นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ...

208
การทดสอบจุดกดแบบปรับเปลี่ยนของหินผนังบอ ที่เหมืองแรทองคําชาตรี นายชาติชาย อินทรประสิทธิวิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีธรณี มหาวิทยาลัยเทคโนโลยีสุรนารี ปการศึกษา 2552

Transcript of นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ...

Page 1: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·

การทดสอบจดกดแบบปรบเปลยนของหนผนงบอ ทเหมองแรทองคาชาตร

นายเดโช เผอกภม

นายชาตชาย อนทรประสทธ

วทยานพนธนเปนสวนหนงของการศกษาตามหลกสตรปรญญาวศวกรรมศาสตรมหาบณฑต

สาขาวชาเทคโนโลยธรณ

มหาวทยาลยเทคโนโลยสรนาร

ปการศกษา 2552

MODIFIED POINT LOAD TESTS OF PIT WALL

ROCK AT CHATREE GOLD MINE

Chatchai Intaraprasit

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Engineering in Geotechnology

Suranaree University of Technology

Academic Year 2009

MODIFIED POINT LOAD TESTS OF PIT WALL ROCK AT

CHATREE GOLD MINE

Suranaree University of Technology has approved this thesis submitted in

partial fulfillment of the requirements for a Masterrsquos Degree

Thesis Examining Committee

_________________________________

(Asst Prof Thara Lekuthai)

Chairperson

_________________________________

(Assoc Prof Dr Kittitep Fuenkajorn)

Member (Thesis Advisor)

_________________________________

(Dr Prachya Tepnarong)

Member

_______________________________ _________________________________

(Prof Dr Pairote Sattayatham) (Assoc Prof Dr Vorapot Khompis)

Acting Vice Rector for Academic Affairs Dean of Institute of Engineering

ชาตชาย อนทรประสทธ การทดสอบจดกดแบบปรบเปลยนของหนผนงบอทเหมองแรทองคาชาตร (MODIFIED POINT LOAD TESTS OF PIT WALL ROCK AT CHATREE GOLD MINE ) อาจารยทปรกษา รองศาสตราจารย ดร กตตเทพ เฟองขจร 191 หนา

การทดสอบจดกดแบบปรบเปลยนไดถกนามาใชในการหาคาความเคนกด แรงดง และคาความยดหยนของหนตวอยางในหองปฏบตการทดสอบ มาเปนเวลาเกอบสบปแลว วธการทดสอบนไดถกประดษฐ และจดทะเบยนลขสทธโดยมหาวทยาลยเทคโนโลยสรนาร เครองมอ และวธการทดสอบถกออกแบบใหมราคาถกและงาย เมอเปรยบเทยบกบวธการทดสอบเพอหาคณสมบตเชงกลของหนแบบดงเดม เชน วธการทดสอบตามมาตรฐาน ISRM และ ASTM ในอดตการทดสอบจดกดแบบปรบเปลยนสวนใหญมกทดสอบในแทงตวอยางหนทเปนรปวงกลม และรปสเหลยมมมฉาก ในขณะทมการอางวาการทดสอบแบบจดกดแบบปรบเปลยนนสามารถใชไดกบหนทกรปราง แตผลทดสอบวธนกบหนทมรปรางไมเปนทรงเรขาคณตยงมนอยมาก เนองจากเหตนจงยงไมมการยนยนอยางเพยงพอวา วธการทดสอบจดกดแบบปรบเปลยนสามารถใชไดจรงและมความสมาเสมอเพยงพอในการตรวจหาคณสมบตทางกลศาสตรพนฐานของหนในภาคสนามซงไมสามารถจดหาเครองเจาะและเครองตดหนได วตถประสงคของงานวจยนคอ เพอประเมนศกยภาพของการทดสอบของวธการทดสอบแบบจดกดแบบปรบเปลยนในหนตวอยางทมรปรางไมเปนทรงเรขาคณต ตวอยางหนสามชนด จานวน 150 ตวอยางเปนอยางนอย ไดแก porphyritic andesite silicified-tuffaceous sandstone และ tuffaceous sandstone ซงเกบรวบรวมมาจากผนงบอทางดานทศเหนอของเขาหมอทเหมองแรทองคาชาตร จะถกนามาใชในการทดสอบน อตราสวนระหวางความหนาของหนตวอยางตอเสนผาศนยกลางของหวกด แปรผนระหวาง 2 ถง3 และ อตราสวนระหวางเสนผาศนยกลางของตวอยางหนกบเสนผาศนยกลางของหวกดแปรผนระหวาง 5 ถง 10 การสญเสยรปรางและการแตกหกของหนจะถกนามาใชในการคานวณหาคาความยดหยนและความแขงแรงของหน และจะมการทดสอบแรงกดในแกนเดยวและแรงกดในสามแกน การทดสอบแรงดง และการทดสอบจดกดแบบด ง เด มในหนท งสามชนดดวยเช นกนเพ อนาผลการทดสอบท ได มาใชในการเปรยบเทยบกบผลทไดจากการทดสอบจดกดแบบปรบเปลยน แบบจาลองโดยใชโปรแกรมคอมพวเตอรจะถกนามาใชในการศกษาการกระจายตวของแรงเคนในกอนตวอยางหนของการทดสอบจดกดแบบปรบเปล ยนภายใต อ ตราสวนระหวางความหนาของหนต วอย างต อเสนผาศนยกลางของหวกดทตางๆกน และจะมการประเมนเชงปรมาณของผลกระทบของความมรปรางทไมเปนรปทรงทางเรขาคณตของหนตวอยาง ความเหมอนและความแตกตางของผล

II

สาขาวชา เทคโนโลยธรณ ลายมอชอนกศกษา ปการศกษา 2552 ลายมอชออาจารยทปรกษา

การทดสอบจดกดแบบปรบเปลยนและการทดสอบจดกดแบบดงเดมจะถกนามาพจารณา อาจมการประยกตการคานวณทเปนแบบแผนของการทดสอบจดกดแบบปรบเปล ยน เพ อเพ มความสามารถในการคาดคะเนคณสมบตทางกลศาสตรของหนตวอยางทมรปรางไมเปนรปทรงทางเรขาคณตไดดยงขน

CHATCHAI INTARAPRASIT MODIFIED POINT LOAD TESTS OF PIT

WALL ROCK AT CHATREE GOLD MINE THESIS ADVISOR ASSOC PROF

KITTITEP FUENKAJORN Ph D PE 191 PP

TRIAXIAL COMPRESSIVE STRENGTHUNIAXIAL COMPRESSIVE

STRENGTH ELASIC MODULUS POINT LOADTENSILE STRENGTH

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strengths and elastic modulus of intact rock

specimens in the laboratory This method was invented and patented by Suranaree

University of Technology The test apparatus and procedure are intended to be

inexpensive and easy compared to the relevant conventional methods of determining

the mechanical properties of intact rock eg those given by the International Society

for Rock Mechanics (ISRM) and the American Society for Testing and materials

(ASTM) In the past much of the MPL testing practices have been concentrated on

circular and rectangular disk specimens While it has been claimed that MPL method

is applicable to all rock shapes the test results from irregular lumps of rock have been

rare and hence are not sufficient to confirm that the MPL testing technique is truly

valid or even adequate to determine the basic rock mechanical properties in the field

where rock drilling and cutting devices are not available

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine will be used

as rock samples A minimum of 150 samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone will be collected from the site The

IV

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure will be used to calculate the elastic modulus and strengths of the rocks

Uniaxial and triaxial compression tests Brazilian tension test and conventional point

load test will also be conducted on the three rock types to obtain data basis for

comparing with those from the MPL testing Finite difference analysis will be

performed to obtain stress distribution within the MPL samples under different td and

Dd ratios The effects of the sample irregularity will be quantitatively assessed

Similarity and discrepancy of the test results from the MPL method and from the

conventional methods will be examined Modification of the MPL calculation

scheme may be made to enhance its predictive capability for the mechanical

properties of irregular shaped specimens

School of Geotechnology Students Signature

Academic Year 2009 Advisors Signature

ACKNOWLEDGMENTS

I wish to acknowledge the funding support of Suranaree University of

Technology (SUT) and Akara Mining Company Limited

I would like to express my sincere thanks to Assoc Prof Dr Kittitep

Fuenkajorn thesis advisor who gave a critical review and constant encouragement

throughout the course of this research Further appreciation is extended to Asst Prof

Thara Lekuthai chairman school of Geotechnology and Dr Prachya Tepnarong

Suranaree University of Technology who are member of my examination committee

Grateful thanks are given to all staffs of Geomechanics Research Unit Institute of

Engineering who supported my work

Chatchai Intaraprasit

TABLE OF CONTENTS

Page

ABSTRACT (THAI) I

ABSTRACT (ENGLISH) III

ACKNOWLEDGEMENTS V

TABLE OF CONTENTS VI

LIST OF TABLES IX

LIST OF FIGURES XIII

LIST OF SYMBOLS AND ABBREVIATIONS XVII

CHAPTER

I INTRODUCTION 1

11 Background and rationale 1

12 Research objectives 2

13 Research concept 3

14 Research methodology 3

141 Literature review 3

142 Sample collection and preparation 5

143 Theoretical study of the rock failure

mechanism 5

144 Laboratory testing 5

1441 Characterization tests 5

VII

TABLE OF CONTENTS (Continued)

Page

1442 Modified point load tests 6

145 Analysis 6

146 Thesis Writing and Presentation 6

15 Scope and Limitations 7

16 Thesis Contents 7

II LITERATURE REVIEW 8

21 Introduction 8

22 Conventional point load tests 8

23 Modified point load tests 11

24 Characterization tests 14

241 Uniaxial compressive strength tests 14

242 Triaxial compressive strength tests 15

243 Brazilian tensile strength tests 16

25 Size effects on compressive strength 16

III SAMPLE COLLECTION AND PREPARATION 17

31 Sample collection 17

32 Rock descriptions 17

33 Sample preparation 20

IV LABORATORY TESTS 22

41 Literature reviews 22

VIII

TABLE OF CONTENTS (Continued)

Page

411 Displacement Function 22

42 Basic Characterization Tests 23

421 Uniaxial Compressive Strength Tests

and Elastic Modulus Measurements 23

422 Triaxial Compressive Strength Tests 31

423 Brazilian Tensile Strength Tests 38

424 Conventional Point Load Index (CPL) Tests 39

43 Modified Point Load (MPL) Tests 46

431 Modified Point Load Tests for Elastic

Modulus Measurement 54

432 Modified Point Load Tests predicting

Uniaxial Compressive Strength 61

433 Modified Point Load Tests for Tensile

Strength Predictions 63

434 Modified Point Load Tests for Triaxial

Compressive Strength Predictions 69

V FINITE DIFFERENCE ANALYSIS 79

51 Objectives 79

52 Model Characteristics 79

53 Results of finite difference analyses 79

IX

TABLE OF CONTENTS (Continued)

Page

VI DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS 83

61 Discussions 83

62 Conclusions 85

63 Recommendations 86

REFERENCES 87

APPENDICES

APPENDIX A CHARACTERIZATION TEST RESULTS 96

APPENDIX B MODIFIED POINT LOAD TEST RESULTS FOR

ELASTIC MODULUS PREDICTION 104

BIOGRAPHY 180

LIST OF TABLES

Table Page

31 The nominal sizes of specimens following the ASTM standard

practices for the characterization tests 20

41 Testing results of porphyritic andesite 30

42 Testing results of tuffaceous sandstone 30

43 Testing results of silicified tuffaceous sandstone 30

44 Uniaxial compressive strength and tangent elastic modulus

measurement results of three rock types 31

45 Triaxial compressive strength testing results of porphyritic andesite 35

46 Triaxial compressive strength testing results of

tuffaceous sandstone 35

47 Triaxial compressive strength testing results of silicified

tuffaceous sandstone 36

48 Results of triaxial compressive strength tests on three rock types 38

49 The results of Brazilian tensile strength tests of three rock types 41

410 Results of conventional point load strength index tests of

three rock types 44

411 Results of modified point load tests on porphyritic andesite 49

412 Results of modified point load tests on tuffaceous sandstone 51

413 Results of modified point load tests on silicified tuffaceous sandstone 52

X

LIST OF TABLE (Continued)

Table Page

414 Results of elastic modulus calculation from MPL tests on porphyritic andesite57

415 Results of elastic modulus calculation from MPL tests on

silicified tuffaceous sandstone 58

416 Results of elastic modulus calculation from MPL tests on

tuffaceous sandstone 60

417 Comparisons of elastic modulus results obtained from

uniaxial compressive strength tests and those from modified

point load tests 61

418 Comparison the test results between UCS CPL Brazilian

tensile strength and MPL tests 63

419 Results of tensile strengths of porphyritic andesite predicted from MPL tests 64

420 Results of tensile strengths of silicified tuffaceous sandstone

predicted from MPL tests 66

421 Results of tensile strengths of tuffaceous sandstone

predicted from MPL tests 68

422 Results of triaxial strengths of porphyritic andesite predicted from MPL tests 71

423 Results of triaxial strengths of silicified tuffaceous sandstone

predicted from MPL tests 72

424 Results of triaxial strengths of tuffaceous sandstone

predicted from MPL tests 74

XI

LIST OF TABLE (Continued)

Table Page

425 Comparisons of the internal friction angle and cohesion

between MPL predictions and triaxial compressive strength tests 78

51 Summary of the results from numerical simulations 82

A1 Results of conventional point load strength index test on porphyritic andesite 97

A2 Results of conventional point load strength index test on

silicified tuffaceous sandstone 98

A3 Results of conventional point load strength index test on

tuffaceous sandstone 99

A4 Results of uniaxial compressive strength tests and elastic

modulus measurement on porphyritic andesite 100

A5 Results of uniaxial compressive strength tests and elastic

modulus measurement on silicified tuffaceous sandstone 100

A6 Results of uniaxial compressive strength tests and elastic

modulus measurement on tuffaceous sandstone 100

A7 Results of Brazilian tensile strength tests on porphyritic andesite 101

A8 Results of Brazilian tensile strength tests on silicified

tuffaceous sandstone 101

A9 Results of Brazilian tensile strength tests on

tuffaceous sandstone 102

A10 Results of triaxial compressive strength tests on porphyritic andesite 102

XII

LIST OF TABLE (Continued)

Table Page

A11 Results of triaxial compressive strength tests on

silicified tuffaceous Sandstone 102

A12 Results of Brazilian tensile strength tests on

tuffaceous sandstone 103

LIST OF FIGURES

Figure Page

11 Research plan 4

21 Loading system of the conventional point load (CPL) 10

22 Standard loading platen shape for the conventional point

load testing 10

31 The location of rock samples collected area 19

32 Some prepared rock specimens of porphyritic andesite for MPL Tests 21

33 The concept of specimen preparation for MPL testing 21

41 Pre-test samples of porphyritic andesite for UCS test 25

42 Pre-test samples of tuffaceous sandstone for UCS test 25

43 Pre-test samples of silicified tuffaceous sandstone for UCS test 26

44 Preparation of testing apparatus of porphyritic andesite for UCS test 26

45 Post-test rock samples of porphyritic andesite from UCS test 27

46 Post-test rock samples of tuffaceous sandstone

from UCS test 27

47 Post-test rock samples of tuffaceous sandstone from UCS 28

48 Results of uniaxial compressive strength tests and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted

as a function of axial strains 28

XIV

LIST OF FIGURES (Continued)

Figure Page

49 Results of uniaxial compressive strength tests and elastic

modulus measurements of tuffaceous sandstone (Top)

and silicified tuffaceous sandstone (Bottom) The axial

stresses are plotted as a function of axial strains 29

410 Pre-test samples for triaxial compressive strength test the

top is porphyritic andesite and the bottom is tuffaceous sandstone 32

411 Pre-test sample of silicified tuffaceous sandstone for triaxial

compressive strength test 33

412 Triaxial testing apparatus 33

413 Post-test rock samples from triaxial compressive strength tests

The top is porphyritic andesite and the bottom is tuffaceous sandstone 34

414 Post-test rock samples of silicified tuffaceous sandstone from

triaxial compressive strength test 35

415 Mohr-Coulomb diagram for porphyritic andesite 37

416 Mohr-Coulomb diagram for tuffaceous sandstone 37

417 Mohr-Coulomb diagram for silicified tuffaceous sandstone 38

418 Pre-test samples for Brazilian tensile strength test (a) porphyritic andesite

(b) tuffaceous sandstone and

(c) silicified tuffaceous sandstone 40

419 Brazilian tensile strength test arrangement 41

XV

LIST OF FIGURES (Continued)

Figure Page

420 Post-test specimens (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 42

421 Pre-test samples of porphyritic andesite for conventional point load

strength index test 43

422 Conventional point load strength index test arrangement 43

423 Post-test specimens from conventional point load

strength index tests (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 45

424 Conventional and modified loading points 47

425 MPL testing arrangement 47

426 Post-test specimen the tension-induced crack commonly

found across the specimen and shear cone usually formed

underneath the loading platens 48

427 Example of P-δ curve for porphyritic andesite specimen The ratio

of ∆P∆δ is used to predict the elastic modulus of MPL

specimen (Empl) 56

428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests 62

429 Uniaxial compressive strength predicted for silicified

tuffaceous sandstone from MPL tests 62

XVI

LIST OF FIGURES (Continued)

Figure Page

430 Uniaxial compressive strength predicted for tuffaceous

sandstone from MPL tests 63

431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and

modified point load test 75

432 Comparisons of triaxial compressive strength criterion of

silicified tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 76

433 Comparisons of triaxial compressive strength criterion of

tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 77

51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm 80

52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm 80

53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm 81

54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm 81

55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm 82

LIST OF SYMBOLS AND ABBREVIATIONS

A = Original cross-section Area

c = cohesive strength

CP = Conventional Point Load

D = Diameter of Rock Specimen

D = Diameter of Loading Point

De = Equivalent Diameter

E = Youngrsquos Modulus

Empl = Elastic Modulus by MPL Test

Et = Tangent Elastic Modulus

IS = Point Load Strength Index

L = Original Specimen Length

LD = Length-to-Diameter Ratio

MPL = Modified Point Load

Pf = Failure Load

Pmpl = Modified Point Load Strength

t = Specimen Thickness

α = Coefficient of Stress

αE = Displacement Function

β = Coefficient of the Shape

∆L = Axial Deformation

XVIII

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

∆P = Change in Applied Stress

∆δ = Change in Vertical of Point Load Platens

εaxial = Axial Strain

ν = Poissonrsquos Ratio

ρ = Rock Density

σ = Normal Stress

σ1 = Maximum Principal Stress (Vertical Stress)

σ3 = Minimum Principal Stress (Horizontal Stress)

σB = Brazilian Tensile Stress

σc = Uniaxial Compressive Strength (UCS)

σm = Mean Stress

τ = Shear Stress

τoct = Octahedral Shear Stress

φi = angle of Internal friction

CHAPTER I

INTRODUCTION

11 Background and rationale

In geological exploration mechanical rock properties are one of the most

important parameters that will be used in the analysis and design of engineering

structures in rock mass To obtain these properties the rock from the site is extracted

normally by mean of core drilling and then transported the cores to the laboratory

where the mechanical testing can be conducted Laboratory testing machine is

normally huge and can not be transported to the site On site testing of the rocks may

be carried out by some techniques but only on a very limited scale This method is

called for point load strength Index testing However this test provides unreliable

results and lacks theoretical supports Its results may imply to other important

properties (eg compressive and tensile strength) but only based on an empirical

formula which usually poses a high degree of uncertainty

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strength and elastic modulus of intact rock

specimens in the laboratory (Tepnarong 2001) This method was invented and

patented by Suranaree University of Technology The test apparatus and procedure

are intended to be in expensive and easy compared to the relevant conventional

methods of determining the mechanical properties of intact rock eg those given by

the International Society for Rock Mechanics (ISRM) and the American Society for

2

Testing and Materials (ASTM) In the past much of the MPL testing practices has

been concentrated on circular and disk specimens While it has been claimed that

MPL method is applicable to all rock shapes the test results from irregular lumps of

rock have been rare and hence are not sufficient to confirm that the MPL testing

technique is truly valid or even adequate to determine the basic rock mechanical

properties in the field where rock drilling and cutting devices are not available

12 Research objectives

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine are used as

rock samples A minimum of 150 rock samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone are collected from the site The

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure are used to calculate the elastic modulus and strengths of rocks Uniaxial and

triaxial compression tests Brazilian tension test and conventional point load test are

conducted on the three rock types to obtain data basis for comparing with those from

MPL testing Finite difference analysis is performed to obtain stress distribution

within the MPL samples under different td and Dd ratios The effect of the

irregularity is quantitatively assessed Similarity and discrepancy of the test results

from the MPL method and from the conventional method are examined

Modification of the MPL calculation scheme may be made to enhance its predictive

capability for the mechanical properties of irregular shaped specimens

3

13 Research concept

A modified point load (MPL) testing technique was proposed by Fuenkajorn

and Tepnarong (2001) and Fuenkajorn (2002) The objectives of this testing are to

determine the elastic modulus uniaxial compressive strength and tensile strength of

intact rocks The application of testing apparatus is modified from the loading

platens of the conventional point load (CPL) testing to the cylindrical shapes that

have the circular cross-section while they are half-spherical shapes in CPL

The modes of failure for the MPL specimens are governed by the ratio of

specimen diameter to loading platen diameter (Dd) and the ratio of specimen

thickness to loading platen diameter (td) This research involves using the MPL

results to estimate the triaxial compressive strength of specimens which various Dd

and td ratios and compare to the conventional compressive strength test

14 Research methodology

This research consists of six main tasks literature review sample collection

and preparation laboratory testing finite difference analysis comparison discussions

and conclusions The work plan is illustrated in the Figure 11

141 Literature review

Literature review is carried out to study the state-of-the-art of CPL and MPL

techniques including theories test procedure results analysis and applications The

sources of information are from journals technical reports and conference papers A

summary of literature review is given in this thesis Discussions have been also been

made on the advantages and disadvantages of the testing the validity of the test results

4

Preparation

Literature Review

Sample Collection and Preparation

Theoretical Study

Laboratory Ex

Figure 11 Research methodology

periments

MPL Tests Characterization Tests

Comparisons

Discussions

Laboratory Testing

Various Dd UCS Tests

Various td Brazilian Tension Tests

Triaxial Compressive Strength Tests

CPL Tests

Conclusions

5

when correlating with the uniaxial compressive strength of rocks and on the failure

mechanism the specimens

142 Sample collection and preparation

Rock samples are collected from the north pit-wall of Khao

Moh at Chatree gold mine Three rock types are tested with a minimum of 50

samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable Sample preparation is carried out in the laboratory at Suranaree

University of Technology

143 Theoretical study of the rock failure mechanism

The theoretical work primarily involves numerical analyses on

the MPL specimens under various shapes Failure mechanism of the modified point

load test specimens is analyzed in terms of stress distributions along loaded axis The

finite difference code FLAC is used in the simulation The mathematical solutions

are derived to correlate the MPL strengths of irregular-shaped samples with the

uniaxial and traiaxial compressive strengths tensile strength and elastic modulus of

rock specimens

144 Laboratory testing

Three prepared rock type samples are tested in laboratory

which are divided into two main groups as follows

1441 Characterization tests

The characterization tests include uniaxial compressive

strength tests (ASTM D7012-07) Brazilian tensile strength tests (ASTM D3967

1981) triaxial compressive strength tests (ASTM D7012-07) and conventional point

6

load index tests (ASTM D5731 1995) The characterization testing results are used

in verifications of the proposed MPL concept

1442 Modified point load tests

Three rock types of rock from the north pit-wall of

Khao Moh at Chatree gold mine are used as rock samples A minimum of 150 rock

samples of porphyritic andesite silicified-tuffaceous sandstone and tuffaceous

sandstone are used in the MPL testing The sample thickness-to-loading diameter

ratio (td) is varied from 2 to 3 and the sample diameter-to-loading diameter ratio

(Dd) from 5 to 10 The sample deformation and failure are used to calculate the

elastic modulus and strengths of rocks The MPL testing results are compared with

the standard tests and correlated the relations in terms of mathematic formulas

145 Analysis

Finite difference analysis is performed to obtain stress

distribution within the MPL samples under various shapes with different td and Dd

ratios The effect of the irregularity is quantitatively assessed Similarity and

discrepancy of the test results from the MPL method and from the conventional

method are examined Modification of the MPL calculation scheme may be made to

enhance its predictive capability for the mechanical properties of irregular shaped

specimens

146 Thesis writing and presentation

All aspects of the theoretical and experimental studies

mentioned are documented and incorporated into the thesis The thesis discusses the

validity and potential applications of the results

7

15 Scope and limitations

The scope and limitations of the research include as follows

1 Three rock types of rock from the pit wall of Chatree gold mine are

selected as a prime candidate for use in the experiment

2 The analytical and experimental work assumes linearly elastic

homogeneous and isotropic conditions

3 The effects of loading rate and temperature are not considered All tests

are conducted at room temperature

4 MPL tests are conducted on a minimum of 50 samples

5 The investigation of failure mode is on macroscopic scale Macroscopic

phenomena during failure are not considered

6 The finite difference analysis is made in axis symmetric and assumed

elastic homogeneous and isotropic conditions

7 Comparison of the results from MPL tests and conventional method is

made

16 Thesis contents

The first chapter includes six sections It introduces the thesis by briefly

describing the background and rationale and identifying the research objectives that

are describes in the first and second section The third section describes the proposed

concept of the new testing technique The fourth section describes the research

methodology The fifth section identifies the scope and limitation of the research and

the description of the overview of contents in this thesis are in the sixth section

CHAPTER II

LITERATURE REVIEW

21 Introduction

This chapter summarizes the results of literature review carried out to improve an

understanding of the applications of modified point load testing to predict the strengths and

elastic modulus of the intact rock The topics reviewed here include conventional point

load test modified point load test characterization tests and size effects

22 Conventional point load tests

Conventional point load (CPL) testing is intended as an index test for the strength

classification of rock material It has long been practiced to obtain an indicator of the

uniaxial compressive strength (UCS) of intact rocks The testing equipment (Figure 21)

is essentially a loading system comprising a loading flame hydraulic oil pump ram and

loading platens The geometry of the loading platen is standardized (Figure 22) having

60 degrees angle of the cone with 5 mm radius of curvature at the cone tip It is made of

hardened steel The CPL test method has been widely employed because the test

procedure and sample preparation are simple quick and inexpensive as compared with

conventional tests as the unconfined compressive strength test Starting with a simple

method to obtain a rock properties index the International Society for Rock Mechanics

(ISRM) commissions on testing methods have issued a recommended procedure for the

point load testing (ISRM 1985) the test has also been established as a standard test

method by the American Society for Testing and Materials in 1995 (ASTM 1995)

9

Although the point load test has been studied extensively (eg Broch and Franklin

1972 Bieniawski 1974 and 1975 Wijk 1980 Brook 1985) the theoretical solutions

for the test result remain rare Several attempts have been made to truly understand

the failure mechanism and the impact of the specimen size on the point load strength

results It is commonly agreed that tensile failure is induced along the axis between

loading points (Evans 1961 Hiramutsu 1976 Wijk 1978 1980) The most

commonly accepted formula relating the CPL index and the UCS is proposed by

Broch and Franklin (1972) The UCS (or σc) can be estimated as about 24 times of

the point load strength index (Is) of rock specimens with the diameter-to-length ratio

of 05 The IS value should also be corrected to a value equivalent to the specimen

diameter of 50 mm The factor of 24 can sometimes load to an error in the prediction

of the UCS Most previous studied have been done experimentally but rare

theoretical attempt has been made to study the validity of Broch and Franklin

formula

The CPL testing has been performed using a variety of sizes and shapes of

rock specimen (Wijk 1980 Foster 1983 Panek and Fannon 1992 Chau and Wong

1996 Butenuth 1997) This is to determine the most suitable specimen sizes These

investigations have proposed empirical relations between the IS and σc to be

universally applicable to various rock types However some uncertainly of these

relations remains

Panek and Fannon (1992) show the results of the CPL tests UCS tests and

Brazilian tension tests that are performed on three hard rocks (iron-formation

metadiabase and ophitic basalt) The CPL strength is analyzed in terms of the

10

Figure 21 Loading system of the conventional point load (CPL) (Tepnarong 2001)

Figure 22 Standard loading platen shape for the conventional point load testing

(ISRM suggested method and ASTM D5731-95)

11

size and shape effects More than 500 an irregular lumps were tested in the field

The shape effect exponents for compression have been found to be varied with rock

types The shape effect exponents in CPL tests are constant for the three rocks

Panek and Fannon (1992) recommended that the monitoring of the compressive and

tensile strengths should have various sizes and shapes of specimen to obtain the

certain properties

Chau and Wong (1996) study analytically the conversion factor relating

between σc and IS A wide range of the ratios of the uniaxial compressive strength to

the point load index has been observed among various rock types It has been found

that the uniaxial compressive strength of rocks can vary from 62 (Nevada test site

tuff) to 105 (Flaming Gorge shale) times the IS depending on rock type The

conversion factor relating σc to be Is depends on compressive and tensile strengths

the Poissonrsquos ratio and the length and diameter of specimen The conversion factor

of 24 (Broch and Franklin 1972) falls within this range but it is no by meaning

universal

23 Modified point load tests

Tepnarong (2001) proposed a modified point load testing method to correlate

the results with the uniaxial compressive strength (UCS) and tensile strength of intact

rocks The primary objective of the research is to develop the inexpensive and

reliable rock testing method for use in field and laboratory The test apparatus is

similar to the conventional point load (CPL) except that the loading points are cut

flat to have a circular cross-section area instead of using a half-spherical shape To

derive a new solution finite element analyses and laboratory experiments were

12

carried out The simulation results suggested that the applied stress required failing

the MPL specimen increased logarithmically as the specimen thickness or diameter

increased The MPL tests CPL tests UCS tests and Brazilian tension tests were

performed on Saraburi marble under a variety of sizes and shapes The UCS test

results indicated that the strengths decreased with increased the length-to-diameter

ratio The test results can be postulated that the MPL strength can be correlated with

the compressive strength when the MPL specimens are relatively thin and should be

an indicator of the tensile strength when the specimens are significantly larger than

the diameter of the loading points Predictive capability of the MPL and CPL

techniques were assessed Extrapolation of the test results suggested that the MPL

results predicted the UCS of the rock specimens better than the CPL testing The

tensile strength predicted by the MPL also agreed reasonably well with the Brazilian

tensile strength of the rock

Tepnarong (2006) proposed the modified point load testing technique to

determine the elastic modulus and triaxial compressive strength of intact rocks The

loading platens are made of harden steel and have diameter (d) varying from 5 10

15 20 25 to 30 mm The rock specimens tested were marble basalt sandstone

granite and rock salt Basic characterization tests were first performed to obtain

elastic and strength properties of the rock specimen under standard testing methods

(ASTM) The MPL specimens were prepared to have nominal diameters (D) ranging

from 38 mm to 100 mm with thickness varying from 18 mm to 63 mm Testing on

these circular disk specimens was a precursory step to the application on irregular-

shaped specimens The load was applied along the specimen axis while monitoring

the increased of the load and vertical displacement until failure Finite element

13

analyses were performed to determine the stress and deformation of the MPL

specimens under various Dd and td ratios The numerical results were also used to

develop the relationship between the load increases (∆P) and the rock deformation

(∆δ) between the loading platens The MPL testing predicts the intact rock elastic

modulus (Empl) by using an equation Empl = (tαE) (∆P∆δ) where t represents the

specimen thickness and αE is the displacement function derived from numerical

simulation The elastic modulus predicted by MPL testing agrees reasonably well

with those obtained from the standard uniaxial compressive tests The predicted Empl

values show significantly high standard deviation caused by high intrinsic variability

of the rock fabric This effect is enhanced by the small size of the loading area of the

MPL specimens as compared to the specimen size used in standard test methods

The results of the numerical simulation were used to determine the minimum

principal stress (σ3) at failure corresponding to the maximum applied principal stress

(σ1) A simple relation can therefore be developed between σ1 σ3 ratio Poissonrsquos ratio

(ν) and diameter ratio (Dd) to estimate the triaxial compressive strengths of the rock

specimens σ1 σ3 = 2[(ν(1-ν))(1-(dD)2)]-1 The MPL test results from specimens with

various Dd ratios can provide σ1 and σ3 at failure by assuming that ν = 025 and that

failure mode follows Coulomb criterion The MPL predicted triaxial strengths agree

very well with the triaxial strength obtained from the standard triaxial testing (ASTM)

The discrepancy is about 2-3 which may be due to the assumed Poissonrsquos ratio of 25

and due to the assumption used in the determination of σ3 at failure In summary even

through slight discrepancies remain in the application of MPL results to determine the

elastic modulus and triaxial compressive strength of intact rocks this approach of

14

predicting the rock properties shows a good potential and seems promising considering

the low cost of testing technique and ease of sample preparation

24 Characterization tests

241 Uniaxial compressive strength tests

The uniaxial compressive strength test is the most common laboratory

test undertaken for rock mechanics studies In 1972 the International Society of Rock

Mechanics (ISRM) published a suggested method for performing UCS tests (Brown

1981) Bieniawski and Bernede (1979) proposed the procedures in American Society

for Testing and Materials (ASTM) designation D2938

The tests are also the most used tests for estimating the elastic

modulus of rock (ASTM D7012) The axial strain can be measured with strain gages

mounted on the specimen or with the Linear Variable Differential Tranformers

(LVDTs) attached parallel to the length of the specimen The lateral strain can be

measured using strain gages around the circumference or using the LVDTs across

the specimen diameter

The UCS (σc) is expressed as the ratio of the peak load (P) to the

initial cross-section area (A)

σc= PA (21)

And the Youngrsquos modulus (E) can be calculated by

E= ΔσΔε (22)

Where Δσ is the change in stress and Δε is the change in strain

15

The ratio of lateral strain and axial strain magnitudes (εlatεax) determines the value of

Poissonrsquo ratio (ν)

ν = - (εlatεax) (23)

242 Triaxial compressive strength tests

Hoek and Brown (1980b) and Elliott and Brown (1986) used the

triaxaial compressive strength tests to gain an understanding of rock behavior under a

three-dimensions state of stress and to verify and even validate mathematical

expressions that have been derived to represent rock behavior in analytical and

numerical models

The common procedures are described in ASTM designation D7012 to

determine the triaxial strengths and D7012 to determine the elastic moduli and in

ISRM suggested methods (Brown 1981)

The axial strain can be measured with strain gages mounted on the

specimen or with the LVTDs attached parallel to the length of the specimen The

lateral strain can be measured using strain gages around the circumstance within the

jacket rubber

At the peak load the stress conditions are σ1 = PA σ3=p where P is

the maximum load parallel to the cylinder axis A is the initial cross-section area and

p is the pressure in the confining medium

The Youngrsquos modulus (E) and Poissonrsquos ratio (ν) can be calculated by

E = Δ(σ1-σ3)Δ εax (24)

and

16

ν = (slope of axial curve) (slope of lateral curve) (25)

where Δ(σ1-σ3) is the change in differential stress and Δ εax is the change in axial strain

243 Brazilian tensile strength tests

Caneiro (1974) and Akazawa (1953) proposed the Brazilian tensile

strength test of intact rocks Specifications of Brazilian tensile strength test have been

established by ASTM D3967 and suggested approach is provided by ISRM (Brown 1981)

Jaeger and Cook (1979) proposed the equation for calculate the

Brazilian tensile strength as

σB = (2P) ( πDt) (26)

where P is the failure load D is the disk diameter and t is the disk thickness

25 Size effects on compressive strength

The uniaxial compressive strength normally tested on cylindrical-shaped

specimens The length-to-diameter (LD) ratio of the specimen influences the

measured strength Typically the strength decreases with increasing the LD ratio

but it tends to become constant or ratios in the order of 21 to 31 (Hudson et al 1971

Obert and Duvall 1967) For higher ratios the specimen strength may be influenced

by bulking

The size of specimen may influence the strength of rock Weibull (1951)

proposed that a large specimen contains more flaws than a small one The large

specimen therefore also has flaws with critical orientation relative to the applied

shear stresses than the small specimen A large specimen with a given shape is

17

therefore likely to fail and exhibit lower strength than a small specimen with the same

shape (Bieniawski 1968 Jaeker and Cook 1979 Kaczynski 1986)

Tepnarong (2001) investigated the results of uniaxial compressive strength

test on Saraburi marble and found that the strengths decrease with increase the

length-to-diameter (LD) ratio And this relationship can be described by the power

law The size effects on uniaxial compressive strength are obscured by the intrinsic

variability of the marble The Brazilian tensile strengths also decreased as the

specimen diameter increased

CHAPTER III

SAMPLE COLLECTION AND PREAPATION

This chapter describes the sample collection and sample preparation

procedure to be used in the characterization and modified point load testing The

rock types to be used including porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone Locations of sample collection rock description are

described

31 Sample collection

Three rock types include porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone collected from Chatree Gold Mine Akara Mining Company

Limited Phichit Thailand are used in this research The rock samples are collected

from the north pit-wall of Khao Moh Three rock types are tested with a minimum of

50 samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable The collected location is shown in Figure 31

32 Rock descriptions

Three rock types are used in this research there are porphyritic andesite

silicified tuffaceous sandstone and tuffaceous sandstone Tuffaceous sandstone is

medium brownish grey the clasts are andesite rhyolite andesitic tuff and quartz

fragments and sub-rounded to sub-angular matrix sand andesitic tuff rock fragment

19

19

Figure 31 The location of rock samples collected area

lt 10 quartz 3 pyrite and litho-facies massive ungraded clast supported

moderately sorted Silicified tuffaceous sandstone is medium brown clasts are fine to

medium sand and silt sub-rounded shape quartz rich with siliceous matrix massive

non-graded well sorted moderately Silicified Porphyritic andesite is grayish green

medium-coarse euhedral evenly distributed phenocrysts are abundant most

conspicuous are hornblende phenocrysts fine-grained groundmass Those samples

are collected from Chatree Gold Mine Akara mining Co Ltd Phichit Thailand

20

33 Sample preparation

Sample preparation has been carried out to obtain different sizes and shapes

for testing It is conducted in the laboratory facility at Suranaree University of

Technology For characterization testing the process includes coring and grinding

Preparation of rock samples for characterization test follows the ASTM standard

(ASTM D4543-85) The nominal sizes of specimen that following the ASTM

standard practices for the characterization tests are shown in table 31 And grinding

surface at the top and bottom of specimens at the position of loading platens for

unsure that the loading platens are attach to the specimen surfaces and perpendicular

each others as shown in Figure 32 The shapes of specimens are irregularity-shaped

The ratio of specimen thickness to platen diameter (td) is around 20-30 and the

specimen diameter to platen diameter (Dd) varies from 5 to 10

Table 31 The nominal sizes of specimens following the ASTM standard practices

for the characterization tests

Testing Methods

LD Ratio

Nominal Diameter

(mm)

Nominal Length (mm)

Number of Specimens

1UniaxialCompressive Strength Test and Elastic Modulus Measurement (ASTM D7012)

25 54 135 10

2 Triaxial Compressive Strength Test (ASTM D7012) 20 54 108 10

3 Brazilian Tensile Strength Test (ASTM D3967) 05 54 27 10

4 Point Load Strength Index Test (ASTM D 5731) 10 54 54 10

21

Figure 32 Some prepared rock specimens of porphyritic andesite for MPL Tests

td asymp20 to 30

Figure 33 The concept of specimen preparation for MPL testing

CHAPTER IV

LABORATORY TESTS

Laboratory testing is divided into two main tasks including the

characterization tests and the modified point load tests Three rock types porphyritic

andesite silicified-tuffaceous sandstone and tuffaceous sandstone are used in this

research

41 Literature reviews

411 Displacement function

Tepnarong (2006) proposed a method to compute the vertical

displacement of the loading point as affected by the specimen diameter and thickness

(Dd and td ratios) by used the series of finite element analyses To accomplish this

a displacement function (αE) is introduced as (∆P∆δ)middot(tE) where ∆P is the change in

applied stress ∆δ is the change in vertical displacement of point load platens t is the

specimen thickness and E is elastic modulus of rock specimen The displacement

function is plotted as a function of Dd And found that the αE is dimensionless and

independent of rock elastic modulus αE trend to be independent of Dd when Dd is

beyond 15 The αE is sensitive to ν particularly when υ is between 025 and 05 This

agrees with the assumption that as the Poissonrsquos ratio increases the αE value will

increase because under higher ν the ∆δ will be reduced This is due to the large

confinement resulting from the higher Poissonrsquos ratio Nevertheless most rocks have

Poissonrsquos ratio within a range between 020 and 030 particularly for moderate to

23

hard rocks As a result the Poissonrsquos ratio of 025 will provide a reasonable

prediction of the value of αE values

Figure 51 plots αE or (∆P∆δ)middot(tE) as a function of td for the ratios of Dd ge

10 The displacement function increase as the td increases which can be expressed

by a power equation

αE = (∆P∆δ)middot(tE) = 150 (td)064 (51)

by using the least square fitting The curve fit gives good correlation (R2=0998)

These curves can be used to estimate the elastic modulus of rock from MPL results

By measuring the MPL specimen thickness t and the increment of applied stress (∆P)

and displacement (∆δ)

42 Basic characterization tests

The objectives of the basic characterization tests are to determine the

mechanical properties of each rock type to compare their results with those from the

modified point load tests (MPL) The basic characterization tests include uniaxial

compressive strength (UCS) tests with elastic modulus measurements triaxial

compressive strength tests Brazilian tensile strength tests and conventional point load

strength index tests

421 Uniaxial compressive strength tests and elastic modulus

measurements

The uniaxial compressive strength tests are conducted on the three

rock types Sample preparation and test procedure are followed the ASTM standards

(ASTM D7012) and the ISRM suggested methods (Brown 1981) The core size is

24

54 mm in diameter (NX size) and the ratio of the length to diameter is 25 A total of

10 specimens are tested for each rock type

A constant loading rate of 05 to 10 MPas is applied to the specimens

until failure occurs Tangent elastic modulus is measured at stress level equal to 50

of the uniaxial compressive strength Post-failure characteristics are observed

The uniaxial compressive strength (σc) is calculated by dividing the

maximum load by the original cross-section area of loading platen

σc= pf A (41)

where pf is the maximum failure load and A is the original cross-section area of

loading platen The tangent elastic modulus (Et) is calculated by the following

equation

Et = (Δσaxial) (Δε axial) (42)

And the axial strain can be calculated from

ε axial = ΔLL (43)

where the ΔL is the axial deformation and L is the original length of specimen

The average uniaxial compressive strength and tangent elastic

modulus of each rock types are shown in Tables 41 through 44

25

Figure 41 Pre-test samples of porphyritic andesite for UCS test

Figure 42 Pre-test samples of tuffaceous sandstone for UCS test

26

Figure 43 Pre-test samples of silicified tuffaceous sandstone for UCS test

Figure 44 Preparation of testing apparatus for UCS test

27

Figure 45 Post-test rock samples of porphyritic andesite from UCS test

Figure 46 Post-test rock samples of tuffaceous sandstone from UCS test

28

Figure 47 Post-test rock samples of silicified-tuffaceous sandstone from UCS

0

50

100

150

0 0001 0002 0003 0004 0005Axial Strain

Axi

al S

tres

s (M

Pa)

Andesite04

03

01

05

02

Andesite

Figure 48 Results of uniaxial compressive strength test and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted as

a function of axial strain

29

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Strain

Axi

al S

tres

s (M

Pa)

Pebbly Tuffacious Sandstone

04

03

05

01

02

Tuffaceous Sandstone

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Stain

Axi

al S

tres

s (M

Pa)

Silicified Tuffacious Sandstone

0103

05

0402

Silicified Tuffaceous Sandstone

Figure 49 Results of uniaxial compressive strength test and elastic modulus

measurements of tuffaceous sandstone (top) and silicified tuffaceous

sandstone (bottom) The axial stresses are plotted as a function of axial

strain

30

Table 41 Testing results of porphyritic andesite

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 5366 13486 282 1327 451 And-06-03-UCS-02 5366 13494 283 1106 397 And-02-01-UCS-03 5366 13485 280 1061 470 And-08-03-UCS-04 5366 13417 284 1282 392 And-04-04-UCS-05 5366 13564 285 973 438

Average 1150 plusmn 150 430 34 plusmn

Table 42 Testing results of tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 5366 13810 266 1017 538 TST-01-02-UCS-02 5366 13236 268 1238 545 TST-02-04-UCS-03 5366 13558 264 973 441 TST-06-09-UCS-04 5366 13515 267 1459 475 TST-02-02-UCS-05 5366 13745 263 884 566

Average 1114 plusmn 233 513 53 plusmn

Table 43 Testing results of silicified tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 5366 13309 271 1194 656 SST-07-01-UCS-02 5366 13547 267 930 632 SST-07-03-UCS-03 5366 13095 268 1194 503 SST-02-06-UCS-04 5366 13475 269 1614 661 SST-06-02-UCS-05 5366 13577 270 1106 713

Average 1207 plusmn 252 633 80 plusmn

31

Table 44 Uniaxial compressive strength and tangent elastic modulus measurement

results of three rock types

Rock Type

Number of Test

Samples

Uniaxial Compressive Strength σc (MPa)

Tangential Elastic Modulus

Et (GPa)

Porphyritic andesite 50 1150plusmn150 430plusmn34 Silicified-tuffaceous sandstone 50 1207plusmn252 633plusmn80

Tuffaceous sandstone 50 1114plusmn233 513plusmn53

422 Triaxial compressive strength tests

The objective of the triaxial compressive strength test is to determine

the compressive strength of rock specimens under various confining pressures The

sample preparation and test procedure are followed the ASTM standard (ASTM

D7012-07) and the ISRM suggested method (Brown 1981) A total of 16 rock

specimens are tested under various confining pressures 6 specimens of porphyritic

andesite 5 specimens of silicified-tuffaceous sandstone and 5 specimens of

tuffaceous sandstone The applied load onto the specimens is at constant rate until

failure occurred within 5 to 10 minutes of loading under each confining pressure

The constant confining pressures used in this experiment are ranged from 0345 067

138 276 and 414 MPa (50 100 200 400 and 600 psi) in andesite 0345 069

276 414 and 552 MPa (50 100 400 600 and 800 psi) in silicified-tuffaceous

sandstone and 0345 069 138 207 and 276 MPa (50 100 200 300 and 400 psi)

in pebbly tuffaceous sandstone Post-failure characteristics are observed

32

Figure 410 Pre-test samples for triaxial compressive strength test the top is

porphyritic andesite and the bottom is tuffaceous sandstone

33

Figure 411 Pre-test samples of silicified tuffaceous sandstone for triaxial

compressive strength test

Hook cell

Figure 412 Triaxial testing apparatus

34

Figure 413 Post-test rock samples from triaxial compressive strength tests The top

is porphyritic andesite and the bottom is tuffaceous sandstone

35

Figure 414 Post-test rock samples of silicified tuffaceous sandstone from triaxial

compressive strength test

Table 45 Triaxial compressive strength testing results of porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

And-04-02-TR-01 10803 5366 285 04 1459 And-06-04-TR-03 10806 5366 284 07 1526 And-06-02-TR-02 10806 5366 283 14 1636 And-08-01-TR-04 10665 5366 284 28 2034 And-08-02-TR-05 10948 5366 283 41 2520

Table 46 Triaxial compressive strength testing results of tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

TST-01-01-TR-04 10989 5366 266 04 1061 TST 02-01-TR-01 10852 5366 262 07 1238 TST-06-01-TR-02 10889 5366 264 138 1415 TST-06-03-TR-03 10755 5366 264 201 1813 TST-06-08-TR-05 11025 5366 267 28 2056

36

Table 47 Triaxial compressive strength testing results of silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

SST-05-01-TR-01 10875 5366 266 04 1305 SST-07-02-TR-02 10790 5366 266 14 1371 SST-01-04-TR-03 11022 5366 267 28 1592 SST-01-03-TR-04 10713 5366 267 41 1901 SST-01-01-TR-05 10530 5366 265 55 2255

The results of triaxial tests are shown in Table 42 Figures 413 and 414

show the shear failure by triaxial loading at various confining pressures (σ3) for the

three rock types The relationship between σ1 and σ3 can be represented by the

Coulomb criterion (Hoek 1990)

τ = c + σ tan φi (44)

where τ is the shear stress c is the cohesion σ is the normal stress and φi is the

internal friction angle The parameters c and φi are determined by Mohr-Coulomb

diagram as shown in Figures 415 through 417

37

φi =54˚ Andesite

Figure 415 Mohr-Coulomb diagram for andesite

φi = 55˚

Tuffaceous Sandstone

Figure 416 Mohr-Coulomb diagram for pebbly tuffaceous sandstone

38

Silicified tuffaceous sandstone

φi = 49˚

Figure 417 Mohr-Coulomb diagram for silicified tuffaceous sandstone

Table 48 Results of triaxial compressive strength tests on three rock types

Rock Type

Number of

Samples

Average Density (gcc)

Cohesion c (MPa)

Internal Friction Angle φi (degrees)

Porphyritic Andesite 5 283 33 54

Tuffaceous Sandstone 5 265 28 55 Silicified Tuffaceous Sandstone 5 267 36 49

423 Brazilian Tensile Strength Tests

The objectives of the Brazilian tensile strength test are to determine

the tensile strength of rock The Brazilian tensile strength tests are performed on all

rock types Sample preparation and test procedure are followed the ASTM standard

(ASTM D3967-81) and the

39

ISRM suggested method (Brown 1981) Ten specimens for each rock

type have been tested The specimens have the diameter of 55 mm with 25 mm thick

The Brazilian tensile strength of rock can be calculated by the following

equation (Jaeger and Cook 1979)

σB = (2pf) (πDt) (45)

where σB is the Brazilian tensile strength pf is the failure load D is the diameter

of disk specimen and t is the thickness of disk specimen All of specimens failed

along the loading diameter (Figure 420) The results of Brazilian tensile strengths

are shown in Table 49 The tensile strength trends to decrease as the specimen size

(diameter) increase and can be expressed by a power equation (Evans 1961)

σB = A (D)-B (46)

where A and B are constants depending upon the nature of rock

424 Conventional point load index (CPL) tests

The objectives of CPL tests are to determine the point load strength index for

use in the estimation of the compressive strength of the rocks The sample

preparation test procedure and calculation are followed the standard practices

(ASTM D 5731-02) and the ISRM suggested method (Brown 1981) Twenty

specimens of each rock types are tested The length-to-diameter (LD) ratio of the

specimen is constant at 10 The specimen diameter and thickness are maintained

constant at 54 mm (Figure 421) The core specimen is loaded along its axis as

shown in Figure 422 Each specimen is loaded to failure at a constant rate such that

40

(a)

(b)

(c)

Figure 418 Pre-test samples for Brazilian tensile strength test (a) porphyritic

andesite (b) tuffaceous sandstone and (c) silicified tuffaceous

sandstone

41

Figure 419 Brazilian tensile strength test arrangement

Table 49 Results of Brazilian tensile strength tests of three rock types

Rock Type

Average Diameter

(mm)

Average Length (mm)

Average Density (gcc)

Number of

Samples

Brazilian Tensile

Strength σB (MPa)

Porphyritic andesite 5366 2672 283 10 170plusmn16

Tuffaceous sandstone 5366 2737 265 10 131plusmn33

Silicified tuffaceous sandstone

5366 2670 267 10 191plusmn32

42

(a)

(b)

(c)

Figure 420 Post-test specimens (a) porphyritic andesite (b) tuffaceous sandstone

and (c) silicified tuffaceous sandstone

43

Figure 421 Pre-test samples of porphyritic andesite for conventional point load

strength index test

Figure 422 Conventional point load strength index test arrangement

44

failures occur within 5-10 minutes Post-failure characteristics are observed

The point load strength index for axial loading (Is) is calculated by the

equation

Is = pf De2 (47)

where pf is the load at failure De is the equivalent core diameter (for axial loading

De2 = 4Aπ and A=WD) A is the minimum cross-sectional area of a plane through

the platen contact points W is the specimen width (thickness of core) and D is the

specimen diameter The post-test specimens are shown in Figure 423

The testing results of all three rock types are shown in Table 410 The

point load strength index of andesite pebbly tuffaceous sandstone and silicified

tuffaceous sandstone are average as 81 plusmn 12 102 plusmn 20 and 108 plusmn 22 MPa

Table 410 Results of conventional point load strength index tests of three rock types

Rock Types Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index

Is (MPa) Porphyritic Andesite 5493 5366 283 81plusmn12 Tuffaceous Sandstone 5545 5366 265 102plusmn20 Silicified Tuffaceous Sandstone 5491 5366 268 108plusmn22

45

Figure 423 Post-Test rock specimens from conventional point load strength index

tests (a) porphyritic andesite (b) tuffaceous sandstone and (c)

silicified tuffaceous sandstone

46

43 Modified point load (MPL) tests

The objectives of the modified point load (MPL) tests are to measure the

strength of rock between the loading points and to produce failure stress results for

various specimen sizes and shapes The results are complied and evaluated to

determine the mathematical relationship between the strengths and specimen

dimensions which are used to predict the elastic modulus and uniaxial and triaxial

compressive strengths and Brazilian tensile strength of the rocks

The testing apparatus for the proposed MPL testing are similar to those of the

conventional point load (CPL) test except that the loading points are cylindrical

shape and cut flat with the circular cross-sectional area instead of using half-spherical

shape (Tepnarong 2001) The loading platens used in this research are 7 10 and 15

mm in diameter and the thickness-to-loading point diameter ratio (td) of about 25

The specimen diameter-to-loading point diameter is varying from 5 to 100 The load

is applied at the rate of 200 Ns Fifty specimens are prepared and tested for each

rock type The vertical deformations (δ) are monitored One cycle of unloading and

reloading is made at about 40 failure load Then the load is increased to failure

The MPL strength (PMPL) is calculated by

PMPL = pf ((π4)(d2)) (48)

where pf is the applied load at failure and d is the diameter of loading point Figure

26 shows the example of post-test specimen shear cone are usually formed

underneath the loading points and two or three tension-induced cracks are commonly

found across the specimens

47

The MPL testing method is divided into 4 schemes based on its objective

elastic modulus uniaxial and triaxial compressive strengths and Brazilian tensile

strength determination

Figure 424 Conventional and modified loading points(Tepnarong 2006)

