have very specific interpretations in terms of how the sediment moved while it was in transport.

    5. We need basic descriptors of sediment size to allow us to communicate with others.

    6. Grain size and various properties of its distribution are important in determining a sediment's porosity and permeability.

  • Statistical/Graphic Presentation of Texture; Granulometry

    Taken from Christensen

    Graphic Methods (Folk & Ward, 1957)

  • Statistical/Graphic Presentation of Texture; Granulometry

  • Statistical/Graphic Presentation of Texture; Granulometry

    Schematic illustration of the various types of skewness. Note that dashed lines indicate the symmetrical distribution for comparison with fine and coarse skewed frequency curves. M is mean, Md is median and Mo is mode.After Friedman and Sanders (1978)

  • Statistical/Graphic Presentation of Texture; Granulometry

    Skewness and Kurtosis

  • Statistical/Graphic Presentation of Texture; Granulometry

    2. Gradistat 4.0Dibuat oleh Dave Thornley dan John Jack dari PostgraduateResearch Institute for Sedimentology di University of Reading,UK.Program ini dikembangkan dengan Ms. Excel dengan outputtabel dan grafik untuk memudahkan dalam uji statistik dananalisis ukuran butir.Uji Statistik Gradistat meliputi nilai mean, modus, median,standar deviasi, skewness, kurtosis dan rangeHasil perhitungan Statistik menggunakan Gradistat meliputidistribusi ukuran butir, tekstur, sortasi butir.

  • Describing Clastics Grain size graphic analysis

    Example: Sediment data

    Screen Opening (phi)

    Weight of Beaker with sand (grams)

    Weight of beaker empty (grams)

    Weight of Sand (grams)

    Cumulative Weight (grams)

    Weight Percent

    Cumulative Weight Percent

    -1 5.27 2.32 2.95 2.95 8.83 8.83

    0 7.27 2.32 4.95 7.9 14.81 23.64

    1 15.66 2.3 13.36 21.26 39.98 63.61

    2 11.86 2.31 9.55 30.81 28.58 92.19

    3 4.44 2.31 2.13 32.94 6.37 98.56

    4 2.78 2.32 0.46 33.4 1.38 99.94

    5 2.31 2.29 0.02 33.42 0.06 100

  • Describing Clastics Grain size graphic analysis

    0

    2

    4

    6

    8

    10

    12

    14

    16

    -1 0 1 2 3 4 5

    Histogram

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    -1 0 1 2 3 4 5

    Cumulative frequency curveon an arithmetic scale

  • Hjulstrm diagram

    The Hjulstrm diagram showing the water velocity at which entrainment and deposition occur for particles of a given size in well-sorted sediments. Source: Adapted from Hjulstrm (1935)

  • Relative bed stability (RBS)

    Keterangan :Vc = Kecepatan kritisVb = Kecepatan dasar aliran sungai

    Nilai kecepatan kritis (Vc) dapat diperoleh menggunakan rumus berikut:

    dengan d merupakan rata-rata ukuranpartikel (mm). Sedangkan nilai kecepatandasar aliran sungai (Vb) dapat dihitungmenggunakan rumus :

    dengan V merupakan kecepatan rata-rata aliran sungai (m/s).

    Nilai yang diperoleh dari perhitungankemudian dianalisis menggunakan kurvahjulstrom sebagai dasar penentuanproses dominan yang terjadi padasegmen sungai yang dikaji.

  • Flow/Grain Interaction: Particle Entrainment and Transport

    Forces acting on particles during fluid flow

    Inertial forces, FI, resisting grain movement

    FI = gravity + friction + electrostatics

    Mobility Forces, Fm, inducing grain movement

    Fm= fluid drag force + Bernoulli force + buoyancy

    www.geology.wmich.edu

  • Critical Threshold for Particle Entrainment

    53

    Fm > Fi Hjulstrom Diagram

    Empirical relationship between grain size (quartz grains) and current velocity (standard temperature, clear water)

    Defines critical flow velocity threshold for entrainment

    As grain size increases entrainment velocity increases (sand size and > particles)

    For clay size particles electrostatics requires increased flow velocity for entrainment