Figure 425 MPL testing arrangement

48

Tension-induced crack Shear cone

Shear cone

Tension-induced crack

Figure 426 Post-test specimen the tension-induced crack commonly found across

the specimen and shear cone usually formed underneath the loading

platens

49

Table 411 Results of modified point load tests on porphyritic andesite

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-01 246 543 280 125 159 And-MPL-02 351 632 370 180 471 And-MPL-03 236 634 150 170 191 And-MPL-04 266 960 250 234 319 And-MPL-05 284 903 370 369 471 And-MPL-06 245 793 280 182 357 And-MPL-07 263 874 260 234 331 And-MPL-08 261 980 210 171 268 And-MPL-09 280 777 270 056 344 And-MPL-10 244 569 280 124 159 And-MPL-11 251 613 650 138 368 And-MPL-12 226 631 600 189 340 And-MPL-13 233 1126 180 151 468 And-MPL-14 279 1203 220 165 572 And-MPL-15 239 503 400 011 227 And-MPL-16 281 474 300 012 170 And-MPL-17 305 861 390 021 497 And-MPL-18 233 653 500 008 283 And-MPL-19 294 1386 380 200 484 And-MPL-20 265 860 410 017 522 And-MPL-21 238 425 550 087 311 And-MPL-22 230 417 450 087 255 And-MPL-23 223 557 500 231 283 And-MPL-24 250 760 550 112 311 And-MPL-25 259 1243 180 585 468 And-MPL-26 303 560 310 143 395 And-MPL-27 273 1640 390 156 497 And-MPL-28 282 906 220 200 280 And-MPL-29 311 934 290 156 369 And-MPL-30 246 1314 250 650 650 And-MPL-31 262 982 200 175 255 And-MPL-32 260 1147 180 156 468 And-MPL-33 240 700 450 101 255 And-MPL-34 304 800 240 135 306 And-MPL-35 250 455 220 127 280 And-MPL-36 243 1697 120 292 312 And-MPL-37 333 1520 310 156 395 And-MPL-38 238 661 170 260 442

50

Table 411 Results of modified point load tests on porphyritic andesite (Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-39 318 347 130 186 338 And-MPL-40 245 551 150 260 390 And-MPL-41 207 561 150 325 390 And-MPL-42 223 425 500 231 283 And-MPL-43 207 561 150 346 390 And-MPL-44 324 340 310 234 395 And-MPL-45 275 426 240 169 306 And-MPL-46 302 397 130 175 166 And-MPL-47 255 314 100 170 127 And-MPL-48 257 220 250 094 142 And-MPL-49 256 214 130 057 74 And-MPL-50 243 166 180 078 102

51

Table 412 Results of modified point load tests on tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-01 270 546 220 212 293 TST -MPL-02 258 787 230 326 293 TST -MPL-03 275 730 200 143 255 TST -MPL-04 282 715 400 143 510 TST -MPL-05 254 1345 220 264 280 TST -MPL-06 292 893 200 143 255 TST -MPL-07 243 853 550 112 311 TST -MPL-08 287 1047 210 319 268 TST -MPL-09 230 787 370 212 471 TST -MPL-10 230 427 260 132 147 TST -MPL-11 282 1243 450 319 573 TST -MPL-12 254 604 200 127 255 TST -MPL-13 288 1180 290 159 369 TST -MPL-14 251 631 410 170 232 TST -MPL-15 214 1104 120 260 312 TST -MPL-16 229 486 380 102 215 TST -MPL-17 259 715 110 650 286 TST -MPL-18 243 285 180 073 102 TST -MPL-19 285 316 130 128 130 TST -MPL-20 241 295 180 170 102 TST -MPL-21 298 417 300 100 170 TST -MPL-22 265 642 300 088 170 TST -MPL-23 314 611 450 101 255 TST -MPL-24 303 481 650 124 368 TST -MPL-25 223 223 260 126 331 TST -MPL-26 273 652 260 178 331 TST -MPL-27 216 887 420 170 535 TST -MPL-28 319 718 290 164 369 TST -MPL-29 231 516 200 128 255 TST -MPL-30 260 641 380 280 484 TST -MPL-31 287 496 330 158 420 TST -MPL-32 264 368 230 170 293 TST -MPL-33 238 415 230 130 293 TST -MPL-34 271 824 140 260 364 TST -MPL-35 283 800 220 325 572 TST -MPL-36 242 1013 180 325 468 TST -MPL-37 254 715 90 217 234 TST -MPL-38 210 755 150 520 390

52

Table 412 Results of modified point load tests on tuffaceous sandstone

(Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-39 293 508 110 260 286 TST -MPL-40 273 410 100 347 260 TST -MPL-41 234 628 80 260 208 TST -MPL-42 259 433 130 260 338 TST -MPL-43 265 546 220 435 280 TST -MPL-44 255 829 260 222 147 TST -MPL-45 254 368 240 315 306 TST -MPL-46 293 695 370 222 210 TST -MPL-47 247 297 180 128 102 TST -MPL-48 310 611 300 237 170 TST -MPL-49 225 337 160 371 416 TST -MPL-50 259 410 120 394 312

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-01 300 782 170 280 442 SST-MPL-02 250 480 220 307 572 SST-MPL-03 314 424 340 356 433 SST-MPL-04 292 809 220 450 572 SST-MPL-05 275 1142 300 532 780 SST -MPL-06 308 490 190 273 494 SST -MPL-07 317 611 280 418 728 SST -MPL-08 233 684 240 414 624 SST -MPL-09 255 480 230 371 598 SST -MPL-10 217 772 120 958 312 SST -MPL-11 312 903 270 400 702 SST -MPL-12 255 1094 150 272 390 SST -MPL-13 286 742 400 408 510 SST -MPL-14 248 615 350 296 198 SST -MPL-15 253 805 210 282 546 SST -MPL-16 243 1094 150 260 390

53

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

(Continued)

Specimen Number td Dd Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-17 234 1090 250 416 650 SST -MPL-18 253 1371 240 473 624 SST -MPL-19 327 434 320 330 408 SST -MPL-20 270 310 390 278 497 SST -MPL-21 269 691 410 185 522 SST -MPL-22 312 504 380 182 484 SST -MPL-23 319 627 260 150 331 SST -MPL-24 281 689 330 295 420 SST -MPL-25 210 720 390 259 497 SST -MPL-26 303 775 370 221 471 SST -MPL-27 272 714 310 274 395 SST -MPL-28 292 855 600 209 764 SST -MPL-29 310 742 400 176 510 SST -MPL-30 284 847 410 158 522 SST -MPL-31 320 891 650 464 828 SST -MPL-32 261 256 400 178 226 SST -MPL-33 224 405 550 131 311 SST -MPL-34 231 379 450 215 255 SST -MPL-35 290 442 1050 190 594 SST -MPL-36 241 521 500 102 283 SST -MPL-37 275 605 600 067 340 SST -MPL-38 263 616 650 127 368 SST -MPL-39 227 615 350 229 198 SST -MPL-40 236 508 550 090 311 SST -MPL-41 318 1142 300 498 780 SST -MPL-42 303 809 210 392 546 SST -MPL-43 228 805 210 244 546 SST -MPL-44 283 1142 300 571 780 SST -MPL-45 277 772 120 780 312 SST -MPL-46 288 1206 280 411 728 SST -MPL-47 250 508 570 309 323 SST -MPL-48 275 442 1050 338 594 SST -MPL-49 272 605 650 254 368 SST -MPL-50 260 805 200 360 520

54

431 Modified point load tests for elastic modulus measurement

The MPL tests are carried out with the measurement of axial

deformation for use in elastic modulus estimation Fifty irregular specimens for each

rock type are tested The specimen thickness-to-loading diameter (td) is about 25

and the specimen diameter -to-loading diameter (Dd) is varied from 25 to 50 Cyclic

loading is performed while monitoring displacement (δ)

The testing apparatus used in this experiment includes the point load

tester model SBEL PLT-75 and the modified point load platens The displacement

digital gages with a precision up to 0001 mm are used to monitor the axial

deformation of rock between the loading points as loading decreases The cyclic

load is applied along the specimen axis and is performed by systematically increasing

and decreasing loads on the test specimen After unloading the axial load is

increased until the failure occurs Cyclic loading is performed on the specimens in

an attempt at determining the elastic deformation The ratio of change of stress to

displacement (∆P∆δ) is measured from unloading curve Post-failure characteristics

are observed and recorded Photographs are taken of the failed specimens

The results of the deformation measurement by MPL tests are shown

in Tables411 through 413 The stresses (P) are plotted as a function of axial

displacement (δ) and shown in Figures B1 through B150 (Appendix B) The results

of ∆P∆δ are used to estimate the elastic modulus of the specimen

The elastic modulus predictions from MPL results can be made by

using the value of αE plotted as a function of Ded for various td ratios as shown in

Figure 427 and the MPL elastic modulus can be expressed as

55

⎟⎠⎞

⎜⎝⎛

ΔΔ

⎟⎟⎠

⎞⎜⎜⎝

⎛=

δαPtE

Empl (Tepnarong 2006) (49)

where Empl is the elastic modulus predicted from MPL results αE is displacement

function value from numerical analysis and ∆P∆δ is the ratio of change of stress to

displacement which is measured from unloading curve of MPL tests and t is the

specimen thickness The value of αE used in the calculation is 260 for td ratio equal

to 25-30 (Tepnarong 2006) The results of elastic modulus predictions from MPL

tests are tabulated in Tables 414 through 416 Table 417 compares the elastic

modulus obtained from standard uniaxial compressive strength test (ASTM D3148-

96) with those predicted by MPL test

The values of Empl for each specimen with P-δ curve are shown in

Appendix B The MPL method under-estimates the elastic modulus of all tested

rocks This is the primarily because the actual loaded area may be smaller than that

used in the calculation due to the roughness of the specimen surfaces As a result the

contact area used to calculate PMPL is larger than the actual In addition the EMPL

tends to show a high intrinsic variation (high standard deviation) This is because the

loading areas of MPL specimens are small This phenomenon conforms by the test

results obtained by Fuenkajorn and Deamen (1992) They conclude that smaller test

specimens not only exhibit a higher strength than larger one (size effect) but also

show a high intrinsic variability due to the heterogeneity of rock fabric particularly at

small sizes This implied that to obtain a good prediction (accurate result) of the rock

elasticity a large amount of MPL specimens are desirable This drawback may be

compensated by the ease of testing and the low cost of sample preparation

56

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (MPa)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure 427 Example of P-δ curve for porphyritic andesite specimen The ratio of

∆P∆δ is used to predict the elastic modulus of MPL specimen (Empl)

57

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-01 246 543 125 260 1776 And-MPL-02 351 632 180 260 2430 And-MPL-03 236 634 170 260 1546 And-MPL-04 266 960 234 260 2390 And-MPL-05 284 903 369 260 4031 And-MPL-06 245 793 182 260 1712 And-MPL-07 263 874 234 260 2367 And-MPL-08 261 980 171 260 1717 And-MPL-09 280 777 056 260 603 And-MPL-10 244 569 124 260 1748 And-MPL-11 251 613 138 260 2001 And-MPL-12 226 631 189 260 2464 And-MPL-13 233 1126 151 260 947 And-MPL-14 279 1203 165 260 1239 And-MPL-15 239 503 011 260 151 And-MPL-16 281 474 012 260 195 And-MPL-17 305 861 021 260 247 And-MPL-18 233 653 008 260 108 And-MPL-19 294 1386 200 260 2263 And-MPL-20 265 860 017 260 173 And-MPL-21 238 425 087 260 1195 And-MPL-22 230 417 087 260 1154 And-MPL-23 223 557 231 260 2976 And-MPL-24 250 760 112 260 1615 And-MPL-25 259 1243 585 260 4073 And-MPL-26 303 560 143 260 1667 And-MPL-27 273 1640 156 260 1639 And-MPL-28 282 906 200 260 2172 And-MPL-29 311 934 156 260 1868 And-MPL-30 246 1314 650 260 4310 And-MPL-31 262 982 175 260 1766 And-MPL-32 260 1147 156 260 1093 And-MPL-33 240 700 101 260 1398 And-MPL-34 304 800 135 260 1576 And-MPL-35 250 455 127 260 1221 And-MPL-36 243 1697 292 260 1909 And-MPL-37 333 1520 156 260 2000 And-MPL-38 238 661 260 260 1665 And-MPL-39 318 347 186 260 1592 And-MPL-40 245 551 260 260 1712

58

And-MPL-41 207 561 325 260 1815

59

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-42 223 425 231 260 2976 And-MPL-43 207 561 346 260 1932 And-MPL-44 324 340 234 260 2912 And-MPL-45 275 426 169 260 1785 And-MPL-46 302 397 175 260 2033 And-MPL-47 255 314 170 260 1667 And-MPL-48 257 220 094 260 1393 And-MPL-49 256 214 057 260 843 And-MPL-50 243 166 078 260 1094 Average 1743 Standard Deviation 910

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-01 300 782 280 260 2262 SST -MPL-02 250 480 307 260 2066 SST -MPL-03 314 424 356 260 4302 SST -MPL-04 292 809 450 260 3533 SST -MPL-05 275 1142 532 260 3939 SST -MPL-06 308 490 273 260 2266 SST -MPL-07 317 611 418 260 3572 SST -MPL-08 233 684 414 260 2595 SST -MPL-09 255 480 371 260 2546 SST -MPL-10 217 772 958 260 5593 SST -MPL-11 312 903 400 260 3360 SST -MPL-12 255 1094 272 260 1864 SST -MPL-13 286 742 408 260 4435 SST -MPL-14 248 615 296 260 4235 SST -MPL-15 253 805 282 260 1918 SST -MPL-16 243 1094 260 260 1698 SST -MPL-17 234 1090 416 260 2621 SST -MPL-18 253 1371 473 260 3224 SST -MPL-19 327 434 330 260 4153 SST -MPL-20 270 310 278 260 2863

60

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-21 269 691 185 260 1914 SST -MPL-22 312 504 182 260 2183 SST -MPL-23 319 627 150 260 1839 SST -MPL-24 281 689 295 260 3193 SST -MPL-25 210 720 259 260 2090 SST -MPL-26 303 775 221 260 2577 SST -MPL-27 272 714 274 260 2862 SST -MPL-28 292 855 209 260 2350 SST -MPL-29 310 742 176 260 2097 SST -MPL-30 284 847 158 260 1728 SST -MPL-31 320 891 464 260 5707 SST -MPL-32 261 256 178 260 2678 SST -MPL-33 224 405 131 260 1690 SST -MPL-34 231 379 215 260 2863 SST -MPL-35 290 442 190 260 3174 SST -MPL-36 241 521 102 260 1416 SST -MPL-37 275 605 067 260 1064 SST -MPL-38 263 616 127 260 1926 SST -MPL-39 227 615 229 260 3005 SST -MPL-40 236 508 090 260 1226 SST -MPL-41 318 1142 498 260 4264 SST -MPL-42 303 809 392 260 3196 SST -MPL-43 228 805 244 260 1500 SST -MPL-44 283 1142 571 260 4348 SST -MPL-45 277 772 780 260 5826 SST -MPL-46 288 1206 411 260 3184 SST -MPL-47 250 508 309 260 4464 SST -MPL-48 275 442 338 260 5364 SST -MPL-49 272 605 254 260 3981 SST -MPL-50 260 805 360 260 2523 Average 2986 Standard Deviation 1190

61

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-01 270 546 212 260 2202 TST -MPL-02 258 787 326 260 3232 TST -MPL-03 275 730 143 260 1513 TST -MPL-04 282 715 143 260 1551 TST -MPL-05 254 1345 264 260 2579 TST -MPL-06 292 893 143 260 1606 TST -MPL-07 243 853 112 260 2273 TST -MPL-08 287 1047 319 260 3521 TST -MPL-09 230 787 212 260 1875 TST -MPL-10 230 427 132 260 1752 TST -MPL-11 282 1243 319 260 3455 TST -MPL-12 254 604 127 260 1241 TST -MPL-13 288 1180 159 260 1764 TST -MPL-14 251 631 170 260 2465 TST -MPL-15 214 1104 260 260 1500 TST -MPL-16 229 486 102 260 1345 TST -MPL-17 259 715 650 260 4530 TST -MPL-18 243 285 073 260 1025 TST -MPL-19 285 316 128 260 2105 TST -MPL-20 241 295 170 260 2360 TST -MPL-21 298 417 100 260 1722 TST -MPL-22 265 642 088 260 896 TST -MPL-23 314 611 101 260 1830 TST -MPL-24 303 481 124 260 2166 TST -MPL-25 223 223 126 260 1083 TST -MPL-26 273 652 178 260 1869 TST -MPL-27 216 887 170 260 2065 TST -MPL-28 319 718 164 260 2011 TST -MPL-29 310 742 128 260 1136 TST -MPL-30 260 641 280 260 2800 TST -MPL-31 287 496 158 260 1742 TST -MPL-32 264 368 170 260 1725 TST -MPL-33 238 415 130 260 1192 TST -MPL-34 271 824 260 260 1942 TST -MPL-35 283 800 325 260 2478 TST -MPL-36 242 1013 325 260 2115 TST -MPL-37 254 715 217 260 1484 TST -MPL-38 210 755 520 260 2944 TST -MPL-39 293 508 260 260 2052 TST -MPL-40 273 410 347 260 2552

62

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-41 234 628 260 260 1638 TST -MPL-42 259 433 260 260 1814 TST -MPL-43 265 546 435 260 4440 TST -MPL-44 255 829 222 260 3265 TST -MPL-45 254 368 315 260 3075 TST -MPL-46 293 695 222 260 2502 TST -MPL-47 247 297 128 260 1827 TST -MPL-48 310 611 237 260 4240 TST -MPL-49 225 337 371 260 2252 TST -MPL-50 259 410 394 260 2746 Average 2190 Standard Deviation 830

Table 417 Comparisons of elastic modulus results obtained from uniaxial

compressive strength tests and those from modified point load tests

Rock Type Tangential Elastic Modulus from UCS

tests Et (GPa)

Elastic Modulus from MPL tests

Empl (GPa) Porphyritic andesite 430plusmn34 174plusmn91

Silicified tuffaceous sandstone 633plusmn80 299plusmn119

tuffaceous sandstone 513plusmn53 219plusmn83

432 Modified point load tests predicting uniaxial compressive strength

The uniaxial compressive strength of MPL specimens can be predicted

by plotting Pmpl as a function of diameter ratio Ded as shown in Figures 428 through

430 At diameter ratio equal to unity the Pmpl represents the uniaxial compressive

strength of rock The uniaxial compressive strength predicted from MPL tests

compared with those from CPL test and UCS standard test is shown in Table 418

63

UCS PREDICTION OF PORPHYRITIC ANDESITE FROM MPL TESTS

Pmpl = 11844(Ded)05489

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ded Ratio

MPL

Stre

ngth

(MPa

)

Figure 428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests

64

UCS PREDICTION OF SILICIFIED TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 11463(Ded)07447

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ded Ratio

MPL

-Str

engt

h (M

Pa)

Figure 429 Uniaxial compressive strength predicted for silicified tuffaceous

sandstone from MPL tests

65

UCS PREDICTION OF TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 10222(Ded)05457

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ded Ratio

MPL

-Stre

ngth

(MPa

)

Figure 430 Uniaxial compressive strength predicted for tuffaceous sandstone from

MPL tests

Table 418 Comparison the test results between UCS CPL Brazilian tensile

strength and MPL tests

Uniaxial Compressive Strength (MPa)

Tensile Strength (MPa) Rock Type UCS

Testing CPL

Prediction MPL

PredictionBrazilian Testing

MPL Prediction

And 1150 1944 plusmn12 1005 170plusmn16 139plusmn43 TST 1114 2448plusmn20 1308 131plusmn33 121plusmn73 SST 1207 2592plusmn22 1022 191plusmn32 171plusmn126

433 Modified Point Load Tests for Tensile Strength Predictions

The MPL results determine the rock tensile strength by using the

relationship of the failure stresses (Pmpl) as a function of specimen thickness to

66

loading diameter ratio (td) The tensile strength from MPL prediction can be

expressed as an empirical equation (Tepnarong 2001)

σt mpl = Pmpl (αT ln (td)+βT) (410)

where αT = 133 ln (Ded)-756 and βT= -70 ln (Ded)+ 1952

The results of tensile strengths of all rock types are shown in Tables

419through 421 The predicted tensile strengths are compared with the Brazilian

tensile strengths for the three rock types in Table 418 A close agreement of the

results obtained between two methods The discrepancies of the results are less than

the standard deviation of the results

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa)

And-MPL-01 246 543 159 1495 767 750 And-MPL-02 351 632 471 1697 661 1688 And-MPL-03 236 634 191 1701 659 900 And-MPL-04 266 960 319 2252 369 1240 And-MPL-05 284 903 471 2170 412 1761 And-MPL-06 245 793 357 1999 502 1558 And-MPL-07 263 874 331 2127 435 1330 And-MPL-08 261 980 268 2279 355 1053 And-MPL-09 280 777 344 1971 517 1351 And-MPL-10 244 569 159 1557 734 746 And-MPL-11 251 613 368 1656 683 1666 And-MPL-12 226 631 340 1695 662 1662 And-MPL-13 233 1126 468 2464 257 2000 And-MPL-14 279 1203 572 2552 211 2022 And-MPL-15 239 503 227 1392 822 1114 And-MPL-16 281 474 170 1314 863 765 And-MPL-17 305 861 497 2108 445 1776 And-MPL-18 233 653 283 1740 638 1340 And-MPL-19 294 1386 484 2741 112 1577 And-MPL-20 265 860 522 2106 446 2091

67

And-MPL-21 238 425 311 1169 939 1595 And-MPL-22 230 417 255 1142 953 1338 And-MPL-23 223 557 283 1529 749 1431 And-MPL-24 250 760 311 1941 532 1347 And-MPL-25 259 1243 468 2596 188 1763 And-MPL-26 303 560 395 1535 746 1613

68

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) And-MPL-27 273 1640 497 2964 -006 1671 And-MPL-28 282 906 280 2252 369 1035 And-MPL-29 311 934 369 2216 388 1272 And-MPL-30 246 1314 650 2670 149 2543 And-MPL-31 262 982 255 2282 353 997 And-MPL-32 260 1147 468 2488 244 1783 And-MPL-33 240 700 255 1832 590 1161 And-MPL-34 304 800 306 2010 496 1121 And-MPL-35 250 455 280 1259 891 1370 And-MPL-36 243 1697 312 3010 -030 1181 And-MPL-37 333 1520 395 2863 047 1130 And-MPL-38 238 661 442 1755 630 2054 And-MPL-39 318 347 338 897 1082 1594 And-MPL-40 245 551 390 1513 758 1847 And-MPL-41 207 561 390 1537 745 2089 And-MPL-42 223 425 283 1169 939 1507 And-MPL-43 207 561 390 1537 745 2089 And-MPL-44 324 340 395 871 1096 1864 And-MPL-45 275 426 306 1172 937 1441 And-MPL-46 302 397 166 1079 986 760 And-MPL-47 255 314 127 766 1151 1159 And-MPL-48 257 220 142 291 1401 845 And-MPL-49 256 214 74 257 1419 443 And-MPL-50 243 166 102 -078 1595 928 Average 1427 Standard Deviation 44

69

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) SST -MPL-01 300 782 442 1336 851 2018 SST -MPL-02 250 480 572 1331 853 2759 SST -MPL-03 314 424 433 1196 924 1888 SST -MPL-04 292 809 572 2024 489 2155 SST -MPL-05 275 1142 780 2483 247 2827 SST -MPL-06 308 490 494 1357 840 2086 SST -MPL-07 317 611 728 1651 685 2808 SST -MPL-08 233 684 624 1800 606 2932 SST -MPL-09 255 480 598 1331 853 2849 SST -MPL-10 217 772 312 1962 522 1529 SST -MPL-11 312 903 702 2170 412 2436 SST -MPL-12 255 1094 390 2426 277 1533 SST -MPL-13 286 742 510 1910 549 2011 SST -MPL-14 248 615 198 1661 680 905 SST -MPL-15 253 805 546 2017 492 2312 SST -MPL-16 243 1094 390 2426 277 1607 SST -MPL-17 234 1090 650 2421 280 2780 SST -MPL-18 253 1371 624 2726 120 2354 SST -MPL-19 327 434 408 1196 924 1740 SST -MPL-20 270 310 497 748 1160 2618 SST -MPL-21 269 691 522 1816 599 2181 SST -MPL-22 312 504 484 1394 821 2012 SST -MPL-23 319 627 331 1686 667 1263 SST -MPL-24 281 689 420 1812 601 1699 SST -MPL-25 210 720 497 1869 570 2541 SST -MPL-26 303 775 471 1968 519 1745 SST -MPL-27 272 714 395 1859 576 1623 SST -MPL-28 292 855 764 2098 450 2830 SST -MPL-29 310 742 510 1910 549 1881 SST -MPL-30 284 847 522 2087 456 1981 SST -MPL-31 320 891 828 2153 421 2832 SST -MPL-32 261 256 226 492 1295 1282 SST -MPL-33 224 405 311 1106 972 1672 SST -MPL-34 231 379 255 1017 1019 1363 SST -MPL-35 290 442 594 1221 912 2690 SST -MPL-36 241 521 283 1439 797 1374 SST -MPL-37 275 605 340 1639 692 1445 SST -MPL-38 263 616 368 1661 680 1611

70

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded Pmpl (MPa)

αT βT σt mpl (MPa)

SST -MPL-39 227 615 198 1661 680 969 SST -MPL-40 236 508 311 1406 814 1540 SST -MPL-41 318 1142 780 2483 247 2500 SST -MPL-42 303 809 546 2024 489 1999 SST -MPL-43 228 805 546 2017 492 2530 SST -MPL-44 283 1142 780 2483 247 2757 SST -MPL-45 277 772 312 1962 522 1236 SST -MPL-46 288 1206 728 2555 209 2502 SST -MPL-47 250 508 323 1406 814 1533 SST -MPL-48 275 442 594 1221 912 2769 SST -MPL-49 272 605 368 1639 692 1580 SST -MPL-50 260 805 520 2017 492 2147 Average 2045 Standard Deviation 56

71

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-01 270 546 293 1502 763 1299 TST -MPL-02 258 787 293 1988 508 1226 TST -MPL-03 275 730 255 1888 560 1031 TST -MPL-04 282 715 510 1860 575 2035 TST -MPL-05 254 1345 280 2701 133 1058 TST -MPL-06 292 893 255 2156 420 933 TST -MPL-07 243 853 311 2095 451 1346 TST -MPL-08 287 1047 268 2279 355 970 TST -MPL-09 230 787 471 1988 508 2179 TST -MPL-10 230 427 147 1176 935 769 TST -MPL-11 282 1243 573 2596 188 1994 TST -MPL-12 254 604 255 1636 693 1149 TST -MPL-13 288 1180 369 2527 224 1274 TST -MPL-14 251 631 232 1695 662 1044 TST -MPL-15 214 1104 312 2438 271 1465 TST -MPL-16 229 486 215 1347 845 1098 TST -MPL-17 259 715 286 1861 575 1220 TST -MPL-18 243 285 102 637 1219 571 TST -MPL-19 285 316 130 776 1146 665 TST -MPL-20 241 295 102 685 1194 568 TST -MPL-21 298 417 170 1143 952 771 TST -MPL-22 265 642 170 1178 934 1059 TST -MPL-23 314 611 255 1652 685 989 TST -MPL-24 303 481 368 1423 805 1545 TST -MPL-25 223 223 331 313 1389 2018 TST -MPL-26 273 652 331 1738 640 1389 TST -MPL-27 216 887 535 2146 424 1850 TST -MPL-28 319 718 369 1866 572 1350 TST -MPL-29 231 516 255 1425 804 1276 TST -MPL-30 260 641 484 1715 651 2114 TST -MPL-31 287 496 420 1373 832 1846 TST -MPL-32 264 368 293 976 1041 1475 TST -MPL-33 238 415 293 1151 948 1504 TST -MPL-34 271 824 364 2049 476 1418 TST -MPL-35 283 800 572 2010 496 2210 TST -MPL-36 242 1013 468 2324 331 1965 TST -MPL-37 254 715 234 1861 575 1013 TST -MPL-38 210 755 390 1932 537 1976

72

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-39 293 508 286 1406 814 1229 TST -MPL-40 273 410 260 1124 963 1243 TST -MPL-41 234 628 208 1688 666 990 TST -MPL-42 259 433 338 1194 926 1639 TST -MPL-43 265 546 280 1502 763 1257 TST -MPL-44 255 829 147 2057 472 614 TST -MPL-45 254 368 306 976 1041 1568 TST -MPL-46 293 695 210 1822 595 1846 TST -MPL-47 247 297 102 691 1190 561 TST -MPL-48 310 611 170 1652 685 665 TST -MPL-49 225 337 416 1939 533 1972 TST -MPL-50 259 410 312 1120 965 1537 Average 1336 Standard Deviation 56

434 Modified point load tests for triaxial compressive strength predictions

The objective of this section is to predict the triaxial compressive strength

of intact rock specimens by using the MPL results (modified point load strength Pmpl) It

is speculated that increase of applied load (σ1) will invoke a confining pressure (σ3) on

the imaginary cylindrical profile between the two loading points This is due to the

effect of Poissonrsquos ratio (ν) which causing a potential expansion of rock in this cylinder

The greater the σ1 the greater the σ3 in addition Poissonrsquos ratios also affect the

magnitude of σ3 The magnitude of σ3 also depends on the specimen shape particularly

the Ded ratio In principle σ3 will equal zero for Ded ratio equal to unity But when

Ded ratio is very large approaching infinity σ3 will reach its maximum This maximum

value of σ3 will also depend on the rock Poissonrsquos ratio From computer simulation of

td =25 the variation of σ1 σ3 ratio can be simply expressed by Tepnarong (2006) as

73

(σ1 σ3) = 2 ((ν (1ndashν) (1-(dDe) 2)) (411)

where ν is the Poissonrsquos ratio of rock specimen d is the modified point load diameter

and De is the equivalent diameter of the specimen The Poissonrsquos ratio of rock

specimen used in equation 411 can be assumed to be 25 The σ1 σ3 ratio tends to be

independent of Ded for Ded greater than 10 This implies that when MPL specimen

diameter is more than 10 times of the loading point diameter the magnitude of σ3 is

approaching its maximum value (Tepnarong 2006)

It should be pointed out that approach used here to determine σ3

assumes that there is no shear stress (τrz) along the imagination cylinder As a result

the magnitude of σ3 determined here would be higher than the actual σ3 applied in the

true triaxial test specimen This mean that the σ1 σ3 ratios at failure obtained from

MPL tests will be lower than the actual failure stress ratio from the true triaxial tests

From the concept of σ1 σ3-Ded relation proposed the major and

minor principal stresses at failure (σ1 σ3) can be predicted from the measured MPL

failure stress Pmpl and Ded ratio The Poissonrsquos ratio used here is equal to 025

Comparison between the failure stress (σ1 σ3) obtained from the

standard triaxial compressive strength testing (ASTM D7012-07) and those predicted

from MPL test results are made graphically in Figures 431 through 433 for ν =025

The figures are plotted the maximum shear stress (frac12(σ1-σ3)) as a function of mean

shear stress (frac12(σ1+σ3)) indicating that the predicted failure stresses under-estimate

the value obtained from the standard testing This is because of the assumption of no

shear stresses developed on the surface of the imaginary cylinder The under

prediction may be due to the intrinsic variability of the rocks The predictions are

also sensitive to assumed Poissonrsquos ratio The Poissonrsquos ratio of the tested specimens

74

may be lower than the assumed value of 025 This comparison implies that the

triaxial strength predicted from MPL test will be more conservative than those from

the standard testing method

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests

Specimen Number

td Ded σ1

(MPa)σ3

(MPa)Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-01 246 543 159 2527 6663 9190 And-MPL-02 351 632 471 7583 19776 27358 And-MPL-03 236 634 191 3075 8017 11091 And-MPL-04 266 960 319 5198 13325 18522 And-MPL-05 284 903 471 7682 19726 27408 And-MPL-06 245 793 357 5792 14938 20730 And-MPL-07 263 874 331 5393 13864 19257 And-MPL-08 261 980 268 4368 11192 15560 And-MPL-09 280 777 344 5581 14407 19988 And-MPL-10 244 569 159 2535 6659 9194 And-MPL-11 251 613 368 5911 15445 21356 And-MPL-12 226 631 340 5465 14253 19717 And-MPL-13 233 1126 468 7660 19568 27228 And-MPL-14 279 1203 572 9372 23911 33283 And-MPL-15 239 503 227 3589 9529 13118 And-MPL-16 281 474 170 2678 7154 9831 And-MPL-17 305 861 497 8087 20797 28884 And-MPL-18 233 653 283 4561 11874 16435 And-MPL-19 294 1386 484 7946 20231 28177 And-MPL-20 265 860 522 8501 21864 30365 And-MPL-21 238 425 311 4854 13143 17997 And-MPL-22 230 417 255 3962 10758 14720 And-MPL-23 223 557 283 4521 11894 16415 And-MPL-24 250 760 311 5049 13045 18094 And-MPL-25 259 1243 468 7671 19562 27234 And-MPL-26 303 560 395 6308 16591 22899 And-MPL-27 273 1640 497 8167 20757 28924 And-MPL-28 282 906 280 4574 11726 16300 And-MPL-29 311 934 369 6026 15459 21484 And-MPL-30 246 1314 650 1066 27166 37828 And-MPL-31 262 982 255 4160 10659 14819 And-MPL-32 260 1147 468 7663 19567 27229

75

And-MPL-33 240 700 255 4118 10680 14798 And-MPL-34 304 800 306 4966 12804 17770

76

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-35 250 455 280 4401 11812 16213 And-MPL-36 243 1697 312 5130 13034 18163 And-MPL-37 333 1520 395 6488 16501 22989 And-MPL-38 238 661 442 7125 18535 25661 And-MPL-39 318 347 338 5112 14342 19455 And-MPL-40 245 551 390 6222 16387 22609 And-MPL-41 207 561 390 6230 16383 22613 And-MPL-42 223 425 283 4413 11948 16361 And-MPL-43 207 561 390 6230 16383 22613 And-MPL-44 324 340 395 5952 16769 22721 And-MPL-45 275 426 306 4767 12903 17670 And-MPL-46 302 397 166 2559 7001 9560 And-MPL-47 255 314 127 3211 9223 12433 And-MPL-48 257 220 142 1852 6151 8003 And-MPL-49 256 214 74 950 3205 4155 And-MPL-50 243 166 102 1493 6331 7823

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-01 300 782 442 7389 19703 27092 SST -MPL-02 250 480 572 9028 24083 33112 SST -MPL-03 314 424 433 6767 18273 25040 SST -MPL-04 292 809 572 9293 23951 33244 SST -MPL-05 275 1142 780 1277 32611 45382 SST -MPL-06 308 490 494 7811 20792 28603 SST -MPL-07 317 611 728 1169 30552 42241 SST -MPL-08 233 684 624 1008 26160 36235 SST -MPL-09 255 480 598 9439 25178 34617 SST -MPL-10 217 772 312 5061 13068 18129 SST -MPL-11 312 903 702 1144 29377 40817 SST -MPL-12 255 1094 390 6381 16308 22689 SST -MPL-13 286 742 510 8255 21350 29605 SST -MPL-14 248 615 198 3183 8316 11500

77

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-15 253 805 546 8869 22863 31732 SST -MPL-16 243 1094 390 6381 16308 22689 SST -MPL-17 234 1090 650 1063 27180 37814 SST -MPL-18 253 1371 624 1024 26077 36317 SST -MPL-19 327 434 408 6369 17198 23567 SST -MPL-20 270 310 497 7344 21169 28513 SST -MPL-21 269 691 522 8438 21896 30333 SST -MPL-22 312 504 484 7672 20368 28040 SST -MPL-23 319 627 331 5626 13897 19224 SST -MPL-24 281 689 420 6790 17624 24414 SST -MPL-25 210 720 497 8039 20821 28860 SST -MPL-26 303 775 471 7648 19743 27391 SST -MPL-27 272 714 395 6388 16551 22939 SST -MPL-28 292 855 764 1244 31997 44436 SST -MPL-29 310 742 510 8255 21350 29605 SST -MPL-30 284 847 522 8498 21866 30364 SST -MPL-31 320 891 828 1349 34656 48146 SST -MPL-32 261 256 226 3165 9741 12906 SST -MPL-33 224 405 311 4825 13157 17982 SST -MPL-34 231 379 255 3912 10783 14695 SST -MPL-35 290 442 594 9307 25071 34377 SST -MPL-36 241 521 283 4499 11905 16404 SST -MPL-37 275 605 340 5452 14259 19711 SST -MPL-38 263 616 368 5912 15445 21357 SST -MPL-39 227 615 198 3183 8316 11500 SST -MPL-40 236 508 311 4939 13100 18039 SST -MPL-41 318 1142 780 1277 32611 45382 SST -MPL-42 303 809 546 8870 22862 31733 SST -MPL-43 228 805 546 8869 22863 31732 SST -MPL-44 283 1142 780 1277 32611 45382 SST -MPL-45 277 772 312 5061 13068 18129 SST -MPL-46 288 1206 728 1193 30433 42361 SST -MPL-47 250 508 323 5119 13577 18695 SST -MPL-48 275 442 594 9307 25071 34377 SST -MPL-49 272 605 368 5906 15447 21354 SST -MPL-50 260 805 520 8447 21774 30221

78

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-01 270 546 293 4672 12313 16986 TST -MPL-02 258 787 293 4756 12272 17028 TST -MPL-03 275 730 255 4125 10676 14801 TST -MPL-04 282 715 510 8243 21356 29599 TST -MPL-05 254 1345 280 4599 11713 16312 TST -MPL-06 292 893 255 4151 10663 14814 TST -MPL-07 243 853 311 5067 13036 18103 TST -MPL-08 287 1047 268 4368 11192 15560 TST -MPL-09 230 787 471 7651 19741 27393 TST -MPL-10 230 427 147 2296 6212 8508 TST -MPL-11 282 1243 573 9397 23964 33361 TST -MPL-12 254 604 255 4089 10695 14783 TST -MPL-13 288 1180 369 6052 15445 21497 TST -MPL-14 251 631 232 3734 9739 13474 TST -MPL-15 214 1104 312 5105 13046 18151 TST -MPL-16 229 486 215 3400 9057 12457 TST -MPL-17 259 715 286 4626 11986 16612 TST -MPL-18 243 285 102 1474 4358 5833 TST -MPL-19 285 316 130 1934 5544 7478 TST -MPL-20 241 295 102 1489 4351 5840 TST -MPL-21 298 417 170 2641 7172 9813 TST -MPL-22 265 642 170 2650 7168 9817 TST -MPL-23 314 611 255 4091 10693 14784 TST -MPL-24 303 481 368 5843 15476 21322 TST -MPL-25 223 223 331 4370 14376 18745 TST -MPL-26 273 652 331 5336 13892 19229 TST -MPL-27 216 887 535 8716 22394 31109 TST -MPL-28 319 718 369 5977 15483 21460 TST -MPL-29 231 516 255 4046 10716 14762 TST -MPL-30 260 641 484 7793 20307 28100 TST -MPL-31 287 496 420 6654 17692 24346 TST -MPL-32 264 368 293 4477 12411 16888 TST -MPL-33 238 415 293 4560 12370 16930 TST -MPL-34 271 824 364 5917 15240 21157 TST -MPL-35 283 800 572 9290 23953 33242 TST -MPL-36 242 1013 468 7646 19575 27221 TST -MPL-37 254 715 234 3785 9806 13592 TST -MPL-38 210 755 390 6321 16338 22659

79

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-39 293 508 286 4536 12031 16567 TST -MPL-40 273 410 260 4036 10981 15017 TST -MPL-41 234 628 208 3345 8727 12071 TST -MPL-42 259 433 338 5279 14259 19538 TST -MPL-43 265 546 280 4469 11778 16247 TST -MPL-44 255 829 147 2394 6163 8557 TST -MPL-45 254 368 306 4671 12951 17622 TST -MPL-46 293 695 210 7616 19759 27375 TST -MPL-47 247 297 102 1491 4359 5841 TST -MPL-48 310 611 170 2728 7129 9870 TST -MPL-49 225 337 416 6744 17426 24170 TST -MPL-50 259 410 312 4841 13178 18019

ANDESITE

τm= 07103σm + 26

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=

((σ

1-σ

3)2

) (M

Pa)

MPL PredictionTriaxial Compressive

Figure 431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and MPL test

80

SILICIFIED TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=(

( σ1minus

σ3)

2)

(MPa

)MPL Prediction

Triaxial Compressive Strength test

Figure 432 Comparisons of triaxial compressive strength criterion of silicified

tuffaceous sandstone between the triaxial compressive strength test

and MPL test

81

TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stress σm=((σ1+σ3)2) (MPa)

Max

imum

shea

r st

res

τ m=(

( σ1-

σ3)

2)

(MPa

)

MPL Prediction

Triaxial Compressive Strength test

Figure 433 Comparisons of triaxial compressive strength criterion of tuffaceous

sandstone between the triaxial compressive strength test and MPL

test

Table 425 compares the triaxial test results in terms of the cohesion c

and internal friction angle φi by assuming the failure mode follows the Coulombrsquos

criterion The c and φi values are calculated from the test results and the predicted

results by the assumption of Coulombrsquos criterion (Jaeger and Cook 1978) Table

425 shows that the strengths predicted by MPL testing of all rock types under-

estimate those obtained from the standard triaxial testing This is probably the actual

Poissonrsquos ratio of the rock specimens are probably lower than those assumed in the

model simulation which is assumed the Poissonrsquos ratio as 025

82

Table 425 Comparisons of the internal friction angle and cohesion between MPL

predictions and triaxial compressive strength tests

Triaxial Compressive Strength Test

MPL Predictions (ν=025) Rock Type

c (MPa) φi (degrees) c (MPa) φi (degrees)

Porphyritic Andesite 12 69 4 45

Silicified Tuffaceous Sandstone 13 65 3 46

Tuffaceous Sandstone 7 73 2 46

CHAPTER V

FINITE DIFFERENCE ANALYSES

51 Objectives

The objective of the finite difference analyses is to verify that the equivalent

diameter of rock specimens used in the MPL strength prediction is appropriate The

finite difference analyses using FLAC software is made to determine the MPL

strength for various specimen diameters (D) with a constant cross-sectional area

52 Model characteristics

The analyses are made in axis symmetry Four specimen models with the

constant thickness of 318 cm are loaded with 10 cm diameter loading point The

diameter of the specimen (D) models is varied from 508 cm to 762 cm Each

specimen has a constant cross-sectional area of 1613 cm2 as shown in Figure 51

through 55 The load is applied to the specimens until failure occurs and then the

failure loads (P) are recorded

53 Results of finite difference analyses

The results of numerical simulation are shown in Table 51 The results

suggest that the MPL strength remains roughly constant when the same equivalent

diameter (De) is used It can be concluded that the equivalent diameter used in this

research is appropriate to predict the MPL strength

80

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm

81

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm

82

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm

Table 51 Summary of the results from numerical simulations

Model Number

Specimen Thickness

t (cm)

Specimen Diameter

D (cm)

Cross-Sectional

Are of Specimen

A (cm2)

Equivalent Diameter

De (cm)

Failure Load P

(kN)

1 318 508 1613 508 4485 2 318 572 1613 508 4630 3 318 635 1613 508 4614 4 318 698 1613 508 4627 5 318 762 1613 508 4590

CHAPTER VI

DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS

This chapter discusses various aspects of the proposed MPL testing technique

for determining the elastic modulus uniaxial and triaxial compressive strengths and

tensile strength of intact rock specimens The discussed issues include reliability of

the testing results validity scope and limitations of the proposed method of

calculations and accuracy of the predicted rock properties

61 Discussions

1) For selection of rock specimens for MPL testing in this research an

attempt has been made to select the specimens particularly in obtaining a high degree

of uniformity of rock matrix so as to reduce the intrinsic variability of the mechanical

test results and hence clearly reveals of the relation between the standard test results

with the MPL test results Nevertheless a high degree of intrinsic variability

remains as evidenced from the results of the characterization testing For all tested

rock types here the igneous rocks are normally heterogeneous The high intrinsic

variability is caused by the degree of weathering among specimens and the

distribution of rock fragments in the groundmass which promotes the different

orientations of cleavage planes and pore spaces to become a weak plane in rock

specimens Silicified tuffaceous sandstone the high standard deviation may be

caused by the silicified degree in rock specimens

84

2) For prediction of elastic modulus of rock specimens the effects of the

heterogeneity that cause the selective weak planes are enhanced during the MPL

testing This is because the applied loading areas are much smaller than those under

standard uniaxial compressive strength testing This load condition yields a high

degree of intrinsic variability of the MPL testing results The standard deviation of

the elastic modulus predicted from MPL results are in the range between 35-50

This means that in order to obtain the accurate prediction a large number of rock

specimens is necessary for each rock types and that the MPL testing is more

applicable in fine-grained rocks than coarse-grained rocks Another factor is the

uneven contacts between the loading platens and the rock surfaces which caused the

elastic modulus of all rock types that predicted from MPL testing to be lower

compared with those from the uniaxial compressive strength

3) Equivalent diameter used to define the rock specimen width (perpendicular

to the loading direction) seems adequate for use in MPL predictions of rock

compressive and tensile strengths

4) Determination of σ3 at failure for the MPL testing is the empirical In fact

results from the numerical simulation indicate that σ3 distribution along the imaginary

cylinder between the loading points is not uniform particularly for low td ratio

(lower than 25) Along this cylinder σ3 is tension near the loading point and

becomes compression in the mid-length of the MPL specimen There are also shear

stresses along the imaginary cylinder The induced stress states along the assume

cylinder in MPL specimen are therefore different from those the actual triaxial

strength testing specimen The MPL method can not satisfactorily predict the triaxial

compressive strength of all tested rock types primarily due to the heterogeneity of

85

rock specimens that is the different sizes of phenocrysts in igneous rock in lateral and

horizontal directions This promotes the different failure formations

62 Conclusions

The objective of this research is to determine the elastic modulus uniaxial

compressive strength tensile strength and triaxial compressive strength of rock

specimens by using the modified point load (MPL) test method Three rock types

used in this research are porphyritic andesite silicified tuffaceous sandstone and

tuffaceous sandstone Prior to performing the modified point load testing the

standard characterization testing is carried out on these rock types to obtain the data

basis for use to compare the results from MPL testing The MPL specimens are

irregular-shaped with the specimen thickness to loading platen diameter (td) varies

from 25-35 and the equivalent diameter of specimen to loading platen diameter

(Ded) varies from 15 to 20 Loading platen diameters used in this research are 7 10

and 15 mm Finite different analysis is used to verify the equivalent diameter that use

to calculate rock properties from MPL tests

The research results illustrate that the elastic modulus estimated from MPL tests

under-estimates those obtained from the ASTM standard test with the standard

deviation of 40 for porphyritic andesite 48 for silicified tuffaceous sandstone and

43 for tuffaceous sandstone The MPL test method can satisfactorily predict the

uniaxial compressive strength and tensile strength of all rock types tested here The

conventional point load test method over-predicts the actual strength results by much as

100 The MPL method however can not predict the triaxial compressive strengths

for three rock types tested here primarily due to heterogeneous and different

86

weathering degree of rock specimens and uneven surface of rock specimens This

suggests that the smooth and parallel contact surfaces on opposite side of the loading

points are important for determining the strength of rock specimens for MPL method

63 Recommendations

The assessment of predictive capability of the proposed MPL testing technique

has been limited to three rock types More testing is needed to confirm the applicability

and limitations of the proposed method Some obvious future research needs are

summarized as follows

1) More testing is required for elastic modulus and triaxial compressive strength

on different rock types Smooth and parallel of rock specimen surfaces in the opposite

sides should be prepared for all rock types The results may also reveal the impacts of

grain size on elasticity and strength of obtained under different loading areas And the

effects of size of the areas underneath the applied load should be further investigated

2) To truly confirm the validity of MPL predictions for the elastic modulus and

strength of rocks may be desirable to obtain the actual Poissonrsquos ratio of all rock types

The results could reveal the accuracy of the predicted elastic modulus under the assumed

Poissonrsquos ratio of 025 Comparison between the elastic modulus obtained from the

actual Poissonrsquos ratio may show the validity of assumption of the Poissonrsquos ratio posed

here

3) All tests made in this research are on dry specimens the results of pore

pressure and degree of saturation have not been investigated It is desirable to learn also

the proposed MPL testing technique can yield the intact rock properties under

different degree of saturation

88

REFERENCES

ASTM D2664-86 Standard test method for triaxial compressive strength of

undrained rock core specimens without pore pressure measurements In

Annual Book of ASTM Standards (Vol 0408) Philadelphia American

Society for Testing and Materials

ASTM D7012-07 Standard test method for compressive strength and elastic moduli

of intact rock core specimens under varying states of stress and

temperatures In Annual Book of ASTM Standards (Vol 0408) West

Conshohocken American Society for Testing and Materials

ASTM D3967-81 Standard test method for splitting tensile strength of intact rock

core specimens In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

ASTM D4543-85 Standard test method for preparing rock core specimens and

determining dimensional and shape tolerances In Annual Book of ASTM

Standards (Vol 0408) Philadelphia American Society for Testing and

Materials

ASTM D5731-95 Standard test method for determination of point load strength

index of rock In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

Bieniawski Z T (1974) Estimating of the strength of rock materials J Inst

Min Metall 7 123-137

Bieniawski Z T (1975) The point-load test in geotechnical practice Engng

Geol 9 1-11

89

Bieniawski Z T and Bernede M J (1979) Suggested methods for determining the

uniaxial compressive strength and deferability of rock material for ISRM

Commission on Standardization of Laboratory and Field test Int J Rock

Mech Min Sci 16 (2)xxxx (page no)

Bray J W (1987) Some applications of elastic theory In E T Brown (ed)

Analytical and Computational Methods in Engineering Rock

Mechanics (pp 32-94) Allen amp Unwin London

Broch E and Franklin J A (1972) The point-load test Int J Rock Mech Min

Sci 9 669-697

Book N (1977) The use of irregular specimens for rock strength tests Int J

Rock Mech Min Sci amp Geomech Abstr 14 193-202

Book N (1979) Estimating the triaxial strength of rocks Int J Rock Mech Min

Sci amp Geomech Abstr 16 261-264

Book N (1980) Size correction for point load testing Int J Rock Mech Min

Sci 17231-235 [Technical note]

Book N (1985) The equivalent core diameter method of size and shape correction

in point load testing Int J Rock Mech Min Sci amp Geomech Abstr

22 61-70

Brown E T (1981) Rock characterization Testing and Monitoring ISRM

Suggestion Methods New York International Society for Rock

Mechanics Pergamon Press

Butenuth C (1997) Comparison of tensile strength values of rocks determined by

point load and direct tensile tests Rock Mech Rock Engng 30 65-72

90

Cargill J S and Shakoor A (1992) Evaluation of empirical methods for measuring

the uniaxial compressive strength Int J Rock Mech Min Sci 27 495-503

Chau KT (1997) Youngrsquos modulus interpreted from compression tests with end

friction J Engng Mech January 1-7 plat Ann Inst Tech Trav Publics

58 967-971

Chau KT and Wei X X (1999) A new analytic solution for the diametral point

load strength test on finite solid circular cylinders Int J Solids and

Structures 38(9) 1459-1481

Chau KT and Wong R HC (1996) Uniaxial compressive strength and point

load strength Int J Rock Mech Min Sci 33183-188

Davis R O and Selvadurai APS (1996) Elasticity and Geomechanics New

York Cambridge University Press 198 p

Deere DU and Miller R P (1966) Engineering Classification and Index

Properties for Intact Rock US Air Force Weapons Lab Rep AFWL-

TR-65-116

Durelli A J and Parks V (1962) Relationship of size and stress gradient to brittle

failure stress In Proceeding of the 4th US National Cong Of Appl

Mech (pp 931-938)

Evans I (1961) The tensile strength of coal Colliery Eng 38 428-434

Fairhurst C (1961) Laboratory measurement of some physical properties of rock

In Proceeding of the 4th Symp Rock Mech (pp 105-118) Penn State

University

Farmer I (1983) Engineering Behavior of Rocks New York Chapman and Hall

208 p

91

Forster I R (1983) The influence of core sample geometry on axial load test Int

J Rock Mech Min Sci 20 291-295

Fuenkajorn K (2002) Modified point load test determining uniaxial compressive

strength of intact rock In Proceeding of 5th North American Rock

Mechanics Symposium and the 17th Tunneling Association of Canada

Conference (NARMS-TAC 2002) (pp ) Toronto

Fuenkajorn K and Daemen J J K (1986) Shape effect on ring test tensile

strength In Key to Energy Production Proceeding of the 27th US

Symposium on Rock Mechanics (pp 155-163) Tuscaloosa University of

Alabama

Fuenkajorn K and Daemen J J K (1991b) An empirical strength criterion for

heterogeneous welded tuff In ASME Applied Mechanics and

Biomechanics Summer Conference Columbus Ohio University

Fuenkajorn K and Daemen J J K (1992) An empirical strength criterion for

heterogeneous tuff Int J Engineering Geology 32 209-223

Fuenkajorn K and Tepnarong P (2001) Size and stress gradient effects on the

modified point load strength of Saraburi Marble In the 6th Mining

Metallurgical and Petroleum Engineering Conference Bangkok

Thailand(pp)

Ghosh A Fuenkajorn K and Daemen J J K (1995) Tensile strength of welded

Apache Leap tuff investigation for scale effects In Proceeding of the 35th

US Rock Mech Symposium (pp 459-646) University of Navada Reno

Goodman R E (1980) Methods of Geological Engineering in Discontinuous

Rock New York Wiley and Sons

92

Greminger M (1982) Experimental studies of the influence of rock anisotropy on

size and shape effects in point-load testing Int J Rock Mech Min Sci

19 241-246

Gunsallus K L and Kulhawy F H (1984) A comparative evaluation of rock

strength measures Int J Rock Mech Min Sci 21 233-248

Hassani F P Scoble M J and Whittaker B N (1980) Application of point load

index test to strength determination of rock and proposals for new size-

correction chart (pp 543-564) Rolla

Hiramatsu Y and Oka Y (1966) Determination of tensile strength of rock by a

compression test of irregular test piece Int J Rock Mech Min Sci 3

89-99

Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the

Hoek-Brown falure criterion-Technical note Int J Rock Mech Min Sci

amp Geomech Abstr 27 227-229

Hoek E and Brown E T (1980a) Empirical strength criterion for rock masses J

Geotech Eng Div 106 (GT9) 1013-1035

Hondros G (1959) The evaluation of Poissonrsquos ratio and modulus of material of a

low tensile resistance by the Brazilian (indirect tensile) test with particular

reference to concrete Aust J Appl Sci 10 243-264

Horii H and Nemat-Nasser S (1985) Compression-induced microcrack growth in

brittle solids axial splitting and shear failure J Geophts Res 90 3105-

3125

93

Hudson J A Brown E T and Fairhurst C (1971) Shape of the complete stress-

strain curve for rock In Proceeding of the 13th US Symp Rock Mech (pp

773-795) Urbana

ISRM (1985) Suggested method for determining point load strength Int J Rock

Mech Min Sci amp Geomech Abstr 22 53-60

ISRM (1985) Suggested methods for deformability determination using a flexible

dilatometer Int J Rock Mech Min Sci amp Geomech Abstr 24 123-134

Jaeger J C and Cook N G W (1979) Fundamentals of Rock Mechanics

London Chapman and Hall 593 p

Kaczynski R R (1986) Scale effect during compressive strength of rocks In

Proceeding of 5th Int Assoc Eng Geol Congr p 371-373

Lama R D and Vutukuri V S (1978) Testing techniques and results In

Handbook on Mechanical Properties of Rock Vol III No 2 Trans

Tech Publications (International Standard Book Number 0-87849-022-1

Clausthal Germany)

Lonborg N (1967) The strength-size relation of granite Int J Rock Mech Min

Sci 4 269-272

Miller R P (1965) Engineering Classification and Index Properties for Intact

Rock PhD Dissertation Univ Of Illinois Urbana III 92 p

Nimick F B (1988) Empirical relations between porosity and the mechanical

properties of tuff In Key Questions in Rock Mechanics (pp 741-742)

Balkema Rotterdam

Obert L and Stephenson D E (1965) Stress conditions under which core disking

occurs Trans Soc Min Eng AIME 232 227-235

94

Panek L A and Fannon T A (1992) Size and shape effects in point load tests

of irregular rock fragments J Rock Mechanics and Rock Engineering

25 109-140

Pells P J N (1975) The use of point load test in predicting the compressive

strength of rock material Aust Geotech (pp 54-56) G5(N1)

Reichmuth D R (1968) Point-load testing of brittle materials to determine the

tensile strength and relative brittleness In Proceeding of the 9th US Symp

Rock Mech (pp 134-159) University of Colorado

Sammis C G and Ashby M F (1986) The failure of brittle porous solid under

compressive stress state Acta Metall 34 511-526

Serata S and Fuenkajorn K (1992a) Finite element progam lsquoGEOrsquo for modeling

brittle-ductile deterioration of aging earth structures In SMRI Paper

Presented at the Solution Mining Research Institute Fall Meeting

October 19-22 Houston Texas 24p

Sheorey P R Biswas A K and Choubey V D (1989) An empirical failure

criterion of rocks and jointed rock masses Eng Geol 26 141-159

Stowe R L (1969) Strength and deformation properties of granite basalt

limestone and tuff US Army Corps of Engineers WES Misc Paper C-69-1

Taliercio A and Sacchi Landrianni G (1988) Failure criterion for layered rock

Int J Rock Mech Min Sci amp Geomech Abstr 25 299-305

Tepnarong P (2001) Theoretical and experimental studies to determine

compressive and tensile strengths of rocks using modified point load

testing M Eng Thesis Suranaree University of Technology Thailand

95

Tepnarong P (2006) Theoretical and experimental studies to determine elastic

modulus and triaxial compressive strength of intact rocks by modified

point load testing PhD Eng Thesis Suranaree University of

Technology Thailand

Tepnarong P and Fuenkajorn K (2004) Determining of elasticity and strengths

of intact rocks using modified point load test In Proceeding of the ISRM

International Symposium 3rd ASRM Vol 2 (pp 397-392)

Timoshenko S (1958) Strength of materials I Element Theory and Problems

(3rd ed) Princeton N J D Van Nostard

Timoshenko S and Goodier J N (1951) Theory of Elasticity (2nd ed) New

York McGraw-Hill

Truk N and Dearman W R (1985) Improvements in the determination of point

load strength Bull Int Assoc Eng Geol 31 137-142

Truk N and Dearman W R (1986) A correction equation on the influence of

length-to-diameter ratio on uniaxial compressive strength of rocks J Eng

Geol 22 293-300

Wei X X and Chau K T (2002) Analytic solution for finite transversely

isotropic circular cylinder under the axial point load test J Eng Mech

(pp 209-219)Vol

Wei X X and Chau K T and Wong R H C (1999) Analytic solution for

axial point load strength test on solid circular cylinders J Eng Mech (pp

1349-1357) Vol

96

Wijk G (1978) Some new theoretical aspects of indirect measurements of the

tensile strength of rocks Int J Rock Mech Min Sci amp Geomech

Abstr 15 149-160

Wijk G (1980) The point load test for the tensile strength of rock Geotech Test

ASTM 3 49-54

APPENDIX A

CHARACTERIZATION TEST RESULTS

97

Table A-1 Results of conventional point load strength index test on porphyritic

andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

And-06-05-CPL-01 5397 5366 284 52 And-06-05-CPL-02 5332 5366 283 78 And-08-04-CPL-03 5432 5366 284 90 And-08-04-CPL-04 5482 5366 286 87 And-06-01-CPL-05 5330 5366 285 76 And-06-01-CPL-06 5613 5366 284 76 And-04-04-CPL-07 5617 5366 281 75 And-04-05-CPL-08 5525 5366 282 75 And-03-02-CPL-09 5595 5366 280 85 And-03-02-CPL-10 5535 5366 283 85 And-06-06-CPL-11 5475 5366 283 75 And-09-01-CPL-12 5552 5366 286 90 And-09-01-CPL-13 5503 5366 283 90 And-02-04-CPL-14 5542 5366 282 85 And-09-03-CPL-15 5607 5366 282 85 And-09-03-CPL-16 5452 5366 285 96 And-01-03-CPL-17 5530 5366 283 87 And-01-03-CPL-18 5313 5366 283 90 And-01-04-CPL-19 5465 5366 284 56 And-01-04-CPL-20 5572 5366 283 97

Average 81plusmn12

98

Table A-2 Results of conventional point load strength index test on silicified

tuffaceous sand stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

SST-02-03-CPL-01 5373 5366 268 125 SST-06-04-CPL-02 5469 5366 268 70 SST-02-07-CPL-03 5505 5366 269 70 SST-02-06-CPL-04 5518 5366 267 130 SST-02-04-CPL-05 5626 5366 267 125 SST-02-03-CPL-06 5139 5366 270 132 SST-02-03-CPL-07 5483 5366 271 71 SST-02-05-CPL-08 5340 5366 266 125 SST-02-05-CPL-09 5399 5366 265 70 SST-07-05-CPL-10 5643 5366 263 99 SST-07-05-CPL-11 5381 5366 266 106 SST-05-02-CPL-12 5439 5366 274 104 SST-05-02-CPL-13 5491 5366 271 104 SST-03-04-CPL-14 5430 5366 263 113 SST-03-04-CPL-15 5556 5366 263 106 SST-09-03-CPL-16 5491 5366 272 125 SST-09-03-CPL-17 5703 5366 271 125 SST-01-01-CPL-18 5705 5366 267 132 SST-02-07-CPL-19 5596 5366 269 111 SST-02-07-CPL-20 5527 5366 271 118

Average 108plusmn22

99

Table A-3 Results of conventional point load strength index test on tuffaceous sand

stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

TST-06-05-CPL-01 5657 5366 263 125 TST-06-05-CPL-02 5781 5366 264 109 TST-02-05-CPL-03 5686 5366 263 106 TST-02-05-CPL-04 5747 5366 264 80 TST-08-03-CPL-05 5606 5366 268 115 TST-08-03-CPL-06 5574 5366 266 118 TST-08-01-CPL-07 5491 5366 268 111 TST-08-01-CPL-08 5478 5366 268 115 TST-04-02-CPL-09 5422 5366 263 103 TST-04-02-CPL-10 5387 5366 264 111 TST-08-04-CPL-11 5371 5366 267 115 TST-08-04-CPL-12 5463 5366 267 113 TST-06-07-CPL-13 5545 5366 267 108 TST-04-01-CPL-14 5729 5366 261 59 TST-06-06-CPL-15 5457 5366 261 99 TST-06-06-CPL-16 5469 5366 263 109 TST-06-06-CPL-17 5497 5366 266 122 TST-04-03-CPL-18 5550 5366 261 87 TST-04-03-CPL-19 5521 5366 262 52 TST-04-05-CPL-20 5477 5366 264 87

Average 102plusmn20

100

Table A-4 Results of uniaxial compressive strength tests and elastic modulus

measurements on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-5 Results of uniaxial compressive strength tests and elastic modulus

measurements on silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

Table A-6 Results of uniaxial compressive strength tests and elastic modulus

measurements on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

101

Table A-7 Results of Brazilian tensile strength tests on porphyritic andesite

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

And-04-03-BZ-01 2628 5366 281 395 178 And-04-03-BZ-02 2551 5366 279 350 163 And-04-03-BZ-03 2755 5366 285 380 164 And-04-03-BZ-04 2669 5366 279 415 184 And-04-06-BZ-05 2686 5366 280 320 141 And-04-06-BZ-06 2699 5366 286 415 182 And-04-06-BZ-07 2649 5366 282 395 177 And-04-06-BZ-08 2642 5366 286 340 153 And-06-01-BZ-09 2678 5366 286 435 193 And-06-01-BZ-10 2758 5366 285 385 166

Average 170plusmn16

Table A-8 Results of Brazilian tensile strength tests on silicified tuffaceous

sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

SST-02-02-BZ-01 2507 5366 265 450 213 SST-01-06-BZ-02 2664 5366 264 520 232 SST-01-02-BZ-03 2595 5366 262 400 183 SST-01-02-BZ-04 2593 5366 261 320 146 SST-01-02-BZ-05 2608 5366 266 500 228 SST-02-01-BZ-06 2710 5366 266 500 220 SST-02-01-BZ-07 2654 5366 262 450 201 SST-01-05-BZ-08 2778 5366 268 350 150 SST-01-05-BZ-09 2793 5366 266 400 170 SST-01-05-BZ-10 2795 5366 266 400 170

Average 191plusmn32

102

Table A-9 esults of Brazilian tensile strength tests on tuffaceous sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

TST-02-03-BZ-01 2811 5366 260 360 152 TST-02-03-BZ-02 2757 5366 260 255 110 TST-02-03-BZ-03 2739 5366 262 325 141 TST-02-03-BZ-04 2688 5366 263 175 77 TST-06-04-BZ-05 2765 5366 266 450 193 TST-06-04-BZ-06 2729 5366 264 280 122 TST-06-04-BZ-07 2730 5366 260 230 100 TST-06-02-BZ-08 2748 5366 264 285 123 TST-06-02-BZ-09 2743 5366 261 290 125 TST-06-02-BZ-10 2658 5366 265 370 165

Average 131plusmn33

Table A-10 esults of triaxial compressive strength tests on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-11 Results of triaxial compressive strength tests on silicified tuffaceous

sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

103

Table A-12 Results of triaxial compressive strength tests on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

APPENDIX B

MODIFIED POINT LOAD TEST RESULTS FOR ELASTIC

MODULUS PREDICTION

116

AND-MPL-01

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 125 GPamm

Figure B1 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-01

And-MPL-02

00500

100015002000250030003500400045005000

0 005 01 015 02 025 03 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 180 GPamm

Figure B2 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-02

117

And-MPL-03

00200400600800

100012001400160018002000

000 002 004 006 008 010 012 014

Diplacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B3 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-03

And-MPL-04

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B4 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-04

118

And-MPL-05

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 369 GPamm

Figure B5 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-05

And-MPL-06

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B6 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-06

119

And-MPL-07

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss (

MPa

)

ΔPΔδ = 234 GPamm

Figure B7 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-07

And-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 171 GPamm

Figure B8 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-08

120

And-MPL-09

00

500

1000

1500

2000

2500

3000

3500

000 020 040 060 080 100 120 140Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 056 GPamm

Figure B9 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-09

And-MPL-10

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 124 GPamm

Figure B10 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-10

121

And-MPL-11

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030 035 040Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 138 GPamm

Figure B11 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-11

And-MPL-12

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 189 GPamm

Figure B12 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-12

122

And-MPL-13

00500

100015002000250030003500400045005000

000 010 020 030 040 050 060

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 151 GPamm

Figure B13 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-13

And-MPL-14

00

1000

2000

3000

4000

5000

6000

7000

000 010 020 030 040 050 060Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 165 GPamm

Figure B14 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-14

123

And-MPL-15

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120 140 160Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 011 GPamm

Figure B15 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-15

And-MPL-16

00

200

400

600

800

1000

1200

1400

1600

1800

000 050 100 150 200Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 012 GPamm

Figure B16 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-16

124

And-MPL-17

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120

Displacement (mm)

Stre

ss P

(MPa

) ΔPΔδ = 021 GPamm

Figure B17 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-17

And-MPL-18

00

500

1000

1500

2000

2500

3000

000 050 100 150 200 250 300 350Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 008 GPamm

Figure B18 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-18

125

And-MPL-19

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B19 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-19

And-MPL-20

00

1000

2000

3000

4000

5000

6000

000 050 100 150 200 250 300

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 017 GPamm

Figure B20 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-20

126

And-MPL-21

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B21 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-21

And-MPL-22

00

500

1000

1500

2000

2500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B22 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-22

127

And-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B23 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-23

And-MPL-24

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =112 GPamm

Figure B24 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-24

128

And-MPL-25

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 585 GPamm

Figure B25 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-25

And-MPL-26

00500

10001500200025003000350040004500

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 143 GPamm

Figure B26 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-26

129

And-MPL-27

00500

10001500200025003000350040004500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B27 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-27

And-MPL-28

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B28 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-28

130

And-MPL-29

00500

1000150020002500300035004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B29 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-29

And-MPL-30

00

1000

2000

3000

4000

5000

6000

7000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B30 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-30

131

And-MPL-31

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B31 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-31

And-MPL-32

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B32 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-32

132

And-MPL-33

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 101 GPamm

Figure B33 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-33

And-MPL-34

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 135 GPamm

Figure B34 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-34

133

And-MPL-35

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 127 GPamm

Figure B35 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-35

And-MPL-36

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 292 GPamm

Figure B36 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-36

134

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B37 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-37

And-MPL-38

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B38 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-38

135

And-MPL-39

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 186 GPamm

Figure B39 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-39

And-MPL-40

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 20 GPamm

Figure B40 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-40

136

And-MPL-41

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B41 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-41

And-MPL-42

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B42 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-42

137

And-MPL-43

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 346 GPamm

Figure B43 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-43

And-MPL-44

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B44 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-44

138

And-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 169 GPamm

Figure B45 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-45

And-MPL-46

00

200

400

600

800

1000

1200

1400

1600

1800

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B46 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-46

139

And-MPL-47

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B47 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-47

And-MPL-48

00

200

400

600

800

1000

1200

1400

1600

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 094 GPamm

Figure B48 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-48

140

And-MPL-49

00

100

200

300

400

500

600

700

800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 057 GPamm

Figure B49 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-49

And-MPL-50

00

200

400

600

800

1000

1200

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 078 GPamm

Figure B50 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-50

141

SST-MPL-01

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 280 GPamm

Figure B51 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-01

SST-MPL-02

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 307 GPamm

Figure B52 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-02

142

SST-MPL-03

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 356 GPamm

Figure B53 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-03

SST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 450 GPamm

Figure B54 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-04

143

SST-MPL-05

00100020003000400050006000700080009000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 532 GPamm

Figure B55 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-05

SST-MPL-06

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 273 GPamm

Figure B56 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-06

144

SST-MPL-07

0010002000300040005000600070008000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 418 GPamm

Figure B57 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-07

SST-MPL-08

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 414 GPamm

Figure B58 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-08

145

SST-MPL-09

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B59 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-09

SST-MPL-10

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 958 GPamm

Figure B60 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-10

146

SST-MPL-11

00

10002000

300040005000

60007000

8000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 400 GPamm

Figure B61 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-11

SST-MPL-12

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 272 GPamm

Figure B62 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-12

147

SST-MPL-13

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 408 GPamm

Figure B63 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-13

SST-MPL-14

00

500

1000

1500

2000

2500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 296 GPamm

Figure B64 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-14

148

SST-MPL-15

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 282 GPamm

Figure B65 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-15

SST-MPL-16

00500

1000150020002500300035004000

000 005 010 015 020

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 26 GPamm

Figure B66 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-16

149

SST-MPL-17

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 416 GPamm

Figure B67 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-17

SST-MPL-18

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 473 GPamm

Figure B68 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-18

150

SST-MPL-19

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 330 GPamm

Figure B69 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-19

SST-MPL-20

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 278 GPamm

Figure B70 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-20

151

SST-MPL-21

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 185 GPamm

Figure B71 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-21

SST-MPL-22

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B72 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-22

152

SST-MPL-23

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 15 GPamm

Figure B73 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-23

SST-MPL-24

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 295 GPamm

Figure B74 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-24

153

SST-MPL-25

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 259 GPamm

Figure B75 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-25

SST-MPL-26

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 221 GPamm

Figure B76 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-26

154

SST-MPL-27

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 274 GPamm

Figure B77 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-27

SST-MPL-28

0010002000300040005000600070008000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 209 GPamm

Figure B78 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-28

155

SST-MPL-29

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 176 GPamm

Figure B79 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-29

SST-MPL-30

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B80 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-30

156

SST-MPL-31

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 464 GPamm

Figure B81 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-31

SST-MPL-32

00

500

1000

1500

2000

2500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 178 GPamm

Figure B82 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-32

157

SST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 131 GPamm

Figure B83 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-33

SST-MPL-34

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 215 GPamm

Figure B84 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-34

158

SST-MPL-35

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 190 GPamm

Figure B85 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-35

SST-MPL-36

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B86 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-36

159

SST-MPL-37

00500

1000150020002500300035004000

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 067 GPamm

Figure B87 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-37

AND-MPL-38

00

500

10001500

2000

2500

3000

35004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 127 GPamm

Figure B88 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-38

160

SST-MPL-39

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 229 GPamm

Figure B89 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-39

SST-MPL-40

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 090 GPamm

Figure B90 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-40

161

SST-MPL-41

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 498 GPamm

Figure B91 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-41

SST-MPL-42

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 392 GPamm

Figure B92 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-42

162

SST-MPL-43

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 244 GPamm

Figure B93 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-43

SST-MPL-44

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 571 GPamm

Figure B94 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-44

163

SST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 001 002 003 004 005 006 007 008

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 780 GPamm

Figure B95 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-45

SST-MPL-46

0010002000300040005000600070008000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 411 GPamm

Figure B96 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-46

164

SST-MPL-47

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 309 GPamm

Figure B97 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-47

SST-MPL-48

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 338 GPamm

Figure B98 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-48

165

SST-MPL-49

00500

1000150020002500300035004000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 254 GPamm

Figure B99 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-49

SST-MPL-50

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 360 GPamm

Figure B100 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-50

166

TST-MPL -01

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 212GPamm

Figure B101 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-01

TST-MPL-02

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=326 GPamm

Figure B102 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-02

167

TST-MPL-03

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacememt (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B103 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-03

TST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B104 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-04

168

TST-MPL-05

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 264 GPamm

Figure B105 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-05

TST-MPL-06

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacment (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B106 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-06

169

TST-MPL-07

00

500

1000

1500

2000

2500

3000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 162 GPamm

Figure B107 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-07

TST-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=319 GPamm

Figure B108 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-08

170

TST-MPL-09

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =212 GPamm

Figure B109 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-09

TST-MPL-10

00200400600800

1000120014001600

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 132GPamm

Figure B110 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-10

171

TST-MPL-11

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =319 GPamm

Figure B111 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-11

TST-MPL-12

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 127 GPamm

Figure B112 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-12

172

TST-MPL-13

00500

1000150020002500300035004000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 159 GPamm

Figure B113 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-13

TST-MPL-14

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =170 GPamm

Figure B114 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-14

173

TST-MPL-15

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 260 GPamm

Figure B115 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-15

TST-MPL-16

00500

100015002000250030003500400045005000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B116 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-16

174

TST-MPL-17

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B117 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-17

TST-MPL-18

00

200

400

600

800

1000

1200

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=073 GPamm

Figure B118 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-18

175

TST-MPL-19

00

200

400

600

800

1000

1200

1400

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B119 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-19

TST-MPL-20

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=170 GPamm

Figure B120 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-20

176

TST-MPL-21

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=100 GPamm

Figure B121 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-21

TST-MPL-22

00200400600800

10001200140016001800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 088 GPamm

Figure B122 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-22

177

TST-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 101 GPamm

Figure B123 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-23

TST-MPL-24

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 124 GPamm

Figure B124 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-24

178

TST-MPL-25

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 126 GPamm

Figure B125 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-25

TST-MPL-26

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 178 GPamm

Figure B126 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-26

179

TST-MPL-27

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B127 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-27

TST-MPL-28

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 164 GPamm

Figure B128 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-28

180

TST-MPL-29

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B129 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-29

TST-MPL-30

00500

100015002000250030003500400045005000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =280 GPamm

Figure B130 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-30

181

TST-MPL-31

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B131 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-31

TST-MPL-32

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B132 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-32

182

TST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 130 GPa mm

Figure B133 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-33

TST-MPL-34

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B134 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-34

183

TST-MPL-35

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B135 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-35

TST-MPL-36

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B136 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-36

184

TST-MPL-37

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 217 GPamm

Figure B137 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-37

TST-MPL-38

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 52 GPamm

Figure B138 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-38

185

TST-MPL-39

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B139 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-39

TST-MPL-40

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 347 GPamm

Figure B140 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-40

186

TST-MPL-41

00

500

1000

1500

2000

2500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B141 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-41

TST-MPL-42

00

500

1000

1500

2000

2500

3000

3500

4000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B142 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-42

187

TST-MPL -43

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 435 GPamm

Figure B143 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-43

TST-MPL-44

00

200

400

600

800

1000

1200

1400

1600

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B144 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-44

188

TST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 315 GPamm

Figure B145 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-45

TST-MPL-46

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B146 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-46

189

TST-MPL-47

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=128 GPamm

Figure B147 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-47

TST-MPL-48

00200400600800

10001200140016001800

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 237GPamm

Figure B148 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-48

190

TST-MPL-49

00

500

1000

1500

2000

2500

3000

3500

4000

4500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B149 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-49

TST-MPL-50

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 394 GPamm

Figure B150 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-50

BIOGRAPHY

Mr Chatchai Intaraprasit was born on July 30 1973 in Khon Kaen province

Thailand He received his Bachelorrsquos Degree in Science (Geotechnology) from Khon

Kaen University in 1996 He worked with the construction company for ten years

after graduated the Bachelorrsquos Degree For his post-graduate he continued to study

with a Masterrsquos Degree in the Geological Engineering Program Institute of

Engineering Suranaree University of Technology He has published a technical

papers related to rock mechanics as in 2009 ldquoModified point load testing of volcanic

rocks from Chatree gold minerdquo in the proceeding of the second Thailand symposium

on rock mechanics Chonburi Thailand For his work he is working as a

geotechnical engineer at Akara mining company limited Phichit province Thailand

  • cover
  • abstractpdf
  • CHAPTER I
  • CHAPTER II
  • CHAPTER III
  • CHAPTER IV
  • CHAPTER V
  • CHAPTER VI
  • REFERENCES
  • APPENDIX A
  • APPENDIX B
  • BIOGRAPHY
Page 2: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·

MODIFIED POINT LOAD TESTS OF PIT WALL

ROCK AT CHATREE GOLD MINE

Chatchai Intaraprasit

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Engineering in Geotechnology

Suranaree University of Technology

Academic Year 2009

MODIFIED POINT LOAD TESTS OF PIT WALL ROCK AT

CHATREE GOLD MINE

Suranaree University of Technology has approved this thesis submitted in

partial fulfillment of the requirements for a Masterrsquos Degree

Thesis Examining Committee

_________________________________

(Asst Prof Thara Lekuthai)

Chairperson

_________________________________

(Assoc Prof Dr Kittitep Fuenkajorn)

Member (Thesis Advisor)

_________________________________

(Dr Prachya Tepnarong)

Member

_______________________________ _________________________________

(Prof Dr Pairote Sattayatham) (Assoc Prof Dr Vorapot Khompis)

Acting Vice Rector for Academic Affairs Dean of Institute of Engineering

ชาตชาย อนทรประสทธ การทดสอบจดกดแบบปรบเปลยนของหนผนงบอทเหมองแรทองคาชาตร (MODIFIED POINT LOAD TESTS OF PIT WALL ROCK AT CHATREE GOLD MINE ) อาจารยทปรกษา รองศาสตราจารย ดร กตตเทพ เฟองขจร 191 หนา

การทดสอบจดกดแบบปรบเปลยนไดถกนามาใชในการหาคาความเคนกด แรงดง และคาความยดหยนของหนตวอยางในหองปฏบตการทดสอบ มาเปนเวลาเกอบสบปแลว วธการทดสอบนไดถกประดษฐ และจดทะเบยนลขสทธโดยมหาวทยาลยเทคโนโลยสรนาร เครองมอ และวธการทดสอบถกออกแบบใหมราคาถกและงาย เมอเปรยบเทยบกบวธการทดสอบเพอหาคณสมบตเชงกลของหนแบบดงเดม เชน วธการทดสอบตามมาตรฐาน ISRM และ ASTM ในอดตการทดสอบจดกดแบบปรบเปลยนสวนใหญมกทดสอบในแทงตวอยางหนทเปนรปวงกลม และรปสเหลยมมมฉาก ในขณะทมการอางวาการทดสอบแบบจดกดแบบปรบเปลยนนสามารถใชไดกบหนทกรปราง แตผลทดสอบวธนกบหนทมรปรางไมเปนทรงเรขาคณตยงมนอยมาก เนองจากเหตนจงยงไมมการยนยนอยางเพยงพอวา วธการทดสอบจดกดแบบปรบเปลยนสามารถใชไดจรงและมความสมาเสมอเพยงพอในการตรวจหาคณสมบตทางกลศาสตรพนฐานของหนในภาคสนามซงไมสามารถจดหาเครองเจาะและเครองตดหนได วตถประสงคของงานวจยนคอ เพอประเมนศกยภาพของการทดสอบของวธการทดสอบแบบจดกดแบบปรบเปลยนในหนตวอยางทมรปรางไมเปนทรงเรขาคณต ตวอยางหนสามชนด จานวน 150 ตวอยางเปนอยางนอย ไดแก porphyritic andesite silicified-tuffaceous sandstone และ tuffaceous sandstone ซงเกบรวบรวมมาจากผนงบอทางดานทศเหนอของเขาหมอทเหมองแรทองคาชาตร จะถกนามาใชในการทดสอบน อตราสวนระหวางความหนาของหนตวอยางตอเสนผาศนยกลางของหวกด แปรผนระหวาง 2 ถง3 และ อตราสวนระหวางเสนผาศนยกลางของตวอยางหนกบเสนผาศนยกลางของหวกดแปรผนระหวาง 5 ถง 10 การสญเสยรปรางและการแตกหกของหนจะถกนามาใชในการคานวณหาคาความยดหยนและความแขงแรงของหน และจะมการทดสอบแรงกดในแกนเดยวและแรงกดในสามแกน การทดสอบแรงดง และการทดสอบจดกดแบบด ง เด มในหนท งสามชนดดวยเช นกนเพ อนาผลการทดสอบท ได มาใชในการเปรยบเทยบกบผลทไดจากการทดสอบจดกดแบบปรบเปลยน แบบจาลองโดยใชโปรแกรมคอมพวเตอรจะถกนามาใชในการศกษาการกระจายตวของแรงเคนในกอนตวอยางหนของการทดสอบจดกดแบบปรบเปล ยนภายใต อ ตราสวนระหวางความหนาของหนต วอย างต อเสนผาศนยกลางของหวกดทตางๆกน และจะมการประเมนเชงปรมาณของผลกระทบของความมรปรางทไมเปนรปทรงทางเรขาคณตของหนตวอยาง ความเหมอนและความแตกตางของผล

II

สาขาวชา เทคโนโลยธรณ ลายมอชอนกศกษา ปการศกษา 2552 ลายมอชออาจารยทปรกษา

การทดสอบจดกดแบบปรบเปลยนและการทดสอบจดกดแบบดงเดมจะถกนามาพจารณา อาจมการประยกตการคานวณทเปนแบบแผนของการทดสอบจดกดแบบปรบเปล ยน เพ อเพ มความสามารถในการคาดคะเนคณสมบตทางกลศาสตรของหนตวอยางทมรปรางไมเปนรปทรงทางเรขาคณตไดดยงขน

CHATCHAI INTARAPRASIT MODIFIED POINT LOAD TESTS OF PIT

WALL ROCK AT CHATREE GOLD MINE THESIS ADVISOR ASSOC PROF

KITTITEP FUENKAJORN Ph D PE 191 PP

TRIAXIAL COMPRESSIVE STRENGTHUNIAXIAL COMPRESSIVE

STRENGTH ELASIC MODULUS POINT LOADTENSILE STRENGTH

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strengths and elastic modulus of intact rock

specimens in the laboratory This method was invented and patented by Suranaree

University of Technology The test apparatus and procedure are intended to be

inexpensive and easy compared to the relevant conventional methods of determining

the mechanical properties of intact rock eg those given by the International Society

for Rock Mechanics (ISRM) and the American Society for Testing and materials

(ASTM) In the past much of the MPL testing practices have been concentrated on

circular and rectangular disk specimens While it has been claimed that MPL method

is applicable to all rock shapes the test results from irregular lumps of rock have been

rare and hence are not sufficient to confirm that the MPL testing technique is truly

valid or even adequate to determine the basic rock mechanical properties in the field

where rock drilling and cutting devices are not available

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine will be used

as rock samples A minimum of 150 samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone will be collected from the site The

IV

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure will be used to calculate the elastic modulus and strengths of the rocks

Uniaxial and triaxial compression tests Brazilian tension test and conventional point

load test will also be conducted on the three rock types to obtain data basis for

comparing with those from the MPL testing Finite difference analysis will be

performed to obtain stress distribution within the MPL samples under different td and

Dd ratios The effects of the sample irregularity will be quantitatively assessed

Similarity and discrepancy of the test results from the MPL method and from the

conventional methods will be examined Modification of the MPL calculation

scheme may be made to enhance its predictive capability for the mechanical

properties of irregular shaped specimens

School of Geotechnology Students Signature

Academic Year 2009 Advisors Signature

ACKNOWLEDGMENTS

I wish to acknowledge the funding support of Suranaree University of

Technology (SUT) and Akara Mining Company Limited

I would like to express my sincere thanks to Assoc Prof Dr Kittitep

Fuenkajorn thesis advisor who gave a critical review and constant encouragement

throughout the course of this research Further appreciation is extended to Asst Prof

Thara Lekuthai chairman school of Geotechnology and Dr Prachya Tepnarong

Suranaree University of Technology who are member of my examination committee

Grateful thanks are given to all staffs of Geomechanics Research Unit Institute of

Engineering who supported my work

Chatchai Intaraprasit

TABLE OF CONTENTS

Page

ABSTRACT (THAI) I

ABSTRACT (ENGLISH) III

ACKNOWLEDGEMENTS V

TABLE OF CONTENTS VI

LIST OF TABLES IX

LIST OF FIGURES XIII

LIST OF SYMBOLS AND ABBREVIATIONS XVII

CHAPTER

I INTRODUCTION 1

11 Background and rationale 1

12 Research objectives 2

13 Research concept 3

14 Research methodology 3

141 Literature review 3

142 Sample collection and preparation 5

143 Theoretical study of the rock failure

mechanism 5

144 Laboratory testing 5

1441 Characterization tests 5

VII

TABLE OF CONTENTS (Continued)

Page

1442 Modified point load tests 6

145 Analysis 6

146 Thesis Writing and Presentation 6

15 Scope and Limitations 7

16 Thesis Contents 7

II LITERATURE REVIEW 8

21 Introduction 8

22 Conventional point load tests 8

23 Modified point load tests 11

24 Characterization tests 14

241 Uniaxial compressive strength tests 14

242 Triaxial compressive strength tests 15

243 Brazilian tensile strength tests 16

25 Size effects on compressive strength 16

III SAMPLE COLLECTION AND PREPARATION 17

31 Sample collection 17

32 Rock descriptions 17

33 Sample preparation 20

IV LABORATORY TESTS 22

41 Literature reviews 22

VIII

TABLE OF CONTENTS (Continued)

Page

411 Displacement Function 22

42 Basic Characterization Tests 23

421 Uniaxial Compressive Strength Tests

and Elastic Modulus Measurements 23

422 Triaxial Compressive Strength Tests 31

423 Brazilian Tensile Strength Tests 38

424 Conventional Point Load Index (CPL) Tests 39

43 Modified Point Load (MPL) Tests 46

431 Modified Point Load Tests for Elastic

Modulus Measurement 54

432 Modified Point Load Tests predicting

Uniaxial Compressive Strength 61

433 Modified Point Load Tests for Tensile

Strength Predictions 63

434 Modified Point Load Tests for Triaxial

Compressive Strength Predictions 69

V FINITE DIFFERENCE ANALYSIS 79

51 Objectives 79

52 Model Characteristics 79

53 Results of finite difference analyses 79

IX

TABLE OF CONTENTS (Continued)

Page

VI DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS 83

61 Discussions 83

62 Conclusions 85

63 Recommendations 86

REFERENCES 87

APPENDICES

APPENDIX A CHARACTERIZATION TEST RESULTS 96

APPENDIX B MODIFIED POINT LOAD TEST RESULTS FOR

ELASTIC MODULUS PREDICTION 104

BIOGRAPHY 180

LIST OF TABLES

Table Page

31 The nominal sizes of specimens following the ASTM standard

practices for the characterization tests 20

41 Testing results of porphyritic andesite 30

42 Testing results of tuffaceous sandstone 30

43 Testing results of silicified tuffaceous sandstone 30

44 Uniaxial compressive strength and tangent elastic modulus

measurement results of three rock types 31

45 Triaxial compressive strength testing results of porphyritic andesite 35

46 Triaxial compressive strength testing results of

tuffaceous sandstone 35

47 Triaxial compressive strength testing results of silicified

tuffaceous sandstone 36

48 Results of triaxial compressive strength tests on three rock types 38

49 The results of Brazilian tensile strength tests of three rock types 41

410 Results of conventional point load strength index tests of

three rock types 44

411 Results of modified point load tests on porphyritic andesite 49

412 Results of modified point load tests on tuffaceous sandstone 51

413 Results of modified point load tests on silicified tuffaceous sandstone 52

X

LIST OF TABLE (Continued)

Table Page

414 Results of elastic modulus calculation from MPL tests on porphyritic andesite57

415 Results of elastic modulus calculation from MPL tests on

silicified tuffaceous sandstone 58

416 Results of elastic modulus calculation from MPL tests on

tuffaceous sandstone 60

417 Comparisons of elastic modulus results obtained from

uniaxial compressive strength tests and those from modified

point load tests 61

418 Comparison the test results between UCS CPL Brazilian

tensile strength and MPL tests 63

419 Results of tensile strengths of porphyritic andesite predicted from MPL tests 64

420 Results of tensile strengths of silicified tuffaceous sandstone

predicted from MPL tests 66

421 Results of tensile strengths of tuffaceous sandstone

predicted from MPL tests 68

422 Results of triaxial strengths of porphyritic andesite predicted from MPL tests 71

423 Results of triaxial strengths of silicified tuffaceous sandstone

predicted from MPL tests 72

424 Results of triaxial strengths of tuffaceous sandstone

predicted from MPL tests 74

XI

LIST OF TABLE (Continued)

Table Page

425 Comparisons of the internal friction angle and cohesion

between MPL predictions and triaxial compressive strength tests 78

51 Summary of the results from numerical simulations 82

A1 Results of conventional point load strength index test on porphyritic andesite 97

A2 Results of conventional point load strength index test on

silicified tuffaceous sandstone 98

A3 Results of conventional point load strength index test on

tuffaceous sandstone 99

A4 Results of uniaxial compressive strength tests and elastic

modulus measurement on porphyritic andesite 100

A5 Results of uniaxial compressive strength tests and elastic

modulus measurement on silicified tuffaceous sandstone 100

A6 Results of uniaxial compressive strength tests and elastic

modulus measurement on tuffaceous sandstone 100

A7 Results of Brazilian tensile strength tests on porphyritic andesite 101

A8 Results of Brazilian tensile strength tests on silicified

tuffaceous sandstone 101

A9 Results of Brazilian tensile strength tests on

tuffaceous sandstone 102

A10 Results of triaxial compressive strength tests on porphyritic andesite 102

XII

LIST OF TABLE (Continued)

Table Page

A11 Results of triaxial compressive strength tests on

silicified tuffaceous Sandstone 102

A12 Results of Brazilian tensile strength tests on

tuffaceous sandstone 103

LIST OF FIGURES

Figure Page

11 Research plan 4

21 Loading system of the conventional point load (CPL) 10

22 Standard loading platen shape for the conventional point

load testing 10

31 The location of rock samples collected area 19

32 Some prepared rock specimens of porphyritic andesite for MPL Tests 21

33 The concept of specimen preparation for MPL testing 21

41 Pre-test samples of porphyritic andesite for UCS test 25

42 Pre-test samples of tuffaceous sandstone for UCS test 25

43 Pre-test samples of silicified tuffaceous sandstone for UCS test 26

44 Preparation of testing apparatus of porphyritic andesite for UCS test 26

45 Post-test rock samples of porphyritic andesite from UCS test 27

46 Post-test rock samples of tuffaceous sandstone

from UCS test 27

47 Post-test rock samples of tuffaceous sandstone from UCS 28

48 Results of uniaxial compressive strength tests and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted

as a function of axial strains 28

XIV

LIST OF FIGURES (Continued)

Figure Page

49 Results of uniaxial compressive strength tests and elastic

modulus measurements of tuffaceous sandstone (Top)

and silicified tuffaceous sandstone (Bottom) The axial

stresses are plotted as a function of axial strains 29

410 Pre-test samples for triaxial compressive strength test the

top is porphyritic andesite and the bottom is tuffaceous sandstone 32

411 Pre-test sample of silicified tuffaceous sandstone for triaxial

compressive strength test 33

412 Triaxial testing apparatus 33

413 Post-test rock samples from triaxial compressive strength tests

The top is porphyritic andesite and the bottom is tuffaceous sandstone 34

414 Post-test rock samples of silicified tuffaceous sandstone from

triaxial compressive strength test 35

415 Mohr-Coulomb diagram for porphyritic andesite 37

416 Mohr-Coulomb diagram for tuffaceous sandstone 37

417 Mohr-Coulomb diagram for silicified tuffaceous sandstone 38

418 Pre-test samples for Brazilian tensile strength test (a) porphyritic andesite

(b) tuffaceous sandstone and

(c) silicified tuffaceous sandstone 40

419 Brazilian tensile strength test arrangement 41

XV

LIST OF FIGURES (Continued)

Figure Page

420 Post-test specimens (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 42

421 Pre-test samples of porphyritic andesite for conventional point load

strength index test 43

422 Conventional point load strength index test arrangement 43

423 Post-test specimens from conventional point load

strength index tests (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 45

424 Conventional and modified loading points 47

425 MPL testing arrangement 47

426 Post-test specimen the tension-induced crack commonly

found across the specimen and shear cone usually formed

underneath the loading platens 48

427 Example of P-δ curve for porphyritic andesite specimen The ratio

of ∆P∆δ is used to predict the elastic modulus of MPL

specimen (Empl) 56

428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests 62

429 Uniaxial compressive strength predicted for silicified

tuffaceous sandstone from MPL tests 62

XVI

LIST OF FIGURES (Continued)

Figure Page

430 Uniaxial compressive strength predicted for tuffaceous

sandstone from MPL tests 63

431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and

modified point load test 75

432 Comparisons of triaxial compressive strength criterion of

silicified tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 76

433 Comparisons of triaxial compressive strength criterion of

tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 77

51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm 80

52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm 80

53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm 81

54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm 81

55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm 82

LIST OF SYMBOLS AND ABBREVIATIONS

A = Original cross-section Area

c = cohesive strength

CP = Conventional Point Load

D = Diameter of Rock Specimen

D = Diameter of Loading Point

De = Equivalent Diameter

E = Youngrsquos Modulus

Empl = Elastic Modulus by MPL Test

Et = Tangent Elastic Modulus

IS = Point Load Strength Index

L = Original Specimen Length

LD = Length-to-Diameter Ratio

MPL = Modified Point Load

Pf = Failure Load

Pmpl = Modified Point Load Strength

t = Specimen Thickness

α = Coefficient of Stress

αE = Displacement Function

β = Coefficient of the Shape

∆L = Axial Deformation

XVIII

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

∆P = Change in Applied Stress

∆δ = Change in Vertical of Point Load Platens

εaxial = Axial Strain

ν = Poissonrsquos Ratio

ρ = Rock Density

σ = Normal Stress

σ1 = Maximum Principal Stress (Vertical Stress)

σ3 = Minimum Principal Stress (Horizontal Stress)

σB = Brazilian Tensile Stress

σc = Uniaxial Compressive Strength (UCS)

σm = Mean Stress

τ = Shear Stress

τoct = Octahedral Shear Stress

φi = angle of Internal friction

CHAPTER I

INTRODUCTION

11 Background and rationale

In geological exploration mechanical rock properties are one of the most

important parameters that will be used in the analysis and design of engineering

structures in rock mass To obtain these properties the rock from the site is extracted

normally by mean of core drilling and then transported the cores to the laboratory

where the mechanical testing can be conducted Laboratory testing machine is

normally huge and can not be transported to the site On site testing of the rocks may

be carried out by some techniques but only on a very limited scale This method is

called for point load strength Index testing However this test provides unreliable

results and lacks theoretical supports Its results may imply to other important

properties (eg compressive and tensile strength) but only based on an empirical

formula which usually poses a high degree of uncertainty

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strength and elastic modulus of intact rock

specimens in the laboratory (Tepnarong 2001) This method was invented and

patented by Suranaree University of Technology The test apparatus and procedure

are intended to be in expensive and easy compared to the relevant conventional

methods of determining the mechanical properties of intact rock eg those given by

the International Society for Rock Mechanics (ISRM) and the American Society for

2

Testing and Materials (ASTM) In the past much of the MPL testing practices has

been concentrated on circular and disk specimens While it has been claimed that

MPL method is applicable to all rock shapes the test results from irregular lumps of

rock have been rare and hence are not sufficient to confirm that the MPL testing

technique is truly valid or even adequate to determine the basic rock mechanical

properties in the field where rock drilling and cutting devices are not available

12 Research objectives

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine are used as

rock samples A minimum of 150 rock samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone are collected from the site The

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure are used to calculate the elastic modulus and strengths of rocks Uniaxial and

triaxial compression tests Brazilian tension test and conventional point load test are

conducted on the three rock types to obtain data basis for comparing with those from

MPL testing Finite difference analysis is performed to obtain stress distribution

within the MPL samples under different td and Dd ratios The effect of the

irregularity is quantitatively assessed Similarity and discrepancy of the test results

from the MPL method and from the conventional method are examined

Modification of the MPL calculation scheme may be made to enhance its predictive

capability for the mechanical properties of irregular shaped specimens

3

13 Research concept

A modified point load (MPL) testing technique was proposed by Fuenkajorn

and Tepnarong (2001) and Fuenkajorn (2002) The objectives of this testing are to

determine the elastic modulus uniaxial compressive strength and tensile strength of

intact rocks The application of testing apparatus is modified from the loading

platens of the conventional point load (CPL) testing to the cylindrical shapes that

have the circular cross-section while they are half-spherical shapes in CPL

The modes of failure for the MPL specimens are governed by the ratio of

specimen diameter to loading platen diameter (Dd) and the ratio of specimen

thickness to loading platen diameter (td) This research involves using the MPL

results to estimate the triaxial compressive strength of specimens which various Dd

and td ratios and compare to the conventional compressive strength test

14 Research methodology

This research consists of six main tasks literature review sample collection

and preparation laboratory testing finite difference analysis comparison discussions

and conclusions The work plan is illustrated in the Figure 11

141 Literature review

Literature review is carried out to study the state-of-the-art of CPL and MPL

techniques including theories test procedure results analysis and applications The

sources of information are from journals technical reports and conference papers A

summary of literature review is given in this thesis Discussions have been also been

made on the advantages and disadvantages of the testing the validity of the test results

4

Preparation

Literature Review

Sample Collection and Preparation

Theoretical Study

Laboratory Ex

Figure 11 Research methodology

periments

MPL Tests Characterization Tests

Comparisons

Discussions

Laboratory Testing

Various Dd UCS Tests

Various td Brazilian Tension Tests

Triaxial Compressive Strength Tests

CPL Tests

Conclusions

5

when correlating with the uniaxial compressive strength of rocks and on the failure

mechanism the specimens

142 Sample collection and preparation

Rock samples are collected from the north pit-wall of Khao

Moh at Chatree gold mine Three rock types are tested with a minimum of 50

samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable Sample preparation is carried out in the laboratory at Suranaree

University of Technology

143 Theoretical study of the rock failure mechanism

The theoretical work primarily involves numerical analyses on

the MPL specimens under various shapes Failure mechanism of the modified point

load test specimens is analyzed in terms of stress distributions along loaded axis The

finite difference code FLAC is used in the simulation The mathematical solutions

are derived to correlate the MPL strengths of irregular-shaped samples with the

uniaxial and traiaxial compressive strengths tensile strength and elastic modulus of

rock specimens

144 Laboratory testing

Three prepared rock type samples are tested in laboratory

which are divided into two main groups as follows

1441 Characterization tests

The characterization tests include uniaxial compressive

strength tests (ASTM D7012-07) Brazilian tensile strength tests (ASTM D3967

1981) triaxial compressive strength tests (ASTM D7012-07) and conventional point

6

load index tests (ASTM D5731 1995) The characterization testing results are used

in verifications of the proposed MPL concept

1442 Modified point load tests

Three rock types of rock from the north pit-wall of

Khao Moh at Chatree gold mine are used as rock samples A minimum of 150 rock

samples of porphyritic andesite silicified-tuffaceous sandstone and tuffaceous

sandstone are used in the MPL testing The sample thickness-to-loading diameter

ratio (td) is varied from 2 to 3 and the sample diameter-to-loading diameter ratio

(Dd) from 5 to 10 The sample deformation and failure are used to calculate the

elastic modulus and strengths of rocks The MPL testing results are compared with

the standard tests and correlated the relations in terms of mathematic formulas

145 Analysis

Finite difference analysis is performed to obtain stress

distribution within the MPL samples under various shapes with different td and Dd

ratios The effect of the irregularity is quantitatively assessed Similarity and

discrepancy of the test results from the MPL method and from the conventional

method are examined Modification of the MPL calculation scheme may be made to

enhance its predictive capability for the mechanical properties of irregular shaped

specimens

146 Thesis writing and presentation

All aspects of the theoretical and experimental studies

mentioned are documented and incorporated into the thesis The thesis discusses the

validity and potential applications of the results

7

15 Scope and limitations

The scope and limitations of the research include as follows

1 Three rock types of rock from the pit wall of Chatree gold mine are

selected as a prime candidate for use in the experiment

2 The analytical and experimental work assumes linearly elastic

homogeneous and isotropic conditions

3 The effects of loading rate and temperature are not considered All tests

are conducted at room temperature

4 MPL tests are conducted on a minimum of 50 samples

5 The investigation of failure mode is on macroscopic scale Macroscopic

phenomena during failure are not considered

6 The finite difference analysis is made in axis symmetric and assumed

elastic homogeneous and isotropic conditions

7 Comparison of the results from MPL tests and conventional method is

made

16 Thesis contents

The first chapter includes six sections It introduces the thesis by briefly

describing the background and rationale and identifying the research objectives that

are describes in the first and second section The third section describes the proposed

concept of the new testing technique The fourth section describes the research

methodology The fifth section identifies the scope and limitation of the research and

the description of the overview of contents in this thesis are in the sixth section

CHAPTER II

LITERATURE REVIEW

21 Introduction

This chapter summarizes the results of literature review carried out to improve an

understanding of the applications of modified point load testing to predict the strengths and

elastic modulus of the intact rock The topics reviewed here include conventional point

load test modified point load test characterization tests and size effects

22 Conventional point load tests

Conventional point load (CPL) testing is intended as an index test for the strength

classification of rock material It has long been practiced to obtain an indicator of the

uniaxial compressive strength (UCS) of intact rocks The testing equipment (Figure 21)

is essentially a loading system comprising a loading flame hydraulic oil pump ram and

loading platens The geometry of the loading platen is standardized (Figure 22) having

60 degrees angle of the cone with 5 mm radius of curvature at the cone tip It is made of

hardened steel The CPL test method has been widely employed because the test

procedure and sample preparation are simple quick and inexpensive as compared with

conventional tests as the unconfined compressive strength test Starting with a simple

method to obtain a rock properties index the International Society for Rock Mechanics

(ISRM) commissions on testing methods have issued a recommended procedure for the

point load testing (ISRM 1985) the test has also been established as a standard test

method by the American Society for Testing and Materials in 1995 (ASTM 1995)

9

Although the point load test has been studied extensively (eg Broch and Franklin

1972 Bieniawski 1974 and 1975 Wijk 1980 Brook 1985) the theoretical solutions

for the test result remain rare Several attempts have been made to truly understand

the failure mechanism and the impact of the specimen size on the point load strength

results It is commonly agreed that tensile failure is induced along the axis between

loading points (Evans 1961 Hiramutsu 1976 Wijk 1978 1980) The most

commonly accepted formula relating the CPL index and the UCS is proposed by

Broch and Franklin (1972) The UCS (or σc) can be estimated as about 24 times of

the point load strength index (Is) of rock specimens with the diameter-to-length ratio

of 05 The IS value should also be corrected to a value equivalent to the specimen

diameter of 50 mm The factor of 24 can sometimes load to an error in the prediction

of the UCS Most previous studied have been done experimentally but rare

theoretical attempt has been made to study the validity of Broch and Franklin

formula

The CPL testing has been performed using a variety of sizes and shapes of

rock specimen (Wijk 1980 Foster 1983 Panek and Fannon 1992 Chau and Wong

1996 Butenuth 1997) This is to determine the most suitable specimen sizes These

investigations have proposed empirical relations between the IS and σc to be

universally applicable to various rock types However some uncertainly of these

relations remains

Panek and Fannon (1992) show the results of the CPL tests UCS tests and

Brazilian tension tests that are performed on three hard rocks (iron-formation

metadiabase and ophitic basalt) The CPL strength is analyzed in terms of the

10

Figure 21 Loading system of the conventional point load (CPL) (Tepnarong 2001)

Figure 22 Standard loading platen shape for the conventional point load testing

(ISRM suggested method and ASTM D5731-95)

11

size and shape effects More than 500 an irregular lumps were tested in the field

The shape effect exponents for compression have been found to be varied with rock

types The shape effect exponents in CPL tests are constant for the three rocks

Panek and Fannon (1992) recommended that the monitoring of the compressive and

tensile strengths should have various sizes and shapes of specimen to obtain the

certain properties

Chau and Wong (1996) study analytically the conversion factor relating

between σc and IS A wide range of the ratios of the uniaxial compressive strength to

the point load index has been observed among various rock types It has been found

that the uniaxial compressive strength of rocks can vary from 62 (Nevada test site

tuff) to 105 (Flaming Gorge shale) times the IS depending on rock type The

conversion factor relating σc to be Is depends on compressive and tensile strengths

the Poissonrsquos ratio and the length and diameter of specimen The conversion factor

of 24 (Broch and Franklin 1972) falls within this range but it is no by meaning

universal

23 Modified point load tests

Tepnarong (2001) proposed a modified point load testing method to correlate

the results with the uniaxial compressive strength (UCS) and tensile strength of intact

rocks The primary objective of the research is to develop the inexpensive and

reliable rock testing method for use in field and laboratory The test apparatus is

similar to the conventional point load (CPL) except that the loading points are cut

flat to have a circular cross-section area instead of using a half-spherical shape To

derive a new solution finite element analyses and laboratory experiments were

12

carried out The simulation results suggested that the applied stress required failing

the MPL specimen increased logarithmically as the specimen thickness or diameter

increased The MPL tests CPL tests UCS tests and Brazilian tension tests were

performed on Saraburi marble under a variety of sizes and shapes The UCS test

results indicated that the strengths decreased with increased the length-to-diameter

ratio The test results can be postulated that the MPL strength can be correlated with

the compressive strength when the MPL specimens are relatively thin and should be

an indicator of the tensile strength when the specimens are significantly larger than

the diameter of the loading points Predictive capability of the MPL and CPL

techniques were assessed Extrapolation of the test results suggested that the MPL

results predicted the UCS of the rock specimens better than the CPL testing The

tensile strength predicted by the MPL also agreed reasonably well with the Brazilian

tensile strength of the rock

Tepnarong (2006) proposed the modified point load testing technique to

determine the elastic modulus and triaxial compressive strength of intact rocks The

loading platens are made of harden steel and have diameter (d) varying from 5 10

15 20 25 to 30 mm The rock specimens tested were marble basalt sandstone

granite and rock salt Basic characterization tests were first performed to obtain

elastic and strength properties of the rock specimen under standard testing methods

(ASTM) The MPL specimens were prepared to have nominal diameters (D) ranging

from 38 mm to 100 mm with thickness varying from 18 mm to 63 mm Testing on

these circular disk specimens was a precursory step to the application on irregular-

shaped specimens The load was applied along the specimen axis while monitoring

the increased of the load and vertical displacement until failure Finite element

13

analyses were performed to determine the stress and deformation of the MPL

specimens under various Dd and td ratios The numerical results were also used to

develop the relationship between the load increases (∆P) and the rock deformation

(∆δ) between the loading platens The MPL testing predicts the intact rock elastic

modulus (Empl) by using an equation Empl = (tαE) (∆P∆δ) where t represents the

specimen thickness and αE is the displacement function derived from numerical

simulation The elastic modulus predicted by MPL testing agrees reasonably well

with those obtained from the standard uniaxial compressive tests The predicted Empl

values show significantly high standard deviation caused by high intrinsic variability

of the rock fabric This effect is enhanced by the small size of the loading area of the

MPL specimens as compared to the specimen size used in standard test methods

The results of the numerical simulation were used to determine the minimum

principal stress (σ3) at failure corresponding to the maximum applied principal stress

(σ1) A simple relation can therefore be developed between σ1 σ3 ratio Poissonrsquos ratio

(ν) and diameter ratio (Dd) to estimate the triaxial compressive strengths of the rock

specimens σ1 σ3 = 2[(ν(1-ν))(1-(dD)2)]-1 The MPL test results from specimens with

various Dd ratios can provide σ1 and σ3 at failure by assuming that ν = 025 and that

failure mode follows Coulomb criterion The MPL predicted triaxial strengths agree

very well with the triaxial strength obtained from the standard triaxial testing (ASTM)

The discrepancy is about 2-3 which may be due to the assumed Poissonrsquos ratio of 25

and due to the assumption used in the determination of σ3 at failure In summary even

through slight discrepancies remain in the application of MPL results to determine the

elastic modulus and triaxial compressive strength of intact rocks this approach of

14

predicting the rock properties shows a good potential and seems promising considering

the low cost of testing technique and ease of sample preparation

24 Characterization tests

241 Uniaxial compressive strength tests

The uniaxial compressive strength test is the most common laboratory

test undertaken for rock mechanics studies In 1972 the International Society of Rock

Mechanics (ISRM) published a suggested method for performing UCS tests (Brown

1981) Bieniawski and Bernede (1979) proposed the procedures in American Society

for Testing and Materials (ASTM) designation D2938

The tests are also the most used tests for estimating the elastic

modulus of rock (ASTM D7012) The axial strain can be measured with strain gages

mounted on the specimen or with the Linear Variable Differential Tranformers

(LVDTs) attached parallel to the length of the specimen The lateral strain can be

measured using strain gages around the circumference or using the LVDTs across

the specimen diameter

The UCS (σc) is expressed as the ratio of the peak load (P) to the

initial cross-section area (A)

σc= PA (21)