    (gray area is experimental variation)

    Relationships for a specific flow depth, ~ 1meter*

    *F=Mawww.geology.wmich.edu

  • Transport Modes and Particle EntrainmentSuspension Saltation - Traction

    With a grain at rest, as flow velocity increases

    Fm > Fi ; initiates particle motion

    Grain Suspension (for small particle sizes, fine silt; Fi

    U (flow velocity) >>> VS (settling velocity)

    Constant grain Suspension at relatively low U (flow velocity)

    Wash load Transport Mode

    www.geology.wmich.edu

  • Transport Modes and Particle Entrainment

    With a grain at rest, as flow velocity increases

    Fm > Fi ; initiates particle motion

    Grain Saltation : for larger grains (sand size and larger)

    When Fm > Fi U > VS but through time/space U < VS

    Intermittent Suspension

    Bedload Transport Mode

    www.geology.wmich.edu

  • Transport Modes and Particle Entrainment

    With a grain at rest, as flow velocity increases

    Fm < Fi , but fluid drag causes grain rolling

    Grain Traction : for large grains (typically pebble size and larger)

    Normal surface (water) currents have too low a U for grain entrainment

    Bedload Transport Mode

    www.geology.wmich.edu

  • Step by step Graphical Method (Manual)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    -1 0 1 2 3 4 5

    Cumulative frequency curveon an arithmetic scale

    Perhitungan statistik sediment secara manual dilakukan dengan membuat kurva frekuensi kumulatif. Satuan ukuran butir yang digunakan adalah phi ()

  • Step by step Graphical Method (Manual)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    -1 0 1 2 3 4 5

    Cumulative frequency curveon an arithmetic scale

    Plot nilai phi pada nilai kumulatif tertentu sesuai rumus untuk perhitungan. Misal akan menhitung Mean, maka nilai phi yang dicari pada 16, 50, dan 84. Plot pada grafik dan tarik ke axis, baca nilai phi pada nilai kumulatif tersebut. Gunakan KERTAS MILIMETER BLOK untuk menggambar kurva frekuensi kumulatif.

    16 = -0,5 50 = 0,3 84 = 1,7

    Cara ini juga digunakan untuk menghitung parameter statistik yang lain.

  • Step by step using GRADISTAT (Digital)

    Rubah nilai dari ukuran butir pada Gradistat sesuai dengan ukuran butir yang kita miliki

    Masukkan berat (dalam bentuk persentase) dari tiap ukuran butir kedalam tabel

    Klik Calculate statistics untuk memperoleh nilai statistik dari Sampel

    1

    2

    3

  • Step by step using GRADISTAT (Digital)

    Ringkasan nilai statistik dapat dilihat pada tab Sample Statistics

    Metode perhitungan yang digunakan adalah Folk and Ward Method dan Method of Moments

  • Hasil Praktikum

    (Manual and Digital (GRADISTAT)1. Histogram of weight percentage of size

    fractions and frequency curve2. Cumulative frequency curve3. Mean grain size 4. Standard deviation from a normal distribution

    (sorting)5. Symmetry (skewness)6. Flatness of curve (kurtosis)7. Mean plot on the Hjulstrm diagram to know

    the water velocity at which entrainment and deposition occur for particles of a given size

  • Guideline Bahasan dan Hasil Praktikum

    1. Bagaimana karakteristik ukuran butir rata-rata (mean), sortasi (sorting), kemencengan (skewness), dan keruncingan (kurtosis) ukuran butir sedimen Anda? Bagaimana kaitannya dengan karakteristik geomorfologi yang membentuk sedimen tersebut?1. Sortasi-mekanismen transportasi sedimen?2. Kemencengan (Skewness) kemampuan

    mekanisme aliran secara selektif dalam memisahkan partikel halus atau kasar?

    3. Keruncingan (kurtosis)- distribusi ukuran butir2. Seberapa besar kecepatan aliran yang dibutuhkan

    berdasarkan data sedimen Anda untuk terjadinya erosi, transportasi dan deposisi? Lihat Hjulstrm diagram.

  • Terima kasih atas kesabarannya