And the Youngrsquos modulus (E) can be calculated by

E= ΔσΔε (22)

Where Δσ is the change in stress and Δε is the change in strain

15

The ratio of lateral strain and axial strain magnitudes (εlatεax) determines the value of

Poissonrsquo ratio (ν)

ν = - (εlatεax) (23)

242 Triaxial compressive strength tests

Hoek and Brown (1980b) and Elliott and Brown (1986) used the

triaxaial compressive strength tests to gain an understanding of rock behavior under a

three-dimensions state of stress and to verify and even validate mathematical

expressions that have been derived to represent rock behavior in analytical and

numerical models

The common procedures are described in ASTM designation D7012 to

determine the triaxial strengths and D7012 to determine the elastic moduli and in

ISRM suggested methods (Brown 1981)

The axial strain can be measured with strain gages mounted on the

specimen or with the LVTDs attached parallel to the length of the specimen The

lateral strain can be measured using strain gages around the circumstance within the

jacket rubber

At the peak load the stress conditions are σ1 = PA σ3=p where P is

the maximum load parallel to the cylinder axis A is the initial cross-section area and

p is the pressure in the confining medium

The Youngrsquos modulus (E) and Poissonrsquos ratio (ν) can be calculated by

E = Δ(σ1-σ3)Δ εax (24)

and

16

ν = (slope of axial curve) (slope of lateral curve) (25)

where Δ(σ1-σ3) is the change in differential stress and Δ εax is the change in axial strain

243 Brazilian tensile strength tests

Caneiro (1974) and Akazawa (1953) proposed the Brazilian tensile

strength test of intact rocks Specifications of Brazilian tensile strength test have been

established by ASTM D3967 and suggested approach is provided by ISRM (Brown 1981)

Jaeger and Cook (1979) proposed the equation for calculate the

Brazilian tensile strength as

σB = (2P) ( πDt) (26)

where P is the failure load D is the disk diameter and t is the disk thickness

25 Size effects on compressive strength

The uniaxial compressive strength normally tested on cylindrical-shaped

specimens The length-to-diameter (LD) ratio of the specimen influences the

measured strength Typically the strength decreases with increasing the LD ratio

but it tends to become constant or ratios in the order of 21 to 31 (Hudson et al 1971

Obert and Duvall 1967) For higher ratios the specimen strength may be influenced

by bulking

The size of specimen may influence the strength of rock Weibull (1951)

proposed that a large specimen contains more flaws than a small one The large

specimen therefore also has flaws with critical orientation relative to the applied

shear stresses than the small specimen A large specimen with a given shape is

17

therefore likely to fail and exhibit lower strength than a small specimen with the same

shape (Bieniawski 1968 Jaeker and Cook 1979 Kaczynski 1986)

Tepnarong (2001) investigated the results of uniaxial compressive strength

test on Saraburi marble and found that the strengths decrease with increase the

length-to-diameter (LD) ratio And this relationship can be described by the power

law The size effects on uniaxial compressive strength are obscured by the intrinsic

variability of the marble The Brazilian tensile strengths also decreased as the

specimen diameter increased

CHAPTER III

SAMPLE COLLECTION AND PREAPATION

This chapter describes the sample collection and sample preparation

procedure to be used in the characterization and modified point load testing The

rock types to be used including porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone Locations of sample collection rock description are

described

31 Sample collection

Three rock types include porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone collected from Chatree Gold Mine Akara Mining Company

Limited Phichit Thailand are used in this research The rock samples are collected

from the north pit-wall of Khao Moh Three rock types are tested with a minimum of

50 samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable The collected location is shown in Figure 31

32 Rock descriptions

Three rock types are used in this research there are porphyritic andesite

silicified tuffaceous sandstone and tuffaceous sandstone Tuffaceous sandstone is

medium brownish grey the clasts are andesite rhyolite andesitic tuff and quartz

fragments and sub-rounded to sub-angular matrix sand andesitic tuff rock fragment

19

19

Figure 31 The location of rock samples collected area

lt 10 quartz 3 pyrite and litho-facies massive ungraded clast supported

moderately sorted Silicified tuffaceous sandstone is medium brown clasts are fine to

medium sand and silt sub-rounded shape quartz rich with siliceous matrix massive

non-graded well sorted moderately Silicified Porphyritic andesite is grayish green

medium-coarse euhedral evenly distributed phenocrysts are abundant most

conspicuous are hornblende phenocrysts fine-grained groundmass Those samples

are collected from Chatree Gold Mine Akara mining Co Ltd Phichit Thailand

20

33 Sample preparation

Sample preparation has been carried out to obtain different sizes and shapes

for testing It is conducted in the laboratory facility at Suranaree University of

Technology For characterization testing the process includes coring and grinding

Preparation of rock samples for characterization test follows the ASTM standard

(ASTM D4543-85) The nominal sizes of specimen that following the ASTM

standard practices for the characterization tests are shown in table 31 And grinding

surface at the top and bottom of specimens at the position of loading platens for

unsure that the loading platens are attach to the specimen surfaces and perpendicular

each others as shown in Figure 32 The shapes of specimens are irregularity-shaped

The ratio of specimen thickness to platen diameter (td) is around 20-30 and the

specimen diameter to platen diameter (Dd) varies from 5 to 10

Table 31 The nominal sizes of specimens following the ASTM standard practices

for the characterization tests

Testing Methods

LD Ratio

Nominal Diameter

(mm)

Nominal Length (mm)

Number of Specimens

1UniaxialCompressive Strength Test and Elastic Modulus Measurement (ASTM D7012)

25 54 135 10

2 Triaxial Compressive Strength Test (ASTM D7012) 20 54 108 10

3 Brazilian Tensile Strength Test (ASTM D3967) 05 54 27 10

4 Point Load Strength Index Test (ASTM D 5731) 10 54 54 10

21

Figure 32 Some prepared rock specimens of porphyritic andesite for MPL Tests

td asymp20 to 30

Figure 33 The concept of specimen preparation for MPL testing

CHAPTER IV

LABORATORY TESTS

Laboratory testing is divided into two main tasks including the

characterization tests and the modified point load tests Three rock types porphyritic

andesite silicified-tuffaceous sandstone and tuffaceous sandstone are used in this

research

41 Literature reviews

411 Displacement function

Tepnarong (2006) proposed a method to compute the vertical

displacement of the loading point as affected by the specimen diameter and thickness

(Dd and td ratios) by used the series of finite element analyses To accomplish this

a displacement function (αE) is introduced as (∆P∆δ)middot(tE) where ∆P is the change in

applied stress ∆δ is the change in vertical displacement of point load platens t is the

specimen thickness and E is elastic modulus of rock specimen The displacement

function is plotted as a function of Dd And found that the αE is dimensionless and

independent of rock elastic modulus αE trend to be independent of Dd when Dd is

beyond 15 The αE is sensitive to ν particularly when υ is between 025 and 05 This

agrees with the assumption that as the Poissonrsquos ratio increases the αE value will

increase because under higher ν the ∆δ will be reduced This is due to the large

confinement resulting from the higher Poissonrsquos ratio Nevertheless most rocks have

Poissonrsquos ratio within a range between 020 and 030 particularly for moderate to

23

hard rocks As a result the Poissonrsquos ratio of 025 will provide a reasonable

prediction of the value of αE values

Figure 51 plots αE or (∆P∆δ)middot(tE) as a function of td for the ratios of Dd ge

10 The displacement function increase as the td increases which can be expressed

by a power equation

αE = (∆P∆δ)middot(tE) = 150 (td)064 (51)

by using the least square fitting The curve fit gives good correlation (R2=0998)

These curves can be used to estimate the elastic modulus of rock from MPL results

By measuring the MPL specimen thickness t and the increment of applied stress (∆P)

and displacement (∆δ)

42 Basic characterization tests

The objectives of the basic characterization tests are to determine the

mechanical properties of each rock type to compare their results with those from the

modified point load tests (MPL) The basic characterization tests include uniaxial

compressive strength (UCS) tests with elastic modulus measurements triaxial

compressive strength tests Brazilian tensile strength tests and conventional point load

strength index tests

421 Uniaxial compressive strength tests and elastic modulus

measurements

The uniaxial compressive strength tests are conducted on the three

rock types Sample preparation and test procedure are followed the ASTM standards

(ASTM D7012) and the ISRM suggested methods (Brown 1981) The core size is

24

54 mm in diameter (NX size) and the ratio of the length to diameter is 25 A total of

10 specimens are tested for each rock type

A constant loading rate of 05 to 10 MPas is applied to the specimens

until failure occurs Tangent elastic modulus is measured at stress level equal to 50

of the uniaxial compressive strength Post-failure characteristics are observed

The uniaxial compressive strength (σc) is calculated by dividing the

maximum load by the original cross-section area of loading platen

σc= pf A (41)

where pf is the maximum failure load and A is the original cross-section area of

loading platen The tangent elastic modulus (Et) is calculated by the following

equation

Et = (Δσaxial) (Δε axial) (42)

And the axial strain can be calculated from

ε axial = ΔLL (43)

where the ΔL is the axial deformation and L is the original length of specimen

The average uniaxial compressive strength and tangent elastic

modulus of each rock types are shown in Tables 41 through 44

25

Figure 41 Pre-test samples of porphyritic andesite for UCS test

Figure 42 Pre-test samples of tuffaceous sandstone for UCS test

26

Figure 43 Pre-test samples of silicified tuffaceous sandstone for UCS test

Figure 44 Preparation of testing apparatus for UCS test

27

Figure 45 Post-test rock samples of porphyritic andesite from UCS test

Figure 46 Post-test rock samples of tuffaceous sandstone from UCS test

28

Figure 47 Post-test rock samples of silicified-tuffaceous sandstone from UCS

0

50

100

150

0 0001 0002 0003 0004 0005Axial Strain

Axi

al S

tres

s (M

Pa)

Andesite04

03

01

05

02

Andesite

Figure 48 Results of uniaxial compressive strength test and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted as

a function of axial strain

29

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Strain

Axi

al S

tres

s (M

Pa)

Pebbly Tuffacious Sandstone

04

03

05

01

02

Tuffaceous Sandstone

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Stain

Axi

al S

tres

s (M

Pa)

Silicified Tuffacious Sandstone

0103

05

0402

Silicified Tuffaceous Sandstone

Figure 49 Results of uniaxial compressive strength test and elastic modulus

measurements of tuffaceous sandstone (top) and silicified tuffaceous

sandstone (bottom) The axial stresses are plotted as a function of axial

strain

30

Table 41 Testing results of porphyritic andesite

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 5366 13486 282 1327 451 And-06-03-UCS-02 5366 13494 283 1106 397 And-02-01-UCS-03 5366 13485 280 1061 470 And-08-03-UCS-04 5366 13417 284 1282 392 And-04-04-UCS-05 5366 13564 285 973 438

Average 1150 plusmn 150 430 34 plusmn

Table 42 Testing results of tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 5366 13810 266 1017 538 TST-01-02-UCS-02 5366 13236 268 1238 545 TST-02-04-UCS-03 5366 13558 264 973 441 TST-06-09-UCS-04 5366 13515 267 1459 475 TST-02-02-UCS-05 5366 13745 263 884 566

Average 1114 plusmn 233 513 53 plusmn

Table 43 Testing results of silicified tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 5366 13309 271 1194 656 SST-07-01-UCS-02 5366 13547 267 930 632 SST-07-03-UCS-03 5366 13095 268 1194 503 SST-02-06-UCS-04 5366 13475 269 1614 661 SST-06-02-UCS-05 5366 13577 270 1106 713

Average 1207 plusmn 252 633 80 plusmn

31

Table 44 Uniaxial compressive strength and tangent elastic modulus measurement

results of three rock types

Rock Type

Number of Test

Samples

Uniaxial Compressive Strength σc (MPa)

Tangential Elastic Modulus

Et (GPa)

Porphyritic andesite 50 1150plusmn150 430plusmn34 Silicified-tuffaceous sandstone 50 1207plusmn252 633plusmn80

Tuffaceous sandstone 50 1114plusmn233 513plusmn53

422 Triaxial compressive strength tests

The objective of the triaxial compressive strength test is to determine

the compressive strength of rock specimens under various confining pressures The

sample preparation and test procedure are followed the ASTM standard (ASTM

D7012-07) and the ISRM suggested method (Brown 1981) A total of 16 rock

specimens are tested under various confining pressures 6 specimens of porphyritic

andesite 5 specimens of silicified-tuffaceous sandstone and 5 specimens of

tuffaceous sandstone The applied load onto the specimens is at constant rate until

failure occurred within 5 to 10 minutes of loading under each confining pressure

The constant confining pressures used in this experiment are ranged from 0345 067

138 276 and 414 MPa (50 100 200 400 and 600 psi) in andesite 0345 069

276 414 and 552 MPa (50 100 400 600 and 800 psi) in silicified-tuffaceous

sandstone and 0345 069 138 207 and 276 MPa (50 100 200 300 and 400 psi)

in pebbly tuffaceous sandstone Post-failure characteristics are observed

32

Figure 410 Pre-test samples for triaxial compressive strength test the top is

porphyritic andesite and the bottom is tuffaceous sandstone

33

Figure 411 Pre-test samples of silicified tuffaceous sandstone for triaxial

compressive strength test

Hook cell

Figure 412 Triaxial testing apparatus

34

Figure 413 Post-test rock samples from triaxial compressive strength tests The top

is porphyritic andesite and the bottom is tuffaceous sandstone

35

Figure 414 Post-test rock samples of silicified tuffaceous sandstone from triaxial

compressive strength test

Table 45 Triaxial compressive strength testing results of porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

And-04-02-TR-01 10803 5366 285 04 1459 And-06-04-TR-03 10806 5366 284 07 1526 And-06-02-TR-02 10806 5366 283 14 1636 And-08-01-TR-04 10665 5366 284 28 2034 And-08-02-TR-05 10948 5366 283 41 2520

Table 46 Triaxial compressive strength testing results of tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

TST-01-01-TR-04 10989 5366 266 04 1061 TST 02-01-TR-01 10852 5366 262 07 1238 TST-06-01-TR-02 10889 5366 264 138 1415 TST-06-03-TR-03 10755 5366 264 201 1813 TST-06-08-TR-05 11025 5366 267 28 2056

36

Table 47 Triaxial compressive strength testing results of silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

SST-05-01-TR-01 10875 5366 266 04 1305 SST-07-02-TR-02 10790 5366 266 14 1371 SST-01-04-TR-03 11022 5366 267 28 1592 SST-01-03-TR-04 10713 5366 267 41 1901 SST-01-01-TR-05 10530 5366 265 55 2255

The results of triaxial tests are shown in Table 42 Figures 413 and 414

show the shear failure by triaxial loading at various confining pressures (σ3) for the

three rock types The relationship between σ1 and σ3 can be represented by the

Coulomb criterion (Hoek 1990)

τ = c + σ tan φi (44)

where τ is the shear stress c is the cohesion σ is the normal stress and φi is the

internal friction angle The parameters c and φi are determined by Mohr-Coulomb

diagram as shown in Figures 415 through 417

37

φi =54˚ Andesite

Figure 415 Mohr-Coulomb diagram for andesite

φi = 55˚

Tuffaceous Sandstone

Figure 416 Mohr-Coulomb diagram for pebbly tuffaceous sandstone

38

Silicified tuffaceous sandstone

φi = 49˚

Figure 417 Mohr-Coulomb diagram for silicified tuffaceous sandstone

Table 48 Results of triaxial compressive strength tests on three rock types

Rock Type

Number of

Samples

Average Density (gcc)

Cohesion c (MPa)

Internal Friction Angle φi (degrees)

Porphyritic Andesite 5 283 33 54

Tuffaceous Sandstone 5 265 28 55 Silicified Tuffaceous Sandstone 5 267 36 49

423 Brazilian Tensile Strength Tests

The objectives of the Brazilian tensile strength test are to determine

the tensile strength of rock The Brazilian tensile strength tests are performed on all

rock types Sample preparation and test procedure are followed the ASTM standard

(ASTM D3967-81) and the

39

ISRM suggested method (Brown 1981) Ten specimens for each rock

type have been tested The specimens have the diameter of 55 mm with 25 mm thick

The Brazilian tensile strength of rock can be calculated by the following

equation (Jaeger and Cook 1979)

σB = (2pf) (πDt) (45)

where σB is the Brazilian tensile strength pf is the failure load D is the diameter

of disk specimen and t is the thickness of disk specimen All of specimens failed

along the loading diameter (Figure 420) The results of Brazilian tensile strengths

are shown in Table 49 The tensile strength trends to decrease as the specimen size

(diameter) increase and can be expressed by a power equation (Evans 1961)

σB = A (D)-B (46)

where A and B are constants depending upon the nature of rock

424 Conventional point load index (CPL) tests

The objectives of CPL tests are to determine the point load strength index for

use in the estimation of the compressive strength of the rocks The sample

preparation test procedure and calculation are followed the standard practices

(ASTM D 5731-02) and the ISRM suggested method (Brown 1981) Twenty

specimens of each rock types are tested The length-to-diameter (LD) ratio of the

specimen is constant at 10 The specimen diameter and thickness are maintained

constant at 54 mm (Figure 421) The core specimen is loaded along its axis as

shown in Figure 422 Each specimen is loaded to failure at a constant rate such that

40

(a)

(b)

(c)

Figure 418 Pre-test samples for Brazilian tensile strength test (a) porphyritic

andesite (b) tuffaceous sandstone and (c) silicified tuffaceous

sandstone

41

Figure 419 Brazilian tensile strength test arrangement

Table 49 Results of Brazilian tensile strength tests of three rock types

Rock Type

Average Diameter

(mm)

Average Length (mm)

Average Density (gcc)

Number of

Samples

Brazilian Tensile

Strength σB (MPa)

Porphyritic andesite 5366 2672 283 10 170plusmn16

Tuffaceous sandstone 5366 2737 265 10 131plusmn33

Silicified tuffaceous sandstone

5366 2670 267 10 191plusmn32

42

(a)

(b)

(c)

Figure 420 Post-test specimens (a) porphyritic andesite (b) tuffaceous sandstone

and (c) silicified tuffaceous sandstone

43

Figure 421 Pre-test samples of porphyritic andesite for conventional point load

strength index test

Figure 422 Conventional point load strength index test arrangement

44

failures occur within 5-10 minutes Post-failure characteristics are observed

The point load strength index for axial loading (Is) is calculated by the

equation

Is = pf De2 (47)

where pf is the load at failure De is the equivalent core diameter (for axial loading

De2 = 4Aπ and A=WD) A is the minimum cross-sectional area of a plane through

the platen contact points W is the specimen width (thickness of core) and D is the

specimen diameter The post-test specimens are shown in Figure 423

The testing results of all three rock types are shown in Table 410 The

point load strength index of andesite pebbly tuffaceous sandstone and silicified

tuffaceous sandstone are average as 81 plusmn 12 102 plusmn 20 and 108 plusmn 22 MPa

Table 410 Results of conventional point load strength index tests of three rock types

Rock Types Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index

Is (MPa) Porphyritic Andesite 5493 5366 283 81plusmn12 Tuffaceous Sandstone 5545 5366 265 102plusmn20 Silicified Tuffaceous Sandstone 5491 5366 268 108plusmn22

45

Figure 423 Post-Test rock specimens from conventional point load strength index

tests (a) porphyritic andesite (b) tuffaceous sandstone and (c)

silicified tuffaceous sandstone

46

43 Modified point load (MPL) tests

The objectives of the modified point load (MPL) tests are to measure the

strength of rock between the loading points and to produce failure stress results for

various specimen sizes and shapes The results are complied and evaluated to

determine the mathematical relationship between the strengths and specimen

dimensions which are used to predict the elastic modulus and uniaxial and triaxial

compressive strengths and Brazilian tensile strength of the rocks

The testing apparatus for the proposed MPL testing are similar to those of the

conventional point load (CPL) test except that the loading points are cylindrical

shape and cut flat with the circular cross-sectional area instead of using half-spherical

shape (Tepnarong 2001) The loading platens used in this research are 7 10 and 15

mm in diameter and the thickness-to-loading point diameter ratio (td) of about 25

The specimen diameter-to-loading point diameter is varying from 5 to 100 The load

is applied at the rate of 200 Ns Fifty specimens are prepared and tested for each

rock type The vertical deformations (δ) are monitored One cycle of unloading and

reloading is made at about 40 failure load Then the load is increased to failure

The MPL strength (PMPL) is calculated by

PMPL = pf ((π4)(d2)) (48)

where pf is the applied load at failure and d is the diameter of loading point Figure

26 shows the example of post-test specimen shear cone are usually formed

underneath the loading points and two or three tension-induced cracks are commonly

found across the specimens

47

The MPL testing method is divided into 4 schemes based on its objective

elastic modulus uniaxial and triaxial compressive strengths and Brazilian tensile

strength determination

Figure 424 Conventional and modified loading points(Tepnarong 2006)

Figure 425 MPL testing arrangement

48

Tension-induced crack Shear cone

Shear cone

Tension-induced crack

Figure 426 Post-test specimen the tension-induced crack commonly found across

the specimen and shear cone usually formed underneath the loading

platens

49

Table 411 Results of modified point load tests on porphyritic andesite

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-01 246 543 280 125 159 And-MPL-02 351 632 370 180 471 And-MPL-03 236 634 150 170 191 And-MPL-04 266 960 250 234 319 And-MPL-05 284 903 370 369 471 And-MPL-06 245 793 280 182 357 And-MPL-07 263 874 260 234 331 And-MPL-08 261 980 210 171 268 And-MPL-09 280 777 270 056 344 And-MPL-10 244 569 280 124 159 And-MPL-11 251 613 650 138 368 And-MPL-12 226 631 600 189 340 And-MPL-13 233 1126 180 151 468 And-MPL-14 279 1203 220 165 572 And-MPL-15 239 503 400 011 227 And-MPL-16 281 474 300 012 170 And-MPL-17 305 861 390 021 497 And-MPL-18 233 653 500 008 283 And-MPL-19 294 1386 380 200 484 And-MPL-20 265 860 410 017 522 And-MPL-21 238 425 550 087 311 And-MPL-22 230 417 450 087 255 And-MPL-23 223 557 500 231 283 And-MPL-24 250 760 550 112 311 And-MPL-25 259 1243 180 585 468 And-MPL-26 303 560 310 143 395 And-MPL-27 273 1640 390 156 497 And-MPL-28 282 906 220 200 280 And-MPL-29 311 934 290 156 369 And-MPL-30 246 1314 250 650 650 And-MPL-31 262 982 200 175 255 And-MPL-32 260 1147 180 156 468 And-MPL-33 240 700 450 101 255 And-MPL-34 304 800 240 135 306 And-MPL-35 250 455 220 127 280 And-MPL-36 243 1697 120 292 312 And-MPL-37 333 1520 310 156 395 And-MPL-38 238 661 170 260 442

50

Table 411 Results of modified point load tests on porphyritic andesite (Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-39 318 347 130 186 338 And-MPL-40 245 551 150 260 390 And-MPL-41 207 561 150 325 390 And-MPL-42 223 425 500 231 283 And-MPL-43 207 561 150 346 390 And-MPL-44 324 340 310 234 395 And-MPL-45 275 426 240 169 306 And-MPL-46 302 397 130 175 166 And-MPL-47 255 314 100 170 127 And-MPL-48 257 220 250 094 142 And-MPL-49 256 214 130 057 74 And-MPL-50 243 166 180 078 102

51

Table 412 Results of modified point load tests on tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-01 270 546 220 212 293 TST -MPL-02 258 787 230 326 293 TST -MPL-03 275 730 200 143 255 TST -MPL-04 282 715 400 143 510 TST -MPL-05 254 1345 220 264 280 TST -MPL-06 292 893 200 143 255 TST -MPL-07 243 853 550 112 311 TST -MPL-08 287 1047 210 319 268 TST -MPL-09 230 787 370 212 471 TST -MPL-10 230 427 260 132 147 TST -MPL-11 282 1243 450 319 573 TST -MPL-12 254 604 200 127 255 TST -MPL-13 288 1180 290 159 369 TST -MPL-14 251 631 410 170 232 TST -MPL-15 214 1104 120 260 312 TST -MPL-16 229 486 380 102 215 TST -MPL-17 259 715 110 650 286 TST -MPL-18 243 285 180 073 102 TST -MPL-19 285 316 130 128 130 TST -MPL-20 241 295 180 170 102 TST -MPL-21 298 417 300 100 170 TST -MPL-22 265 642 300 088 170 TST -MPL-23 314 611 450 101 255 TST -MPL-24 303 481 650 124 368 TST -MPL-25 223 223 260 126 331 TST -MPL-26 273 652 260 178 331 TST -MPL-27 216 887 420 170 535 TST -MPL-28 319 718 290 164 369 TST -MPL-29 231 516 200 128 255 TST -MPL-30 260 641 380 280 484 TST -MPL-31 287 496 330 158 420 TST -MPL-32 264 368 230 170 293 TST -MPL-33 238 415 230 130 293 TST -MPL-34 271 824 140 260 364 TST -MPL-35 283 800 220 325 572 TST -MPL-36 242 1013 180 325 468 TST -MPL-37 254 715 90 217 234 TST -MPL-38 210 755 150 520 390

52

Table 412 Results of modified point load tests on tuffaceous sandstone

(Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-39 293 508 110 260 286 TST -MPL-40 273 410 100 347 260 TST -MPL-41 234 628 80 260 208 TST -MPL-42 259 433 130 260 338 TST -MPL-43 265 546 220 435 280 TST -MPL-44 255 829 260 222 147 TST -MPL-45 254 368 240 315 306 TST -MPL-46 293 695 370 222 210 TST -MPL-47 247 297 180 128 102 TST -MPL-48 310 611 300 237 170 TST -MPL-49 225 337 160 371 416 TST -MPL-50 259 410 120 394 312

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-01 300 782 170 280 442 SST-MPL-02 250 480 220 307 572 SST-MPL-03 314 424 340 356 433 SST-MPL-04 292 809 220 450 572 SST-MPL-05 275 1142 300 532 780 SST -MPL-06 308 490 190 273 494 SST -MPL-07 317 611 280 418 728 SST -MPL-08 233 684 240 414 624 SST -MPL-09 255 480 230 371 598 SST -MPL-10 217 772 120 958 312 SST -MPL-11 312 903 270 400 702 SST -MPL-12 255 1094 150 272 390 SST -MPL-13 286 742 400 408 510 SST -MPL-14 248 615 350 296 198 SST -MPL-15 253 805 210 282 546 SST -MPL-16 243 1094 150 260 390

53

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

(Continued)

Specimen Number td Dd Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-17 234 1090 250 416 650 SST -MPL-18 253 1371 240 473 624 SST -MPL-19 327 434 320 330 408 SST -MPL-20 270 310 390 278 497 SST -MPL-21 269 691 410 185 522 SST -MPL-22 312 504 380 182 484 SST -MPL-23 319 627 260 150 331 SST -MPL-24 281 689 330 295 420 SST -MPL-25 210 720 390 259 497 SST -MPL-26 303 775 370 221 471 SST -MPL-27 272 714 310 274 395 SST -MPL-28 292 855 600 209 764 SST -MPL-29 310 742 400 176 510 SST -MPL-30 284 847 410 158 522 SST -MPL-31 320 891 650 464 828 SST -MPL-32 261 256 400 178 226 SST -MPL-33 224 405 550 131 311 SST -MPL-34 231 379 450 215 255 SST -MPL-35 290 442 1050 190 594 SST -MPL-36 241 521 500 102 283 SST -MPL-37 275 605 600 067 340 SST -MPL-38 263 616 650 127 368 SST -MPL-39 227 615 350 229 198 SST -MPL-40 236 508 550 090 311 SST -MPL-41 318 1142 300 498 780 SST -MPL-42 303 809 210 392 546 SST -MPL-43 228 805 210 244 546 SST -MPL-44 283 1142 300 571 780 SST -MPL-45 277 772 120 780 312 SST -MPL-46 288 1206 280 411 728 SST -MPL-47 250 508 570 309 323 SST -MPL-48 275 442 1050 338 594 SST -MPL-49 272 605 650 254 368 SST -MPL-50 260 805 200 360 520

54

431 Modified point load tests for elastic modulus measurement

The MPL tests are carried out with the measurement of axial

deformation for use in elastic modulus estimation Fifty irregular specimens for each

rock type are tested The specimen thickness-to-loading diameter (td) is about 25

and the specimen diameter -to-loading diameter (Dd) is varied from 25 to 50 Cyclic

loading is performed while monitoring displacement (δ)

The testing apparatus used in this experiment includes the point load

tester model SBEL PLT-75 and the modified point load platens The displacement

digital gages with a precision up to 0001 mm are used to monitor the axial

deformation of rock between the loading points as loading decreases The cyclic

load is applied along the specimen axis and is performed by systematically increasing

and decreasing loads on the test specimen After unloading the axial load is

increased until the failure occurs Cyclic loading is performed on the specimens in

an attempt at determining the elastic deformation The ratio of change of stress to

displacement (∆P∆δ) is measured from unloading curve Post-failure characteristics

are observed and recorded Photographs are taken of the failed specimens

The results of the deformation measurement by MPL tests are shown

in Tables411 through 413 The stresses (P) are plotted as a function of axial

displacement (δ) and shown in Figures B1 through B150 (Appendix B) The results

of ∆P∆δ are used to estimate the elastic modulus of the specimen

The elastic modulus predictions from MPL results can be made by

using the value of αE plotted as a function of Ded for various td ratios as shown in

Figure 427 and the MPL elastic modulus can be expressed as

55

⎟⎠⎞

⎜⎝⎛

ΔΔ

⎟⎟⎠

⎞⎜⎜⎝

⎛=

δαPtE

Empl (Tepnarong 2006) (49)

where Empl is the elastic modulus predicted from MPL results αE is displacement

function value from numerical analysis and ∆P∆δ is the ratio of change of stress to

displacement which is measured from unloading curve of MPL tests and t is the

specimen thickness The value of αE used in the calculation is 260 for td ratio equal

to 25-30 (Tepnarong 2006) The results of elastic modulus predictions from MPL

tests are tabulated in Tables 414 through 416 Table 417 compares the elastic

modulus obtained from standard uniaxial compressive strength test (ASTM D3148-

96) with those predicted by MPL test

The values of Empl for each specimen with P-δ curve are shown in

Appendix B The MPL method under-estimates the elastic modulus of all tested

rocks This is the primarily because the actual loaded area may be smaller than that

used in the calculation due to the roughness of the specimen surfaces As a result the

contact area used to calculate PMPL is larger than the actual In addition the EMPL

tends to show a high intrinsic variation (high standard deviation) This is because the

loading areas of MPL specimens are small This phenomenon conforms by the test

results obtained by Fuenkajorn and Deamen (1992) They conclude that smaller test

specimens not only exhibit a higher strength than larger one (size effect) but also

show a high intrinsic variability due to the heterogeneity of rock fabric particularly at

small sizes This implied that to obtain a good prediction (accurate result) of the rock

elasticity a large amount of MPL specimens are desirable This drawback may be

compensated by the ease of testing and the low cost of sample preparation

56

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (MPa)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure 427 Example of P-δ curve for porphyritic andesite specimen The ratio of

∆P∆δ is used to predict the elastic modulus of MPL specimen (Empl)

57

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-01 246 543 125 260 1776 And-MPL-02 351 632 180 260 2430 And-MPL-03 236 634 170 260 1546 And-MPL-04 266 960 234 260 2390 And-MPL-05 284 903 369 260 4031 And-MPL-06 245 793 182 260 1712 And-MPL-07 263 874 234 260 2367 And-MPL-08 261 980 171 260 1717 And-MPL-09 280 777 056 260 603 And-MPL-10 244 569 124 260 1748 And-MPL-11 251 613 138 260 2001 And-MPL-12 226 631 189 260 2464 And-MPL-13 233 1126 151 260 947 And-MPL-14 279 1203 165 260 1239 And-MPL-15 239 503 011 260 151 And-MPL-16 281 474 012 260 195 And-MPL-17 305 861 021 260 247 And-MPL-18 233 653 008 260 108 And-MPL-19 294 1386 200 260 2263 And-MPL-20 265 860 017 260 173 And-MPL-21 238 425 087 260 1195 And-MPL-22 230 417 087 260 1154 And-MPL-23 223 557 231 260 2976 And-MPL-24 250 760 112 260 1615 And-MPL-25 259 1243 585 260 4073 And-MPL-26 303 560 143 260 1667 And-MPL-27 273 1640 156 260 1639 And-MPL-28 282 906 200 260 2172 And-MPL-29 311 934 156 260 1868 And-MPL-30 246 1314 650 260 4310 And-MPL-31 262 982 175 260 1766 And-MPL-32 260 1147 156 260 1093 And-MPL-33 240 700 101 260 1398 And-MPL-34 304 800 135 260 1576 And-MPL-35 250 455 127 260 1221 And-MPL-36 243 1697 292 260 1909 And-MPL-37 333 1520 156 260 2000 And-MPL-38 238 661 260 260 1665 And-MPL-39 318 347 186 260 1592 And-MPL-40 245 551 260 260 1712

58

And-MPL-41 207 561 325 260 1815

59

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-42 223 425 231 260 2976 And-MPL-43 207 561 346 260 1932 And-MPL-44 324 340 234 260 2912 And-MPL-45 275 426 169 260 1785 And-MPL-46 302 397 175 260 2033 And-MPL-47 255 314 170 260 1667 And-MPL-48 257 220 094 260 1393 And-MPL-49 256 214 057 260 843 And-MPL-50 243 166 078 260 1094 Average 1743 Standard Deviation 910

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-01 300 782 280 260 2262 SST -MPL-02 250 480 307 260 2066 SST -MPL-03 314 424 356 260 4302 SST -MPL-04 292 809 450 260 3533 SST -MPL-05 275 1142 532 260 3939 SST -MPL-06 308 490 273 260 2266 SST -MPL-07 317 611 418 260 3572 SST -MPL-08 233 684 414 260 2595 SST -MPL-09 255 480 371 260 2546 SST -MPL-10 217 772 958 260 5593 SST -MPL-11 312 903 400 260 3360 SST -MPL-12 255 1094 272 260 1864 SST -MPL-13 286 742 408 260 4435 SST -MPL-14 248 615 296 260 4235 SST -MPL-15 253 805 282 260 1918 SST -MPL-16 243 1094 260 260 1698 SST -MPL-17 234 1090 416 260 2621 SST -MPL-18 253 1371 473 260 3224 SST -MPL-19 327 434 330 260 4153 SST -MPL-20 270 310 278 260 2863

60

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-21 269 691 185 260 1914 SST -MPL-22 312 504 182 260 2183 SST -MPL-23 319 627 150 260 1839 SST -MPL-24 281 689 295 260 3193 SST -MPL-25 210 720 259 260 2090 SST -MPL-26 303 775 221 260 2577 SST -MPL-27 272 714 274 260 2862 SST -MPL-28 292 855 209 260 2350 SST -MPL-29 310 742 176 260 2097 SST -MPL-30 284 847 158 260 1728 SST -MPL-31 320 891 464 260 5707 SST -MPL-32 261 256 178 260 2678 SST -MPL-33 224 405 131 260 1690 SST -MPL-34 231 379 215 260 2863 SST -MPL-35 290 442 190 260 3174 SST -MPL-36 241 521 102 260 1416 SST -MPL-37 275 605 067 260 1064 SST -MPL-38 263 616 127 260 1926 SST -MPL-39 227 615 229 260 3005 SST -MPL-40 236 508 090 260 1226 SST -MPL-41 318 1142 498 260 4264 SST -MPL-42 303 809 392 260 3196 SST -MPL-43 228 805 244 260 1500 SST -MPL-44 283 1142 571 260 4348 SST -MPL-45 277 772 780 260 5826 SST -MPL-46 288 1206 411 260 3184 SST -MPL-47 250 508 309 260 4464 SST -MPL-48 275 442 338 260 5364 SST -MPL-49 272 605 254 260 3981 SST -MPL-50 260 805 360 260 2523 Average 2986 Standard Deviation 1190

61

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-01 270 546 212 260 2202 TST -MPL-02 258 787 326 260 3232 TST -MPL-03 275 730 143 260 1513 TST -MPL-04 282 715 143 260 1551 TST -MPL-05 254 1345 264 260 2579 TST -MPL-06 292 893 143 260 1606 TST -MPL-07 243 853 112 260 2273 TST -MPL-08 287 1047 319 260 3521 TST -MPL-09 230 787 212 260 1875 TST -MPL-10 230 427 132 260 1752 TST -MPL-11 282 1243 319 260 3455 TST -MPL-12 254 604 127 260 1241 TST -MPL-13 288 1180 159 260 1764 TST -MPL-14 251 631 170 260 2465 TST -MPL-15 214 1104 260 260 1500 TST -MPL-16 229 486 102 260 1345 TST -MPL-17 259 715 650 260 4530 TST -MPL-18 243 285 073 260 1025 TST -MPL-19 285 316 128 260 2105 TST -MPL-20 241 295 170 260 2360 TST -MPL-21 298 417 100 260 1722 TST -MPL-22 265 642 088 260 896 TST -MPL-23 314 611 101 260 1830 TST -MPL-24 303 481 124 260 2166 TST -MPL-25 223 223 126 260 1083 TST -MPL-26 273 652 178 260 1869 TST -MPL-27 216 887 170 260 2065 TST -MPL-28 319 718 164 260 2011 TST -MPL-29 310 742 128 260 1136 TST -MPL-30 260 641 280 260 2800 TST -MPL-31 287 496 158 260 1742 TST -MPL-32 264 368 170 260 1725 TST -MPL-33 238 415 130 260 1192 TST -MPL-34 271 824 260 260 1942 TST -MPL-35 283 800 325 260 2478 TST -MPL-36 242 1013 325 260 2115 TST -MPL-37 254 715 217 260 1484 TST -MPL-38 210 755 520 260 2944 TST -MPL-39 293 508 260 260 2052 TST -MPL-40 273 410 347 260 2552

62

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-41 234 628 260 260 1638 TST -MPL-42 259 433 260 260 1814 TST -MPL-43 265 546 435 260 4440 TST -MPL-44 255 829 222 260 3265 TST -MPL-45 254 368 315 260 3075 TST -MPL-46 293 695 222 260 2502 TST -MPL-47 247 297 128 260 1827 TST -MPL-48 310 611 237 260 4240 TST -MPL-49 225 337 371 260 2252 TST -MPL-50 259 410 394 260 2746 Average 2190 Standard Deviation 830

Table 417 Comparisons of elastic modulus results obtained from uniaxial

compressive strength tests and those from modified point load tests

Rock Type Tangential Elastic Modulus from UCS

tests Et (GPa)

Elastic Modulus from MPL tests

Empl (GPa) Porphyritic andesite 430plusmn34 174plusmn91

Silicified tuffaceous sandstone 633plusmn80 299plusmn119

tuffaceous sandstone 513plusmn53 219plusmn83

432 Modified point load tests predicting uniaxial compressive strength

The uniaxial compressive strength of MPL specimens can be predicted

by plotting Pmpl as a function of diameter ratio Ded as shown in Figures 428 through

430 At diameter ratio equal to unity the Pmpl represents the uniaxial compressive

strength of rock The uniaxial compressive strength predicted from MPL tests

compared with those from CPL test and UCS standard test is shown in Table 418

63

UCS PREDICTION OF PORPHYRITIC ANDESITE FROM MPL TESTS

Pmpl = 11844(Ded)05489

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ded Ratio

MPL

Stre

ngth

(MPa

)

Figure 428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests

64

UCS PREDICTION OF SILICIFIED TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 11463(Ded)07447

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ded Ratio

MPL

-Str

engt

h (M

Pa)

Figure 429 Uniaxial compressive strength predicted for silicified tuffaceous

sandstone from MPL tests

65

UCS PREDICTION OF TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 10222(Ded)05457

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ded Ratio

MPL

-Stre

ngth

(MPa

)

Figure 430 Uniaxial compressive strength predicted for tuffaceous sandstone from

MPL tests

Table 418 Comparison the test results between UCS CPL Brazilian tensile

strength and MPL tests

Uniaxial Compressive Strength (MPa)

Tensile Strength (MPa) Rock Type UCS

Testing CPL

Prediction MPL

PredictionBrazilian Testing

MPL Prediction

And 1150 1944 plusmn12 1005 170plusmn16 139plusmn43 TST 1114 2448plusmn20 1308 131plusmn33 121plusmn73 SST 1207 2592plusmn22 1022 191plusmn32 171plusmn126

433 Modified Point Load Tests for Tensile Strength Predictions

The MPL results determine the rock tensile strength by using the

relationship of the failure stresses (Pmpl) as a function of specimen thickness to

66

loading diameter ratio (td) The tensile strength from MPL prediction can be

expressed as an empirical equation (Tepnarong 2001)

σt mpl = Pmpl (αT ln (td)+βT) (410)

where αT = 133 ln (Ded)-756 and βT= -70 ln (Ded)+ 1952

The results of tensile strengths of all rock types are shown in Tables

419through 421 The predicted tensile strengths are compared with the Brazilian

tensile strengths for the three rock types in Table 418 A close agreement of the

results obtained between two methods The discrepancies of the results are less than

the standard deviation of the results

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa)

And-MPL-01 246 543 159 1495 767 750 And-MPL-02 351 632 471 1697 661 1688 And-MPL-03 236 634 191 1701 659 900 And-MPL-04 266 960 319 2252 369 1240 And-MPL-05 284 903 471 2170 412 1761 And-MPL-06 245 793 357 1999 502 1558 And-MPL-07 263 874 331 2127 435 1330 And-MPL-08 261 980 268 2279 355 1053 And-MPL-09 280 777 344 1971 517 1351 And-MPL-10 244 569 159 1557 734 746 And-MPL-11 251 613 368 1656 683 1666 And-MPL-12 226 631 340 1695 662 1662 And-MPL-13 233 1126 468 2464 257 2000 And-MPL-14 279 1203 572 2552 211 2022 And-MPL-15 239 503 227 1392 822 1114 And-MPL-16 281 474 170 1314 863 765 And-MPL-17 305 861 497 2108 445 1776 And-MPL-18 233 653 283 1740 638 1340 And-MPL-19 294 1386 484 2741 112 1577 And-MPL-20 265 860 522 2106 446 2091

67

And-MPL-21 238 425 311 1169 939 1595 And-MPL-22 230 417 255 1142 953 1338 And-MPL-23 223 557 283 1529 749 1431 And-MPL-24 250 760 311 1941 532 1347 And-MPL-25 259 1243 468 2596 188 1763 And-MPL-26 303 560 395 1535 746 1613

68

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) And-MPL-27 273 1640 497 2964 -006 1671 And-MPL-28 282 906 280 2252 369 1035 And-MPL-29 311 934 369 2216 388 1272 And-MPL-30 246 1314 650 2670 149 2543 And-MPL-31 262 982 255 2282 353 997 And-MPL-32 260 1147 468 2488 244 1783 And-MPL-33 240 700 255 1832 590 1161 And-MPL-34 304 800 306 2010 496 1121 And-MPL-35 250 455 280 1259 891 1370 And-MPL-36 243 1697 312 3010 -030 1181 And-MPL-37 333 1520 395 2863 047 1130 And-MPL-38 238 661 442 1755 630 2054 And-MPL-39 318 347 338 897 1082 1594 And-MPL-40 245 551 390 1513 758 1847 And-MPL-41 207 561 390 1537 745 2089 And-MPL-42 223 425 283 1169 939 1507 And-MPL-43 207 561 390 1537 745 2089 And-MPL-44 324 340 395 871 1096 1864 And-MPL-45 275 426 306 1172 937 1441 And-MPL-46 302 397 166 1079 986 760 And-MPL-47 255 314 127 766 1151 1159 And-MPL-48 257 220 142 291 1401 845 And-MPL-49 256 214 74 257 1419 443 And-MPL-50 243 166 102 -078 1595 928 Average 1427 Standard Deviation 44

69

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) SST -MPL-01 300 782 442 1336 851 2018 SST -MPL-02 250 480 572 1331 853 2759 SST -MPL-03 314 424 433 1196 924 1888 SST -MPL-04 292 809 572 2024 489 2155 SST -MPL-05 275 1142 780 2483 247 2827 SST -MPL-06 308 490 494 1357 840 2086 SST -MPL-07 317 611 728 1651 685 2808 SST -MPL-08 233 684 624 1800 606 2932 SST -MPL-09 255 480 598 1331 853 2849 SST -MPL-10 217 772 312 1962 522 1529 SST -MPL-11 312 903 702 2170 412 2436 SST -MPL-12 255 1094 390 2426 277 1533 SST -MPL-13 286 742 510 1910 549 2011 SST -MPL-14 248 615 198 1661 680 905 SST -MPL-15 253 805 546 2017 492 2312 SST -MPL-16 243 1094 390 2426 277 1607 SST -MPL-17 234 1090 650 2421 280 2780 SST -MPL-18 253 1371 624 2726 120 2354 SST -MPL-19 327 434 408 1196 924 1740 SST -MPL-20 270 310 497 748 1160 2618 SST -MPL-21 269 691 522 1816 599 2181 SST -MPL-22 312 504 484 1394 821 2012 SST -MPL-23 319 627 331 1686 667 1263 SST -MPL-24 281 689 420 1812 601 1699 SST -MPL-25 210 720 497 1869 570 2541 SST -MPL-26 303 775 471 1968 519 1745 SST -MPL-27 272 714 395 1859 576 1623 SST -MPL-28 292 855 764 2098 450 2830 SST -MPL-29 310 742 510 1910 549 1881 SST -MPL-30 284 847 522 2087 456 1981 SST -MPL-31 320 891 828 2153 421 2832 SST -MPL-32 261 256 226 492 1295 1282 SST -MPL-33 224 405 311 1106 972 1672 SST -MPL-34 231 379 255 1017 1019 1363 SST -MPL-35 290 442 594 1221 912 2690 SST -MPL-36 241 521 283 1439 797 1374 SST -MPL-37 275 605 340 1639 692 1445 SST -MPL-38 263 616 368 1661 680 1611

70

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded Pmpl (MPa)

αT βT σt mpl (MPa)

SST -MPL-39 227 615 198 1661 680 969 SST -MPL-40 236 508 311 1406 814 1540 SST -MPL-41 318 1142 780 2483 247 2500 SST -MPL-42 303 809 546 2024 489 1999 SST -MPL-43 228 805 546 2017 492 2530 SST -MPL-44 283 1142 780 2483 247 2757 SST -MPL-45 277 772 312 1962 522 1236 SST -MPL-46 288 1206 728 2555 209 2502 SST -MPL-47 250 508 323 1406 814 1533 SST -MPL-48 275 442 594 1221 912 2769 SST -MPL-49 272 605 368 1639 692 1580 SST -MPL-50 260 805 520 2017 492 2147 Average 2045 Standard Deviation 56

71

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-01 270 546 293 1502 763 1299 TST -MPL-02 258 787 293 1988 508 1226 TST -MPL-03 275 730 255 1888 560 1031 TST -MPL-04 282 715 510 1860 575 2035 TST -MPL-05 254 1345 280 2701 133 1058 TST -MPL-06 292 893 255 2156 420 933 TST -MPL-07 243 853 311 2095 451 1346 TST -MPL-08 287 1047 268 2279 355 970 TST -MPL-09 230 787 471 1988 508 2179 TST -MPL-10 230 427 147 1176 935 769 TST -MPL-11 282 1243 573 2596 188 1994 TST -MPL-12 254 604 255 1636 693 1149 TST -MPL-13 288 1180 369 2527 224 1274 TST -MPL-14 251 631 232 1695 662 1044 TST -MPL-15 214 1104 312 2438 271 1465 TST -MPL-16 229 486 215 1347 845 1098 TST -MPL-17 259 715 286 1861 575 1220 TST -MPL-18 243 285 102 637 1219 571 TST -MPL-19 285 316 130 776 1146 665 TST -MPL-20 241 295 102 685 1194 568 TST -MPL-21 298 417 170 1143 952 771 TST -MPL-22 265 642 170 1178 934 1059 TST -MPL-23 314 611 255 1652 685 989 TST -MPL-24 303 481 368 1423 805 1545 TST -MPL-25 223 223 331 313 1389 2018 TST -MPL-26 273 652 331 1738 640 1389 TST -MPL-27 216 887 535 2146 424 1850 TST -MPL-28 319 718 369 1866 572 1350 TST -MPL-29 231 516 255 1425 804 1276 TST -MPL-30 260 641 484 1715 651 2114 TST -MPL-31 287 496 420 1373 832 1846 TST -MPL-32 264 368 293 976 1041 1475 TST -MPL-33 238 415 293 1151 948 1504 TST -MPL-34 271 824 364 2049 476 1418 TST -MPL-35 283 800 572 2010 496 2210 TST -MPL-36 242 1013 468 2324 331 1965 TST -MPL-37 254 715 234 1861 575 1013 TST -MPL-38 210 755 390 1932 537 1976

72

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-39 293 508 286 1406 814 1229 TST -MPL-40 273 410 260 1124 963 1243 TST -MPL-41 234 628 208 1688 666 990 TST -MPL-42 259 433 338 1194 926 1639 TST -MPL-43 265 546 280 1502 763 1257 TST -MPL-44 255 829 147 2057 472 614 TST -MPL-45 254 368 306 976 1041 1568 TST -MPL-46 293 695 210 1822 595 1846 TST -MPL-47 247 297 102 691 1190 561 TST -MPL-48 310 611 170 1652 685 665 TST -MPL-49 225 337 416 1939 533 1972 TST -MPL-50 259 410 312 1120 965 1537 Average 1336 Standard Deviation 56

434 Modified point load tests for triaxial compressive strength predictions

The objective of this section is to predict the triaxial compressive strength

of intact rock specimens by using the MPL results (modified point load strength Pmpl) It

is speculated that increase of applied load (σ1) will invoke a confining pressure (σ3) on

the imaginary cylindrical profile between the two loading points This is due to the

effect of Poissonrsquos ratio (ν) which causing a potential expansion of rock in this cylinder

The greater the σ1 the greater the σ3 in addition Poissonrsquos ratios also affect the

magnitude of σ3 The magnitude of σ3 also depends on the specimen shape particularly

the Ded ratio In principle σ3 will equal zero for Ded ratio equal to unity But when

Ded ratio is very large approaching infinity σ3 will reach its maximum This maximum

value of σ3 will also depend on the rock Poissonrsquos ratio From computer simulation of

td =25 the variation of σ1 σ3 ratio can be simply expressed by Tepnarong (2006) as

73

(σ1 σ3) = 2 ((ν (1ndashν) (1-(dDe) 2)) (411)

where ν is the Poissonrsquos ratio of rock specimen d is the modified point load diameter

and De is the equivalent diameter of the specimen The Poissonrsquos ratio of rock

specimen used in equation 411 can be assumed to be 25 The σ1 σ3 ratio tends to be

independent of Ded for Ded greater than 10 This implies that when MPL specimen

diameter is more than 10 times of the loading point diameter the magnitude of σ3 is

approaching its maximum value (Tepnarong 2006)

It should be pointed out that approach used here to determine σ3

assumes that there is no shear stress (τrz) along the imagination cylinder As a result

the magnitude of σ3 determined here would be higher than the actual σ3 applied in the

true triaxial test specimen This mean that the σ1 σ3 ratios at failure obtained from

MPL tests will be lower than the actual failure stress ratio from the true triaxial tests

From the concept of σ1 σ3-Ded relation proposed the major and

minor principal stresses at failure (σ1 σ3) can be predicted from the measured MPL

failure stress Pmpl and Ded ratio The Poissonrsquos ratio used here is equal to 025

Comparison between the failure stress (σ1 σ3) obtained from the

standard triaxial compressive strength testing (ASTM D7012-07) and those predicted

from MPL test results are made graphically in Figures 431 through 433 for ν =025

The figures are plotted the maximum shear stress (frac12(σ1-σ3)) as a function of mean

shear stress (frac12(σ1+σ3)) indicating that the predicted failure stresses under-estimate

the value obtained from the standard testing This is because of the assumption of no

shear stresses developed on the surface of the imaginary cylinder The under

prediction may be due to the intrinsic variability of the rocks The predictions are

also sensitive to assumed Poissonrsquos ratio The Poissonrsquos ratio of the tested specimens

74

may be lower than the assumed value of 025 This comparison implies that the

triaxial strength predicted from MPL test will be more conservative than those from

the standard testing method

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests

Specimen Number

td Ded σ1

(MPa)σ3

(MPa)Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-01 246 543 159 2527 6663 9190 And-MPL-02 351 632 471 7583 19776 27358 And-MPL-03 236 634 191 3075 8017 11091 And-MPL-04 266 960 319 5198 13325 18522 And-MPL-05 284 903 471 7682 19726 27408 And-MPL-06 245 793 357 5792 14938 20730 And-MPL-07 263 874 331 5393 13864 19257 And-MPL-08 261 980 268 4368 11192 15560 And-MPL-09 280 777 344 5581 14407 19988 And-MPL-10 244 569 159 2535 6659 9194 And-MPL-11 251 613 368 5911 15445 21356 And-MPL-12 226 631 340 5465 14253 19717 And-MPL-13 233 1126 468 7660 19568 27228 And-MPL-14 279 1203 572 9372 23911 33283 And-MPL-15 239 503 227 3589 9529 13118 And-MPL-16 281 474 170 2678 7154 9831 And-MPL-17 305 861 497 8087 20797 28884 And-MPL-18 233 653 283 4561 11874 16435 And-MPL-19 294 1386 484 7946 20231 28177 And-MPL-20 265 860 522 8501 21864 30365 And-MPL-21 238 425 311 4854 13143 17997 And-MPL-22 230 417 255 3962 10758 14720 And-MPL-23 223 557 283 4521 11894 16415 And-MPL-24 250 760 311 5049 13045 18094 And-MPL-25 259 1243 468 7671 19562 27234 And-MPL-26 303 560 395 6308 16591 22899 And-MPL-27 273 1640 497 8167 20757 28924 And-MPL-28 282 906 280 4574 11726 16300 And-MPL-29 311 934 369 6026 15459 21484 And-MPL-30 246 1314 650 1066 27166 37828 And-MPL-31 262 982 255 4160 10659 14819 And-MPL-32 260 1147 468 7663 19567 27229

75

And-MPL-33 240 700 255 4118 10680 14798 And-MPL-34 304 800 306 4966 12804 17770

76

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-35 250 455 280 4401 11812 16213 And-MPL-36 243 1697 312 5130 13034 18163 And-MPL-37 333 1520 395 6488 16501 22989 And-MPL-38 238 661 442 7125 18535 25661 And-MPL-39 318 347 338 5112 14342 19455 And-MPL-40 245 551 390 6222 16387 22609 And-MPL-41 207 561 390 6230 16383 22613 And-MPL-42 223 425 283 4413 11948 16361 And-MPL-43 207 561 390 6230 16383 22613 And-MPL-44 324 340 395 5952 16769 22721 And-MPL-45 275 426 306 4767 12903 17670 And-MPL-46 302 397 166 2559 7001 9560 And-MPL-47 255 314 127 3211 9223 12433 And-MPL-48 257 220 142 1852 6151 8003 And-MPL-49 256 214 74 950 3205 4155 And-MPL-50 243 166 102 1493 6331 7823

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-01 300 782 442 7389 19703 27092 SST -MPL-02 250 480 572 9028 24083 33112 SST -MPL-03 314 424 433 6767 18273 25040 SST -MPL-04 292 809 572 9293 23951 33244 SST -MPL-05 275 1142 780 1277 32611 45382 SST -MPL-06 308 490 494 7811 20792 28603 SST -MPL-07 317 611 728 1169 30552 42241 SST -MPL-08 233 684 624 1008 26160 36235 SST -MPL-09 255 480 598 9439 25178 34617 SST -MPL-10 217 772 312 5061 13068 18129 SST -MPL-11 312 903 702 1144 29377 40817 SST -MPL-12 255 1094 390 6381 16308 22689 SST -MPL-13 286 742 510 8255 21350 29605 SST -MPL-14 248 615 198 3183 8316 11500

77

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-15 253 805 546 8869 22863 31732 SST -MPL-16 243 1094 390 6381 16308 22689 SST -MPL-17 234 1090 650 1063 27180 37814 SST -MPL-18 253 1371 624 1024 26077 36317 SST -MPL-19 327 434 408 6369 17198 23567 SST -MPL-20 270 310 497 7344 21169 28513 SST -MPL-21 269 691 522 8438 21896 30333 SST -MPL-22 312 504 484 7672 20368 28040 SST -MPL-23 319 627 331 5626 13897 19224 SST -MPL-24 281 689 420 6790 17624 24414 SST -MPL-25 210 720 497 8039 20821 28860 SST -MPL-26 303 775 471 7648 19743 27391 SST -MPL-27 272 714 395 6388 16551 22939 SST -MPL-28 292 855 764 1244 31997 44436 SST -MPL-29 310 742 510 8255 21350 29605 SST -MPL-30 284 847 522 8498 21866 30364 SST -MPL-31 320 891 828 1349 34656 48146 SST -MPL-32 261 256 226 3165 9741 12906 SST -MPL-33 224 405 311 4825 13157 17982 SST -MPL-34 231 379 255 3912 10783 14695 SST -MPL-35 290 442 594 9307 25071 34377 SST -MPL-36 241 521 283 4499 11905 16404 SST -MPL-37 275 605 340 5452 14259 19711 SST -MPL-38 263 616 368 5912 15445 21357 SST -MPL-39 227 615 198 3183 8316 11500 SST -MPL-40 236 508 311 4939 13100 18039 SST -MPL-41 318 1142 780 1277 32611 45382 SST -MPL-42 303 809 546 8870 22862 31733 SST -MPL-43 228 805 546 8869 22863 31732 SST -MPL-44 283 1142 780 1277 32611 45382 SST -MPL-45 277 772 312 5061 13068 18129 SST -MPL-46 288 1206 728 1193 30433 42361 SST -MPL-47 250 508 323 5119 13577 18695 SST -MPL-48 275 442 594 9307 25071 34377 SST -MPL-49 272 605 368 5906 15447 21354 SST -MPL-50 260 805 520 8447 21774 30221

78

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-01 270 546 293 4672 12313 16986 TST -MPL-02 258 787 293 4756 12272 17028 TST -MPL-03 275 730 255 4125 10676 14801 TST -MPL-04 282 715 510 8243 21356 29599 TST -MPL-05 254 1345 280 4599 11713 16312 TST -MPL-06 292 893 255 4151 10663 14814 TST -MPL-07 243 853 311 5067 13036 18103 TST -MPL-08 287 1047 268 4368 11192 15560 TST -MPL-09 230 787 471 7651 19741 27393 TST -MPL-10 230 427 147 2296 6212 8508 TST -MPL-11 282 1243 573 9397 23964 33361 TST -MPL-12 254 604 255 4089 10695 14783 TST -MPL-13 288 1180 369 6052 15445 21497 TST -MPL-14 251 631 232 3734 9739 13474 TST -MPL-15 214 1104 312 5105 13046 18151 TST -MPL-16 229 486 215 3400 9057 12457 TST -MPL-17 259 715 286 4626 11986 16612 TST -MPL-18 243 285 102 1474 4358 5833 TST -MPL-19 285 316 130 1934 5544 7478 TST -MPL-20 241 295 102 1489 4351 5840 TST -MPL-21 298 417 170 2641 7172 9813 TST -MPL-22 265 642 170 2650 7168 9817 TST -MPL-23 314 611 255 4091 10693 14784 TST -MPL-24 303 481 368 5843 15476 21322 TST -MPL-25 223 223 331 4370 14376 18745 TST -MPL-26 273 652 331 5336 13892 19229 TST -MPL-27 216 887 535 8716 22394 31109 TST -MPL-28 319 718 369 5977 15483 21460 TST -MPL-29 231 516 255 4046 10716 14762 TST -MPL-30 260 641 484 7793 20307 28100 TST -MPL-31 287 496 420 6654 17692 24346 TST -MPL-32 264 368 293 4477 12411 16888 TST -MPL-33 238 415 293 4560 12370 16930 TST -MPL-34 271 824 364 5917 15240 21157 TST -MPL-35 283 800 572 9290 23953 33242 TST -MPL-36 242 1013 468 7646 19575 27221 TST -MPL-37 254 715 234 3785 9806 13592 TST -MPL-38 210 755 390 6321 16338 22659

79

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-39 293 508 286 4536 12031 16567 TST -MPL-40 273 410 260 4036 10981 15017 TST -MPL-41 234 628 208 3345 8727 12071 TST -MPL-42 259 433 338 5279 14259 19538 TST -MPL-43 265 546 280 4469 11778 16247 TST -MPL-44 255 829 147 2394 6163 8557 TST -MPL-45 254 368 306 4671 12951 17622 TST -MPL-46 293 695 210 7616 19759 27375 TST -MPL-47 247 297 102 1491 4359 5841 TST -MPL-48 310 611 170 2728 7129 9870 TST -MPL-49 225 337 416 6744 17426 24170 TST -MPL-50 259 410 312 4841 13178 18019

ANDESITE

τm= 07103σm + 26

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=

((σ

1-σ

3)2

) (M

Pa)

MPL PredictionTriaxial Compressive

Figure 431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and MPL test

80

SILICIFIED TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=(

( σ1minus

σ3)

2)

(MPa

)MPL Prediction

Triaxial Compressive Strength test

Figure 432 Comparisons of triaxial compressive strength criterion of silicified

tuffaceous sandstone between the triaxial compressive strength test

and MPL test

81

TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stress σm=((σ1+σ3)2) (MPa)

Max

imum

shea

r st

res

τ m=(

( σ1-

σ3)

2)

(MPa

)

MPL Prediction

Triaxial Compressive Strength test

Figure 433 Comparisons of triaxial compressive strength criterion of tuffaceous

sandstone between the triaxial compressive strength test and MPL

test

Table 425 compares the triaxial test results in terms of the cohesion c

and internal friction angle φi by assuming the failure mode follows the Coulombrsquos

criterion The c and φi values are calculated from the test results and the predicted

results by the assumption of Coulombrsquos criterion (Jaeger and Cook 1978) Table

425 shows that the strengths predicted by MPL testing of all rock types under-

estimate those obtained from the standard triaxial testing This is probably the actual

Poissonrsquos ratio of the rock specimens are probably lower than those assumed in the

model simulation which is assumed the Poissonrsquos ratio as 025

82

Table 425 Comparisons of the internal friction angle and cohesion between MPL

predictions and triaxial compressive strength tests

Triaxial Compressive Strength Test

MPL Predictions (ν=025) Rock Type

c (MPa) φi (degrees) c (MPa) φi (degrees)

Porphyritic Andesite 12 69 4 45

Silicified Tuffaceous Sandstone 13 65 3 46

Tuffaceous Sandstone 7 73 2 46

CHAPTER V

FINITE DIFFERENCE ANALYSES

51 Objectives

The objective of the finite difference analyses is to verify that the equivalent

diameter of rock specimens used in the MPL strength prediction is appropriate The

finite difference analyses using FLAC software is made to determine the MPL

strength for various specimen diameters (D) with a constant cross-sectional area

52 Model characteristics

The analyses are made in axis symmetry Four specimen models with the

constant thickness of 318 cm are loaded with 10 cm diameter loading point The

diameter of the specimen (D) models is varied from 508 cm to 762 cm Each

specimen has a constant cross-sectional area of 1613 cm2 as shown in Figure 51

through 55 The load is applied to the specimens until failure occurs and then the

failure loads (P) are recorded

53 Results of finite difference analyses

The results of numerical simulation are shown in Table 51 The results

suggest that the MPL strength remains roughly constant when the same equivalent

diameter (De) is used It can be concluded that the equivalent diameter used in this

research is appropriate to predict the MPL strength

80

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm

81

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm

82

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm

Table 51 Summary of the results from numerical simulations

Model Number

Specimen Thickness

t (cm)

Specimen Diameter

D (cm)

Cross-Sectional

Are of Specimen

A (cm2)

Equivalent Diameter

De (cm)

Failure Load P

(kN)

1 318 508 1613 508 4485 2 318 572 1613 508 4630 3 318 635 1613 508 4614 4 318 698 1613 508 4627 5 318 762 1613 508 4590

CHAPTER VI

DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS

This chapter discusses various aspects of the proposed MPL testing technique

for determining the elastic modulus uniaxial and triaxial compressive strengths and

tensile strength of intact rock specimens The discussed issues include reliability of

the testing results validity scope and limitations of the proposed method of

calculations and accuracy of the predicted rock properties

61 Discussions

1) For selection of rock specimens for MPL testing in this research an

attempt has been made to select the specimens particularly in obtaining a high degree

of uniformity of rock matrix so as to reduce the intrinsic variability of the mechanical

test results and hence clearly reveals of the relation between the standard test results

with the MPL test results Nevertheless a high degree of intrinsic variability

remains as evidenced from the results of the characterization testing For all tested

rock types here the igneous rocks are normally heterogeneous The high intrinsic

variability is caused by the degree of weathering among specimens and the

distribution of rock fragments in the groundmass which promotes the different

orientations of cleavage planes and pore spaces to become a weak plane in rock

specimens Silicified tuffaceous sandstone the high standard deviation may be

caused by the silicified degree in rock specimens

84

2) For prediction of elastic modulus of rock specimens the effects of the

heterogeneity that cause the selective weak planes are enhanced during the MPL

testing This is because the applied loading areas are much smaller than those under

standard uniaxial compressive strength testing This load condition yields a high

degree of intrinsic variability of the MPL testing results The standard deviation of

the elastic modulus predicted from MPL results are in the range between 35-50

This means that in order to obtain the accurate prediction a large number of rock

specimens is necessary for each rock types and that the MPL testing is more

applicable in fine-grained rocks than coarse-grained rocks Another factor is the

uneven contacts between the loading platens and the rock surfaces which caused the

elastic modulus of all rock types that predicted from MPL testing to be lower

compared with those from the uniaxial compressive strength

3) Equivalent diameter used to define the rock specimen width (perpendicular

to the loading direction) seems adequate for use in MPL predictions of rock

compressive and tensile strengths

4) Determination of σ3 at failure for the MPL testing is the empirical In fact

results from the numerical simulation indicate that σ3 distribution along the imaginary

cylinder between the loading points is not uniform particularly for low td ratio

(lower than 25) Along this cylinder σ3 is tension near the loading point and

becomes compression in the mid-length of the MPL specimen There are also shear

stresses along the imaginary cylinder The induced stress states along the assume

cylinder in MPL specimen are therefore different from those the actual triaxial

strength testing specimen The MPL method can not satisfactorily predict the triaxial

compressive strength of all tested rock types primarily due to the heterogeneity of

85

rock specimens that is the different sizes of phenocrysts in igneous rock in lateral and

horizontal directions This promotes the different failure formations

62 Conclusions

The objective of this research is to determine the elastic modulus uniaxial

compressive strength tensile strength and triaxial compressive strength of rock

specimens by using the modified point load (MPL) test method Three rock types

used in this research are porphyritic andesite silicified tuffaceous sandstone and

tuffaceous sandstone Prior to performing the modified point load testing the

standard characterization testing is carried out on these rock types to obtain the data

basis for use to compare the results from MPL testing The MPL specimens are

irregular-shaped with the specimen thickness to loading platen diameter (td) varies

from 25-35 and the equivalent diameter of specimen to loading platen diameter

(Ded) varies from 15 to 20 Loading platen diameters used in this research are 7 10

and 15 mm Finite different analysis is used to verify the equivalent diameter that use

to calculate rock properties from MPL tests

The research results illustrate that the elastic modulus estimated from MPL tests

under-estimates those obtained from the ASTM standard test with the standard

deviation of 40 for porphyritic andesite 48 for silicified tuffaceous sandstone and

43 for tuffaceous sandstone The MPL test method can satisfactorily predict the

uniaxial compressive strength and tensile strength of all rock types tested here The

conventional point load test method over-predicts the actual strength results by much as

100 The MPL method however can not predict the triaxial compressive strengths

for three rock types tested here primarily due to heterogeneous and different

86

weathering degree of rock specimens and uneven surface of rock specimens This

suggests that the smooth and parallel contact surfaces on opposite side of the loading

points are important for determining the strength of rock specimens for MPL method

63 Recommendations

The assessment of predictive capability of the proposed MPL testing technique

has been limited to three rock types More testing is needed to confirm the applicability

and limitations of the proposed method Some obvious future research needs are

summarized as follows

1) More testing is required for elastic modulus and triaxial compressive strength

on different rock types Smooth and parallel of rock specimen surfaces in the opposite

sides should be prepared for all rock types The results may also reveal the impacts of

grain size on elasticity and strength of obtained under different loading areas And the

effects of size of the areas underneath the applied load should be further investigated

2) To truly confirm the validity of MPL predictions for the elastic modulus and

strength of rocks may be desirable to obtain the actual Poissonrsquos ratio of all rock types

The results could reveal the accuracy of the predicted elastic modulus under the assumed

Poissonrsquos ratio of 025 Comparison between the elastic modulus obtained from the

actual Poissonrsquos ratio may show the validity of assumption of the Poissonrsquos ratio posed

here

3) All tests made in this research are on dry specimens the results of pore

pressure and degree of saturation have not been investigated It is desirable to learn also

the proposed MPL testing technique can yield the intact rock properties under

different degree of saturation

88

REFERENCES

ASTM D2664-86 Standard test method for triaxial compressive strength of

undrained rock core specimens without pore pressure measurements In

Annual Book of ASTM Standards (Vol 0408) Philadelphia American

Society for Testing and Materials

ASTM D7012-07 Standard test method for compressive strength and elastic moduli

of intact rock core specimens under varying states of stress and

temperatures In Annual Book of ASTM Standards (Vol 0408) West

Conshohocken American Society for Testing and Materials

ASTM D3967-81 Standard test method for splitting tensile strength of intact rock

core specimens In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

ASTM D4543-85 Standard test method for preparing rock core specimens and

determining dimensional and shape tolerances In Annual Book of ASTM

Standards (Vol 0408) Philadelphia American Society for Testing and

Materials

ASTM D5731-95 Standard test method for determination of point load strength

index of rock In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

Bieniawski Z T (1974) Estimating of the strength of rock materials J Inst

Min Metall 7 123-137

Bieniawski Z T (1975) The point-load test in geotechnical practice Engng

Geol 9 1-11

89

Bieniawski Z T and Bernede M J (1979) Suggested methods for determining the

uniaxial compressive strength and deferability of rock material for ISRM

Commission on Standardization of Laboratory and Field test Int J Rock

Mech Min Sci 16 (2)xxxx (page no)

Bray J W (1987) Some applications of elastic theory In E T Brown (ed)

Analytical and Computational Methods in Engineering Rock

Mechanics (pp 32-94) Allen amp Unwin London

Broch E and Franklin J A (1972) The point-load test Int J Rock Mech Min

Sci 9 669-697

Book N (1977) The use of irregular specimens for rock strength tests Int J

Rock Mech Min Sci amp Geomech Abstr 14 193-202

Book N (1979) Estimating the triaxial strength of rocks Int J Rock Mech Min

Sci amp Geomech Abstr 16 261-264

Book N (1980) Size correction for point load testing Int J Rock Mech Min

Sci 17231-235 [Technical note]

Book N (1985) The equivalent core diameter method of size and shape correction

in point load testing Int J Rock Mech Min Sci amp Geomech Abstr

22 61-70

Brown E T (1981) Rock characterization Testing and Monitoring ISRM

Suggestion Methods New York International Society for Rock

Mechanics Pergamon Press

Butenuth C (1997) Comparison of tensile strength values of rocks determined by

point load and direct tensile tests Rock Mech Rock Engng 30 65-72

90

Cargill J S and Shakoor A (1992) Evaluation of empirical methods for measuring

the uniaxial compressive strength Int J Rock Mech Min Sci 27 495-503

Chau KT (1997) Youngrsquos modulus interpreted from compression tests with end

friction J Engng Mech January 1-7 plat Ann Inst Tech Trav Publics

58 967-971

Chau KT and Wei X X (1999) A new analytic solution for the diametral point

load strength test on finite solid circular cylinders Int J Solids and

Structures 38(9) 1459-1481

Chau KT and Wong R HC (1996) Uniaxial compressive strength and point

load strength Int J Rock Mech Min Sci 33183-188

Davis R O and Selvadurai APS (1996) Elasticity and Geomechanics New

York Cambridge University Press 198 p

Deere DU and Miller R P (1966) Engineering Classification and Index

Properties for Intact Rock US Air Force Weapons Lab Rep AFWL-

TR-65-116

Durelli A J and Parks V (1962) Relationship of size and stress gradient to brittle

failure stress In Proceeding of the 4th US National Cong Of Appl

Mech (pp 931-938)

Evans I (1961) The tensile strength of coal Colliery Eng 38 428-434

Fairhurst C (1961) Laboratory measurement of some physical properties of rock

In Proceeding of the 4th Symp Rock Mech (pp 105-118) Penn State

University

Farmer I (1983) Engineering Behavior of Rocks New York Chapman and Hall

208 p

91

Forster I R (1983) The influence of core sample geometry on axial load test Int

J Rock Mech Min Sci 20 291-295

Fuenkajorn K (2002) Modified point load test determining uniaxial compressive

strength of intact rock In Proceeding of 5th North American Rock

Mechanics Symposium and the 17th Tunneling Association of Canada

Conference (NARMS-TAC 2002) (pp ) Toronto

Fuenkajorn K and Daemen J J K (1986) Shape effect on ring test tensile

strength In Key to Energy Production Proceeding of the 27th US

Symposium on Rock Mechanics (pp 155-163) Tuscaloosa University of

Alabama

Fuenkajorn K and Daemen J J K (1991b) An empirical strength criterion for

heterogeneous welded tuff In ASME Applied Mechanics and

Biomechanics Summer Conference Columbus Ohio University

Fuenkajorn K and Daemen J J K (1992) An empirical strength criterion for

heterogeneous tuff Int J Engineering Geology 32 209-223

Fuenkajorn K and Tepnarong P (2001) Size and stress gradient effects on the

modified point load strength of Saraburi Marble In the 6th Mining

Metallurgical and Petroleum Engineering Conference Bangkok

Thailand(pp)

Ghosh A Fuenkajorn K and Daemen J J K (1995) Tensile strength of welded

Apache Leap tuff investigation for scale effects In Proceeding of the 35th

US Rock Mech Symposium (pp 459-646) University of Navada Reno

Goodman R E (1980) Methods of Geological Engineering in Discontinuous

Rock New York Wiley and Sons

92

Greminger M (1982) Experimental studies of the influence of rock anisotropy on

size and shape effects in point-load testing Int J Rock Mech Min Sci

19 241-246

Gunsallus K L and Kulhawy F H (1984) A comparative evaluation of rock

strength measures Int J Rock Mech Min Sci 21 233-248

Hassani F P Scoble M J and Whittaker B N (1980) Application of point load

index test to strength determination of rock and proposals for new size-

correction chart (pp 543-564) Rolla

Hiramatsu Y and Oka Y (1966) Determination of tensile strength of rock by a

compression test of irregular test piece Int J Rock Mech Min Sci 3

89-99

Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the

Hoek-Brown falure criterion-Technical note Int J Rock Mech Min Sci

amp Geomech Abstr 27 227-229

Hoek E and Brown E T (1980a) Empirical strength criterion for rock masses J

Geotech Eng Div 106 (GT9) 1013-1035

Hondros G (1959) The evaluation of Poissonrsquos ratio and modulus of material of a

low tensile resistance by the Brazilian (indirect tensile) test with particular

reference to concrete Aust J Appl Sci 10 243-264

Horii H and Nemat-Nasser S (1985) Compression-induced microcrack growth in

brittle solids axial splitting and shear failure J Geophts Res 90 3105-

3125

93

Hudson J A Brown E T and Fairhurst C (1971) Shape of the complete stress-

strain curve for rock In Proceeding of the 13th US Symp Rock Mech (pp

773-795) Urbana

ISRM (1985) Suggested method for determining point load strength Int J Rock

Mech Min Sci amp Geomech Abstr 22 53-60

ISRM (1985) Suggested methods for deformability determination using a flexible

dilatometer Int J Rock Mech Min Sci amp Geomech Abstr 24 123-134

Jaeger J C and Cook N G W (1979) Fundamentals of Rock Mechanics

London Chapman and Hall 593 p

Kaczynski R R (1986) Scale effect during compressive strength of rocks In

Proceeding of 5th Int Assoc Eng Geol Congr p 371-373

Lama R D and Vutukuri V S (1978) Testing techniques and results In

Handbook on Mechanical Properties of Rock Vol III No 2 Trans

Tech Publications (International Standard Book Number 0-87849-022-1

Clausthal Germany)

Lonborg N (1967) The strength-size relation of granite Int J Rock Mech Min

Sci 4 269-272

Miller R P (1965) Engineering Classification and Index Properties for Intact

Rock PhD Dissertation Univ Of Illinois Urbana III 92 p

Nimick F B (1988) Empirical relations between porosity and the mechanical

properties of tuff In Key Questions in Rock Mechanics (pp 741-742)

Balkema Rotterdam

Obert L and Stephenson D E (1965) Stress conditions under which core disking

occurs Trans Soc Min Eng AIME 232 227-235

94

Panek L A and Fannon T A (1992) Size and shape effects in point load tests

of irregular rock fragments J Rock Mechanics and Rock Engineering

25 109-140

Pells P J N (1975) The use of point load test in predicting the compressive

strength of rock material Aust Geotech (pp 54-56) G5(N1)

Reichmuth D R (1968) Point-load testing of brittle materials to determine the

tensile strength and relative brittleness In Proceeding of the 9th US Symp

Rock Mech (pp 134-159) University of Colorado

Sammis C G and Ashby M F (1986) The failure of brittle porous solid under

compressive stress state Acta Metall 34 511-526

Serata S and Fuenkajorn K (1992a) Finite element progam lsquoGEOrsquo for modeling

brittle-ductile deterioration of aging earth structures In SMRI Paper

Presented at the Solution Mining Research Institute Fall Meeting

October 19-22 Houston Texas 24p

Sheorey P R Biswas A K and Choubey V D (1989) An empirical failure

criterion of rocks and jointed rock masses Eng Geol 26 141-159

Stowe R L (1969) Strength and deformation properties of granite basalt

limestone and tuff US Army Corps of Engineers WES Misc Paper C-69-1

Taliercio A and Sacchi Landrianni G (1988) Failure criterion for layered rock

Int J Rock Mech Min Sci amp Geomech Abstr 25 299-305

Tepnarong P (2001) Theoretical and experimental studies to determine

compressive and tensile strengths of rocks using modified point load

testing M Eng Thesis Suranaree University of Technology Thailand

95

Tepnarong P (2006) Theoretical and experimental studies to determine elastic

modulus and triaxial compressive strength of intact rocks by modified

point load testing PhD Eng Thesis Suranaree University of

Technology Thailand

Tepnarong P and Fuenkajorn K (2004) Determining of elasticity and strengths

of intact rocks using modified point load test In Proceeding of the ISRM

International Symposium 3rd ASRM Vol 2 (pp 397-392)

Timoshenko S (1958) Strength of materials I Element Theory and Problems

(3rd ed) Princeton N J D Van Nostard

Timoshenko S and Goodier J N (1951) Theory of Elasticity (2nd ed) New

York McGraw-Hill

Truk N and Dearman W R (1985) Improvements in the determination of point

load strength Bull Int Assoc Eng Geol 31 137-142

Truk N and Dearman W R (1986) A correction equation on the influence of

length-to-diameter ratio on uniaxial compressive strength of rocks J Eng

Geol 22 293-300

Wei X X and Chau K T (2002) Analytic solution for finite transversely

isotropic circular cylinder under the axial point load test J Eng Mech

(pp 209-219)Vol

Wei X X and Chau K T and Wong R H C (1999) Analytic solution for

axial point load strength test on solid circular cylinders J Eng Mech (pp

1349-1357) Vol

96

Wijk G (1978) Some new theoretical aspects of indirect measurements of the

tensile strength of rocks Int J Rock Mech Min Sci amp Geomech

Abstr 15 149-160

Wijk G (1980) The point load test for the tensile strength of rock Geotech Test

ASTM 3 49-54

APPENDIX A

CHARACTERIZATION TEST RESULTS

97

Table A-1 Results of conventional point load strength index test on porphyritic

andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

And-06-05-CPL-01 5397 5366 284 52 And-06-05-CPL-02 5332 5366 283 78 And-08-04-CPL-03 5432 5366 284 90 And-08-04-CPL-04 5482 5366 286 87 And-06-01-CPL-05 5330 5366 285 76 And-06-01-CPL-06 5613 5366 284 76 And-04-04-CPL-07 5617 5366 281 75 And-04-05-CPL-08 5525 5366 282 75 And-03-02-CPL-09 5595 5366 280 85 And-03-02-CPL-10 5535 5366 283 85 And-06-06-CPL-11 5475 5366 283 75 And-09-01-CPL-12 5552 5366 286 90 And-09-01-CPL-13 5503 5366 283 90 And-02-04-CPL-14 5542 5366 282 85 And-09-03-CPL-15 5607 5366 282 85 And-09-03-CPL-16 5452 5366 285 96 And-01-03-CPL-17 5530 5366 283 87 And-01-03-CPL-18 5313 5366 283 90 And-01-04-CPL-19 5465 5366 284 56 And-01-04-CPL-20 5572 5366 283 97

Average 81plusmn12

98

Table A-2 Results of conventional point load strength index test on silicified

tuffaceous sand stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

SST-02-03-CPL-01 5373 5366 268 125 SST-06-04-CPL-02 5469 5366 268 70 SST-02-07-CPL-03 5505 5366 269 70 SST-02-06-CPL-04 5518 5366 267 130 SST-02-04-CPL-05 5626 5366 267 125 SST-02-03-CPL-06 5139 5366 270 132 SST-02-03-CPL-07 5483 5366 271 71 SST-02-05-CPL-08 5340 5366 266 125 SST-02-05-CPL-09 5399 5366 265 70 SST-07-05-CPL-10 5643 5366 263 99 SST-07-05-CPL-11 5381 5366 266 106 SST-05-02-CPL-12 5439 5366 274 104 SST-05-02-CPL-13 5491 5366 271 104 SST-03-04-CPL-14 5430 5366 263 113 SST-03-04-CPL-15 5556 5366 263 106 SST-09-03-CPL-16 5491 5366 272 125 SST-09-03-CPL-17 5703 5366 271 125 SST-01-01-CPL-18 5705 5366 267 132 SST-02-07-CPL-19 5596 5366 269 111 SST-02-07-CPL-20 5527 5366 271 118

Average 108plusmn22

99

Table A-3 Results of conventional point load strength index test on tuffaceous sand

stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

TST-06-05-CPL-01 5657 5366 263 125 TST-06-05-CPL-02 5781 5366 264 109 TST-02-05-CPL-03 5686 5366 263 106 TST-02-05-CPL-04 5747 5366 264 80 TST-08-03-CPL-05 5606 5366 268 115 TST-08-03-CPL-06 5574 5366 266 118 TST-08-01-CPL-07 5491 5366 268 111 TST-08-01-CPL-08 5478 5366 268 115 TST-04-02-CPL-09 5422 5366 263 103 TST-04-02-CPL-10 5387 5366 264 111 TST-08-04-CPL-11 5371 5366 267 115 TST-08-04-CPL-12 5463 5366 267 113 TST-06-07-CPL-13 5545 5366 267 108 TST-04-01-CPL-14 5729 5366 261 59 TST-06-06-CPL-15 5457 5366 261 99 TST-06-06-CPL-16 5469 5366 263 109 TST-06-06-CPL-17 5497 5366 266 122 TST-04-03-CPL-18 5550 5366 261 87 TST-04-03-CPL-19 5521 5366 262 52 TST-04-05-CPL-20 5477 5366 264 87

Average 102plusmn20

100

Table A-4 Results of uniaxial compressive strength tests and elastic modulus

measurements on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-5 Results of uniaxial compressive strength tests and elastic modulus

measurements on silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

Table A-6 Results of uniaxial compressive strength tests and elastic modulus

measurements on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

101

Table A-7 Results of Brazilian tensile strength tests on porphyritic andesite

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

And-04-03-BZ-01 2628 5366 281 395 178 And-04-03-BZ-02 2551 5366 279 350 163 And-04-03-BZ-03 2755 5366 285 380 164 And-04-03-BZ-04 2669 5366 279 415 184 And-04-06-BZ-05 2686 5366 280 320 141 And-04-06-BZ-06 2699 5366 286 415 182 And-04-06-BZ-07 2649 5366 282 395 177 And-04-06-BZ-08 2642 5366 286 340 153 And-06-01-BZ-09 2678 5366 286 435 193 And-06-01-BZ-10 2758 5366 285 385 166

Average 170plusmn16

Table A-8 Results of Brazilian tensile strength tests on silicified tuffaceous

sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

SST-02-02-BZ-01 2507 5366 265 450 213 SST-01-06-BZ-02 2664 5366 264 520 232 SST-01-02-BZ-03 2595 5366 262 400 183 SST-01-02-BZ-04 2593 5366 261 320 146 SST-01-02-BZ-05 2608 5366 266 500 228 SST-02-01-BZ-06 2710 5366 266 500 220 SST-02-01-BZ-07 2654 5366 262 450 201 SST-01-05-BZ-08 2778 5366 268 350 150 SST-01-05-BZ-09 2793 5366 266 400 170 SST-01-05-BZ-10 2795 5366 266 400 170

Average 191plusmn32

102

Table A-9 esults of Brazilian tensile strength tests on tuffaceous sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

TST-02-03-BZ-01 2811 5366 260 360 152 TST-02-03-BZ-02 2757 5366 260 255 110 TST-02-03-BZ-03 2739 5366 262 325 141 TST-02-03-BZ-04 2688 5366 263 175 77 TST-06-04-BZ-05 2765 5366 266 450 193 TST-06-04-BZ-06 2729 5366 264 280 122 TST-06-04-BZ-07 2730 5366 260 230 100 TST-06-02-BZ-08 2748 5366 264 285 123 TST-06-02-BZ-09 2743 5366 261 290 125 TST-06-02-BZ-10 2658 5366 265 370 165

Average 131plusmn33

Table A-10 esults of triaxial compressive strength tests on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-11 Results of triaxial compressive strength tests on silicified tuffaceous

sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

103

Table A-12 Results of triaxial compressive strength tests on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

APPENDIX B

MODIFIED POINT LOAD TEST RESULTS FOR ELASTIC

MODULUS PREDICTION

116

AND-MPL-01

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 125 GPamm

Figure B1 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-01

And-MPL-02

00500

100015002000250030003500400045005000

0 005 01 015 02 025 03 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 180 GPamm

Figure B2 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-02

117

And-MPL-03

00200400600800

100012001400160018002000

000 002 004 006 008 010 012 014

Diplacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B3 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-03

And-MPL-04

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B4 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-04

118

And-MPL-05

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 369 GPamm

Figure B5 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-05

And-MPL-06

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B6 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-06

119

And-MPL-07

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss (

MPa

)

ΔPΔδ = 234 GPamm

Figure B7 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-07

And-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 171 GPamm

Figure B8 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-08

120

And-MPL-09

00

500

1000

1500

2000

2500

3000

3500

000 020 040 060 080 100 120 140Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 056 GPamm

Figure B9 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-09

And-MPL-10

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 124 GPamm

Figure B10 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-10

121

And-MPL-11

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030 035 040Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 138 GPamm

Figure B11 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-11

And-MPL-12

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 189 GPamm

Figure B12 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-12

122

And-MPL-13

00500

100015002000250030003500400045005000

000 010 020 030 040 050 060

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 151 GPamm

Figure B13 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-13

And-MPL-14

00

1000

2000

3000

4000

5000

6000

7000

000 010 020 030 040 050 060Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 165 GPamm

Figure B14 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-14

123

And-MPL-15

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120 140 160Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 011 GPamm

Figure B15 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-15

And-MPL-16

00

200

400

600

800

1000

1200

1400

1600

1800

000 050 100 150 200Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 012 GPamm

Figure B16 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-16

124

And-MPL-17

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120

Displacement (mm)

Stre

ss P

(MPa

) ΔPΔδ = 021 GPamm

Figure B17 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-17

And-MPL-18

00

500

1000

1500

2000

2500

3000

000 050 100 150 200 250 300 350Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 008 GPamm

Figure B18 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-18

125

And-MPL-19

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B19 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-19

And-MPL-20

00

1000

2000

3000

4000

5000

6000

000 050 100 150 200 250 300

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 017 GPamm

Figure B20 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-20

126

And-MPL-21

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B21 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-21

And-MPL-22

00

500

1000

1500

2000

2500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B22 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-22

127

And-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B23 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-23

And-MPL-24

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =112 GPamm

Figure B24 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-24

128

And-MPL-25

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 585 GPamm

Figure B25 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-25

And-MPL-26

00500

10001500200025003000350040004500

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 143 GPamm

Figure B26 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-26

129

And-MPL-27

00500

10001500200025003000350040004500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B27 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-27

And-MPL-28

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B28 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-28

130

And-MPL-29

00500

1000150020002500300035004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B29 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-29

And-MPL-30

00

1000

2000

3000

4000

5000

6000

7000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B30 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-30

131

And-MPL-31

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B31 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-31

And-MPL-32

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B32 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-32

132

And-MPL-33

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 101 GPamm

Figure B33 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-33

And-MPL-34

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 135 GPamm

Figure B34 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-34

133

And-MPL-35

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 127 GPamm

Figure B35 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-35

And-MPL-36

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 292 GPamm

Figure B36 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-36

134

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B37 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-37

And-MPL-38

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B38 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-38

135

And-MPL-39

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 186 GPamm

Figure B39 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-39

And-MPL-40

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 20 GPamm

Figure B40 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-40

136

And-MPL-41

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B41 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-41

And-MPL-42

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B42 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-42

137

And-MPL-43

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 346 GPamm

Figure B43 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-43

And-MPL-44

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B44 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-44

138

And-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 169 GPamm

Figure B45 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-45

And-MPL-46

00

200

400

600

800

1000

1200

1400

1600

1800

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B46 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-46

139

And-MPL-47

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B47 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-47

And-MPL-48

00

200

400

600

800

1000

1200

1400

1600

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 094 GPamm

Figure B48 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-48

140

And-MPL-49

00

100

200

300

400

500

600

700

800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 057 GPamm

Figure B49 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-49

And-MPL-50

00

200

400

600

800

1000

1200

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 078 GPamm

Figure B50 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-50

141

SST-MPL-01

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 280 GPamm

Figure B51 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-01

SST-MPL-02

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 307 GPamm

Figure B52 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-02

142

SST-MPL-03

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 356 GPamm

Figure B53 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-03

SST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 450 GPamm

Figure B54 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-04

143

SST-MPL-05

00100020003000400050006000700080009000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 532 GPamm

Figure B55 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-05

SST-MPL-06

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 273 GPamm

Figure B56 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-06

144

SST-MPL-07

0010002000300040005000600070008000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 418 GPamm

Figure B57 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-07

SST-MPL-08

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 414 GPamm

Figure B58 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-08

145

SST-MPL-09

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B59 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-09

SST-MPL-10

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 958 GPamm

Figure B60 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-10

146

SST-MPL-11

00

10002000

300040005000

60007000

8000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 400 GPamm

Figure B61 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-11

SST-MPL-12

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 272 GPamm

Figure B62 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-12

147

SST-MPL-13

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 408 GPamm

Figure B63 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-13

SST-MPL-14

00

500

1000

1500

2000

2500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 296 GPamm

Figure B64 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-14

148

SST-MPL-15

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 282 GPamm

Figure B65 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-15

SST-MPL-16

00500

1000150020002500300035004000

000 005 010 015 020

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 26 GPamm

Figure B66 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-16

149

SST-MPL-17

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 416 GPamm

Figure B67 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-17

SST-MPL-18

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 473 GPamm

Figure B68 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-18

150

SST-MPL-19

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 330 GPamm

Figure B69 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-19

SST-MPL-20

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 278 GPamm

Figure B70 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-20

151

SST-MPL-21

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 185 GPamm

Figure B71 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-21

SST-MPL-22

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B72 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-22

152

SST-MPL-23

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 15 GPamm

Figure B73 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-23

SST-MPL-24

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 295 GPamm

Figure B74 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-24

153

SST-MPL-25

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 259 GPamm

Figure B75 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-25

SST-MPL-26

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 221 GPamm

Figure B76 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-26

154

SST-MPL-27

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 274 GPamm

Figure B77 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-27

SST-MPL-28

0010002000300040005000600070008000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 209 GPamm

Figure B78 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-28

155

SST-MPL-29

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 176 GPamm

Figure B79 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-29

SST-MPL-30

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B80 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-30

156

SST-MPL-31

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 464 GPamm

Figure B81 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-31

SST-MPL-32

00

500

1000

1500

2000

2500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 178 GPamm

Figure B82 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-32

157

SST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 131 GPamm

Figure B83 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-33

SST-MPL-34

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 215 GPamm

Figure B84 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-34

158

SST-MPL-35

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 190 GPamm

Figure B85 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-35

SST-MPL-36

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B86 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-36

159

SST-MPL-37

00500

1000150020002500300035004000

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 067 GPamm

Figure B87 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-37

AND-MPL-38

00

500

10001500

2000

2500

3000

35004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 127 GPamm

Figure B88 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-38

160

SST-MPL-39

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 229 GPamm

Figure B89 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-39

SST-MPL-40

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 090 GPamm

Figure B90 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-40

161

SST-MPL-41

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 498 GPamm

Figure B91 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-41

SST-MPL-42

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 392 GPamm

Figure B92 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-42

162

SST-MPL-43

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 244 GPamm

Figure B93 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-43

SST-MPL-44

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 571 GPamm

Figure B94 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-44

163

SST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 001 002 003 004 005 006 007 008

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 780 GPamm

Figure B95 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-45

SST-MPL-46

0010002000300040005000600070008000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 411 GPamm

Figure B96 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-46

164

SST-MPL-47

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 309 GPamm

Figure B97 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-47

SST-MPL-48

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 338 GPamm

Figure B98 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-48

165

SST-MPL-49

00500

1000150020002500300035004000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 254 GPamm

Figure B99 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-49

SST-MPL-50

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 360 GPamm

Figure B100 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-50

166

TST-MPL -01

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 212GPamm

Figure B101 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-01

TST-MPL-02

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=326 GPamm

Figure B102 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-02

167

TST-MPL-03

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacememt (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B103 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-03

TST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B104 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-04

168

TST-MPL-05

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 264 GPamm

Figure B105 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-05

TST-MPL-06

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacment (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B106 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-06

169

TST-MPL-07

00

500

1000

1500

2000

2500

3000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 162 GPamm

Figure B107 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-07

TST-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=319 GPamm

Figure B108 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-08

170

TST-MPL-09

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =212 GPamm

Figure B109 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-09

TST-MPL-10

00200400600800

1000120014001600

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 132GPamm

Figure B110 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-10

171

TST-MPL-11

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =319 GPamm

Figure B111 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-11

TST-MPL-12

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 127 GPamm

Figure B112 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-12

172

TST-MPL-13

00500

1000150020002500300035004000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 159 GPamm

Figure B113 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-13

TST-MPL-14

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =170 GPamm

Figure B114 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-14

173

TST-MPL-15

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 260 GPamm

Figure B115 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-15

TST-MPL-16

00500

100015002000250030003500400045005000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B116 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-16

174

TST-MPL-17

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B117 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-17

TST-MPL-18

00

200

400

600

800

1000

1200

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=073 GPamm

Figure B118 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-18

175

TST-MPL-19

00

200

400

600

800

1000

1200

1400

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B119 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-19

TST-MPL-20

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=170 GPamm

Figure B120 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-20

176

TST-MPL-21

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=100 GPamm

Figure B121 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-21

TST-MPL-22

00200400600800

10001200140016001800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 088 GPamm

Figure B122 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-22

177

TST-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 101 GPamm

Figure B123 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-23

TST-MPL-24

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 124 GPamm

Figure B124 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-24

178

TST-MPL-25

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 126 GPamm

Figure B125 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-25

TST-MPL-26

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 178 GPamm

Figure B126 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-26

179

TST-MPL-27

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B127 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-27

TST-MPL-28

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 164 GPamm

Figure B128 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-28

180

TST-MPL-29

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B129 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-29

TST-MPL-30

00500

100015002000250030003500400045005000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =280 GPamm

Figure B130 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-30

181

TST-MPL-31

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B131 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-31

TST-MPL-32

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B132 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-32

182

TST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 130 GPa mm

Figure B133 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-33

TST-MPL-34

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B134 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-34

183

TST-MPL-35

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B135 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-35

TST-MPL-36

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B136 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-36

184

TST-MPL-37

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 217 GPamm

Figure B137 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-37

TST-MPL-38

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 52 GPamm

Figure B138 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-38

185

TST-MPL-39

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B139 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-39

TST-MPL-40

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 347 GPamm

Figure B140 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-40

186

TST-MPL-41

00

500

1000

1500

2000

2500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B141 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-41

TST-MPL-42

00

500

1000

1500

2000

2500

3000

3500

4000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B142 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-42

187

TST-MPL -43

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 435 GPamm

Figure B143 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-43

TST-MPL-44

00

200

400

600

800

1000

1200

1400

1600

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B144 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-44

188

TST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 315 GPamm

Figure B145 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-45

TST-MPL-46

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B146 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-46

189

TST-MPL-47

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=128 GPamm

Figure B147 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-47

TST-MPL-48

00200400600800

10001200140016001800

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 237GPamm

Figure B148 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-48

190

TST-MPL-49

00

500

1000

1500

2000

2500

3000

3500

4000

4500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B149 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-49

TST-MPL-50

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 394 GPamm

Figure B150 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-50

BIOGRAPHY

Mr Chatchai Intaraprasit was born on July 30 1973 in Khon Kaen province

Thailand He received his Bachelorrsquos Degree in Science (Geotechnology) from Khon

Kaen University in 1996 He worked with the construction company for ten years

after graduated the Bachelorrsquos Degree For his post-graduate he continued to study

with a Masterrsquos Degree in the Geological Engineering Program Institute of

Engineering Suranaree University of Technology He has published a technical

papers related to rock mechanics as in 2009 ldquoModified point load testing of volcanic

rocks from Chatree gold minerdquo in the proceeding of the second Thailand symposium

on rock mechanics Chonburi Thailand For his work he is working as a

geotechnical engineer at Akara mining company limited Phichit province Thailand

  • cover
  • abstractpdf
  • CHAPTER I
  • CHAPTER II
  • CHAPTER III
  • CHAPTER IV
  • CHAPTER V
  • CHAPTER VI
  • REFERENCES
  • APPENDIX A
  • APPENDIX B
  • BIOGRAPHY
Page 3: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·

MODIFIED POINT LOAD TESTS OF PIT WALL ROCK AT

CHATREE GOLD MINE

Suranaree University of Technology has approved this thesis submitted in

partial fulfillment of the requirements for a Masterrsquos Degree

Thesis Examining Committee

_________________________________

(Asst Prof Thara Lekuthai)

Chairperson

_________________________________

(Assoc Prof Dr Kittitep Fuenkajorn)

Member (Thesis Advisor)

_________________________________

(Dr Prachya Tepnarong)

Member

_______________________________ _________________________________

(Prof Dr Pairote Sattayatham) (Assoc Prof Dr Vorapot Khompis)

Acting Vice Rector for Academic Affairs Dean of Institute of Engineering

ชาตชาย อนทรประสทธ การทดสอบจดกดแบบปรบเปลยนของหนผนงบอทเหมองแรทองคาชาตร (MODIFIED POINT LOAD TESTS OF PIT WALL ROCK AT CHATREE GOLD MINE ) อาจารยทปรกษา รองศาสตราจารย ดร กตตเทพ เฟองขจร 191 หนา

การทดสอบจดกดแบบปรบเปลยนไดถกนามาใชในการหาคาความเคนกด แรงดง และคาความยดหยนของหนตวอยางในหองปฏบตการทดสอบ มาเปนเวลาเกอบสบปแลว วธการทดสอบนไดถกประดษฐ และจดทะเบยนลขสทธโดยมหาวทยาลยเทคโนโลยสรนาร เครองมอ และวธการทดสอบถกออกแบบใหมราคาถกและงาย เมอเปรยบเทยบกบวธการทดสอบเพอหาคณสมบตเชงกลของหนแบบดงเดม เชน วธการทดสอบตามมาตรฐาน ISRM และ ASTM ในอดตการทดสอบจดกดแบบปรบเปลยนสวนใหญมกทดสอบในแทงตวอยางหนทเปนรปวงกลม และรปสเหลยมมมฉาก ในขณะทมการอางวาการทดสอบแบบจดกดแบบปรบเปลยนนสามารถใชไดกบหนทกรปราง แตผลทดสอบวธนกบหนทมรปรางไมเปนทรงเรขาคณตยงมนอยมาก เนองจากเหตนจงยงไมมการยนยนอยางเพยงพอวา วธการทดสอบจดกดแบบปรบเปลยนสามารถใชไดจรงและมความสมาเสมอเพยงพอในการตรวจหาคณสมบตทางกลศาสตรพนฐานของหนในภาคสนามซงไมสามารถจดหาเครองเจาะและเครองตดหนได วตถประสงคของงานวจยนคอ เพอประเมนศกยภาพของการทดสอบของวธการทดสอบแบบจดกดแบบปรบเปลยนในหนตวอยางทมรปรางไมเปนทรงเรขาคณต ตวอยางหนสามชนด จานวน 150 ตวอยางเปนอยางนอย ไดแก porphyritic andesite silicified-tuffaceous sandstone และ tuffaceous sandstone ซงเกบรวบรวมมาจากผนงบอทางดานทศเหนอของเขาหมอทเหมองแรทองคาชาตร จะถกนามาใชในการทดสอบน อตราสวนระหวางความหนาของหนตวอยางตอเสนผาศนยกลางของหวกด แปรผนระหวาง 2 ถง3 และ อตราสวนระหวางเสนผาศนยกลางของตวอยางหนกบเสนผาศนยกลางของหวกดแปรผนระหวาง 5 ถง 10 การสญเสยรปรางและการแตกหกของหนจะถกนามาใชในการคานวณหาคาความยดหยนและความแขงแรงของหน และจะมการทดสอบแรงกดในแกนเดยวและแรงกดในสามแกน การทดสอบแรงดง และการทดสอบจดกดแบบด ง เด มในหนท งสามชนดดวยเช นกนเพ อนาผลการทดสอบท ได มาใชในการเปรยบเทยบกบผลทไดจากการทดสอบจดกดแบบปรบเปลยน แบบจาลองโดยใชโปรแกรมคอมพวเตอรจะถกนามาใชในการศกษาการกระจายตวของแรงเคนในกอนตวอยางหนของการทดสอบจดกดแบบปรบเปล ยนภายใต อ ตราสวนระหวางความหนาของหนต วอย างต อเสนผาศนยกลางของหวกดทตางๆกน และจะมการประเมนเชงปรมาณของผลกระทบของความมรปรางทไมเปนรปทรงทางเรขาคณตของหนตวอยาง ความเหมอนและความแตกตางของผล

II

สาขาวชา เทคโนโลยธรณ ลายมอชอนกศกษา ปการศกษา 2552 ลายมอชออาจารยทปรกษา

การทดสอบจดกดแบบปรบเปลยนและการทดสอบจดกดแบบดงเดมจะถกนามาพจารณา อาจมการประยกตการคานวณทเปนแบบแผนของการทดสอบจดกดแบบปรบเปล ยน เพ อเพ มความสามารถในการคาดคะเนคณสมบตทางกลศาสตรของหนตวอยางทมรปรางไมเปนรปทรงทางเรขาคณตไดดยงขน

CHATCHAI INTARAPRASIT MODIFIED POINT LOAD TESTS OF PIT

WALL ROCK AT CHATREE GOLD MINE THESIS ADVISOR ASSOC PROF

KITTITEP FUENKAJORN Ph D PE 191 PP

TRIAXIAL COMPRESSIVE STRENGTHUNIAXIAL COMPRESSIVE

STRENGTH ELASIC MODULUS POINT LOADTENSILE STRENGTH

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strengths and elastic modulus of intact rock

specimens in the laboratory This method was invented and patented by Suranaree

University of Technology The test apparatus and procedure are intended to be

inexpensive and easy compared to the relevant conventional methods of determining

the mechanical properties of intact rock eg those given by the International Society

for Rock Mechanics (ISRM) and the American Society for Testing and materials

(ASTM) In the past much of the MPL testing practices have been concentrated on

circular and rectangular disk specimens While it has been claimed that MPL method

is applicable to all rock shapes the test results from irregular lumps of rock have been

rare and hence are not sufficient to confirm that the MPL testing technique is truly

valid or even adequate to determine the basic rock mechanical properties in the field

where rock drilling and cutting devices are not available

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine will be used

as rock samples A minimum of 150 samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone will be collected from the site The

IV

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure will be used to calculate the elastic modulus and strengths of the rocks

Uniaxial and triaxial compression tests Brazilian tension test and conventional point

load test will also be conducted on the three rock types to obtain data basis for

comparing with those from the MPL testing Finite difference analysis will be

performed to obtain stress distribution within the MPL samples under different td and

Dd ratios The effects of the sample irregularity will be quantitatively assessed

Similarity and discrepancy of the test results from the MPL method and from the

conventional methods will be examined Modification of the MPL calculation

scheme may be made to enhance its predictive capability for the mechanical

properties of irregular shaped specimens

School of Geotechnology Students Signature

Academic Year 2009 Advisors Signature

ACKNOWLEDGMENTS

I wish to acknowledge the funding support of Suranaree University of

Technology (SUT) and Akara Mining Company Limited

I would like to express my sincere thanks to Assoc Prof Dr Kittitep

Fuenkajorn thesis advisor who gave a critical review and constant encouragement

throughout the course of this research Further appreciation is extended to Asst Prof

Thara Lekuthai chairman school of Geotechnology and Dr Prachya Tepnarong

Suranaree University of Technology who are member of my examination committee

Grateful thanks are given to all staffs of Geomechanics Research Unit Institute of

Engineering who supported my work

Chatchai Intaraprasit

TABLE OF CONTENTS

Page

ABSTRACT (THAI) I

ABSTRACT (ENGLISH) III

ACKNOWLEDGEMENTS V

TABLE OF CONTENTS VI

LIST OF TABLES IX

LIST OF FIGURES XIII

LIST OF SYMBOLS AND ABBREVIATIONS XVII

CHAPTER

I INTRODUCTION 1

11 Background and rationale 1

12 Research objectives 2

13 Research concept 3

14 Research methodology 3

141 Literature review 3

142 Sample collection and preparation 5

143 Theoretical study of the rock failure

mechanism 5

144 Laboratory testing 5

1441 Characterization tests 5

VII

TABLE OF CONTENTS (Continued)

Page

1442 Modified point load tests 6

145 Analysis 6

146 Thesis Writing and Presentation 6

15 Scope and Limitations 7

16 Thesis Contents 7

II LITERATURE REVIEW 8

21 Introduction 8

22 Conventional point load tests 8

23 Modified point load tests 11

24 Characterization tests 14

241 Uniaxial compressive strength tests 14

242 Triaxial compressive strength tests 15

243 Brazilian tensile strength tests 16

25 Size effects on compressive strength 16

III SAMPLE COLLECTION AND PREPARATION 17

31 Sample collection 17

32 Rock descriptions 17

33 Sample preparation 20

IV LABORATORY TESTS 22

41 Literature reviews 22

VIII

TABLE OF CONTENTS (Continued)

Page

411 Displacement Function 22

42 Basic Characterization Tests 23

421 Uniaxial Compressive Strength Tests

and Elastic Modulus Measurements 23

422 Triaxial Compressive Strength Tests 31

423 Brazilian Tensile Strength Tests 38

424 Conventional Point Load Index (CPL) Tests 39

43 Modified Point Load (MPL) Tests 46

431 Modified Point Load Tests for Elastic

Modulus Measurement 54

432 Modified Point Load Tests predicting

Uniaxial Compressive Strength 61

433 Modified Point Load Tests for Tensile

Strength Predictions 63

434 Modified Point Load Tests for Triaxial

Compressive Strength Predictions 69

V FINITE DIFFERENCE ANALYSIS 79

51 Objectives 79

52 Model Characteristics 79

53 Results of finite difference analyses 79

IX

TABLE OF CONTENTS (Continued)

Page

VI DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS 83

61 Discussions 83

62 Conclusions 85

63 Recommendations 86

REFERENCES 87

APPENDICES

APPENDIX A CHARACTERIZATION TEST RESULTS 96

APPENDIX B MODIFIED POINT LOAD TEST RESULTS FOR

ELASTIC MODULUS PREDICTION 104

BIOGRAPHY 180

LIST OF TABLES

Table Page

31 The nominal sizes of specimens following the ASTM standard

practices for the characterization tests 20

41 Testing results of porphyritic andesite 30

42 Testing results of tuffaceous sandstone 30

43 Testing results of silicified tuffaceous sandstone 30

44 Uniaxial compressive strength and tangent elastic modulus

measurement results of three rock types 31

45 Triaxial compressive strength testing results of porphyritic andesite 35

46 Triaxial compressive strength testing results of

tuffaceous sandstone 35

47 Triaxial compressive strength testing results of silicified

tuffaceous sandstone 36

48 Results of triaxial compressive strength tests on three rock types 38

49 The results of Brazilian tensile strength tests of three rock types 41

410 Results of conventional point load strength index tests of

three rock types 44

411 Results of modified point load tests on porphyritic andesite 49

412 Results of modified point load tests on tuffaceous sandstone 51

413 Results of modified point load tests on silicified tuffaceous sandstone 52

X

LIST OF TABLE (Continued)

Table Page

414 Results of elastic modulus calculation from MPL tests on porphyritic andesite57

415 Results of elastic modulus calculation from MPL tests on

silicified tuffaceous sandstone 58

416 Results of elastic modulus calculation from MPL tests on

tuffaceous sandstone 60

417 Comparisons of elastic modulus results obtained from

uniaxial compressive strength tests and those from modified

point load tests 61

418 Comparison the test results between UCS CPL Brazilian

tensile strength and MPL tests 63

419 Results of tensile strengths of porphyritic andesite predicted from MPL tests 64

420 Results of tensile strengths of silicified tuffaceous sandstone

predicted from MPL tests 66

421 Results of tensile strengths of tuffaceous sandstone

predicted from MPL tests 68

422 Results of triaxial strengths of porphyritic andesite predicted from MPL tests 71

423 Results of triaxial strengths of silicified tuffaceous sandstone

predicted from MPL tests 72

424 Results of triaxial strengths of tuffaceous sandstone

predicted from MPL tests 74

XI

LIST OF TABLE (Continued)

Table Page

425 Comparisons of the internal friction angle and cohesion

between MPL predictions and triaxial compressive strength tests 78

51 Summary of the results from numerical simulations 82

A1 Results of conventional point load strength index test on porphyritic andesite 97

A2 Results of conventional point load strength index test on

silicified tuffaceous sandstone 98

A3 Results of conventional point load strength index test on

tuffaceous sandstone 99

A4 Results of uniaxial compressive strength tests and elastic

modulus measurement on porphyritic andesite 100

A5 Results of uniaxial compressive strength tests and elastic

modulus measurement on silicified tuffaceous sandstone 100

A6 Results of uniaxial compressive strength tests and elastic

modulus measurement on tuffaceous sandstone 100

A7 Results of Brazilian tensile strength tests on porphyritic andesite 101

A8 Results of Brazilian tensile strength tests on silicified

tuffaceous sandstone 101

A9 Results of Brazilian tensile strength tests on

tuffaceous sandstone 102

A10 Results of triaxial compressive strength tests on porphyritic andesite 102

XII

LIST OF TABLE (Continued)

Table Page

A11 Results of triaxial compressive strength tests on

silicified tuffaceous Sandstone 102

A12 Results of Brazilian tensile strength tests on

tuffaceous sandstone 103

LIST OF FIGURES

Figure Page

11 Research plan 4

21 Loading system of the conventional point load (CPL) 10

22 Standard loading platen shape for the conventional point

load testing 10

31 The location of rock samples collected area 19

32 Some prepared rock specimens of porphyritic andesite for MPL Tests 21

33 The concept of specimen preparation for MPL testing 21

41 Pre-test samples of porphyritic andesite for UCS test 25

42 Pre-test samples of tuffaceous sandstone for UCS test 25

43 Pre-test samples of silicified tuffaceous sandstone for UCS test 26

44 Preparation of testing apparatus of porphyritic andesite for UCS test 26

45 Post-test rock samples of porphyritic andesite from UCS test 27

46 Post-test rock samples of tuffaceous sandstone

from UCS test 27

47 Post-test rock samples of tuffaceous sandstone from UCS 28

48 Results of uniaxial compressive strength tests and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted

as a function of axial strains 28

XIV

LIST OF FIGURES (Continued)

Figure Page

49 Results of uniaxial compressive strength tests and elastic

modulus measurements of tuffaceous sandstone (Top)

and silicified tuffaceous sandstone (Bottom) The axial

stresses are plotted as a function of axial strains 29

410 Pre-test samples for triaxial compressive strength test the

top is porphyritic andesite and the bottom is tuffaceous sandstone 32

411 Pre-test sample of silicified tuffaceous sandstone for triaxial

compressive strength test 33

412 Triaxial testing apparatus 33

413 Post-test rock samples from triaxial compressive strength tests

The top is porphyritic andesite and the bottom is tuffaceous sandstone 34

414 Post-test rock samples of silicified tuffaceous sandstone from

triaxial compressive strength test 35

415 Mohr-Coulomb diagram for porphyritic andesite 37

416 Mohr-Coulomb diagram for tuffaceous sandstone 37

417 Mohr-Coulomb diagram for silicified tuffaceous sandstone 38

418 Pre-test samples for Brazilian tensile strength test (a) porphyritic andesite

(b) tuffaceous sandstone and

(c) silicified tuffaceous sandstone 40

419 Brazilian tensile strength test arrangement 41

XV

LIST OF FIGURES (Continued)

Figure Page

420 Post-test specimens (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 42

421 Pre-test samples of porphyritic andesite for conventional point load

strength index test 43

422 Conventional point load strength index test arrangement 43

423 Post-test specimens from conventional point load

strength index tests (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 45

424 Conventional and modified loading points 47

425 MPL testing arrangement 47

426 Post-test specimen the tension-induced crack commonly

found across the specimen and shear cone usually formed

underneath the loading platens 48

427 Example of P-δ curve for porphyritic andesite specimen The ratio

of ∆P∆δ is used to predict the elastic modulus of MPL

specimen (Empl) 56

428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests 62

429 Uniaxial compressive strength predicted for silicified

tuffaceous sandstone from MPL tests 62

XVI

LIST OF FIGURES (Continued)

Figure Page

430 Uniaxial compressive strength predicted for tuffaceous

sandstone from MPL tests 63

431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and

modified point load test 75

432 Comparisons of triaxial compressive strength criterion of

silicified tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 76

433 Comparisons of triaxial compressive strength criterion of

tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 77

51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm 80

52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm 80

53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm 81

54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm 81

55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm 82

LIST OF SYMBOLS AND ABBREVIATIONS

A = Original cross-section Area

c = cohesive strength

CP = Conventional Point Load

D = Diameter of Rock Specimen

D = Diameter of Loading Point

De = Equivalent Diameter

E = Youngrsquos Modulus

Empl = Elastic Modulus by MPL Test

Et = Tangent Elastic Modulus

IS = Point Load Strength Index

L = Original Specimen Length

LD = Length-to-Diameter Ratio

MPL = Modified Point Load

Pf = Failure Load

Pmpl = Modified Point Load Strength

t = Specimen Thickness

α = Coefficient of Stress

αE = Displacement Function

β = Coefficient of the Shape

∆L = Axial Deformation

XVIII

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

∆P = Change in Applied Stress

∆δ = Change in Vertical of Point Load Platens

εaxial = Axial Strain

ν = Poissonrsquos Ratio

ρ = Rock Density

σ = Normal Stress

σ1 = Maximum Principal Stress (Vertical Stress)

σ3 = Minimum Principal Stress (Horizontal Stress)

σB = Brazilian Tensile Stress

σc = Uniaxial Compressive Strength (UCS)

σm = Mean Stress

τ = Shear Stress

τoct = Octahedral Shear Stress

φi = angle of Internal friction

CHAPTER I

INTRODUCTION

11 Background and rationale

In geological exploration mechanical rock properties are one of the most

important parameters that will be used in the analysis and design of engineering

structures in rock mass To obtain these properties the rock from the site is extracted

normally by mean of core drilling and then transported the cores to the laboratory

where the mechanical testing can be conducted Laboratory testing machine is

normally huge and can not be transported to the site On site testing of the rocks may

be carried out by some techniques but only on a very limited scale This method is

called for point load strength Index testing However this test provides unreliable

results and lacks theoretical supports Its results may imply to other important

properties (eg compressive and tensile strength) but only based on an empirical

formula which usually poses a high degree of uncertainty

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strength and elastic modulus of intact rock

specimens in the laboratory (Tepnarong 2001) This method was invented and

patented by Suranaree University of Technology The test apparatus and procedure

are intended to be in expensive and easy compared to the relevant conventional

methods of determining the mechanical properties of intact rock eg those given by

the International Society for Rock Mechanics (ISRM) and the American Society for

2

Testing and Materials (ASTM) In the past much of the MPL testing practices has

been concentrated on circular and disk specimens While it has been claimed that

MPL method is applicable to all rock shapes the test results from irregular lumps of

rock have been rare and hence are not sufficient to confirm that the MPL testing

technique is truly valid or even adequate to determine the basic rock mechanical

properties in the field where rock drilling and cutting devices are not available

12 Research objectives

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine are used as

rock samples A minimum of 150 rock samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone are collected from the site The

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure are used to calculate the elastic modulus and strengths of rocks Uniaxial and

triaxial compression tests Brazilian tension test and conventional point load test are

conducted on the three rock types to obtain data basis for comparing with those from

MPL testing Finite difference analysis is performed to obtain stress distribution

within the MPL samples under different td and Dd ratios The effect of the

irregularity is quantitatively assessed Similarity and discrepancy of the test results

from the MPL method and from the conventional method are examined

Modification of the MPL calculation scheme may be made to enhance its predictive

capability for the mechanical properties of irregular shaped specimens

3

13 Research concept

A modified point load (MPL) testing technique was proposed by Fuenkajorn

and Tepnarong (2001) and Fuenkajorn (2002) The objectives of this testing are to

determine the elastic modulus uniaxial compressive strength and tensile strength of

intact rocks The application of testing apparatus is modified from the loading

platens of the conventional point load (CPL) testing to the cylindrical shapes that

have the circular cross-section while they are half-spherical shapes in CPL

The modes of failure for the MPL specimens are governed by the ratio of

specimen diameter to loading platen diameter (Dd) and the ratio of specimen

thickness to loading platen diameter (td) This research involves using the MPL

results to estimate the triaxial compressive strength of specimens which various Dd

and td ratios and compare to the conventional compressive strength test

14 Research methodology

This research consists of six main tasks literature review sample collection

and preparation laboratory testing finite difference analysis comparison discussions

and conclusions The work plan is illustrated in the Figure 11

141 Literature review

Literature review is carried out to study the state-of-the-art of CPL and MPL

techniques including theories test procedure results analysis and applications The

sources of information are from journals technical reports and conference papers A

summary of literature review is given in this thesis Discussions have been also been

made on the advantages and disadvantages of the testing the validity of the test results

4

Preparation

Literature Review

Sample Collection and Preparation

Theoretical Study

Laboratory Ex

Figure 11 Research methodology

periments

MPL Tests Characterization Tests

Comparisons

Discussions

Laboratory Testing

Various Dd UCS Tests

Various td Brazilian Tension Tests

Triaxial Compressive Strength Tests

CPL Tests

Conclusions

5

when correlating with the uniaxial compressive strength of rocks and on the failure

mechanism the specimens

142 Sample collection and preparation

Rock samples are collected from the north pit-wall of Khao

Moh at Chatree gold mine Three rock types are tested with a minimum of 50

samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable Sample preparation is carried out in the laboratory at Suranaree

University of Technology

143 Theoretical study of the rock failure mechanism

The theoretical work primarily involves numerical analyses on

the MPL specimens under various shapes Failure mechanism of the modified point

load test specimens is analyzed in terms of stress distributions along loaded axis The

finite difference code FLAC is used in the simulation The mathematical solutions

are derived to correlate the MPL strengths of irregular-shaped samples with the

uniaxial and traiaxial compressive strengths tensile strength and elastic modulus of

rock specimens

144 Laboratory testing

Three prepared rock type samples are tested in laboratory

which are divided into two main groups as follows

1441 Characterization tests

The characterization tests include uniaxial compressive

strength tests (ASTM D7012-07) Brazilian tensile strength tests (ASTM D3967

1981) triaxial compressive strength tests (ASTM D7012-07) and conventional point

6

load index tests (ASTM D5731 1995) The characterization testing results are used

in verifications of the proposed MPL concept

1442 Modified point load tests

Three rock types of rock from the north pit-wall of

Khao Moh at Chatree gold mine are used as rock samples A minimum of 150 rock

samples of porphyritic andesite silicified-tuffaceous sandstone and tuffaceous

sandstone are used in the MPL testing The sample thickness-to-loading diameter

ratio (td) is varied from 2 to 3 and the sample diameter-to-loading diameter ratio

(Dd) from 5 to 10 The sample deformation and failure are used to calculate the

elastic modulus and strengths of rocks The MPL testing results are compared with

the standard tests and correlated the relations in terms of mathematic formulas

145 Analysis

Finite difference analysis is performed to obtain stress

distribution within the MPL samples under various shapes with different td and Dd

ratios The effect of the irregularity is quantitatively assessed Similarity and

discrepancy of the test results from the MPL method and from the conventional

method are examined Modification of the MPL calculation scheme may be made to

enhance its predictive capability for the mechanical properties of irregular shaped

specimens

146 Thesis writing and presentation

All aspects of the theoretical and experimental studies

mentioned are documented and incorporated into the thesis The thesis discusses the

validity and potential applications of the results

7

15 Scope and limitations

The scope and limitations of the research include as follows

1 Three rock types of rock from the pit wall of Chatree gold mine are

selected as a prime candidate for use in the experiment

2 The analytical and experimental work assumes linearly elastic

homogeneous and isotropic conditions

3 The effects of loading rate and temperature are not considered All tests

are conducted at room temperature

4 MPL tests are conducted on a minimum of 50 samples

5 The investigation of failure mode is on macroscopic scale Macroscopic

phenomena during failure are not considered

6 The finite difference analysis is made in axis symmetric and assumed

elastic homogeneous and isotropic conditions

7 Comparison of the results from MPL tests and conventional method is

made

16 Thesis contents

The first chapter includes six sections It introduces the thesis by briefly

describing the background and rationale and identifying the research objectives that

are describes in the first and second section The third section describes the proposed

concept of the new testing technique The fourth section describes the research

methodology The fifth section identifies the scope and limitation of the research and

the description of the overview of contents in this thesis are in the sixth section

CHAPTER II

LITERATURE REVIEW

21 Introduction

This chapter summarizes the results of literature review carried out to improve an

understanding of the applications of modified point load testing to predict the strengths and

elastic modulus of the intact rock The topics reviewed here include conventional point

load test modified point load test characterization tests and size effects

22 Conventional point load tests

Conventional point load (CPL) testing is intended as an index test for the strength

classification of rock material It has long been practiced to obtain an indicator of the

uniaxial compressive strength (UCS) of intact rocks The testing equipment (Figure 21)

is essentially a loading system comprising a loading flame hydraulic oil pump ram and

loading platens The geometry of the loading platen is standardized (Figure 22) having

60 degrees angle of the cone with 5 mm radius of curvature at the cone tip It is made of

hardened steel The CPL test method has been widely employed because the test

procedure and sample preparation are simple quick and inexpensive as compared with

conventional tests as the unconfined compressive strength test Starting with a simple

method to obtain a rock properties index the International Society for Rock Mechanics

(ISRM) commissions on testing methods have issued a recommended procedure for the

point load testing (ISRM 1985) the test has also been established as a standard test

method by the American Society for Testing and Materials in 1995 (ASTM 1995)

9

Although the point load test has been studied extensively (eg Broch and Franklin

1972 Bieniawski 1974 and 1975 Wijk 1980 Brook 1985) the theoretical solutions

for the test result remain rare Several attempts have been made to truly understand

the failure mechanism and the impact of the specimen size on the point load strength

results It is commonly agreed that tensile failure is induced along the axis between

loading points (Evans 1961 Hiramutsu 1976 Wijk 1978 1980) The most

commonly accepted formula relating the CPL index and the UCS is proposed by

Broch and Franklin (1972) The UCS (or σc) can be estimated as about 24 times of

the point load strength index (Is) of rock specimens with the diameter-to-length ratio

of 05 The IS value should also be corrected to a value equivalent to the specimen

diameter of 50 mm The factor of 24 can sometimes load to an error in the prediction

of the UCS Most previous studied have been done experimentally but rare

theoretical attempt has been made to study the validity of Broch and Franklin

formula

The CPL testing has been performed using a variety of sizes and shapes of

rock specimen (Wijk 1980 Foster 1983 Panek and Fannon 1992 Chau and Wong

1996 Butenuth 1997) This is to determine the most suitable specimen sizes These

investigations have proposed empirical relations between the IS and σc to be

universally applicable to various rock types However some uncertainly of these

relations remains

Panek and Fannon (1992) show the results of the CPL tests UCS tests and

Brazilian tension tests that are performed on three hard rocks (iron-formation

metadiabase and ophitic basalt) The CPL strength is analyzed in terms of the

10

Figure 21 Loading system of the conventional point load (CPL) (Tepnarong 2001)

Figure 22 Standard loading platen shape for the conventional point load testing

(ISRM suggested method and ASTM D5731-95)

11

size and shape effects More than 500 an irregular lumps were tested in the field

The shape effect exponents for compression have been found to be varied with rock

types The shape effect exponents in CPL tests are constant for the three rocks

Panek and Fannon (1992) recommended that the monitoring of the compressive and

tensile strengths should have various sizes and shapes of specimen to obtain the

certain properties

Chau and Wong (1996) study analytically the conversion factor relating

between σc and IS A wide range of the ratios of the uniaxial compressive strength to

the point load index has been observed among various rock types It has been found

that the uniaxial compressive strength of rocks can vary from 62 (Nevada test site

tuff) to 105 (Flaming Gorge shale) times the IS depending on rock type The

conversion factor relating σc to be Is depends on compressive and tensile strengths

the Poissonrsquos ratio and the length and diameter of specimen The conversion factor

of 24 (Broch and Franklin 1972) falls within this range but it is no by meaning

universal

23 Modified point load tests

Tepnarong (2001) proposed a modified point load testing method to correlate

the results with the uniaxial compressive strength (UCS) and tensile strength of intact

rocks The primary objective of the research is to develop the inexpensive and

reliable rock testing method for use in field and laboratory The test apparatus is

similar to the conventional point load (CPL) except that the loading points are cut

flat to have a circular cross-section area instead of using a half-spherical shape To

derive a new solution finite element analyses and laboratory experiments were

12

carried out The simulation results suggested that the applied stress required failing

the MPL specimen increased logarithmically as the specimen thickness or diameter

increased The MPL tests CPL tests UCS tests and Brazilian tension tests were

performed on Saraburi marble under a variety of sizes and shapes The UCS test

results indicated that the strengths decreased with increased the length-to-diameter

ratio The test results can be postulated that the MPL strength can be correlated with

the compressive strength when the MPL specimens are relatively thin and should be

an indicator of the tensile strength when the specimens are significantly larger than

the diameter of the loading points Predictive capability of the MPL and CPL

techniques were assessed Extrapolation of the test results suggested that the MPL

results predicted the UCS of the rock specimens better than the CPL testing The

tensile strength predicted by the MPL also agreed reasonably well with the Brazilian

tensile strength of the rock

Tepnarong (2006) proposed the modified point load testing technique to

determine the elastic modulus and triaxial compressive strength of intact rocks The

loading platens are made of harden steel and have diameter (d) varying from 5 10

15 20 25 to 30 mm The rock specimens tested were marble basalt sandstone

granite and rock salt Basic characterization tests were first performed to obtain

elastic and strength properties of the rock specimen under standard testing methods

(ASTM) The MPL specimens were prepared to have nominal diameters (D) ranging

from 38 mm to 100 mm with thickness varying from 18 mm to 63 mm Testing on

these circular disk specimens was a precursory step to the application on irregular-

shaped specimens The load was applied along the specimen axis while monitoring

the increased of the load and vertical displacement until failure Finite element

13

analyses were performed to determine the stress and deformation of the MPL

specimens under various Dd and td ratios The numerical results were also used to

develop the relationship between the load increases (∆P) and the rock deformation

(∆δ) between the loading platens The MPL testing predicts the intact rock elastic

modulus (Empl) by using an equation Empl = (tαE) (∆P∆δ) where t represents the

specimen thickness and αE is the displacement function derived from numerical

simulation The elastic modulus predicted by MPL testing agrees reasonably well

with those obtained from the standard uniaxial compressive tests The predicted Empl

values show significantly high standard deviation caused by high intrinsic variability

of the rock fabric This effect is enhanced by the small size of the loading area of the

MPL specimens as compared to the specimen size used in standard test methods

The results of the numerical simulation were used to determine the minimum

principal stress (σ3) at failure corresponding to the maximum applied principal stress

(σ1) A simple relation can therefore be developed between σ1 σ3 ratio Poissonrsquos ratio

(ν) and diameter ratio (Dd) to estimate the triaxial compressive strengths of the rock

specimens σ1 σ3 = 2[(ν(1-ν))(1-(dD)2)]-1 The MPL test results from specimens with

various Dd ratios can provide σ1 and σ3 at failure by assuming that ν = 025 and that

failure mode follows Coulomb criterion The MPL predicted triaxial strengths agree

very well with the triaxial strength obtained from the standard triaxial testing (ASTM)

The discrepancy is about 2-3 which may be due to the assumed Poissonrsquos ratio of 25

and due to the assumption used in the determination of σ3 at failure In summary even

through slight discrepancies remain in the application of MPL results to determine the

elastic modulus and triaxial compressive strength of intact rocks this approach of

14

predicting the rock properties shows a good potential and seems promising considering

the low cost of testing technique and ease of sample preparation

24 Characterization tests

241 Uniaxial compressive strength tests

The uniaxial compressive strength test is the most common laboratory

test undertaken for rock mechanics studies In 1972 the International Society of Rock

Mechanics (ISRM) published a suggested method for performing UCS tests (Brown

1981) Bieniawski and Bernede (1979) proposed the procedures in American Society

for Testing and Materials (ASTM) designation D2938

The tests are also the most used tests for estimating the elastic

modulus of rock (ASTM D7012) The axial strain can be measured with strain gages

mounted on the specimen or with the Linear Variable Differential Tranformers

(LVDTs) attached parallel to the length of the specimen The lateral strain can be

measured using strain gages around the circumference or using the LVDTs across

the specimen diameter

The UCS (σc) is expressed as the ratio of the peak load (P) to the

initial cross-section area (A)

σc= PA (21)

And the Youngrsquos modulus (E) can be calculated by

E= ΔσΔε (22)

Where Δσ is the change in stress and Δε is the change in strain

15

The ratio of lateral strain and axial strain magnitudes (εlatεax) determines the value of

Poissonrsquo ratio (ν)

ν = - (εlatεax) (23)

242 Triaxial compressive strength tests

Hoek and Brown (1980b) and Elliott and Brown (1986) used the

triaxaial compressive strength tests to gain an understanding of rock behavior under a

three-dimensions state of stress and to verify and even validate mathematical

expressions that have been derived to represent rock behavior in analytical and

numerical models

The common procedures are described in ASTM designation D7012 to

determine the triaxial strengths and D7012 to determine the elastic moduli and in

ISRM suggested methods (Brown 1981)

The axial strain can be measured with strain gages mounted on the

specimen or with the LVTDs attached parallel to the length of the specimen The

lateral strain can be measured using strain gages around the circumstance within the

jacket rubber

At the peak load the stress conditions are σ1 = PA σ3=p where P is

the maximum load parallel to the cylinder axis A is the initial cross-section area and

p is the pressure in the confining medium

The Youngrsquos modulus (E) and Poissonrsquos ratio (ν) can be calculated by

E = Δ(σ1-σ3)Δ εax (24)

and

16

ν = (slope of axial curve) (slope of lateral curve) (25)

where Δ(σ1-σ3) is the change in differential stress and Δ εax is the change in axial strain

243 Brazilian tensile strength tests

Caneiro (1974) and Akazawa (1953) proposed the Brazilian tensile

strength test of intact rocks Specifications of Brazilian tensile strength test have been

established by ASTM D3967 and suggested approach is provided by ISRM (Brown 1981)

Jaeger and Cook (1979) proposed the equation for calculate the

Brazilian tensile strength as

σB = (2P) ( πDt) (26)

where P is the failure load D is the disk diameter and t is the disk thickness

25 Size effects on compressive strength

The uniaxial compressive strength normally tested on cylindrical-shaped

specimens The length-to-diameter (LD) ratio of the specimen influences the

measured strength Typically the strength decreases with increasing the LD ratio

but it tends to become constant or ratios in the order of 21 to 31 (Hudson et al 1971

Obert and Duvall 1967) For higher ratios the specimen strength may be influenced

by bulking

The size of specimen may influence the strength of rock Weibull (1951)

proposed that a large specimen contains more flaws than a small one The large

specimen therefore also has flaws with critical orientation relative to the applied

shear stresses than the small specimen A large specimen with a given shape is

17

therefore likely to fail and exhibit lower strength than a small specimen with the same

shape (Bieniawski 1968 Jaeker and Cook 1979 Kaczynski 1986)

Tepnarong (2001) investigated the results of uniaxial compressive strength

test on Saraburi marble and found that the strengths decrease with increase the

length-to-diameter (LD) ratio And this relationship can be described by the power

law The size effects on uniaxial compressive strength are obscured by the intrinsic

variability of the marble The Brazilian tensile strengths also decreased as the

specimen diameter increased

CHAPTER III

SAMPLE COLLECTION AND PREAPATION

This chapter describes the sample collection and sample preparation

procedure to be used in the characterization and modified point load testing The

rock types to be used including porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone Locations of sample collection rock description are

described

31 Sample collection

Three rock types include porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone collected from Chatree Gold Mine Akara Mining Company

Limited Phichit Thailand are used in this research The rock samples are collected

from the north pit-wall of Khao Moh Three rock types are tested with a minimum of

50 samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable The collected location is shown in Figure 31

32 Rock descriptions

Three rock types are used in this research there are porphyritic andesite

silicified tuffaceous sandstone and tuffaceous sandstone Tuffaceous sandstone is

medium brownish grey the clasts are andesite rhyolite andesitic tuff and quartz

fragments and sub-rounded to sub-angular matrix sand andesitic tuff rock fragment

19

19

Figure 31 The location of rock samples collected area

lt 10 quartz 3 pyrite and litho-facies massive ungraded clast supported

moderately sorted Silicified tuffaceous sandstone is medium brown clasts are fine to

medium sand and silt sub-rounded shape quartz rich with siliceous matrix massive

non-graded well sorted moderately Silicified Porphyritic andesite is grayish green

medium-coarse euhedral evenly distributed phenocrysts are abundant most

conspicuous are hornblende phenocrysts fine-grained groundmass Those samples

are collected from Chatree Gold Mine Akara mining Co Ltd Phichit Thailand

20

33 Sample preparation

Sample preparation has been carried out to obtain different sizes and shapes

for testing It is conducted in the laboratory facility at Suranaree University of

Technology For characterization testing the process includes coring and grinding

Preparation of rock samples for characterization test follows the ASTM standard

(ASTM D4543-85) The nominal sizes of specimen that following the ASTM

standard practices for the characterization tests are shown in table 31 And grinding

surface at the top and bottom of specimens at the position of loading platens for

unsure that the loading platens are attach to the specimen surfaces and perpendicular

each others as shown in Figure 32 The shapes of specimens are irregularity-shaped

The ratio of specimen thickness to platen diameter (td) is around 20-30 and the

specimen diameter to platen diameter (Dd) varies from 5 to 10

Table 31 The nominal sizes of specimens following the ASTM standard practices

for the characterization tests

Testing Methods

LD Ratio

Nominal Diameter

(mm)

Nominal Length (mm)

Number of Specimens

1UniaxialCompressive Strength Test and Elastic Modulus Measurement (ASTM D7012)

25 54 135 10

2 Triaxial Compressive Strength Test (ASTM D7012) 20 54 108 10

3 Brazilian Tensile Strength Test (ASTM D3967) 05 54 27 10

4 Point Load Strength Index Test (ASTM D 5731) 10 54 54 10

21

Figure 32 Some prepared rock specimens of porphyritic andesite for MPL Tests

td asymp20 to 30

Figure 33 The concept of specimen preparation for MPL testing

CHAPTER IV

LABORATORY TESTS

Laboratory testing is divided into two main tasks including the

characterization tests and the modified point load tests Three rock types porphyritic

andesite silicified-tuffaceous sandstone and tuffaceous sandstone are used in this

research

41 Literature reviews

411 Displacement function

Tepnarong (2006) proposed a method to compute the vertical

displacement of the loading point as affected by the specimen diameter and thickness

(Dd and td ratios) by used the series of finite element analyses To accomplish this

a displacement function (αE) is introduced as (∆P∆δ)middot(tE) where ∆P is the change in

applied stress ∆δ is the change in vertical displacement of point load platens t is the

specimen thickness and E is elastic modulus of rock specimen The displacement

function is plotted as a function of Dd And found that the αE is dimensionless and

independent of rock elastic modulus αE trend to be independent of Dd when Dd is

beyond 15 The αE is sensitive to ν particularly when υ is between 025 and 05 This

agrees with the assumption that as the Poissonrsquos ratio increases the αE value will

increase because under higher ν the ∆δ will be reduced This is due to the large

confinement resulting from the higher Poissonrsquos ratio Nevertheless most rocks have

Poissonrsquos ratio within a range between 020 and 030 particularly for moderate to

23

hard rocks As a result the Poissonrsquos ratio of 025 will provide a reasonable

prediction of the value of αE values

Figure 51 plots αE or (∆P∆δ)middot(tE) as a function of td for the ratios of Dd ge

10 The displacement function increase as the td increases which can be expressed

by a power equation

αE = (∆P∆δ)middot(tE) = 150 (td)064 (51)

by using the least square fitting The curve fit gives good correlation (R2=0998)

These curves can be used to estimate the elastic modulus of rock from MPL results

By measuring the MPL specimen thickness t and the increment of applied stress (∆P)

and displacement (∆δ)

42 Basic characterization tests

The objectives of the basic characterization tests are to determine the

mechanical properties of each rock type to compare their results with those from the

modified point load tests (MPL) The basic characterization tests include uniaxial

compressive strength (UCS) tests with elastic modulus measurements triaxial

compressive strength tests Brazilian tensile strength tests and conventional point load

strength index tests

421 Uniaxial compressive strength tests and elastic modulus

measurements

The uniaxial compressive strength tests are conducted on the three

rock types Sample preparation and test procedure are followed the ASTM standards

(ASTM D7012) and the ISRM suggested methods (Brown 1981) The core size is

24

54 mm in diameter (NX size) and the ratio of the length to diameter is 25 A total of

10 specimens are tested for each rock type

A constant loading rate of 05 to 10 MPas is applied to the specimens

until failure occurs Tangent elastic modulus is measured at stress level equal to 50

of the uniaxial compressive strength Post-failure characteristics are observed

The uniaxial compressive strength (σc) is calculated by dividing the

maximum load by the original cross-section area of loading platen

σc= pf A (41)

where pf is the maximum failure load and A is the original cross-section area of

loading platen The tangent elastic modulus (Et) is calculated by the following

equation

Et = (Δσaxial) (Δε axial) (42)

And the axial strain can be calculated from

ε axial = ΔLL (43)

where the ΔL is the axial deformation and L is the original length of specimen

The average uniaxial compressive strength and tangent elastic

modulus of each rock types are shown in Tables 41 through 44

25

Figure 41 Pre-test samples of porphyritic andesite for UCS test

Figure 42 Pre-test samples of tuffaceous sandstone for UCS test

26

Figure 43 Pre-test samples of silicified tuffaceous sandstone for UCS test

Figure 44 Preparation of testing apparatus for UCS test

27

Figure 45 Post-test rock samples of porphyritic andesite from UCS test

Figure 46 Post-test rock samples of tuffaceous sandstone from UCS test

28

Figure 47 Post-test rock samples of silicified-tuffaceous sandstone from UCS

0

50

100

150

0 0001 0002 0003 0004 0005Axial Strain

Axi

al S

tres

s (M

Pa)

Andesite04

03

01

05

02

Andesite

Figure 48 Results of uniaxial compressive strength test and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted as

a function of axial strain

29

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Strain

Axi

al S

tres

s (M

Pa)

Pebbly Tuffacious Sandstone

04

03

05

01

02

Tuffaceous Sandstone

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Stain

Axi

al S

tres

s (M

Pa)

Silicified Tuffacious Sandstone

0103

05

0402

Silicified Tuffaceous Sandstone

Figure 49 Results of uniaxial compressive strength test and elastic modulus

measurements of tuffaceous sandstone (top) and silicified tuffaceous

sandstone (bottom) The axial stresses are plotted as a function of axial

strain

30

Table 41 Testing results of porphyritic andesite

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 5366 13486 282 1327 451 And-06-03-UCS-02 5366 13494 283 1106 397 And-02-01-UCS-03 5366 13485 280 1061 470 And-08-03-UCS-04 5366 13417 284 1282 392 And-04-04-UCS-05 5366 13564 285 973 438

Average 1150 plusmn 150 430 34 plusmn

Table 42 Testing results of tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 5366 13810 266 1017 538 TST-01-02-UCS-02 5366 13236 268 1238 545 TST-02-04-UCS-03 5366 13558 264 973 441 TST-06-09-UCS-04 5366 13515 267 1459 475 TST-02-02-UCS-05 5366 13745 263 884 566

Average 1114 plusmn 233 513 53 plusmn

Table 43 Testing results of silicified tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 5366 13309 271 1194 656 SST-07-01-UCS-02 5366 13547 267 930 632 SST-07-03-UCS-03 5366 13095 268 1194 503 SST-02-06-UCS-04 5366 13475 269 1614 661 SST-06-02-UCS-05 5366 13577 270 1106 713

Average 1207 plusmn 252 633 80 plusmn

31

Table 44 Uniaxial compressive strength and tangent elastic modulus measurement

results of three rock types

Rock Type

Number of Test

Samples

Uniaxial Compressive Strength σc (MPa)

Tangential Elastic Modulus

Et (GPa)

Porphyritic andesite 50 1150plusmn150 430plusmn34 Silicified-tuffaceous sandstone 50 1207plusmn252 633plusmn80

Tuffaceous sandstone 50 1114plusmn233 513plusmn53

422 Triaxial compressive strength tests

The objective of the triaxial compressive strength test is to determine

the compressive strength of rock specimens under various confining pressures The

sample preparation and test procedure are followed the ASTM standard (ASTM

D7012-07) and the ISRM suggested method (Brown 1981) A total of 16 rock

specimens are tested under various confining pressures 6 specimens of porphyritic

andesite 5 specimens of silicified-tuffaceous sandstone and 5 specimens of

tuffaceous sandstone The applied load onto the specimens is at constant rate until

failure occurred within 5 to 10 minutes of loading under each confining pressure

The constant confining pressures used in this experiment are ranged from 0345 067

138 276 and 414 MPa (50 100 200 400 and 600 psi) in andesite 0345 069

276 414 and 552 MPa (50 100 400 600 and 800 psi) in silicified-tuffaceous

sandstone and 0345 069 138 207 and 276 MPa (50 100 200 300 and 400 psi)

in pebbly tuffaceous sandstone Post-failure characteristics are observed

32

Figure 410 Pre-test samples for triaxial compressive strength test the top is

porphyritic andesite and the bottom is tuffaceous sandstone

33

Figure 411 Pre-test samples of silicified tuffaceous sandstone for triaxial

compressive strength test

Hook cell

Figure 412 Triaxial testing apparatus

34

Figure 413 Post-test rock samples from triaxial compressive strength tests The top

is porphyritic andesite and the bottom is tuffaceous sandstone

35

Figure 414 Post-test rock samples of silicified tuffaceous sandstone from triaxial

compressive strength test

Table 45 Triaxial compressive strength testing results of porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

And-04-02-TR-01 10803 5366 285 04 1459 And-06-04-TR-03 10806 5366 284 07 1526 And-06-02-TR-02 10806 5366 283 14 1636 And-08-01-TR-04 10665 5366 284 28 2034 And-08-02-TR-05 10948 5366 283 41 2520

Table 46 Triaxial compressive strength testing results of tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

TST-01-01-TR-04 10989 5366 266 04 1061 TST 02-01-TR-01 10852 5366 262 07 1238 TST-06-01-TR-02 10889 5366 264 138 1415 TST-06-03-TR-03 10755 5366 264 201 1813 TST-06-08-TR-05 11025 5366 267 28 2056

36

Table 47 Triaxial compressive strength testing results of silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

SST-05-01-TR-01 10875 5366 266 04 1305 SST-07-02-TR-02 10790 5366 266 14 1371 SST-01-04-TR-03 11022 5366 267 28 1592 SST-01-03-TR-04 10713 5366 267 41 1901 SST-01-01-TR-05 10530 5366 265 55 2255

The results of triaxial tests are shown in Table 42 Figures 413 and 414

show the shear failure by triaxial loading at various confining pressures (σ3) for the

three rock types The relationship between σ1 and σ3 can be represented by the

Coulomb criterion (Hoek 1990)

τ = c + σ tan φi (44)

where τ is the shear stress c is the cohesion σ is the normal stress and φi is the

internal friction angle The parameters c and φi are determined by Mohr-Coulomb

diagram as shown in Figures 415 through 417

37

φi =54˚ Andesite

Figure 415 Mohr-Coulomb diagram for andesite

φi = 55˚

Tuffaceous Sandstone

Figure 416 Mohr-Coulomb diagram for pebbly tuffaceous sandstone

38

Silicified tuffaceous sandstone

φi = 49˚

Figure 417 Mohr-Coulomb diagram for silicified tuffaceous sandstone

Table 48 Results of triaxial compressive strength tests on three rock types

Rock Type

Number of

Samples

Average Density (gcc)

Cohesion c (MPa)

Internal Friction Angle φi (degrees)

Porphyritic Andesite 5 283 33 54

Tuffaceous Sandstone 5 265 28 55 Silicified Tuffaceous Sandstone 5 267 36 49

423 Brazilian Tensile Strength Tests

The objectives of the Brazilian tensile strength test are to determine

the tensile strength of rock The Brazilian tensile strength tests are performed on all

rock types Sample preparation and test procedure are followed the ASTM standard

(ASTM D3967-81) and the

39

ISRM suggested method (Brown 1981) Ten specimens for each rock

type have been tested The specimens have the diameter of 55 mm with 25 mm thick

The Brazilian tensile strength of rock can be calculated by the following

equation (Jaeger and Cook 1979)

σB = (2pf) (πDt) (45)

where σB is the Brazilian tensile strength pf is the failure load D is the diameter

of disk specimen and t is the thickness of disk specimen All of specimens failed

along the loading diameter (Figure 420) The results of Brazilian tensile strengths

are shown in Table 49 The tensile strength trends to decrease as the specimen size

(diameter) increase and can be expressed by a power equation (Evans 1961)

σB = A (D)-B (46)

where A and B are constants depending upon the nature of rock

424 Conventional point load index (CPL) tests

The objectives of CPL tests are to determine the point load strength index for

use in the estimation of the compressive strength of the rocks The sample

preparation test procedure and calculation are followed the standard practices

(ASTM D 5731-02) and the ISRM suggested method (Brown 1981) Twenty

specimens of each rock types are tested The length-to-diameter (LD) ratio of the

specimen is constant at 10 The specimen diameter and thickness are maintained

constant at 54 mm (Figure 421) The core specimen is loaded along its axis as

shown in Figure 422 Each specimen is loaded to failure at a constant rate such that

40

(a)

(b)

(c)

Figure 418 Pre-test samples for Brazilian tensile strength test (a) porphyritic

andesite (b) tuffaceous sandstone and (c) silicified tuffaceous

sandstone

41

Figure 419 Brazilian tensile strength test arrangement

Table 49 Results of Brazilian tensile strength tests of three rock types

Rock Type

Average Diameter

(mm)

Average Length (mm)

Average Density (gcc)

Number of

Samples

Brazilian Tensile

Strength σB (MPa)

Porphyritic andesite 5366 2672 283 10 170plusmn16

Tuffaceous sandstone 5366 2737 265 10 131plusmn33

Silicified tuffaceous sandstone

5366 2670 267 10 191plusmn32

42

(a)

(b)

(c)

Figure 420 Post-test specimens (a) porphyritic andesite (b) tuffaceous sandstone

and (c) silicified tuffaceous sandstone

43

Figure 421 Pre-test samples of porphyritic andesite for conventional point load

strength index test

Figure 422 Conventional point load strength index test arrangement

44

failures occur within 5-10 minutes Post-failure characteristics are observed

The point load strength index for axial loading (Is) is calculated by the

equation

Is = pf De2 (47)

where pf is the load at failure De is the equivalent core diameter (for axial loading

De2 = 4Aπ and A=WD) A is the minimum cross-sectional area of a plane through

the platen contact points W is the specimen width (thickness of core) and D is the

specimen diameter The post-test specimens are shown in Figure 423

The testing results of all three rock types are shown in Table 410 The

point load strength index of andesite pebbly tuffaceous sandstone and silicified

tuffaceous sandstone are average as 81 plusmn 12 102 plusmn 20 and 108 plusmn 22 MPa

Table 410 Results of conventional point load strength index tests of three rock types

Rock Types Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index

Is (MPa) Porphyritic Andesite 5493 5366 283 81plusmn12 Tuffaceous Sandstone 5545 5366 265 102plusmn20 Silicified Tuffaceous Sandstone 5491 5366 268 108plusmn22

45

Figure 423 Post-Test rock specimens from conventional point load strength index

tests (a) porphyritic andesite (b) tuffaceous sandstone and (c)

silicified tuffaceous sandstone

46

43 Modified point load (MPL) tests

The objectives of the modified point load (MPL) tests are to measure the

strength of rock between the loading points and to produce failure stress results for

various specimen sizes and shapes The results are complied and evaluated to

determine the mathematical relationship between the strengths and specimen

dimensions which are used to predict the elastic modulus and uniaxial and triaxial

compressive strengths and Brazilian tensile strength of the rocks

The testing apparatus for the proposed MPL testing are similar to those of the

conventional point load (CPL) test except that the loading points are cylindrical

shape and cut flat with the circular cross-sectional area instead of using half-spherical

shape (Tepnarong 2001) The loading platens used in this research are 7 10 and 15

mm in diameter and the thickness-to-loading point diameter ratio (td) of about 25

The specimen diameter-to-loading point diameter is varying from 5 to 100 The load

is applied at the rate of 200 Ns Fifty specimens are prepared and tested for each

rock type The vertical deformations (δ) are monitored One cycle of unloading and

reloading is made at about 40 failure load Then the load is increased to failure

The MPL strength (PMPL) is calculated by

PMPL = pf ((π4)(d2)) (48)

where pf is the applied load at failure and d is the diameter of loading point Figure

26 shows the example of post-test specimen shear cone are usually formed

underneath the loading points and two or three tension-induced cracks are commonly

found across the specimens

47

The MPL testing method is divided into 4 schemes based on its objective

elastic modulus uniaxial and triaxial compressive strengths and Brazilian tensile

strength determination

Figure 424 Conventional and modified loading points(Tepnarong 2006)

Figure 425 MPL testing arrangement

48

Tension-induced crack Shear cone

Shear cone

Tension-induced crack

Figure 426 Post-test specimen the tension-induced crack commonly found across

the specimen and shear cone usually formed underneath the loading

platens

49

Table 411 Results of modified point load tests on porphyritic andesite

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-01 246 543 280 125 159 And-MPL-02 351 632 370 180 471 And-MPL-03 236 634 150 170 191 And-MPL-04 266 960 250 234 319 And-MPL-05 284 903 370 369 471 And-MPL-06 245 793 280 182 357 And-MPL-07 263 874 260 234 331 And-MPL-08 261 980 210 171 268 And-MPL-09 280 777 270 056 344 And-MPL-10 244 569 280 124 159 And-MPL-11 251 613 650 138 368 And-MPL-12 226 631 600 189 340 And-MPL-13 233 1126 180 151 468 And-MPL-14 279 1203 220 165 572 And-MPL-15 239 503 400 011 227 And-MPL-16 281 474 300 012 170 And-MPL-17 305 861 390 021 497 And-MPL-18 233 653 500 008 283 And-MPL-19 294 1386 380 200 484 And-MPL-20 265 860 410 017 522 And-MPL-21 238 425 550 087 311 And-MPL-22 230 417 450 087 255 And-MPL-23 223 557 500 231 283 And-MPL-24 250 760 550 112 311 And-MPL-25 259 1243 180 585 468 And-MPL-26 303 560 310 143 395 And-MPL-27 273 1640 390 156 497 And-MPL-28 282 906 220 200 280 And-MPL-29 311 934 290 156 369 And-MPL-30 246 1314 250 650 650 And-MPL-31 262 982 200 175 255 And-MPL-32 260 1147 180 156 468 And-MPL-33 240 700 450 101 255 And-MPL-34 304 800 240 135 306 And-MPL-35 250 455 220 127 280 And-MPL-36 243 1697 120 292 312 And-MPL-37 333 1520 310 156 395 And-MPL-38 238 661 170 260 442

50

Table 411 Results of modified point load tests on porphyritic andesite (Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-39 318 347 130 186 338 And-MPL-40 245 551 150 260 390 And-MPL-41 207 561 150 325 390 And-MPL-42 223 425 500 231 283 And-MPL-43 207 561 150 346 390 And-MPL-44 324 340 310 234 395 And-MPL-45 275 426 240 169 306 And-MPL-46 302 397 130 175 166 And-MPL-47 255 314 100 170 127 And-MPL-48 257 220 250 094 142 And-MPL-49 256 214 130 057 74 And-MPL-50 243 166 180 078 102

51

Table 412 Results of modified point load tests on tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-01 270 546 220 212 293 TST -MPL-02 258 787 230 326 293 TST -MPL-03 275 730 200 143 255 TST -MPL-04 282 715 400 143 510 TST -MPL-05 254 1345 220 264 280 TST -MPL-06 292 893 200 143 255 TST -MPL-07 243 853 550 112 311 TST -MPL-08 287 1047 210 319 268 TST -MPL-09 230 787 370 212 471 TST -MPL-10 230 427 260 132 147 TST -MPL-11 282 1243 450 319 573 TST -MPL-12 254 604 200 127 255 TST -MPL-13 288 1180 290 159 369 TST -MPL-14 251 631 410 170 232 TST -MPL-15 214 1104 120 260 312 TST -MPL-16 229 486 380 102 215 TST -MPL-17 259 715 110 650 286 TST -MPL-18 243 285 180 073 102 TST -MPL-19 285 316 130 128 130 TST -MPL-20 241 295 180 170 102 TST -MPL-21 298 417 300 100 170 TST -MPL-22 265 642 300 088 170 TST -MPL-23 314 611 450 101 255 TST -MPL-24 303 481 650 124 368 TST -MPL-25 223 223 260 126 331 TST -MPL-26 273 652 260 178 331 TST -MPL-27 216 887 420 170 535 TST -MPL-28 319 718 290 164 369 TST -MPL-29 231 516 200 128 255 TST -MPL-30 260 641 380 280 484 TST -MPL-31 287 496 330 158 420 TST -MPL-32 264 368 230 170 293 TST -MPL-33 238 415 230 130 293 TST -MPL-34 271 824 140 260 364 TST -MPL-35 283 800 220 325 572 TST -MPL-36 242 1013 180 325 468 TST -MPL-37 254 715 90 217 234 TST -MPL-38 210 755 150 520 390

52

Table 412 Results of modified point load tests on tuffaceous sandstone

(Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-39 293 508 110 260 286 TST -MPL-40 273 410 100 347 260 TST -MPL-41 234 628 80 260 208 TST -MPL-42 259 433 130 260 338 TST -MPL-43 265 546 220 435 280 TST -MPL-44 255 829 260 222 147 TST -MPL-45 254 368 240 315 306 TST -MPL-46 293 695 370 222 210 TST -MPL-47 247 297 180 128 102 TST -MPL-48 310 611 300 237 170 TST -MPL-49 225 337 160 371 416 TST -MPL-50 259 410 120 394 312

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-01 300 782 170 280 442 SST-MPL-02 250 480 220 307 572 SST-MPL-03 314 424 340 356 433 SST-MPL-04 292 809 220 450 572 SST-MPL-05 275 1142 300 532 780 SST -MPL-06 308 490 190 273 494 SST -MPL-07 317 611 280 418 728 SST -MPL-08 233 684 240 414 624 SST -MPL-09 255 480 230 371 598 SST -MPL-10 217 772 120 958 312 SST -MPL-11 312 903 270 400 702 SST -MPL-12 255 1094 150 272 390 SST -MPL-13 286 742 400 408 510 SST -MPL-14 248 615 350 296 198 SST -MPL-15 253 805 210 282 546 SST -MPL-16 243 1094 150 260 390

53

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

(Continued)

Specimen Number td Dd Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-17 234 1090 250 416 650 SST -MPL-18 253 1371 240 473 624 SST -MPL-19 327 434 320 330 408 SST -MPL-20 270 310 390 278 497 SST -MPL-21 269 691 410 185 522 SST -MPL-22 312 504 380 182 484 SST -MPL-23 319 627 260 150 331 SST -MPL-24 281 689 330 295 420 SST -MPL-25 210 720 390 259 497 SST -MPL-26 303 775 370 221 471 SST -MPL-27 272 714 310 274 395 SST -MPL-28 292 855 600 209 764 SST -MPL-29 310 742 400 176 510 SST -MPL-30 284 847 410 158 522 SST -MPL-31 320 891 650 464 828 SST -MPL-32 261 256 400 178 226 SST -MPL-33 224 405 550 131 311 SST -MPL-34 231 379 450 215 255 SST -MPL-35 290 442 1050 190 594 SST -MPL-36 241 521 500 102 283 SST -MPL-37 275 605 600 067 340 SST -MPL-38 263 616 650 127 368 SST -MPL-39 227 615 350 229 198 SST -MPL-40 236 508 550 090 311 SST -MPL-41 318 1142 300 498 780 SST -MPL-42 303 809 210 392 546 SST -MPL-43 228 805 210 244 546 SST -MPL-44 283 1142 300 571 780 SST -MPL-45 277 772 120 780 312 SST -MPL-46 288 1206 280 411 728 SST -MPL-47 250 508 570 309 323 SST -MPL-48 275 442 1050 338 594 SST -MPL-49 272 605 650 254 368 SST -MPL-50 260 805 200 360 520

54

431 Modified point load tests for elastic modulus measurement

The MPL tests are carried out with the measurement of axial

deformation for use in elastic modulus estimation Fifty irregular specimens for each

rock type are tested The specimen thickness-to-loading diameter (td) is about 25

and the specimen diameter -to-loading diameter (Dd) is varied from 25 to 50 Cyclic

loading is performed while monitoring displacement (δ)

The testing apparatus used in this experiment includes the point load

tester model SBEL PLT-75 and the modified point load platens The displacement

digital gages with a precision up to 0001 mm are used to monitor the axial

deformation of rock between the loading points as loading decreases The cyclic

load is applied along the specimen axis and is performed by systematically increasing

and decreasing loads on the test specimen After unloading the axial load is

increased until the failure occurs Cyclic loading is performed on the specimens in

an attempt at determining the elastic deformation The ratio of change of stress to

displacement (∆P∆δ) is measured from unloading curve Post-failure characteristics

are observed and recorded Photographs are taken of the failed specimens

The results of the deformation measurement by MPL tests are shown

in Tables411 through 413 The stresses (P) are plotted as a function of axial

displacement (δ) and shown in Figures B1 through B150 (Appendix B) The results

of ∆P∆δ are used to estimate the elastic modulus of the specimen

The elastic modulus predictions from MPL results can be made by

using the value of αE plotted as a function of Ded for various td ratios as shown in

Figure 427 and the MPL elastic modulus can be expressed as

55

⎟⎠⎞

⎜⎝⎛

ΔΔ

⎟⎟⎠

⎞⎜⎜⎝

⎛=

δαPtE

Empl (Tepnarong 2006) (49)

where Empl is the elastic modulus predicted from MPL results αE is displacement

function value from numerical analysis and ∆P∆δ is the ratio of change of stress to

displacement which is measured from unloading curve of MPL tests and t is the

specimen thickness The value of αE used in the calculation is 260 for td ratio equal

to 25-30 (Tepnarong 2006) The results of elastic modulus predictions from MPL

tests are tabulated in Tables 414 through 416 Table 417 compares the elastic

modulus obtained from standard uniaxial compressive strength test (ASTM D3148-

96) with those predicted by MPL test

The values of Empl for each specimen with P-δ curve are shown in

Appendix B The MPL method under-estimates the elastic modulus of all tested

rocks This is the primarily because the actual loaded area may be smaller than that

used in the calculation due to the roughness of the specimen surfaces As a result the

contact area used to calculate PMPL is larger than the actual In addition the EMPL

tends to show a high intrinsic variation (high standard deviation) This is because the

loading areas of MPL specimens are small This phenomenon conforms by the test

results obtained by Fuenkajorn and Deamen (1992) They conclude that smaller test

specimens not only exhibit a higher strength than larger one (size effect) but also

show a high intrinsic variability due to the heterogeneity of rock fabric particularly at

small sizes This implied that to obtain a good prediction (accurate result) of the rock

elasticity a large amount of MPL specimens are desirable This drawback may be

compensated by the ease of testing and the low cost of sample preparation

56

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (MPa)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure 427 Example of P-δ curve for porphyritic andesite specimen The ratio of

∆P∆δ is used to predict the elastic modulus of MPL specimen (Empl)

57

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-01 246 543 125 260 1776 And-MPL-02 351 632 180 260 2430 And-MPL-03 236 634 170 260 1546 And-MPL-04 266 960 234 260 2390 And-MPL-05 284 903 369 260 4031 And-MPL-06 245 793 182 260 1712 And-MPL-07 263 874 234 260 2367 And-MPL-08 261 980 171 260 1717 And-MPL-09 280 777 056 260 603 And-MPL-10 244 569 124 260 1748 And-MPL-11 251 613 138 260 2001 And-MPL-12 226 631 189 260 2464 And-MPL-13 233 1126 151 260 947 And-MPL-14 279 1203 165 260 1239 And-MPL-15 239 503 011 260 151 And-MPL-16 281 474 012 260 195 And-MPL-17 305 861 021 260 247 And-MPL-18 233 653 008 260 108 And-MPL-19 294 1386 200 260 2263 And-MPL-20 265 860 017 260 173 And-MPL-21 238 425 087 260 1195 And-MPL-22 230 417 087 260 1154 And-MPL-23 223 557 231 260 2976 And-MPL-24 250 760 112 260 1615 And-MPL-25 259 1243 585 260 4073 And-MPL-26 303 560 143 260 1667 And-MPL-27 273 1640 156 260 1639 And-MPL-28 282 906 200 260 2172 And-MPL-29 311 934 156 260 1868 And-MPL-30 246 1314 650 260 4310 And-MPL-31 262 982 175 260 1766 And-MPL-32 260 1147 156 260 1093 And-MPL-33 240 700 101 260 1398 And-MPL-34 304 800 135 260 1576 And-MPL-35 250 455 127 260 1221 And-MPL-36 243 1697 292 260 1909 And-MPL-37 333 1520 156 260 2000 And-MPL-38 238 661 260 260 1665 And-MPL-39 318 347 186 260 1592 And-MPL-40 245 551 260 260 1712

58

And-MPL-41 207 561 325 260 1815

59

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-42 223 425 231 260 2976 And-MPL-43 207 561 346 260 1932 And-MPL-44 324 340 234 260 2912 And-MPL-45 275 426 169 260 1785 And-MPL-46 302 397 175 260 2033 And-MPL-47 255 314 170 260 1667 And-MPL-48 257 220 094 260 1393 And-MPL-49 256 214 057 260 843 And-MPL-50 243 166 078 260 1094 Average 1743 Standard Deviation 910

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-01 300 782 280 260 2262 SST -MPL-02 250 480 307 260 2066 SST -MPL-03 314 424 356 260 4302 SST -MPL-04 292 809 450 260 3533 SST -MPL-05 275 1142 532 260 3939 SST -MPL-06 308 490 273 260 2266 SST -MPL-07 317 611 418 260 3572 SST -MPL-08 233 684 414 260 2595 SST -MPL-09 255 480 371 260 2546 SST -MPL-10 217 772 958 260 5593 SST -MPL-11 312 903 400 260 3360 SST -MPL-12 255 1094 272 260 1864 SST -MPL-13 286 742 408 260 4435 SST -MPL-14 248 615 296 260 4235 SST -MPL-15 253 805 282 260 1918 SST -MPL-16 243 1094 260 260 1698 SST -MPL-17 234 1090 416 260 2621 SST -MPL-18 253 1371 473 260 3224 SST -MPL-19 327 434 330 260 4153 SST -MPL-20 270 310 278 260 2863

60

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-21 269 691 185 260 1914 SST -MPL-22 312 504 182 260 2183 SST -MPL-23 319 627 150 260 1839 SST -MPL-24 281 689 295 260 3193 SST -MPL-25 210 720 259 260 2090 SST -MPL-26 303 775 221 260 2577 SST -MPL-27 272 714 274 260 2862 SST -MPL-28 292 855 209 260 2350 SST -MPL-29 310 742 176 260 2097 SST -MPL-30 284 847 158 260 1728 SST -MPL-31 320 891 464 260 5707 SST -MPL-32 261 256 178 260 2678 SST -MPL-33 224 405 131 260 1690 SST -MPL-34 231 379 215 260 2863 SST -MPL-35 290 442 190 260 3174 SST -MPL-36 241 521 102 260 1416 SST -MPL-37 275 605 067 260 1064 SST -MPL-38 263 616 127 260 1926 SST -MPL-39 227 615 229 260 3005 SST -MPL-40 236 508 090 260 1226 SST -MPL-41 318 1142 498 260 4264 SST -MPL-42 303 809 392 260 3196 SST -MPL-43 228 805 244 260 1500 SST -MPL-44 283 1142 571 260 4348 SST -MPL-45 277 772 780 260 5826 SST -MPL-46 288 1206 411 260 3184 SST -MPL-47 250 508 309 260 4464 SST -MPL-48 275 442 338 260 5364 SST -MPL-49 272 605 254 260 3981 SST -MPL-50 260 805 360 260 2523 Average 2986 Standard Deviation 1190

61

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-01 270 546 212 260 2202 TST -MPL-02 258 787 326 260 3232 TST -MPL-03 275 730 143 260 1513 TST -MPL-04 282 715 143 260 1551 TST -MPL-05 254 1345 264 260 2579 TST -MPL-06 292 893 143 260 1606 TST -MPL-07 243 853 112 260 2273 TST -MPL-08 287 1047 319 260 3521 TST -MPL-09 230 787 212 260 1875 TST -MPL-10 230 427 132 260 1752 TST -MPL-11 282 1243 319 260 3455 TST -MPL-12 254 604 127 260 1241 TST -MPL-13 288 1180 159 260 1764 TST -MPL-14 251 631 170 260 2465 TST -MPL-15 214 1104 260 260 1500 TST -MPL-16 229 486 102 260 1345 TST -MPL-17 259 715 650 260 4530 TST -MPL-18 243 285 073 260 1025 TST -MPL-19 285 316 128 260 2105 TST -MPL-20 241 295 170 260 2360 TST -MPL-21 298 417 100 260 1722 TST -MPL-22 265 642 088 260 896 TST -MPL-23 314 611 101 260 1830 TST -MPL-24 303 481 124 260 2166 TST -MPL-25 223 223 126 260 1083 TST -MPL-26 273 652 178 260 1869 TST -MPL-27 216 887 170 260 2065 TST -MPL-28 319 718 164 260 2011 TST -MPL-29 310 742 128 260 1136 TST -MPL-30 260 641 280 260 2800 TST -MPL-31 287 496 158 260 1742 TST -MPL-32 264 368 170 260 1725 TST -MPL-33 238 415 130 260 1192 TST -MPL-34 271 824 260 260 1942 TST -MPL-35 283 800 325 260 2478 TST -MPL-36 242 1013 325 260 2115 TST -MPL-37 254 715 217 260 1484 TST -MPL-38 210 755 520 260 2944 TST -MPL-39 293 508 260 260 2052 TST -MPL-40 273 410 347 260 2552

62

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-41 234 628 260 260 1638 TST -MPL-42 259 433 260 260 1814 TST -MPL-43 265 546 435 260 4440 TST -MPL-44 255 829 222 260 3265 TST -MPL-45 254 368 315 260 3075 TST -MPL-46 293 695 222 260 2502 TST -MPL-47 247 297 128 260 1827 TST -MPL-48 310 611 237 260 4240 TST -MPL-49 225 337 371 260 2252 TST -MPL-50 259 410 394 260 2746 Average 2190 Standard Deviation 830

Table 417 Comparisons of elastic modulus results obtained from uniaxial

compressive strength tests and those from modified point load tests

Rock Type Tangential Elastic Modulus from UCS

tests Et (GPa)

Elastic Modulus from MPL tests

Empl (GPa) Porphyritic andesite 430plusmn34 174plusmn91

Silicified tuffaceous sandstone 633plusmn80 299plusmn119

tuffaceous sandstone 513plusmn53 219plusmn83

432 Modified point load tests predicting uniaxial compressive strength

The uniaxial compressive strength of MPL specimens can be predicted

by plotting Pmpl as a function of diameter ratio Ded as shown in Figures 428 through

430 At diameter ratio equal to unity the Pmpl represents the uniaxial compressive

strength of rock The uniaxial compressive strength predicted from MPL tests

compared with those from CPL test and UCS standard test is shown in Table 418

63

UCS PREDICTION OF PORPHYRITIC ANDESITE FROM MPL TESTS

Pmpl = 11844(Ded)05489

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ded Ratio

MPL

Stre

ngth

(MPa

)

Figure 428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests

64

UCS PREDICTION OF SILICIFIED TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 11463(Ded)07447

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ded Ratio

MPL

-Str

engt

h (M

Pa)

Figure 429 Uniaxial compressive strength predicted for silicified tuffaceous

sandstone from MPL tests

65

UCS PREDICTION OF TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 10222(Ded)05457

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ded Ratio

MPL

-Stre

ngth

(MPa

)

Figure 430 Uniaxial compressive strength predicted for tuffaceous sandstone from

MPL tests

Table 418 Comparison the test results between UCS CPL Brazilian tensile

strength and MPL tests

Uniaxial Compressive Strength (MPa)

Tensile Strength (MPa) Rock Type UCS

Testing CPL

Prediction MPL

PredictionBrazilian Testing

MPL Prediction

And 1150 1944 plusmn12 1005 170plusmn16 139plusmn43 TST 1114 2448plusmn20 1308 131plusmn33 121plusmn73 SST 1207 2592plusmn22 1022 191plusmn32 171plusmn126

433 Modified Point Load Tests for Tensile Strength Predictions

The MPL results determine the rock tensile strength by using the

relationship of the failure stresses (Pmpl) as a function of specimen thickness to

66

loading diameter ratio (td) The tensile strength from MPL prediction can be

expressed as an empirical equation (Tepnarong 2001)

σt mpl = Pmpl (αT ln (td)+βT) (410)

where αT = 133 ln (Ded)-756 and βT= -70 ln (Ded)+ 1952

The results of tensile strengths of all rock types are shown in Tables

419through 421 The predicted tensile strengths are compared with the Brazilian

tensile strengths for the three rock types in Table 418 A close agreement of the

results obtained between two methods The discrepancies of the results are less than

the standard deviation of the results

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa)

And-MPL-01 246 543 159 1495 767 750 And-MPL-02 351 632 471 1697 661 1688 And-MPL-03 236 634 191 1701 659 900 And-MPL-04 266 960 319 2252 369 1240 And-MPL-05 284 903 471 2170 412 1761 And-MPL-06 245 793 357 1999 502 1558 And-MPL-07 263 874 331 2127 435 1330 And-MPL-08 261 980 268 2279 355 1053 And-MPL-09 280 777 344 1971 517 1351 And-MPL-10 244 569 159 1557 734 746 And-MPL-11 251 613 368 1656 683 1666 And-MPL-12 226 631 340 1695 662 1662 And-MPL-13 233 1126 468 2464 257 2000 And-MPL-14 279 1203 572 2552 211 2022 And-MPL-15 239 503 227 1392 822 1114 And-MPL-16 281 474 170 1314 863 765 And-MPL-17 305 861 497 2108 445 1776 And-MPL-18 233 653 283 1740 638 1340 And-MPL-19 294 1386 484 2741 112 1577 And-MPL-20 265 860 522 2106 446 2091

67

And-MPL-21 238 425 311 1169 939 1595 And-MPL-22 230 417 255 1142 953 1338 And-MPL-23 223 557 283 1529 749 1431 And-MPL-24 250 760 311 1941 532 1347 And-MPL-25 259 1243 468 2596 188 1763 And-MPL-26 303 560 395 1535 746 1613

68

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) And-MPL-27 273 1640 497 2964 -006 1671 And-MPL-28 282 906 280 2252 369 1035 And-MPL-29 311 934 369 2216 388 1272 And-MPL-30 246 1314 650 2670 149 2543 And-MPL-31 262 982 255 2282 353 997 And-MPL-32 260 1147 468 2488 244 1783 And-MPL-33 240 700 255 1832 590 1161 And-MPL-34 304 800 306 2010 496 1121 And-MPL-35 250 455 280 1259 891 1370 And-MPL-36 243 1697 312 3010 -030 1181 And-MPL-37 333 1520 395 2863 047 1130 And-MPL-38 238 661 442 1755 630 2054 And-MPL-39 318 347 338 897 1082 1594 And-MPL-40 245 551 390 1513 758 1847 And-MPL-41 207 561 390 1537 745 2089 And-MPL-42 223 425 283 1169 939 1507 And-MPL-43 207 561 390 1537 745 2089 And-MPL-44 324 340 395 871 1096 1864 And-MPL-45 275 426 306 1172 937 1441 And-MPL-46 302 397 166 1079 986 760 And-MPL-47 255 314 127 766 1151 1159 And-MPL-48 257 220 142 291 1401 845 And-MPL-49 256 214 74 257 1419 443 And-MPL-50 243 166 102 -078 1595 928 Average 1427 Standard Deviation 44

69

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) SST -MPL-01 300 782 442 1336 851 2018 SST -MPL-02 250 480 572 1331 853 2759 SST -MPL-03 314 424 433 1196 924 1888 SST -MPL-04 292 809 572 2024 489 2155 SST -MPL-05 275 1142 780 2483 247 2827 SST -MPL-06 308 490 494 1357 840 2086 SST -MPL-07 317 611 728 1651 685 2808 SST -MPL-08 233 684 624 1800 606 2932 SST -MPL-09 255 480 598 1331 853 2849 SST -MPL-10 217 772 312 1962 522 1529 SST -MPL-11 312 903 702 2170 412 2436 SST -MPL-12 255 1094 390 2426 277 1533 SST -MPL-13 286 742 510 1910 549 2011 SST -MPL-14 248 615 198 1661 680 905 SST -MPL-15 253 805 546 2017 492 2312 SST -MPL-16 243 1094 390 2426 277 1607 SST -MPL-17 234 1090 650 2421 280 2780 SST -MPL-18 253 1371 624 2726 120 2354 SST -MPL-19 327 434 408 1196 924 1740 SST -MPL-20 270 310 497 748 1160 2618 SST -MPL-21 269 691 522 1816 599 2181 SST -MPL-22 312 504 484 1394 821 2012 SST -MPL-23 319 627 331 1686 667 1263 SST -MPL-24 281 689 420 1812 601 1699 SST -MPL-25 210 720 497 1869 570 2541 SST -MPL-26 303 775 471 1968 519 1745 SST -MPL-27 272 714 395 1859 576 1623 SST -MPL-28 292 855 764 2098 450 2830 SST -MPL-29 310 742 510 1910 549 1881 SST -MPL-30 284 847 522 2087 456 1981 SST -MPL-31 320 891 828 2153 421 2832 SST -MPL-32 261 256 226 492 1295 1282 SST -MPL-33 224 405 311 1106 972 1672 SST -MPL-34 231 379 255 1017 1019 1363 SST -MPL-35 290 442 594 1221 912 2690 SST -MPL-36 241 521 283 1439 797 1374 SST -MPL-37 275 605 340 1639 692 1445 SST -MPL-38 263 616 368 1661 680 1611

70

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded Pmpl (MPa)

αT βT σt mpl (MPa)

SST -MPL-39 227 615 198 1661 680 969 SST -MPL-40 236 508 311 1406 814 1540 SST -MPL-41 318 1142 780 2483 247 2500 SST -MPL-42 303 809 546 2024 489 1999 SST -MPL-43 228 805 546 2017 492 2530 SST -MPL-44 283 1142 780 2483 247 2757 SST -MPL-45 277 772 312 1962 522 1236 SST -MPL-46 288 1206 728 2555 209 2502 SST -MPL-47 250 508 323 1406 814 1533 SST -MPL-48 275 442 594 1221 912 2769 SST -MPL-49 272 605 368 1639 692 1580 SST -MPL-50 260 805 520 2017 492 2147 Average 2045 Standard Deviation 56

71

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-01 270 546 293 1502 763 1299 TST -MPL-02 258 787 293 1988 508 1226 TST -MPL-03 275 730 255 1888 560 1031 TST -MPL-04 282 715 510 1860 575 2035 TST -MPL-05 254 1345 280 2701 133 1058 TST -MPL-06 292 893 255 2156 420 933 TST -MPL-07 243 853 311 2095 451 1346 TST -MPL-08 287 1047 268 2279 355 970 TST -MPL-09 230 787 471 1988 508 2179 TST -MPL-10 230 427 147 1176 935 769 TST -MPL-11 282 1243 573 2596 188 1994 TST -MPL-12 254 604 255 1636 693 1149 TST -MPL-13 288 1180 369 2527 224 1274 TST -MPL-14 251 631 232 1695 662 1044 TST -MPL-15 214 1104 312 2438 271 1465 TST -MPL-16 229 486 215 1347 845 1098 TST -MPL-17 259 715 286 1861 575 1220 TST -MPL-18 243 285 102 637 1219 571 TST -MPL-19 285 316 130 776 1146 665 TST -MPL-20 241 295 102 685 1194 568 TST -MPL-21 298 417 170 1143 952 771 TST -MPL-22 265 642 170 1178 934 1059 TST -MPL-23 314 611 255 1652 685 989 TST -MPL-24 303 481 368 1423 805 1545 TST -MPL-25 223 223 331 313 1389 2018 TST -MPL-26 273 652 331 1738 640 1389 TST -MPL-27 216 887 535 2146 424 1850 TST -MPL-28 319 718 369 1866 572 1350 TST -MPL-29 231 516 255 1425 804 1276 TST -MPL-30 260 641 484 1715 651 2114 TST -MPL-31 287 496 420 1373 832 1846 TST -MPL-32 264 368 293 976 1041 1475 TST -MPL-33 238 415 293 1151 948 1504 TST -MPL-34 271 824 364 2049 476 1418 TST -MPL-35 283 800 572 2010 496 2210 TST -MPL-36 242 1013 468 2324 331 1965 TST -MPL-37 254 715 234 1861 575 1013 TST -MPL-38 210 755 390 1932 537 1976

72

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-39 293 508 286 1406 814 1229 TST -MPL-40 273 410 260 1124 963 1243 TST -MPL-41 234 628 208 1688 666 990 TST -MPL-42 259 433 338 1194 926 1639 TST -MPL-43 265 546 280 1502 763 1257 TST -MPL-44 255 829 147 2057 472 614 TST -MPL-45 254 368 306 976 1041 1568 TST -MPL-46 293 695 210 1822 595 1846 TST -MPL-47 247 297 102 691 1190 561 TST -MPL-48 310 611 170 1652 685 665 TST -MPL-49 225 337 416 1939 533 1972 TST -MPL-50 259 410 312 1120 965 1537 Average 1336 Standard Deviation 56

434 Modified point load tests for triaxial compressive strength predictions

The objective of this section is to predict the triaxial compressive strength

of intact rock specimens by using the MPL results (modified point load strength Pmpl) It

is speculated that increase of applied load (σ1) will invoke a confining pressure (σ3) on

the imaginary cylindrical profile between the two loading points This is due to the

effect of Poissonrsquos ratio (ν) which causing a potential expansion of rock in this cylinder

The greater the σ1 the greater the σ3 in addition Poissonrsquos ratios also affect the

magnitude of σ3 The magnitude of σ3 also depends on the specimen shape particularly

the Ded ratio In principle σ3 will equal zero for Ded ratio equal to unity But when

Ded ratio is very large approaching infinity σ3 will reach its maximum This maximum

value of σ3 will also depend on the rock Poissonrsquos ratio From computer simulation of

td =25 the variation of σ1 σ3 ratio can be simply expressed by Tepnarong (2006) as

73

(σ1 σ3) = 2 ((ν (1ndashν) (1-(dDe) 2)) (411)

where ν is the Poissonrsquos ratio of rock specimen d is the modified point load diameter

and De is the equivalent diameter of the specimen The Poissonrsquos ratio of rock

specimen used in equation 411 can be assumed to be 25 The σ1 σ3 ratio tends to be

independent of Ded for Ded greater than 10 This implies that when MPL specimen

diameter is more than 10 times of the loading point diameter the magnitude of σ3 is

approaching its maximum value (Tepnarong 2006)

It should be pointed out that approach used here to determine σ3

assumes that there is no shear stress (τrz) along the imagination cylinder As a result

the magnitude of σ3 determined here would be higher than the actual σ3 applied in the

true triaxial test specimen This mean that the σ1 σ3 ratios at failure obtained from

MPL tests will be lower than the actual failure stress ratio from the true triaxial tests

From the concept of σ1 σ3-Ded relation proposed the major and

minor principal stresses at failure (σ1 σ3) can be predicted from the measured MPL

failure stress Pmpl and Ded ratio The Poissonrsquos ratio used here is equal to 025

Comparison between the failure stress (σ1 σ3) obtained from the

standard triaxial compressive strength testing (ASTM D7012-07) and those predicted

from MPL test results are made graphically in Figures 431 through 433 for ν =025

The figures are plotted the maximum shear stress (frac12(σ1-σ3)) as a function of mean

shear stress (frac12(σ1+σ3)) indicating that the predicted failure stresses under-estimate

the value obtained from the standard testing This is because of the assumption of no

shear stresses developed on the surface of the imaginary cylinder The under

prediction may be due to the intrinsic variability of the rocks The predictions are

also sensitive to assumed Poissonrsquos ratio The Poissonrsquos ratio of the tested specimens

74

may be lower than the assumed value of 025 This comparison implies that the

triaxial strength predicted from MPL test will be more conservative than those from

the standard testing method

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests

Specimen Number

td Ded σ1

(MPa)σ3

(MPa)Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-01 246 543 159 2527 6663 9190 And-MPL-02 351 632 471 7583 19776 27358 And-MPL-03 236 634 191 3075 8017 11091 And-MPL-04 266 960 319 5198 13325 18522 And-MPL-05 284 903 471 7682 19726 27408 And-MPL-06 245 793 357 5792 14938 20730 And-MPL-07 263 874 331 5393 13864 19257 And-MPL-08 261 980 268 4368 11192 15560 And-MPL-09 280 777 344 5581 14407 19988 And-MPL-10 244 569 159 2535 6659 9194 And-MPL-11 251 613 368 5911 15445 21356 And-MPL-12 226 631 340 5465 14253 19717 And-MPL-13 233 1126 468 7660 19568 27228 And-MPL-14 279 1203 572 9372 23911 33283 And-MPL-15 239 503 227 3589 9529 13118 And-MPL-16 281 474 170 2678 7154 9831 And-MPL-17 305 861 497 8087 20797 28884 And-MPL-18 233 653 283 4561 11874 16435 And-MPL-19 294 1386 484 7946 20231 28177 And-MPL-20 265 860 522 8501 21864 30365 And-MPL-21 238 425 311 4854 13143 17997 And-MPL-22 230 417 255 3962 10758 14720 And-MPL-23 223 557 283 4521 11894 16415 And-MPL-24 250 760 311 5049 13045 18094 And-MPL-25 259 1243 468 7671 19562 27234 And-MPL-26 303 560 395 6308 16591 22899 And-MPL-27 273 1640 497 8167 20757 28924 And-MPL-28 282 906 280 4574 11726 16300 And-MPL-29 311 934 369 6026 15459 21484 And-MPL-30 246 1314 650 1066 27166 37828 And-MPL-31 262 982 255 4160 10659 14819 And-MPL-32 260 1147 468 7663 19567 27229

75

And-MPL-33 240 700 255 4118 10680 14798 And-MPL-34 304 800 306 4966 12804 17770

76

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-35 250 455 280 4401 11812 16213 And-MPL-36 243 1697 312 5130 13034 18163 And-MPL-37 333 1520 395 6488 16501 22989 And-MPL-38 238 661 442 7125 18535 25661 And-MPL-39 318 347 338 5112 14342 19455 And-MPL-40 245 551 390 6222 16387 22609 And-MPL-41 207 561 390 6230 16383 22613 And-MPL-42 223 425 283 4413 11948 16361 And-MPL-43 207 561 390 6230 16383 22613 And-MPL-44 324 340 395 5952 16769 22721 And-MPL-45 275 426 306 4767 12903 17670 And-MPL-46 302 397 166 2559 7001 9560 And-MPL-47 255 314 127 3211 9223 12433 And-MPL-48 257 220 142 1852 6151 8003 And-MPL-49 256 214 74 950 3205 4155 And-MPL-50 243 166 102 1493 6331 7823

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-01 300 782 442 7389 19703 27092 SST -MPL-02 250 480 572 9028 24083 33112 SST -MPL-03 314 424 433 6767 18273 25040 SST -MPL-04 292 809 572 9293 23951 33244 SST -MPL-05 275 1142 780 1277 32611 45382 SST -MPL-06 308 490 494 7811 20792 28603 SST -MPL-07 317 611 728 1169 30552 42241 SST -MPL-08 233 684 624 1008 26160 36235 SST -MPL-09 255 480 598 9439 25178 34617 SST -MPL-10 217 772 312 5061 13068 18129 SST -MPL-11 312 903 702 1144 29377 40817 SST -MPL-12 255 1094 390 6381 16308 22689 SST -MPL-13 286 742 510 8255 21350 29605 SST -MPL-14 248 615 198 3183 8316 11500

77

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-15 253 805 546 8869 22863 31732 SST -MPL-16 243 1094 390 6381 16308 22689 SST -MPL-17 234 1090 650 1063 27180 37814 SST -MPL-18 253 1371 624 1024 26077 36317 SST -MPL-19 327 434 408 6369 17198 23567 SST -MPL-20 270 310 497 7344 21169 28513 SST -MPL-21 269 691 522 8438 21896 30333 SST -MPL-22 312 504 484 7672 20368 28040 SST -MPL-23 319 627 331 5626 13897 19224 SST -MPL-24 281 689 420 6790 17624 24414 SST -MPL-25 210 720 497 8039 20821 28860 SST -MPL-26 303 775 471 7648 19743 27391 SST -MPL-27 272 714 395 6388 16551 22939 SST -MPL-28 292 855 764 1244 31997 44436 SST -MPL-29 310 742 510 8255 21350 29605 SST -MPL-30 284 847 522 8498 21866 30364 SST -MPL-31 320 891 828 1349 34656 48146 SST -MPL-32 261 256 226 3165 9741 12906 SST -MPL-33 224 405 311 4825 13157 17982 SST -MPL-34 231 379 255 3912 10783 14695 SST -MPL-35 290 442 594 9307 25071 34377 SST -MPL-36 241 521 283 4499 11905 16404 SST -MPL-37 275 605 340 5452 14259 19711 SST -MPL-38 263 616 368 5912 15445 21357 SST -MPL-39 227 615 198 3183 8316 11500 SST -MPL-40 236 508 311 4939 13100 18039 SST -MPL-41 318 1142 780 1277 32611 45382 SST -MPL-42 303 809 546 8870 22862 31733 SST -MPL-43 228 805 546 8869 22863 31732 SST -MPL-44 283 1142 780 1277 32611 45382 SST -MPL-45 277 772 312 5061 13068 18129 SST -MPL-46 288 1206 728 1193 30433 42361 SST -MPL-47 250 508 323 5119 13577 18695 SST -MPL-48 275 442 594 9307 25071 34377 SST -MPL-49 272 605 368 5906 15447 21354 SST -MPL-50 260 805 520 8447 21774 30221

78

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-01 270 546 293 4672 12313 16986 TST -MPL-02 258 787 293 4756 12272 17028 TST -MPL-03 275 730 255 4125 10676 14801 TST -MPL-04 282 715 510 8243 21356 29599 TST -MPL-05 254 1345 280 4599 11713 16312 TST -MPL-06 292 893 255 4151 10663 14814 TST -MPL-07 243 853 311 5067 13036 18103 TST -MPL-08 287 1047 268 4368 11192 15560 TST -MPL-09 230 787 471 7651 19741 27393 TST -MPL-10 230 427 147 2296 6212 8508 TST -MPL-11 282 1243 573 9397 23964 33361 TST -MPL-12 254 604 255 4089 10695 14783 TST -MPL-13 288 1180 369 6052 15445 21497 TST -MPL-14 251 631 232 3734 9739 13474 TST -MPL-15 214 1104 312 5105 13046 18151 TST -MPL-16 229 486 215 3400 9057 12457 TST -MPL-17 259 715 286 4626 11986 16612 TST -MPL-18 243 285 102 1474 4358 5833 TST -MPL-19 285 316 130 1934 5544 7478 TST -MPL-20 241 295 102 1489 4351 5840 TST -MPL-21 298 417 170 2641 7172 9813 TST -MPL-22 265 642 170 2650 7168 9817 TST -MPL-23 314 611 255 4091 10693 14784 TST -MPL-24 303 481 368 5843 15476 21322 TST -MPL-25 223 223 331 4370 14376 18745 TST -MPL-26 273 652 331 5336 13892 19229 TST -MPL-27 216 887 535 8716 22394 31109 TST -MPL-28 319 718 369 5977 15483 21460 TST -MPL-29 231 516 255 4046 10716 14762 TST -MPL-30 260 641 484 7793 20307 28100 TST -MPL-31 287 496 420 6654 17692 24346 TST -MPL-32 264 368 293 4477 12411 16888 TST -MPL-33 238 415 293 4560 12370 16930 TST -MPL-34 271 824 364 5917 15240 21157 TST -MPL-35 283 800 572 9290 23953 33242 TST -MPL-36 242 1013 468 7646 19575 27221 TST -MPL-37 254 715 234 3785 9806 13592 TST -MPL-38 210 755 390 6321 16338 22659

79

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-39 293 508 286 4536 12031 16567 TST -MPL-40 273 410 260 4036 10981 15017 TST -MPL-41 234 628 208 3345 8727 12071 TST -MPL-42 259 433 338 5279 14259 19538 TST -MPL-43 265 546 280 4469 11778 16247 TST -MPL-44 255 829 147 2394 6163 8557 TST -MPL-45 254 368 306 4671 12951 17622 TST -MPL-46 293 695 210 7616 19759 27375 TST -MPL-47 247 297 102 1491 4359 5841 TST -MPL-48 310 611 170 2728 7129 9870 TST -MPL-49 225 337 416 6744 17426 24170 TST -MPL-50 259 410 312 4841 13178 18019

ANDESITE

τm= 07103σm + 26

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=

((σ

1-σ

3)2

) (M

Pa)

MPL PredictionTriaxial Compressive

Figure 431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and MPL test

80

SILICIFIED TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=(

( σ1minus

σ3)

2)

(MPa

)MPL Prediction

Triaxial Compressive Strength test

Figure 432 Comparisons of triaxial compressive strength criterion of silicified

tuffaceous sandstone between the triaxial compressive strength test

and MPL test

81

TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stress σm=((σ1+σ3)2) (MPa)

Max

imum

shea

r st

res

τ m=(

( σ1-

σ3)

2)

(MPa

)

MPL Prediction

Triaxial Compressive Strength test

Figure 433 Comparisons of triaxial compressive strength criterion of tuffaceous

sandstone between the triaxial compressive strength test and MPL

test

Table 425 compares the triaxial test results in terms of the cohesion c

and internal friction angle φi by assuming the failure mode follows the Coulombrsquos

criterion The c and φi values are calculated from the test results and the predicted

results by the assumption of Coulombrsquos criterion (Jaeger and Cook 1978) Table

425 shows that the strengths predicted by MPL testing of all rock types under-

estimate those obtained from the standard triaxial testing This is probably the actual

Poissonrsquos ratio of the rock specimens are probably lower than those assumed in the

model simulation which is assumed the Poissonrsquos ratio as 025

82

Table 425 Comparisons of the internal friction angle and cohesion between MPL

predictions and triaxial compressive strength tests

Triaxial Compressive Strength Test

MPL Predictions (ν=025) Rock Type

c (MPa) φi (degrees) c (MPa) φi (degrees)

Porphyritic Andesite 12 69 4 45

Silicified Tuffaceous Sandstone 13 65 3 46

Tuffaceous Sandstone 7 73 2 46

CHAPTER V

FINITE DIFFERENCE ANALYSES

51 Objectives

The objective of the finite difference analyses is to verify that the equivalent

diameter of rock specimens used in the MPL strength prediction is appropriate The

finite difference analyses using FLAC software is made to determine the MPL

strength for various specimen diameters (D) with a constant cross-sectional area

52 Model characteristics

The analyses are made in axis symmetry Four specimen models with the

constant thickness of 318 cm are loaded with 10 cm diameter loading point The

diameter of the specimen (D) models is varied from 508 cm to 762 cm Each

specimen has a constant cross-sectional area of 1613 cm2 as shown in Figure 51

through 55 The load is applied to the specimens until failure occurs and then the

failure loads (P) are recorded

53 Results of finite difference analyses

The results of numerical simulation are shown in Table 51 The results

suggest that the MPL strength remains roughly constant when the same equivalent

diameter (De) is used It can be concluded that the equivalent diameter used in this

research is appropriate to predict the MPL strength

80

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm

81

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm

82

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm

Table 51 Summary of the results from numerical simulations

Model Number

Specimen Thickness

t (cm)

Specimen Diameter

D (cm)

Cross-Sectional

Are of Specimen

A (cm2)

Equivalent Diameter

De (cm)

Failure Load P

(kN)

1 318 508 1613 508 4485 2 318 572 1613 508 4630 3 318 635 1613 508 4614 4 318 698 1613 508 4627 5 318 762 1613 508 4590

CHAPTER VI

DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS

This chapter discusses various aspects of the proposed MPL testing technique

for determining the elastic modulus uniaxial and triaxial compressive strengths and

tensile strength of intact rock specimens The discussed issues include reliability of

the testing results validity scope and limitations of the proposed method of

calculations and accuracy of the predicted rock properties

61 Discussions

1) For selection of rock specimens for MPL testing in this research an

attempt has been made to select the specimens particularly in obtaining a high degree

of uniformity of rock matrix so as to reduce the intrinsic variability of the mechanical

test results and hence clearly reveals of the relation between the standard test results

with the MPL test results Nevertheless a high degree of intrinsic variability

remains as evidenced from the results of the characterization testing For all tested

rock types here the igneous rocks are normally heterogeneous The high intrinsic

variability is caused by the degree of weathering among specimens and the

distribution of rock fragments in the groundmass which promotes the different

orientations of cleavage planes and pore spaces to become a weak plane in rock

specimens Silicified tuffaceous sandstone the high standard deviation may be

caused by the silicified degree in rock specimens

84

2) For prediction of elastic modulus of rock specimens the effects of the

heterogeneity that cause the selective weak planes are enhanced during the MPL

testing This is because the applied loading areas are much smaller than those under

standard uniaxial compressive strength testing This load condition yields a high

degree of intrinsic variability of the MPL testing results The standard deviation of

the elastic modulus predicted from MPL results are in the range between 35-50

This means that in order to obtain the accurate prediction a large number of rock

specimens is necessary for each rock types and that the MPL testing is more

applicable in fine-grained rocks than coarse-grained rocks Another factor is the

uneven contacts between the loading platens and the rock surfaces which caused the

elastic modulus of all rock types that predicted from MPL testing to be lower

compared with those from the uniaxial compressive strength

3) Equivalent diameter used to define the rock specimen width (perpendicular

to the loading direction) seems adequate for use in MPL predictions of rock

compressive and tensile strengths

4) Determination of σ3 at failure for the MPL testing is the empirical In fact

results from the numerical simulation indicate that σ3 distribution along the imaginary

cylinder between the loading points is not uniform particularly for low td ratio

(lower than 25) Along this cylinder σ3 is tension near the loading point and

becomes compression in the mid-length of the MPL specimen There are also shear

stresses along the imaginary cylinder The induced stress states along the assume

cylinder in MPL specimen are therefore different from those the actual triaxial

strength testing specimen The MPL method can not satisfactorily predict the triaxial

compressive strength of all tested rock types primarily due to the heterogeneity of

85

rock specimens that is the different sizes of phenocrysts in igneous rock in lateral and

horizontal directions This promotes the different failure formations

62 Conclusions

The objective of this research is to determine the elastic modulus uniaxial

compressive strength tensile strength and triaxial compressive strength of rock

specimens by using the modified point load (MPL) test method Three rock types

used in this research are porphyritic andesite silicified tuffaceous sandstone and

tuffaceous sandstone Prior to performing the modified point load testing the

standard characterization testing is carried out on these rock types to obtain the data

basis for use to compare the results from MPL testing The MPL specimens are

irregular-shaped with the specimen thickness to loading platen diameter (td) varies

from 25-35 and the equivalent diameter of specimen to loading platen diameter

(Ded) varies from 15 to 20 Loading platen diameters used in this research are 7 10

and 15 mm Finite different analysis is used to verify the equivalent diameter that use

to calculate rock properties from MPL tests

The research results illustrate that the elastic modulus estimated from MPL tests

under-estimates those obtained from the ASTM standard test with the standard

deviation of 40 for porphyritic andesite 48 for silicified tuffaceous sandstone and

43 for tuffaceous sandstone The MPL test method can satisfactorily predict the

uniaxial compressive strength and tensile strength of all rock types tested here The

conventional point load test method over-predicts the actual strength results by much as

100 The MPL method however can not predict the triaxial compressive strengths

for three rock types tested here primarily due to heterogeneous and different

86

weathering degree of rock specimens and uneven surface of rock specimens This

suggests that the smooth and parallel contact surfaces on opposite side of the loading

points are important for determining the strength of rock specimens for MPL method

63 Recommendations

The assessment of predictive capability of the proposed MPL testing technique

has been limited to three rock types More testing is needed to confirm the applicability

and limitations of the proposed method Some obvious future research needs are

summarized as follows

1) More testing is required for elastic modulus and triaxial compressive strength

on different rock types Smooth and parallel of rock specimen surfaces in the opposite

sides should be prepared for all rock types The results may also reveal the impacts of

grain size on elasticity and strength of obtained under different loading areas And the

effects of size of the areas underneath the applied load should be further investigated

2) To truly confirm the validity of MPL predictions for the elastic modulus and

strength of rocks may be desirable to obtain the actual Poissonrsquos ratio of all rock types

The results could reveal the accuracy of the predicted elastic modulus under the assumed

Poissonrsquos ratio of 025 Comparison between the elastic modulus obtained from the

actual Poissonrsquos ratio may show the validity of assumption of the Poissonrsquos ratio posed

here

3) All tests made in this research are on dry specimens the results of pore

pressure and degree of saturation have not been investigated It is desirable to learn also

the proposed MPL testing technique can yield the intact rock properties under

different degree of saturation

88

REFERENCES

ASTM D2664-86 Standard test method for triaxial compressive strength of

undrained rock core specimens without pore pressure measurements In

Annual Book of ASTM Standards (Vol 0408) Philadelphia American

Society for Testing and Materials

ASTM D7012-07 Standard test method for compressive strength and elastic moduli

of intact rock core specimens under varying states of stress and

temperatures In Annual Book of ASTM Standards (Vol 0408) West

Conshohocken American Society for Testing and Materials

ASTM D3967-81 Standard test method for splitting tensile strength of intact rock

core specimens In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

ASTM D4543-85 Standard test method for preparing rock core specimens and

determining dimensional and shape tolerances In Annual Book of ASTM

Standards (Vol 0408) Philadelphia American Society for Testing and

Materials

ASTM D5731-95 Standard test method for determination of point load strength

index of rock In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

Bieniawski Z T (1974) Estimating of the strength of rock materials J Inst

Min Metall 7 123-137

Bieniawski Z T (1975) The point-load test in geotechnical practice Engng

Geol 9 1-11

89

Bieniawski Z T and Bernede M J (1979) Suggested methods for determining the

uniaxial compressive strength and deferability of rock material for ISRM

Commission on Standardization of Laboratory and Field test Int J Rock

Mech Min Sci 16 (2)xxxx (page no)

Bray J W (1987) Some applications of elastic theory In E T Brown (ed)

Analytical and Computational Methods in Engineering Rock

Mechanics (pp 32-94) Allen amp Unwin London

Broch E and Franklin J A (1972) The point-load test Int J Rock Mech Min

Sci 9 669-697

Book N (1977) The use of irregular specimens for rock strength tests Int J

Rock Mech Min Sci amp Geomech Abstr 14 193-202

Book N (1979) Estimating the triaxial strength of rocks Int J Rock Mech Min

Sci amp Geomech Abstr 16 261-264

Book N (1980) Size correction for point load testing Int J Rock Mech Min

Sci 17231-235 [Technical note]

Book N (1985) The equivalent core diameter method of size and shape correction

in point load testing Int J Rock Mech Min Sci amp Geomech Abstr

22 61-70

Brown E T (1981) Rock characterization Testing and Monitoring ISRM

Suggestion Methods New York International Society for Rock

Mechanics Pergamon Press

Butenuth C (1997) Comparison of tensile strength values of rocks determined by

point load and direct tensile tests Rock Mech Rock Engng 30 65-72

90

Cargill J S and Shakoor A (1992) Evaluation of empirical methods for measuring

the uniaxial compressive strength Int J Rock Mech Min Sci 27 495-503

Chau KT (1997) Youngrsquos modulus interpreted from compression tests with end

friction J Engng Mech January 1-7 plat Ann Inst Tech Trav Publics

58 967-971

Chau KT and Wei X X (1999) A new analytic solution for the diametral point

load strength test on finite solid circular cylinders Int J Solids and

Structures 38(9) 1459-1481

Chau KT and Wong R HC (1996) Uniaxial compressive strength and point

load strength Int J Rock Mech Min Sci 33183-188

Davis R O and Selvadurai APS (1996) Elasticity and Geomechanics New

York Cambridge University Press 198 p

Deere DU and Miller R P (1966) Engineering Classification and Index

Properties for Intact Rock US Air Force Weapons Lab Rep AFWL-

TR-65-116

Durelli A J and Parks V (1962) Relationship of size and stress gradient to brittle

failure stress In Proceeding of the 4th US National Cong Of Appl

Mech (pp 931-938)

Evans I (1961) The tensile strength of coal Colliery Eng 38 428-434

Fairhurst C (1961) Laboratory measurement of some physical properties of rock

In Proceeding of the 4th Symp Rock Mech (pp 105-118) Penn State

University

Farmer I (1983) Engineering Behavior of Rocks New York Chapman and Hall

208 p

91

Forster I R (1983) The influence of core sample geometry on axial load test Int

J Rock Mech Min Sci 20 291-295

Fuenkajorn K (2002) Modified point load test determining uniaxial compressive

strength of intact rock In Proceeding of 5th North American Rock

Mechanics Symposium and the 17th Tunneling Association of Canada

Conference (NARMS-TAC 2002) (pp ) Toronto

Fuenkajorn K and Daemen J J K (1986) Shape effect on ring test tensile

strength In Key to Energy Production Proceeding of the 27th US

Symposium on Rock Mechanics (pp 155-163) Tuscaloosa University of

Alabama

Fuenkajorn K and Daemen J J K (1991b) An empirical strength criterion for

heterogeneous welded tuff In ASME Applied Mechanics and

Biomechanics Summer Conference Columbus Ohio University

Fuenkajorn K and Daemen J J K (1992) An empirical strength criterion for

heterogeneous tuff Int J Engineering Geology 32 209-223

Fuenkajorn K and Tepnarong P (2001) Size and stress gradient effects on the

modified point load strength of Saraburi Marble In the 6th Mining

Metallurgical and Petroleum Engineering Conference Bangkok

Thailand(pp)

Ghosh A Fuenkajorn K and Daemen J J K (1995) Tensile strength of welded

Apache Leap tuff investigation for scale effects In Proceeding of the 35th

US Rock Mech Symposium (pp 459-646) University of Navada Reno

Goodman R E (1980) Methods of Geological Engineering in Discontinuous

Rock New York Wiley and Sons

92

Greminger M (1982) Experimental studies of the influence of rock anisotropy on

size and shape effects in point-load testing Int J Rock Mech Min Sci

19 241-246

Gunsallus K L and Kulhawy F H (1984) A comparative evaluation of rock

strength measures Int J Rock Mech Min Sci 21 233-248

Hassani F P Scoble M J and Whittaker B N (1980) Application of point load

index test to strength determination of rock and proposals for new size-

correction chart (pp 543-564) Rolla

Hiramatsu Y and Oka Y (1966) Determination of tensile strength of rock by a

compression test of irregular test piece Int J Rock Mech Min Sci 3

89-99

Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the

Hoek-Brown falure criterion-Technical note Int J Rock Mech Min Sci

amp Geomech Abstr 27 227-229

Hoek E and Brown E T (1980a) Empirical strength criterion for rock masses J

Geotech Eng Div 106 (GT9) 1013-1035

Hondros G (1959) The evaluation of Poissonrsquos ratio and modulus of material of a

low tensile resistance by the Brazilian (indirect tensile) test with particular

reference to concrete Aust J Appl Sci 10 243-264

Horii H and Nemat-Nasser S (1985) Compression-induced microcrack growth in

brittle solids axial splitting and shear failure J Geophts Res 90 3105-

3125

93

Hudson J A Brown E T and Fairhurst C (1971) Shape of the complete stress-

strain curve for rock In Proceeding of the 13th US Symp Rock Mech (pp

773-795) Urbana

ISRM (1985) Suggested method for determining point load strength Int J Rock

Mech Min Sci amp Geomech Abstr 22 53-60

ISRM (1985) Suggested methods for deformability determination using a flexible

dilatometer Int J Rock Mech Min Sci amp Geomech Abstr 24 123-134

Jaeger J C and Cook N G W (1979) Fundamentals of Rock Mechanics

London Chapman and Hall 593 p

Kaczynski R R (1986) Scale effect during compressive strength of rocks In

Proceeding of 5th Int Assoc Eng Geol Congr p 371-373

Lama R D and Vutukuri V S (1978) Testing techniques and results In

Handbook on Mechanical Properties of Rock Vol III No 2 Trans

Tech Publications (International Standard Book Number 0-87849-022-1

Clausthal Germany)

Lonborg N (1967) The strength-size relation of granite Int J Rock Mech Min

Sci 4 269-272

Miller R P (1965) Engineering Classification and Index Properties for Intact

Rock PhD Dissertation Univ Of Illinois Urbana III 92 p

Nimick F B (1988) Empirical relations between porosity and the mechanical

properties of tuff In Key Questions in Rock Mechanics (pp 741-742)

Balkema Rotterdam

Obert L and Stephenson D E (1965) Stress conditions under which core disking

occurs Trans Soc Min Eng AIME 232 227-235

94

Panek L A and Fannon T A (1992) Size and shape effects in point load tests

of irregular rock fragments J Rock Mechanics and Rock Engineering

25 109-140

Pells P J N (1975) The use of point load test in predicting the compressive

strength of rock material Aust Geotech (pp 54-56) G5(N1)

Reichmuth D R (1968) Point-load testing of brittle materials to determine the

tensile strength and relative brittleness In Proceeding of the 9th US Symp

Rock Mech (pp 134-159) University of Colorado

Sammis C G and Ashby M F (1986) The failure of brittle porous solid under

compressive stress state Acta Metall 34 511-526

Serata S and Fuenkajorn K (1992a) Finite element progam lsquoGEOrsquo for modeling

brittle-ductile deterioration of aging earth structures In SMRI Paper

Presented at the Solution Mining Research Institute Fall Meeting

October 19-22 Houston Texas 24p

Sheorey P R Biswas A K and Choubey V D (1989) An empirical failure

criterion of rocks and jointed rock masses Eng Geol 26 141-159

Stowe R L (1969) Strength and deformation properties of granite basalt

limestone and tuff US Army Corps of Engineers WES Misc Paper C-69-1

Taliercio A and Sacchi Landrianni G (1988) Failure criterion for layered rock

Int J Rock Mech Min Sci amp Geomech Abstr 25 299-305

Tepnarong P (2001) Theoretical and experimental studies to determine

compressive and tensile strengths of rocks using modified point load

testing M Eng Thesis Suranaree University of Technology Thailand

95

Tepnarong P (2006) Theoretical and experimental studies to determine elastic

modulus and triaxial compressive strength of intact rocks by modified

point load testing PhD Eng Thesis Suranaree University of

Technology Thailand

Tepnarong P and Fuenkajorn K (2004) Determining of elasticity and strengths

of intact rocks using modified point load test In Proceeding of the ISRM

International Symposium 3rd ASRM Vol 2 (pp 397-392)

Timoshenko S (1958) Strength of materials I Element Theory and Problems

(3rd ed) Princeton N J D Van Nostard

Timoshenko S and Goodier J N (1951) Theory of Elasticity (2nd ed) New

York McGraw-Hill

Truk N and Dearman W R (1985) Improvements in the determination of point

load strength Bull Int Assoc Eng Geol 31 137-142

Truk N and Dearman W R (1986) A correction equation on the influence of

length-to-diameter ratio on uniaxial compressive strength of rocks J Eng

Geol 22 293-300

Wei X X and Chau K T (2002) Analytic solution for finite transversely

isotropic circular cylinder under the axial point load test J Eng Mech

(pp 209-219)Vol

Wei X X and Chau K T and Wong R H C (1999) Analytic solution for

axial point load strength test on solid circular cylinders J Eng Mech (pp

1349-1357) Vol

96

Wijk G (1978) Some new theoretical aspects of indirect measurements of the

tensile strength of rocks Int J Rock Mech Min Sci amp Geomech

Abstr 15 149-160

Wijk G (1980) The point load test for the tensile strength of rock Geotech Test

ASTM 3 49-54

APPENDIX A

CHARACTERIZATION TEST RESULTS

97

Table A-1 Results of conventional point load strength index test on porphyritic

andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

And-06-05-CPL-01 5397 5366 284 52 And-06-05-CPL-02 5332 5366 283 78 And-08-04-CPL-03 5432 5366 284 90 And-08-04-CPL-04 5482 5366 286 87 And-06-01-CPL-05 5330 5366 285 76 And-06-01-CPL-06 5613 5366 284 76 And-04-04-CPL-07 5617 5366 281 75 And-04-05-CPL-08 5525 5366 282 75 And-03-02-CPL-09 5595 5366 280 85 And-03-02-CPL-10 5535 5366 283 85 And-06-06-CPL-11 5475 5366 283 75 And-09-01-CPL-12 5552 5366 286 90 And-09-01-CPL-13 5503 5366 283 90 And-02-04-CPL-14 5542 5366 282 85 And-09-03-CPL-15 5607 5366 282 85 And-09-03-CPL-16 5452 5366 285 96 And-01-03-CPL-17 5530 5366 283 87 And-01-03-CPL-18 5313 5366 283 90 And-01-04-CPL-19 5465 5366 284 56 And-01-04-CPL-20 5572 5366 283 97

Average 81plusmn12

98

Table A-2 Results of conventional point load strength index test on silicified

tuffaceous sand stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

SST-02-03-CPL-01 5373 5366 268 125 SST-06-04-CPL-02 5469 5366 268 70 SST-02-07-CPL-03 5505 5366 269 70 SST-02-06-CPL-04 5518 5366 267 130 SST-02-04-CPL-05 5626 5366 267 125 SST-02-03-CPL-06 5139 5366 270 132 SST-02-03-CPL-07 5483 5366 271 71 SST-02-05-CPL-08 5340 5366 266 125 SST-02-05-CPL-09 5399 5366 265 70 SST-07-05-CPL-10 5643 5366 263 99 SST-07-05-CPL-11 5381 5366 266 106 SST-05-02-CPL-12 5439 5366 274 104 SST-05-02-CPL-13 5491 5366 271 104 SST-03-04-CPL-14 5430 5366 263 113 SST-03-04-CPL-15 5556 5366 263 106 SST-09-03-CPL-16 5491 5366 272 125 SST-09-03-CPL-17 5703 5366 271 125 SST-01-01-CPL-18 5705 5366 267 132 SST-02-07-CPL-19 5596 5366 269 111 SST-02-07-CPL-20 5527 5366 271 118

Average 108plusmn22

99

Table A-3 Results of conventional point load strength index test on tuffaceous sand

stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

TST-06-05-CPL-01 5657 5366 263 125 TST-06-05-CPL-02 5781 5366 264 109 TST-02-05-CPL-03 5686 5366 263 106 TST-02-05-CPL-04 5747 5366 264 80 TST-08-03-CPL-05 5606 5366 268 115 TST-08-03-CPL-06 5574 5366 266 118 TST-08-01-CPL-07 5491 5366 268 111 TST-08-01-CPL-08 5478 5366 268 115 TST-04-02-CPL-09 5422 5366 263 103 TST-04-02-CPL-10 5387 5366 264 111 TST-08-04-CPL-11 5371 5366 267 115 TST-08-04-CPL-12 5463 5366 267 113 TST-06-07-CPL-13 5545 5366 267 108 TST-04-01-CPL-14 5729 5366 261 59 TST-06-06-CPL-15 5457 5366 261 99 TST-06-06-CPL-16 5469 5366 263 109 TST-06-06-CPL-17 5497 5366 266 122 TST-04-03-CPL-18 5550 5366 261 87 TST-04-03-CPL-19 5521 5366 262 52 TST-04-05-CPL-20 5477 5366 264 87

Average 102plusmn20

100

Table A-4 Results of uniaxial compressive strength tests and elastic modulus

measurements on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-5 Results of uniaxial compressive strength tests and elastic modulus

measurements on silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

Table A-6 Results of uniaxial compressive strength tests and elastic modulus

measurements on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

101

Table A-7 Results of Brazilian tensile strength tests on porphyritic andesite

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

And-04-03-BZ-01 2628 5366 281 395 178 And-04-03-BZ-02 2551 5366 279 350 163 And-04-03-BZ-03 2755 5366 285 380 164 And-04-03-BZ-04 2669 5366 279 415 184 And-04-06-BZ-05 2686 5366 280 320 141 And-04-06-BZ-06 2699 5366 286 415 182 And-04-06-BZ-07 2649 5366 282 395 177 And-04-06-BZ-08 2642 5366 286 340 153 And-06-01-BZ-09 2678 5366 286 435 193 And-06-01-BZ-10 2758 5366 285 385 166

Average 170plusmn16

Table A-8 Results of Brazilian tensile strength tests on silicified tuffaceous

sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

SST-02-02-BZ-01 2507 5366 265 450 213 SST-01-06-BZ-02 2664 5366 264 520 232 SST-01-02-BZ-03 2595 5366 262 400 183 SST-01-02-BZ-04 2593 5366 261 320 146 SST-01-02-BZ-05 2608 5366 266 500 228 SST-02-01-BZ-06 2710 5366 266 500 220 SST-02-01-BZ-07 2654 5366 262 450 201 SST-01-05-BZ-08 2778 5366 268 350 150 SST-01-05-BZ-09 2793 5366 266 400 170 SST-01-05-BZ-10 2795 5366 266 400 170

Average 191plusmn32

102

Table A-9 esults of Brazilian tensile strength tests on tuffaceous sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

TST-02-03-BZ-01 2811 5366 260 360 152 TST-02-03-BZ-02 2757 5366 260 255 110 TST-02-03-BZ-03 2739 5366 262 325 141 TST-02-03-BZ-04 2688 5366 263 175 77 TST-06-04-BZ-05 2765 5366 266 450 193 TST-06-04-BZ-06 2729 5366 264 280 122 TST-06-04-BZ-07 2730 5366 260 230 100 TST-06-02-BZ-08 2748 5366 264 285 123 TST-06-02-BZ-09 2743 5366 261 290 125 TST-06-02-BZ-10 2658 5366 265 370 165

Average 131plusmn33

Table A-10 esults of triaxial compressive strength tests on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-11 Results of triaxial compressive strength tests on silicified tuffaceous

sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

103

Table A-12 Results of triaxial compressive strength tests on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

APPENDIX B

MODIFIED POINT LOAD TEST RESULTS FOR ELASTIC

MODULUS PREDICTION

116

AND-MPL-01

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 125 GPamm

Figure B1 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-01

And-MPL-02

00500

100015002000250030003500400045005000

0 005 01 015 02 025 03 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 180 GPamm

Figure B2 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-02

117

And-MPL-03

00200400600800

100012001400160018002000

000 002 004 006 008 010 012 014

Diplacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B3 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-03

And-MPL-04

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B4 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-04

118

And-MPL-05

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 369 GPamm

Figure B5 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-05

And-MPL-06

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B6 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-06

119

And-MPL-07

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss (

MPa

)

ΔPΔδ = 234 GPamm

Figure B7 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-07

And-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 171 GPamm

Figure B8 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-08

120

And-MPL-09

00

500

1000

1500

2000

2500

3000

3500

000 020 040 060 080 100 120 140Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 056 GPamm

Figure B9 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-09

And-MPL-10

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 124 GPamm

Figure B10 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-10

121

And-MPL-11

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030 035 040Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 138 GPamm

Figure B11 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-11

And-MPL-12

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 189 GPamm

Figure B12 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-12

122

And-MPL-13

00500

100015002000250030003500400045005000

000 010 020 030 040 050 060

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 151 GPamm

Figure B13 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-13

And-MPL-14

00

1000

2000

3000

4000

5000

6000

7000

000 010 020 030 040 050 060Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 165 GPamm

Figure B14 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-14

123

And-MPL-15

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120 140 160Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 011 GPamm

Figure B15 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-15

And-MPL-16

00

200

400

600

800

1000

1200

1400

1600

1800

000 050 100 150 200Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 012 GPamm

Figure B16 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-16

124

And-MPL-17

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120

Displacement (mm)

Stre

ss P

(MPa

) ΔPΔδ = 021 GPamm

Figure B17 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-17

And-MPL-18

00

500

1000

1500

2000

2500

3000

000 050 100 150 200 250 300 350Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 008 GPamm

Figure B18 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-18

125

And-MPL-19

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B19 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-19

And-MPL-20

00

1000

2000

3000

4000

5000

6000

000 050 100 150 200 250 300

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 017 GPamm

Figure B20 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-20

126

And-MPL-21

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B21 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-21

And-MPL-22

00

500

1000

1500

2000

2500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B22 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-22

127

And-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B23 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-23

And-MPL-24

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =112 GPamm

Figure B24 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-24

128

And-MPL-25

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 585 GPamm

Figure B25 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-25

And-MPL-26

00500

10001500200025003000350040004500

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 143 GPamm

Figure B26 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-26

129

And-MPL-27

00500

10001500200025003000350040004500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B27 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-27

And-MPL-28

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B28 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-28

130

And-MPL-29

00500

1000150020002500300035004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B29 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-29

And-MPL-30

00

1000

2000

3000

4000

5000

6000

7000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B30 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-30

131

And-MPL-31

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B31 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-31

And-MPL-32

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B32 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-32

132

And-MPL-33

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 101 GPamm

Figure B33 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-33

And-MPL-34

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 135 GPamm

Figure B34 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-34

133

And-MPL-35

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 127 GPamm

Figure B35 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-35

And-MPL-36

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 292 GPamm

Figure B36 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-36

134

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B37 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-37

And-MPL-38

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B38 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-38

135

And-MPL-39

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 186 GPamm

Figure B39 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-39

And-MPL-40

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 20 GPamm

Figure B40 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-40

136

And-MPL-41

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B41 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-41

And-MPL-42

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B42 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-42

137

And-MPL-43

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 346 GPamm

Figure B43 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-43

And-MPL-44

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B44 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-44

138

And-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 169 GPamm

Figure B45 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-45

And-MPL-46

00

200

400

600

800

1000

1200

1400

1600

1800

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B46 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-46

139

And-MPL-47

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B47 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-47

And-MPL-48

00

200

400

600

800

1000

1200

1400

1600

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 094 GPamm

Figure B48 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-48

140

And-MPL-49

00

100

200

300

400

500

600

700

800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 057 GPamm

Figure B49 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-49

And-MPL-50

00

200

400

600

800

1000

1200

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 078 GPamm

Figure B50 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-50

141

SST-MPL-01

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 280 GPamm

Figure B51 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-01

SST-MPL-02

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 307 GPamm

Figure B52 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-02

142

SST-MPL-03

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 356 GPamm

Figure B53 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-03

SST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 450 GPamm

Figure B54 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-04

143

SST-MPL-05

00100020003000400050006000700080009000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 532 GPamm

Figure B55 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-05

SST-MPL-06

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 273 GPamm

Figure B56 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-06

144

SST-MPL-07

0010002000300040005000600070008000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 418 GPamm

Figure B57 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-07

SST-MPL-08

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 414 GPamm

Figure B58 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-08

145

SST-MPL-09

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B59 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-09

SST-MPL-10

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 958 GPamm

Figure B60 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-10

146

SST-MPL-11

00

10002000

300040005000

60007000

8000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 400 GPamm

Figure B61 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-11

SST-MPL-12

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 272 GPamm

Figure B62 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-12

147

SST-MPL-13

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 408 GPamm

Figure B63 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-13

SST-MPL-14

00

500

1000

1500

2000

2500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 296 GPamm

Figure B64 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-14

148

SST-MPL-15

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 282 GPamm

Figure B65 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-15

SST-MPL-16

00500

1000150020002500300035004000

000 005 010 015 020

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 26 GPamm

Figure B66 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-16

149

SST-MPL-17

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 416 GPamm

Figure B67 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-17

SST-MPL-18

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 473 GPamm

Figure B68 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-18

150

SST-MPL-19

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 330 GPamm

Figure B69 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-19

SST-MPL-20

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 278 GPamm

Figure B70 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-20

151

SST-MPL-21

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 185 GPamm

Figure B71 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-21

SST-MPL-22

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B72 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-22

152

SST-MPL-23

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 15 GPamm

Figure B73 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-23

SST-MPL-24

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 295 GPamm

Figure B74 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-24

153

SST-MPL-25

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 259 GPamm

Figure B75 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-25

SST-MPL-26

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 221 GPamm

Figure B76 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-26

154

SST-MPL-27

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 274 GPamm

Figure B77 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-27

SST-MPL-28

0010002000300040005000600070008000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 209 GPamm

Figure B78 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-28

155

SST-MPL-29

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 176 GPamm

Figure B79 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-29

SST-MPL-30

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B80 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-30

156

SST-MPL-31

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 464 GPamm

Figure B81 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-31

SST-MPL-32

00

500

1000

1500

2000

2500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 178 GPamm

Figure B82 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-32

157

SST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 131 GPamm

Figure B83 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-33

SST-MPL-34

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 215 GPamm

Figure B84 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-34

158

SST-MPL-35

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 190 GPamm

Figure B85 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-35

SST-MPL-36

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B86 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-36

159

SST-MPL-37

00500

1000150020002500300035004000

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 067 GPamm

Figure B87 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-37

AND-MPL-38

00

500

10001500

2000

2500

3000

35004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 127 GPamm

Figure B88 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-38

160

SST-MPL-39

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 229 GPamm

Figure B89 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-39

SST-MPL-40

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 090 GPamm

Figure B90 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-40

161

SST-MPL-41

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 498 GPamm

Figure B91 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-41

SST-MPL-42

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 392 GPamm

Figure B92 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-42

162

SST-MPL-43

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 244 GPamm

Figure B93 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-43

SST-MPL-44

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 571 GPamm

Figure B94 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-44

163

SST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 001 002 003 004 005 006 007 008

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 780 GPamm

Figure B95 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-45

SST-MPL-46

0010002000300040005000600070008000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 411 GPamm

Figure B96 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-46

164

SST-MPL-47

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 309 GPamm

Figure B97 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-47

SST-MPL-48

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 338 GPamm

Figure B98 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-48

165

SST-MPL-49

00500

1000150020002500300035004000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 254 GPamm

Figure B99 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-49

SST-MPL-50

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 360 GPamm

Figure B100 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-50

166

TST-MPL -01

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 212GPamm

Figure B101 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-01

TST-MPL-02

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=326 GPamm

Figure B102 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-02

167

TST-MPL-03

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacememt (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B103 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-03

TST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B104 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-04

168

TST-MPL-05

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 264 GPamm

Figure B105 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-05

TST-MPL-06

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacment (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B106 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-06

169

TST-MPL-07

00

500

1000

1500

2000

2500

3000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 162 GPamm

Figure B107 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-07

TST-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=319 GPamm

Figure B108 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-08

170

TST-MPL-09

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =212 GPamm

Figure B109 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-09

TST-MPL-10

00200400600800

1000120014001600

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 132GPamm

Figure B110 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-10

171

TST-MPL-11

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =319 GPamm

Figure B111 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-11

TST-MPL-12

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 127 GPamm

Figure B112 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-12

172

TST-MPL-13

00500

1000150020002500300035004000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 159 GPamm

Figure B113 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-13

TST-MPL-14

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =170 GPamm

Figure B114 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-14

173

TST-MPL-15

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 260 GPamm

Figure B115 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-15

TST-MPL-16

00500

100015002000250030003500400045005000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B116 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-16

174

TST-MPL-17

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B117 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-17

TST-MPL-18

00

200

400

600

800

1000

1200

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=073 GPamm

Figure B118 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-18

175

TST-MPL-19

00

200

400

600

800

1000

1200

1400

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B119 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-19

TST-MPL-20

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=170 GPamm

Figure B120 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-20

176

TST-MPL-21

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=100 GPamm

Figure B121 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-21

TST-MPL-22

00200400600800

10001200140016001800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 088 GPamm

Figure B122 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-22

177

TST-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 101 GPamm

Figure B123 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-23

TST-MPL-24

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 124 GPamm

Figure B124 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-24

178

TST-MPL-25

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 126 GPamm

Figure B125 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-25

TST-MPL-26

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 178 GPamm

Figure B126 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-26

179

TST-MPL-27

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B127 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-27

TST-MPL-28

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 164 GPamm

Figure B128 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-28

180

TST-MPL-29

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B129 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-29

TST-MPL-30

00500

100015002000250030003500400045005000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =280 GPamm

Figure B130 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-30

181

TST-MPL-31

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B131 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-31

TST-MPL-32

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B132 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-32

182

TST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 130 GPa mm

Figure B133 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-33

TST-MPL-34

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B134 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-34

183

TST-MPL-35

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B135 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-35

TST-MPL-36

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B136 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-36

184

TST-MPL-37

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 217 GPamm

Figure B137 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-37

TST-MPL-38

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 52 GPamm

Figure B138 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-38

185

TST-MPL-39

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B139 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-39

TST-MPL-40

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 347 GPamm

Figure B140 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-40

186

TST-MPL-41

00

500

1000

1500

2000

2500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B141 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-41

TST-MPL-42

00

500

1000

1500

2000

2500

3000

3500

4000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B142 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-42

187

TST-MPL -43

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 435 GPamm

Figure B143 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-43

TST-MPL-44

00

200

400

600

800

1000

1200

1400

1600

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B144 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-44

188

TST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 315 GPamm

Figure B145 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-45

TST-MPL-46

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B146 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-46

189

TST-MPL-47

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=128 GPamm

Figure B147 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-47

TST-MPL-48

00200400600800

10001200140016001800

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 237GPamm

Figure B148 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-48

190

TST-MPL-49

00

500

1000

1500

2000

2500

3000

3500

4000

4500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B149 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-49

TST-MPL-50

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 394 GPamm

Figure B150 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-50

BIOGRAPHY

Mr Chatchai Intaraprasit was born on July 30 1973 in Khon Kaen province

Thailand He received his Bachelorrsquos Degree in Science (Geotechnology) from Khon

Kaen University in 1996 He worked with the construction company for ten years

after graduated the Bachelorrsquos Degree For his post-graduate he continued to study

with a Masterrsquos Degree in the Geological Engineering Program Institute of

Engineering Suranaree University of Technology He has published a technical

papers related to rock mechanics as in 2009 ldquoModified point load testing of volcanic

rocks from Chatree gold minerdquo in the proceeding of the second Thailand symposium

on rock mechanics Chonburi Thailand For his work he is working as a

geotechnical engineer at Akara mining company limited Phichit province Thailand

  • cover
  • abstractpdf
  • CHAPTER I
  • CHAPTER II
  • CHAPTER III
  • CHAPTER IV
  • CHAPTER V
  • CHAPTER VI
  • REFERENCES
  • APPENDIX A
  • APPENDIX B
  • BIOGRAPHY
Page 4: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·

ชาตชาย อนทรประสทธ การทดสอบจดกดแบบปรบเปลยนของหนผนงบอทเหมองแรทองคาชาตร (MODIFIED POINT LOAD TESTS OF PIT WALL ROCK AT CHATREE GOLD MINE ) อาจารยทปรกษา รองศาสตราจารย ดร กตตเทพ เฟองขจร 191 หนา

การทดสอบจดกดแบบปรบเปลยนไดถกนามาใชในการหาคาความเคนกด แรงดง และคาความยดหยนของหนตวอยางในหองปฏบตการทดสอบ มาเปนเวลาเกอบสบปแลว วธการทดสอบนไดถกประดษฐ และจดทะเบยนลขสทธโดยมหาวทยาลยเทคโนโลยสรนาร เครองมอ และวธการทดสอบถกออกแบบใหมราคาถกและงาย เมอเปรยบเทยบกบวธการทดสอบเพอหาคณสมบตเชงกลของหนแบบดงเดม เชน วธการทดสอบตามมาตรฐาน ISRM และ ASTM ในอดตการทดสอบจดกดแบบปรบเปลยนสวนใหญมกทดสอบในแทงตวอยางหนทเปนรปวงกลม และรปสเหลยมมมฉาก ในขณะทมการอางวาการทดสอบแบบจดกดแบบปรบเปลยนนสามารถใชไดกบหนทกรปราง แตผลทดสอบวธนกบหนทมรปรางไมเปนทรงเรขาคณตยงมนอยมาก เนองจากเหตนจงยงไมมการยนยนอยางเพยงพอวา วธการทดสอบจดกดแบบปรบเปลยนสามารถใชไดจรงและมความสมาเสมอเพยงพอในการตรวจหาคณสมบตทางกลศาสตรพนฐานของหนในภาคสนามซงไมสามารถจดหาเครองเจาะและเครองตดหนได วตถประสงคของงานวจยนคอ เพอประเมนศกยภาพของการทดสอบของวธการทดสอบแบบจดกดแบบปรบเปลยนในหนตวอยางทมรปรางไมเปนทรงเรขาคณต ตวอยางหนสามชนด จานวน 150 ตวอยางเปนอยางนอย ไดแก porphyritic andesite silicified-tuffaceous sandstone และ tuffaceous sandstone ซงเกบรวบรวมมาจากผนงบอทางดานทศเหนอของเขาหมอทเหมองแรทองคาชาตร จะถกนามาใชในการทดสอบน อตราสวนระหวางความหนาของหนตวอยางตอเสนผาศนยกลางของหวกด แปรผนระหวาง 2 ถง3 และ อตราสวนระหวางเสนผาศนยกลางของตวอยางหนกบเสนผาศนยกลางของหวกดแปรผนระหวาง 5 ถง 10 การสญเสยรปรางและการแตกหกของหนจะถกนามาใชในการคานวณหาคาความยดหยนและความแขงแรงของหน และจะมการทดสอบแรงกดในแกนเดยวและแรงกดในสามแกน การทดสอบแรงดง และการทดสอบจดกดแบบด ง เด มในหนท งสามชนดดวยเช นกนเพ อนาผลการทดสอบท ได มาใชในการเปรยบเทยบกบผลทไดจากการทดสอบจดกดแบบปรบเปลยน แบบจาลองโดยใชโปรแกรมคอมพวเตอรจะถกนามาใชในการศกษาการกระจายตวของแรงเคนในกอนตวอยางหนของการทดสอบจดกดแบบปรบเปล ยนภายใต อ ตราสวนระหวางความหนาของหนต วอย างต อเสนผาศนยกลางของหวกดทตางๆกน และจะมการประเมนเชงปรมาณของผลกระทบของความมรปรางทไมเปนรปทรงทางเรขาคณตของหนตวอยาง ความเหมอนและความแตกตางของผล

II

สาขาวชา เทคโนโลยธรณ ลายมอชอนกศกษา ปการศกษา 2552 ลายมอชออาจารยทปรกษา

การทดสอบจดกดแบบปรบเปลยนและการทดสอบจดกดแบบดงเดมจะถกนามาพจารณา อาจมการประยกตการคานวณทเปนแบบแผนของการทดสอบจดกดแบบปรบเปล ยน เพ อเพ มความสามารถในการคาดคะเนคณสมบตทางกลศาสตรของหนตวอยางทมรปรางไมเปนรปทรงทางเรขาคณตไดดยงขน

CHATCHAI INTARAPRASIT MODIFIED POINT LOAD TESTS OF PIT

WALL ROCK AT CHATREE GOLD MINE THESIS ADVISOR ASSOC PROF

KITTITEP FUENKAJORN Ph D PE 191 PP

TRIAXIAL COMPRESSIVE STRENGTHUNIAXIAL COMPRESSIVE

STRENGTH ELASIC MODULUS POINT LOADTENSILE STRENGTH

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strengths and elastic modulus of intact rock

specimens in the laboratory This method was invented and patented by Suranaree

University of Technology The test apparatus and procedure are intended to be

inexpensive and easy compared to the relevant conventional methods of determining

the mechanical properties of intact rock eg those given by the International Society

for Rock Mechanics (ISRM) and the American Society for Testing and materials

(ASTM) In the past much of the MPL testing practices have been concentrated on

circular and rectangular disk specimens While it has been claimed that MPL method

is applicable to all rock shapes the test results from irregular lumps of rock have been

rare and hence are not sufficient to confirm that the MPL testing technique is truly

valid or even adequate to determine the basic rock mechanical properties in the field

where rock drilling and cutting devices are not available

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine will be used

as rock samples A minimum of 150 samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone will be collected from the site The

IV

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure will be used to calculate the elastic modulus and strengths of the rocks

Uniaxial and triaxial compression tests Brazilian tension test and conventional point

load test will also be conducted on the three rock types to obtain data basis for

comparing with those from the MPL testing Finite difference analysis will be

performed to obtain stress distribution within the MPL samples under different td and

Dd ratios The effects of the sample irregularity will be quantitatively assessed

Similarity and discrepancy of the test results from the MPL method and from the

conventional methods will be examined Modification of the MPL calculation

scheme may be made to enhance its predictive capability for the mechanical

properties of irregular shaped specimens

School of Geotechnology Students Signature

Academic Year 2009 Advisors Signature

ACKNOWLEDGMENTS

I wish to acknowledge the funding support of Suranaree University of

Technology (SUT) and Akara Mining Company Limited

I would like to express my sincere thanks to Assoc Prof Dr Kittitep

Fuenkajorn thesis advisor who gave a critical review and constant encouragement

throughout the course of this research Further appreciation is extended to Asst Prof

Thara Lekuthai chairman school of Geotechnology and Dr Prachya Tepnarong

Suranaree University of Technology who are member of my examination committee

Grateful thanks are given to all staffs of Geomechanics Research Unit Institute of

Engineering who supported my work

Chatchai Intaraprasit

TABLE OF CONTENTS

Page

ABSTRACT (THAI) I

ABSTRACT (ENGLISH) III

ACKNOWLEDGEMENTS V

TABLE OF CONTENTS VI

LIST OF TABLES IX

LIST OF FIGURES XIII

LIST OF SYMBOLS AND ABBREVIATIONS XVII

CHAPTER

I INTRODUCTION 1

11 Background and rationale 1

12 Research objectives 2

13 Research concept 3

14 Research methodology 3

141 Literature review 3

142 Sample collection and preparation 5

143 Theoretical study of the rock failure

mechanism 5

144 Laboratory testing 5

1441 Characterization tests 5

VII

TABLE OF CONTENTS (Continued)

Page

1442 Modified point load tests 6

145 Analysis 6

146 Thesis Writing and Presentation 6

15 Scope and Limitations 7

16 Thesis Contents 7

II LITERATURE REVIEW 8

21 Introduction 8

22 Conventional point load tests 8

23 Modified point load tests 11

24 Characterization tests 14

241 Uniaxial compressive strength tests 14

242 Triaxial compressive strength tests 15

243 Brazilian tensile strength tests 16

25 Size effects on compressive strength 16

III SAMPLE COLLECTION AND PREPARATION 17

31 Sample collection 17

32 Rock descriptions 17

33 Sample preparation 20

IV LABORATORY TESTS 22

41 Literature reviews 22

VIII

TABLE OF CONTENTS (Continued)

Page

411 Displacement Function 22

42 Basic Characterization Tests 23

421 Uniaxial Compressive Strength Tests

and Elastic Modulus Measurements 23

422 Triaxial Compressive Strength Tests 31

423 Brazilian Tensile Strength Tests 38

424 Conventional Point Load Index (CPL) Tests 39

43 Modified Point Load (MPL) Tests 46

431 Modified Point Load Tests for Elastic

Modulus Measurement 54

432 Modified Point Load Tests predicting

Uniaxial Compressive Strength 61

433 Modified Point Load Tests for Tensile

Strength Predictions 63

434 Modified Point Load Tests for Triaxial

Compressive Strength Predictions 69

V FINITE DIFFERENCE ANALYSIS 79

51 Objectives 79

52 Model Characteristics 79

53 Results of finite difference analyses 79

IX

TABLE OF CONTENTS (Continued)

Page

VI DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS 83

61 Discussions 83

62 Conclusions 85

63 Recommendations 86

REFERENCES 87

APPENDICES

APPENDIX A CHARACTERIZATION TEST RESULTS 96

APPENDIX B MODIFIED POINT LOAD TEST RESULTS FOR

ELASTIC MODULUS PREDICTION 104

BIOGRAPHY 180

LIST OF TABLES

Table Page

31 The nominal sizes of specimens following the ASTM standard

practices for the characterization tests 20

41 Testing results of porphyritic andesite 30

42 Testing results of tuffaceous sandstone 30

43 Testing results of silicified tuffaceous sandstone 30

44 Uniaxial compressive strength and tangent elastic modulus

measurement results of three rock types 31

45 Triaxial compressive strength testing results of porphyritic andesite 35

46 Triaxial compressive strength testing results of

tuffaceous sandstone 35

47 Triaxial compressive strength testing results of silicified

tuffaceous sandstone 36

48 Results of triaxial compressive strength tests on three rock types 38

49 The results of Brazilian tensile strength tests of three rock types 41

410 Results of conventional point load strength index tests of

three rock types 44

411 Results of modified point load tests on porphyritic andesite 49

412 Results of modified point load tests on tuffaceous sandstone 51

413 Results of modified point load tests on silicified tuffaceous sandstone 52

X

LIST OF TABLE (Continued)

Table Page

414 Results of elastic modulus calculation from MPL tests on porphyritic andesite57

415 Results of elastic modulus calculation from MPL tests on

silicified tuffaceous sandstone 58

416 Results of elastic modulus calculation from MPL tests on

tuffaceous sandstone 60

417 Comparisons of elastic modulus results obtained from

uniaxial compressive strength tests and those from modified

point load tests 61

418 Comparison the test results between UCS CPL Brazilian

tensile strength and MPL tests 63

419 Results of tensile strengths of porphyritic andesite predicted from MPL tests 64

420 Results of tensile strengths of silicified tuffaceous sandstone

predicted from MPL tests 66

421 Results of tensile strengths of tuffaceous sandstone

predicted from MPL tests 68

422 Results of triaxial strengths of porphyritic andesite predicted from MPL tests 71

423 Results of triaxial strengths of silicified tuffaceous sandstone

predicted from MPL tests 72

424 Results of triaxial strengths of tuffaceous sandstone

predicted from MPL tests 74

XI

LIST OF TABLE (Continued)

Table Page

425 Comparisons of the internal friction angle and cohesion

between MPL predictions and triaxial compressive strength tests 78

51 Summary of the results from numerical simulations 82

A1 Results of conventional point load strength index test on porphyritic andesite 97

A2 Results of conventional point load strength index test on

silicified tuffaceous sandstone 98

A3 Results of conventional point load strength index test on

tuffaceous sandstone 99

A4 Results of uniaxial compressive strength tests and elastic

modulus measurement on porphyritic andesite 100

A5 Results of uniaxial compressive strength tests and elastic

modulus measurement on silicified tuffaceous sandstone 100

A6 Results of uniaxial compressive strength tests and elastic

modulus measurement on tuffaceous sandstone 100

A7 Results of Brazilian tensile strength tests on porphyritic andesite 101

A8 Results of Brazilian tensile strength tests on silicified

tuffaceous sandstone 101

A9 Results of Brazilian tensile strength tests on

tuffaceous sandstone 102

A10 Results of triaxial compressive strength tests on porphyritic andesite 102

XII

LIST OF TABLE (Continued)

Table Page

A11 Results of triaxial compressive strength tests on

silicified tuffaceous Sandstone 102

A12 Results of Brazilian tensile strength tests on

tuffaceous sandstone 103

LIST OF FIGURES

Figure Page

11 Research plan 4

21 Loading system of the conventional point load (CPL) 10

22 Standard loading platen shape for the conventional point

load testing 10

31 The location of rock samples collected area 19

32 Some prepared rock specimens of porphyritic andesite for MPL Tests 21

33 The concept of specimen preparation for MPL testing 21

41 Pre-test samples of porphyritic andesite for UCS test 25

42 Pre-test samples of tuffaceous sandstone for UCS test 25

43 Pre-test samples of silicified tuffaceous sandstone for UCS test 26

44 Preparation of testing apparatus of porphyritic andesite for UCS test 26

45 Post-test rock samples of porphyritic andesite from UCS test 27

46 Post-test rock samples of tuffaceous sandstone

from UCS test 27

47 Post-test rock samples of tuffaceous sandstone from UCS 28

48 Results of uniaxial compressive strength tests and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted

as a function of axial strains 28

XIV

LIST OF FIGURES (Continued)

Figure Page

49 Results of uniaxial compressive strength tests and elastic

modulus measurements of tuffaceous sandstone (Top)

and silicified tuffaceous sandstone (Bottom) The axial

stresses are plotted as a function of axial strains 29

410 Pre-test samples for triaxial compressive strength test the

top is porphyritic andesite and the bottom is tuffaceous sandstone 32

411 Pre-test sample of silicified tuffaceous sandstone for triaxial

compressive strength test 33

412 Triaxial testing apparatus 33

413 Post-test rock samples from triaxial compressive strength tests

The top is porphyritic andesite and the bottom is tuffaceous sandstone 34

414 Post-test rock samples of silicified tuffaceous sandstone from

triaxial compressive strength test 35

415 Mohr-Coulomb diagram for porphyritic andesite 37

416 Mohr-Coulomb diagram for tuffaceous sandstone 37

417 Mohr-Coulomb diagram for silicified tuffaceous sandstone 38

418 Pre-test samples for Brazilian tensile strength test (a) porphyritic andesite

(b) tuffaceous sandstone and

(c) silicified tuffaceous sandstone 40

419 Brazilian tensile strength test arrangement 41

XV

LIST OF FIGURES (Continued)

Figure Page

420 Post-test specimens (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 42

421 Pre-test samples of porphyritic andesite for conventional point load

strength index test 43

422 Conventional point load strength index test arrangement 43

423 Post-test specimens from conventional point load

strength index tests (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 45

424 Conventional and modified loading points 47

425 MPL testing arrangement 47

426 Post-test specimen the tension-induced crack commonly

found across the specimen and shear cone usually formed

underneath the loading platens 48

427 Example of P-δ curve for porphyritic andesite specimen The ratio

of ∆P∆δ is used to predict the elastic modulus of MPL

specimen (Empl) 56

428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests 62

429 Uniaxial compressive strength predicted for silicified

tuffaceous sandstone from MPL tests 62

XVI

LIST OF FIGURES (Continued)

Figure Page

430 Uniaxial compressive strength predicted for tuffaceous

sandstone from MPL tests 63

431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and

modified point load test 75

432 Comparisons of triaxial compressive strength criterion of

silicified tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 76

433 Comparisons of triaxial compressive strength criterion of

tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 77

51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm 80

52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm 80

53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm 81

54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm 81

55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm 82

LIST OF SYMBOLS AND ABBREVIATIONS

A = Original cross-section Area

c = cohesive strength

CP = Conventional Point Load

D = Diameter of Rock Specimen

D = Diameter of Loading Point

De = Equivalent Diameter

E = Youngrsquos Modulus

Empl = Elastic Modulus by MPL Test

Et = Tangent Elastic Modulus

IS = Point Load Strength Index

L = Original Specimen Length

LD = Length-to-Diameter Ratio

MPL = Modified Point Load

Pf = Failure Load

Pmpl = Modified Point Load Strength

t = Specimen Thickness

α = Coefficient of Stress

αE = Displacement Function

β = Coefficient of the Shape

∆L = Axial Deformation

XVIII

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

∆P = Change in Applied Stress

∆δ = Change in Vertical of Point Load Platens

εaxial = Axial Strain

ν = Poissonrsquos Ratio

ρ = Rock Density

σ = Normal Stress

σ1 = Maximum Principal Stress (Vertical Stress)

σ3 = Minimum Principal Stress (Horizontal Stress)

σB = Brazilian Tensile Stress

σc = Uniaxial Compressive Strength (UCS)

σm = Mean Stress

τ = Shear Stress

τoct = Octahedral Shear Stress

φi = angle of Internal friction

CHAPTER I

INTRODUCTION

11 Background and rationale

In geological exploration mechanical rock properties are one of the most

important parameters that will be used in the analysis and design of engineering

structures in rock mass To obtain these properties the rock from the site is extracted

normally by mean of core drilling and then transported the cores to the laboratory

where the mechanical testing can be conducted Laboratory testing machine is

normally huge and can not be transported to the site On site testing of the rocks may

be carried out by some techniques but only on a very limited scale This method is

called for point load strength Index testing However this test provides unreliable

results and lacks theoretical supports Its results may imply to other important

properties (eg compressive and tensile strength) but only based on an empirical

formula which usually poses a high degree of uncertainty

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strength and elastic modulus of intact rock

specimens in the laboratory (Tepnarong 2001) This method was invented and

patented by Suranaree University of Technology The test apparatus and procedure

are intended to be in expensive and easy compared to the relevant conventional

methods of determining the mechanical properties of intact rock eg those given by

the International Society for Rock Mechanics (ISRM) and the American Society for

2

Testing and Materials (ASTM) In the past much of the MPL testing practices has

been concentrated on circular and disk specimens While it has been claimed that

MPL method is applicable to all rock shapes the test results from irregular lumps of

rock have been rare and hence are not sufficient to confirm that the MPL testing

technique is truly valid or even adequate to determine the basic rock mechanical

properties in the field where rock drilling and cutting devices are not available

12 Research objectives

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine are used as

rock samples A minimum of 150 rock samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone are collected from the site The

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure are used to calculate the elastic modulus and strengths of rocks Uniaxial and

triaxial compression tests Brazilian tension test and conventional point load test are

conducted on the three rock types to obtain data basis for comparing with those from

MPL testing Finite difference analysis is performed to obtain stress distribution

within the MPL samples under different td and Dd ratios The effect of the

irregularity is quantitatively assessed Similarity and discrepancy of the test results

from the MPL method and from the conventional method are examined

Modification of the MPL calculation scheme may be made to enhance its predictive

capability for the mechanical properties of irregular shaped specimens

3

13 Research concept

A modified point load (MPL) testing technique was proposed by Fuenkajorn

and Tepnarong (2001) and Fuenkajorn (2002) The objectives of this testing are to

determine the elastic modulus uniaxial compressive strength and tensile strength of

intact rocks The application of testing apparatus is modified from the loading

platens of the conventional point load (CPL) testing to the cylindrical shapes that

have the circular cross-section while they are half-spherical shapes in CPL

The modes of failure for the MPL specimens are governed by the ratio of

specimen diameter to loading platen diameter (Dd) and the ratio of specimen

thickness to loading platen diameter (td) This research involves using the MPL

results to estimate the triaxial compressive strength of specimens which various Dd

and td ratios and compare to the conventional compressive strength test

14 Research methodology

This research consists of six main tasks literature review sample collection

and preparation laboratory testing finite difference analysis comparison discussions

and conclusions The work plan is illustrated in the Figure 11

141 Literature review

Literature review is carried out to study the state-of-the-art of CPL and MPL

techniques including theories test procedure results analysis and applications The

sources of information are from journals technical reports and conference papers A

summary of literature review is given in this thesis Discussions have been also been

made on the advantages and disadvantages of the testing the validity of the test results

4

Preparation

Literature Review

Sample Collection and Preparation

Theoretical Study

Laboratory Ex

Figure 11 Research methodology

periments

MPL Tests Characterization Tests

Comparisons

Discussions

Laboratory Testing

Various Dd UCS Tests

Various td Brazilian Tension Tests

Triaxial Compressive Strength Tests

CPL Tests

Conclusions

5

when correlating with the uniaxial compressive strength of rocks and on the failure

mechanism the specimens

142 Sample collection and preparation

Rock samples are collected from the north pit-wall of Khao

Moh at Chatree gold mine Three rock types are tested with a minimum of 50

samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable Sample preparation is carried out in the laboratory at Suranaree

University of Technology

143 Theoretical study of the rock failure mechanism

The theoretical work primarily involves numerical analyses on

the MPL specimens under various shapes Failure mechanism of the modified point

load test specimens is analyzed in terms of stress distributions along loaded axis The

finite difference code FLAC is used in the simulation The mathematical solutions

are derived to correlate the MPL strengths of irregular-shaped samples with the

uniaxial and traiaxial compressive strengths tensile strength and elastic modulus of

rock specimens

144 Laboratory testing

Three prepared rock type samples are tested in laboratory

which are divided into two main groups as follows

1441 Characterization tests

The characterization tests include uniaxial compressive

strength tests (ASTM D7012-07) Brazilian tensile strength tests (ASTM D3967

1981) triaxial compressive strength tests (ASTM D7012-07) and conventional point

6

load index tests (ASTM D5731 1995) The characterization testing results are used

in verifications of the proposed MPL concept

1442 Modified point load tests

Three rock types of rock from the north pit-wall of

Khao Moh at Chatree gold mine are used as rock samples A minimum of 150 rock

samples of porphyritic andesite silicified-tuffaceous sandstone and tuffaceous

sandstone are used in the MPL testing The sample thickness-to-loading diameter

ratio (td) is varied from 2 to 3 and the sample diameter-to-loading diameter ratio

(Dd) from 5 to 10 The sample deformation and failure are used to calculate the

elastic modulus and strengths of rocks The MPL testing results are compared with

the standard tests and correlated the relations in terms of mathematic formulas

145 Analysis

Finite difference analysis is performed to obtain stress

distribution within the MPL samples under various shapes with different td and Dd

ratios The effect of the irregularity is quantitatively assessed Similarity and

discrepancy of the test results from the MPL method and from the conventional

method are examined Modification of the MPL calculation scheme may be made to

enhance its predictive capability for the mechanical properties of irregular shaped

specimens

146 Thesis writing and presentation

All aspects of the theoretical and experimental studies

mentioned are documented and incorporated into the thesis The thesis discusses the

validity and potential applications of the results

7

15 Scope and limitations

The scope and limitations of the research include as follows

1 Three rock types of rock from the pit wall of Chatree gold mine are

selected as a prime candidate for use in the experiment

2 The analytical and experimental work assumes linearly elastic

homogeneous and isotropic conditions

3 The effects of loading rate and temperature are not considered All tests

are conducted at room temperature

4 MPL tests are conducted on a minimum of 50 samples

5 The investigation of failure mode is on macroscopic scale Macroscopic

phenomena during failure are not considered

6 The finite difference analysis is made in axis symmetric and assumed

elastic homogeneous and isotropic conditions

7 Comparison of the results from MPL tests and conventional method is

made

16 Thesis contents

The first chapter includes six sections It introduces the thesis by briefly

describing the background and rationale and identifying the research objectives that

are describes in the first and second section The third section describes the proposed

concept of the new testing technique The fourth section describes the research

methodology The fifth section identifies the scope and limitation of the research and

the description of the overview of contents in this thesis are in the sixth section

CHAPTER II

LITERATURE REVIEW

21 Introduction

This chapter summarizes the results of literature review carried out to improve an

understanding of the applications of modified point load testing to predict the strengths and

elastic modulus of the intact rock The topics reviewed here include conventional point

load test modified point load test characterization tests and size effects

22 Conventional point load tests

Conventional point load (CPL) testing is intended as an index test for the strength

classification of rock material It has long been practiced to obtain an indicator of the

uniaxial compressive strength (UCS) of intact rocks The testing equipment (Figure 21)

is essentially a loading system comprising a loading flame hydraulic oil pump ram and

loading platens The geometry of the loading platen is standardized (Figure 22) having

60 degrees angle of the cone with 5 mm radius of curvature at the cone tip It is made of

hardened steel The CPL test method has been widely employed because the test

procedure and sample preparation are simple quick and inexpensive as compared with

conventional tests as the unconfined compressive strength test Starting with a simple

method to obtain a rock properties index the International Society for Rock Mechanics

(ISRM) commissions on testing methods have issued a recommended procedure for the

point load testing (ISRM 1985) the test has also been established as a standard test

method by the American Society for Testing and Materials in 1995 (ASTM 1995)

9

Although the point load test has been studied extensively (eg Broch and Franklin

1972 Bieniawski 1974 and 1975 Wijk 1980 Brook 1985) the theoretical solutions

for the test result remain rare Several attempts have been made to truly understand

the failure mechanism and the impact of the specimen size on the point load strength

results It is commonly agreed that tensile failure is induced along the axis between

loading points (Evans 1961 Hiramutsu 1976 Wijk 1978 1980) The most

commonly accepted formula relating the CPL index and the UCS is proposed by

Broch and Franklin (1972) The UCS (or σc) can be estimated as about 24 times of

the point load strength index (Is) of rock specimens with the diameter-to-length ratio

of 05 The IS value should also be corrected to a value equivalent to the specimen

diameter of 50 mm The factor of 24 can sometimes load to an error in the prediction

of the UCS Most previous studied have been done experimentally but rare

theoretical attempt has been made to study the validity of Broch and Franklin

formula

The CPL testing has been performed using a variety of sizes and shapes of

rock specimen (Wijk 1980 Foster 1983 Panek and Fannon 1992 Chau and Wong

1996 Butenuth 1997) This is to determine the most suitable specimen sizes These

investigations have proposed empirical relations between the IS and σc to be

universally applicable to various rock types However some uncertainly of these

relations remains

Panek and Fannon (1992) show the results of the CPL tests UCS tests and

Brazilian tension tests that are performed on three hard rocks (iron-formation

metadiabase and ophitic basalt) The CPL strength is analyzed in terms of the

10

Figure 21 Loading system of the conventional point load (CPL) (Tepnarong 2001)

Figure 22 Standard loading platen shape for the conventional point load testing

(ISRM suggested method and ASTM D5731-95)

11

size and shape effects More than 500 an irregular lumps were tested in the field

The shape effect exponents for compression have been found to be varied with rock

types The shape effect exponents in CPL tests are constant for the three rocks

Panek and Fannon (1992) recommended that the monitoring of the compressive and

tensile strengths should have various sizes and shapes of specimen to obtain the

certain properties

Chau and Wong (1996) study analytically the conversion factor relating

between σc and IS A wide range of the ratios of the uniaxial compressive strength to

the point load index has been observed among various rock types It has been found

that the uniaxial compressive strength of rocks can vary from 62 (Nevada test site

tuff) to 105 (Flaming Gorge shale) times the IS depending on rock type The

conversion factor relating σc to be Is depends on compressive and tensile strengths

the Poissonrsquos ratio and the length and diameter of specimen The conversion factor

of 24 (Broch and Franklin 1972) falls within this range but it is no by meaning

universal

23 Modified point load tests

Tepnarong (2001) proposed a modified point load testing method to correlate

the results with the uniaxial compressive strength (UCS) and tensile strength of intact

rocks The primary objective of the research is to develop the inexpensive and

reliable rock testing method for use in field and laboratory The test apparatus is

similar to the conventional point load (CPL) except that the loading points are cut

flat to have a circular cross-section area instead of using a half-spherical shape To

derive a new solution finite element analyses and laboratory experiments were

12

carried out The simulation results suggested that the applied stress required failing

the MPL specimen increased logarithmically as the specimen thickness or diameter

increased The MPL tests CPL tests UCS tests and Brazilian tension tests were

performed on Saraburi marble under a variety of sizes and shapes The UCS test

results indicated that the strengths decreased with increased the length-to-diameter

ratio The test results can be postulated that the MPL strength can be correlated with

the compressive strength when the MPL specimens are relatively thin and should be

an indicator of the tensile strength when the specimens are significantly larger than

the diameter of the loading points Predictive capability of the MPL and CPL

techniques were assessed Extrapolation of the test results suggested that the MPL

results predicted the UCS of the rock specimens better than the CPL testing The

tensile strength predicted by the MPL also agreed reasonably well with the Brazilian

tensile strength of the rock

Tepnarong (2006) proposed the modified point load testing technique to

determine the elastic modulus and triaxial compressive strength of intact rocks The

loading platens are made of harden steel and have diameter (d) varying from 5 10

15 20 25 to 30 mm The rock specimens tested were marble basalt sandstone

granite and rock salt Basic characterization tests were first performed to obtain

elastic and strength properties of the rock specimen under standard testing methods

(ASTM) The MPL specimens were prepared to have nominal diameters (D) ranging

from 38 mm to 100 mm with thickness varying from 18 mm to 63 mm Testing on

these circular disk specimens was a precursory step to the application on irregular-

shaped specimens The load was applied along the specimen axis while monitoring

the increased of the load and vertical displacement until failure Finite element

13

analyses were performed to determine the stress and deformation of the MPL

specimens under various Dd and td ratios The numerical results were also used to

develop the relationship between the load increases (∆P) and the rock deformation

(∆δ) between the loading platens The MPL testing predicts the intact rock elastic

modulus (Empl) by using an equation Empl = (tαE) (∆P∆δ) where t represents the

specimen thickness and αE is the displacement function derived from numerical

simulation The elastic modulus predicted by MPL testing agrees reasonably well

with those obtained from the standard uniaxial compressive tests The predicted Empl

values show significantly high standard deviation caused by high intrinsic variability

of the rock fabric This effect is enhanced by the small size of the loading area of the

MPL specimens as compared to the specimen size used in standard test methods

The results of the numerical simulation were used to determine the minimum

principal stress (σ3) at failure corresponding to the maximum applied principal stress

(σ1) A simple relation can therefore be developed between σ1 σ3 ratio Poissonrsquos ratio

(ν) and diameter ratio (Dd) to estimate the triaxial compressive strengths of the rock

specimens σ1 σ3 = 2[(ν(1-ν))(1-(dD)2)]-1 The MPL test results from specimens with

various Dd ratios can provide σ1 and σ3 at failure by assuming that ν = 025 and that

failure mode follows Coulomb criterion The MPL predicted triaxial strengths agree

very well with the triaxial strength obtained from the standard triaxial testing (ASTM)

The discrepancy is about 2-3 which may be due to the assumed Poissonrsquos ratio of 25

and due to the assumption used in the determination of σ3 at failure In summary even

through slight discrepancies remain in the application of MPL results to determine the

elastic modulus and triaxial compressive strength of intact rocks this approach of

14

predicting the rock properties shows a good potential and seems promising considering

the low cost of testing technique and ease of sample preparation

24 Characterization tests

241 Uniaxial compressive strength tests

The uniaxial compressive strength test is the most common laboratory

test undertaken for rock mechanics studies In 1972 the International Society of Rock

Mechanics (ISRM) published a suggested method for performing UCS tests (Brown

1981) Bieniawski and Bernede (1979) proposed the procedures in American Society

for Testing and Materials (ASTM) designation D2938

The tests are also the most used tests for estimating the elastic

modulus of rock (ASTM D7012) The axial strain can be measured with strain gages

mounted on the specimen or with the Linear Variable Differential Tranformers

(LVDTs) attached parallel to the length of the specimen The lateral strain can be

measured using strain gages around the circumference or using the LVDTs across

the specimen diameter

The UCS (σc) is expressed as the ratio of the peak load (P) to the

initial cross-section area (A)

σc= PA (21)

And the Youngrsquos modulus (E) can be calculated by

E= ΔσΔε (22)

Where Δσ is the change in stress and Δε is the change in strain

15

The ratio of lateral strain and axial strain magnitudes (εlatεax) determines the value of

Poissonrsquo ratio (ν)

ν = - (εlatεax) (23)

242 Triaxial compressive strength tests

Hoek and Brown (1980b) and Elliott and Brown (1986) used the

triaxaial compressive strength tests to gain an understanding of rock behavior under a

three-dimensions state of stress and to verify and even validate mathematical

expressions that have been derived to represent rock behavior in analytical and

numerical models

The common procedures are described in ASTM designation D7012 to

determine the triaxial strengths and D7012 to determine the elastic moduli and in

ISRM suggested methods (Brown 1981)

The axial strain can be measured with strain gages mounted on the

specimen or with the LVTDs attached parallel to the length of the specimen The

lateral strain can be measured using strain gages around the circumstance within the

jacket rubber

At the peak load the stress conditions are σ1 = PA σ3=p where P is

the maximum load parallel to the cylinder axis A is the initial cross-section area and

p is the pressure in the confining medium

The Youngrsquos modulus (E) and Poissonrsquos ratio (ν) can be calculated by

E = Δ(σ1-σ3)Δ εax (24)

and

16

ν = (slope of axial curve) (slope of lateral curve) (25)

where Δ(σ1-σ3) is the change in differential stress and Δ εax is the change in axial strain

243 Brazilian tensile strength tests

Caneiro (1974) and Akazawa (1953) proposed the Brazilian tensile

strength test of intact rocks Specifications of Brazilian tensile strength test have been

established by ASTM D3967 and suggested approach is provided by ISRM (Brown 1981)

Jaeger and Cook (1979) proposed the equation for calculate the

Brazilian tensile strength as

σB = (2P) ( πDt) (26)

where P is the failure load D is the disk diameter and t is the disk thickness

25 Size effects on compressive strength

The uniaxial compressive strength normally tested on cylindrical-shaped

specimens The length-to-diameter (LD) ratio of the specimen influences the

measured strength Typically the strength decreases with increasing the LD ratio

but it tends to become constant or ratios in the order of 21 to 31 (Hudson et al 1971

Obert and Duvall 1967) For higher ratios the specimen strength may be influenced

by bulking

The size of specimen may influence the strength of rock Weibull (1951)

proposed that a large specimen contains more flaws than a small one The large

specimen therefore also has flaws with critical orientation relative to the applied

shear stresses than the small specimen A large specimen with a given shape is

17

therefore likely to fail and exhibit lower strength than a small specimen with the same

shape (Bieniawski 1968 Jaeker and Cook 1979 Kaczynski 1986)

Tepnarong (2001) investigated the results of uniaxial compressive strength

test on Saraburi marble and found that the strengths decrease with increase the

length-to-diameter (LD) ratio And this relationship can be described by the power

law The size effects on uniaxial compressive strength are obscured by the intrinsic

variability of the marble The Brazilian tensile strengths also decreased as the

specimen diameter increased

CHAPTER III

SAMPLE COLLECTION AND PREAPATION

This chapter describes the sample collection and sample preparation

procedure to be used in the characterization and modified point load testing The

rock types to be used including porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone Locations of sample collection rock description are

described

31 Sample collection

Three rock types include porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone collected from Chatree Gold Mine Akara Mining Company

Limited Phichit Thailand are used in this research The rock samples are collected

from the north pit-wall of Khao Moh Three rock types are tested with a minimum of

50 samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable The collected location is shown in Figure 31

32 Rock descriptions

Three rock types are used in this research there are porphyritic andesite

silicified tuffaceous sandstone and tuffaceous sandstone Tuffaceous sandstone is

medium brownish grey the clasts are andesite rhyolite andesitic tuff and quartz

fragments and sub-rounded to sub-angular matrix sand andesitic tuff rock fragment

19

19

Figure 31 The location of rock samples collected area

lt 10 quartz 3 pyrite and litho-facies massive ungraded clast supported

moderately sorted Silicified tuffaceous sandstone is medium brown clasts are fine to

medium sand and silt sub-rounded shape quartz rich with siliceous matrix massive

non-graded well sorted moderately Silicified Porphyritic andesite is grayish green

medium-coarse euhedral evenly distributed phenocrysts are abundant most

conspicuous are hornblende phenocrysts fine-grained groundmass Those samples

are collected from Chatree Gold Mine Akara mining Co Ltd Phichit Thailand

20

33 Sample preparation

Sample preparation has been carried out to obtain different sizes and shapes

for testing It is conducted in the laboratory facility at Suranaree University of

Technology For characterization testing the process includes coring and grinding

Preparation of rock samples for characterization test follows the ASTM standard

(ASTM D4543-85) The nominal sizes of specimen that following the ASTM

standard practices for the characterization tests are shown in table 31 And grinding

surface at the top and bottom of specimens at the position of loading platens for

unsure that the loading platens are attach to the specimen surfaces and perpendicular

each others as shown in Figure 32 The shapes of specimens are irregularity-shaped

The ratio of specimen thickness to platen diameter (td) is around 20-30 and the

specimen diameter to platen diameter (Dd) varies from 5 to 10

Table 31 The nominal sizes of specimens following the ASTM standard practices

for the characterization tests

Testing Methods

LD Ratio

Nominal Diameter

(mm)

Nominal Length (mm)

Number of Specimens

1UniaxialCompressive Strength Test and Elastic Modulus Measurement (ASTM D7012)

25 54 135 10

2 Triaxial Compressive Strength Test (ASTM D7012) 20 54 108 10

3 Brazilian Tensile Strength Test (ASTM D3967) 05 54 27 10

4 Point Load Strength Index Test (ASTM D 5731) 10 54 54 10

21

Figure 32 Some prepared rock specimens of porphyritic andesite for MPL Tests

td asymp20 to 30

Figure 33 The concept of specimen preparation for MPL testing

CHAPTER IV

LABORATORY TESTS

Laboratory testing is divided into two main tasks including the

characterization tests and the modified point load tests Three rock types porphyritic

andesite silicified-tuffaceous sandstone and tuffaceous sandstone are used in this

research

41 Literature reviews

411 Displacement function

Tepnarong (2006) proposed a method to compute the vertical

displacement of the loading point as affected by the specimen diameter and thickness

(Dd and td ratios) by used the series of finite element analyses To accomplish this

a displacement function (αE) is introduced as (∆P∆δ)middot(tE) where ∆P is the change in

applied stress ∆δ is the change in vertical displacement of point load platens t is the

specimen thickness and E is elastic modulus of rock specimen The displacement

function is plotted as a function of Dd And found that the αE is dimensionless and

independent of rock elastic modulus αE trend to be independent of Dd when Dd is

beyond 15 The αE is sensitive to ν particularly when υ is between 025 and 05 This

agrees with the assumption that as the Poissonrsquos ratio increases the αE value will

increase because under higher ν the ∆δ will be reduced This is due to the large

confinement resulting from the higher Poissonrsquos ratio Nevertheless most rocks have

Poissonrsquos ratio within a range between 020 and 030 particularly for moderate to

23

hard rocks As a result the Poissonrsquos ratio of 025 will provide a reasonable

prediction of the value of αE values

Figure 51 plots αE or (∆P∆δ)middot(tE) as a function of td for the ratios of Dd ge

10 The displacement function increase as the td increases which can be expressed

by a power equation

αE = (∆P∆δ)middot(tE) = 150 (td)064 (51)

by using the least square fitting The curve fit gives good correlation (R2=0998)

These curves can be used to estimate the elastic modulus of rock from MPL results

By measuring the MPL specimen thickness t and the increment of applied stress (∆P)

and displacement (∆δ)

42 Basic characterization tests

The objectives of the basic characterization tests are to determine the

mechanical properties of each rock type to compare their results with those from the

modified point load tests (MPL) The basic characterization tests include uniaxial

compressive strength (UCS) tests with elastic modulus measurements triaxial

compressive strength tests Brazilian tensile strength tests and conventional point load

strength index tests

421 Uniaxial compressive strength tests and elastic modulus

measurements

The uniaxial compressive strength tests are conducted on the three

rock types Sample preparation and test procedure are followed the ASTM standards

(ASTM D7012) and the ISRM suggested methods (Brown 1981) The core size is

24

54 mm in diameter (NX size) and the ratio of the length to diameter is 25 A total of

10 specimens are tested for each rock type

A constant loading rate of 05 to 10 MPas is applied to the specimens

until failure occurs Tangent elastic modulus is measured at stress level equal to 50

of the uniaxial compressive strength Post-failure characteristics are observed

The uniaxial compressive strength (σc) is calculated by dividing the

maximum load by the original cross-section area of loading platen

σc= pf A (41)

where pf is the maximum failure load and A is the original cross-section area of

loading platen The tangent elastic modulus (Et) is calculated by the following

equation

Et = (Δσaxial) (Δε axial) (42)

And the axial strain can be calculated from

ε axial = ΔLL (43)

where the ΔL is the axial deformation and L is the original length of specimen

The average uniaxial compressive strength and tangent elastic

modulus of each rock types are shown in Tables 41 through 44

25

Figure 41 Pre-test samples of porphyritic andesite for UCS test

Figure 42 Pre-test samples of tuffaceous sandstone for UCS test

26

Figure 43 Pre-test samples of silicified tuffaceous sandstone for UCS test

Figure 44 Preparation of testing apparatus for UCS test

27

Figure 45 Post-test rock samples of porphyritic andesite from UCS test

Figure 46 Post-test rock samples of tuffaceous sandstone from UCS test

28

Figure 47 Post-test rock samples of silicified-tuffaceous sandstone from UCS

0

50

100

150

0 0001 0002 0003 0004 0005Axial Strain

Axi

al S

tres

s (M

Pa)

Andesite04

03

01

05

02

Andesite

Figure 48 Results of uniaxial compressive strength test and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted as

a function of axial strain

29

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Strain

Axi

al S

tres

s (M

Pa)

Pebbly Tuffacious Sandstone

04

03

05

01

02

Tuffaceous Sandstone

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Stain

Axi

al S

tres

s (M

Pa)

Silicified Tuffacious Sandstone

0103

05

0402

Silicified Tuffaceous Sandstone

Figure 49 Results of uniaxial compressive strength test and elastic modulus

measurements of tuffaceous sandstone (top) and silicified tuffaceous

sandstone (bottom) The axial stresses are plotted as a function of axial

strain

30

Table 41 Testing results of porphyritic andesite

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 5366 13486 282 1327 451 And-06-03-UCS-02 5366 13494 283 1106 397 And-02-01-UCS-03 5366 13485 280 1061 470 And-08-03-UCS-04 5366 13417 284 1282 392 And-04-04-UCS-05 5366 13564 285 973 438

Average 1150 plusmn 150 430 34 plusmn

Table 42 Testing results of tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 5366 13810 266 1017 538 TST-01-02-UCS-02 5366 13236 268 1238 545 TST-02-04-UCS-03 5366 13558 264 973 441 TST-06-09-UCS-04 5366 13515 267 1459 475 TST-02-02-UCS-05 5366 13745 263 884 566

Average 1114 plusmn 233 513 53 plusmn

Table 43 Testing results of silicified tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 5366 13309 271 1194 656 SST-07-01-UCS-02 5366 13547 267 930 632 SST-07-03-UCS-03 5366 13095 268 1194 503 SST-02-06-UCS-04 5366 13475 269 1614 661 SST-06-02-UCS-05 5366 13577 270 1106 713

Average 1207 plusmn 252 633 80 plusmn

31

Table 44 Uniaxial compressive strength and tangent elastic modulus measurement

results of three rock types

Rock Type

Number of Test

Samples

Uniaxial Compressive Strength σc (MPa)

Tangential Elastic Modulus

Et (GPa)

Porphyritic andesite 50 1150plusmn150 430plusmn34 Silicified-tuffaceous sandstone 50 1207plusmn252 633plusmn80

Tuffaceous sandstone 50 1114plusmn233 513plusmn53

422 Triaxial compressive strength tests

The objective of the triaxial compressive strength test is to determine

the compressive strength of rock specimens under various confining pressures The

sample preparation and test procedure are followed the ASTM standard (ASTM

D7012-07) and the ISRM suggested method (Brown 1981) A total of 16 rock

specimens are tested under various confining pressures 6 specimens of porphyritic

andesite 5 specimens of silicified-tuffaceous sandstone and 5 specimens of

tuffaceous sandstone The applied load onto the specimens is at constant rate until

failure occurred within 5 to 10 minutes of loading under each confining pressure

The constant confining pressures used in this experiment are ranged from 0345 067

138 276 and 414 MPa (50 100 200 400 and 600 psi) in andesite 0345 069

276 414 and 552 MPa (50 100 400 600 and 800 psi) in silicified-tuffaceous

sandstone and 0345 069 138 207 and 276 MPa (50 100 200 300 and 400 psi)

in pebbly tuffaceous sandstone Post-failure characteristics are observed

32

Figure 410 Pre-test samples for triaxial compressive strength test the top is

porphyritic andesite and the bottom is tuffaceous sandstone

33

Figure 411 Pre-test samples of silicified tuffaceous sandstone for triaxial

compressive strength test

Hook cell

Figure 412 Triaxial testing apparatus

34

Figure 413 Post-test rock samples from triaxial compressive strength tests The top

is porphyritic andesite and the bottom is tuffaceous sandstone

35

Figure 414 Post-test rock samples of silicified tuffaceous sandstone from triaxial

compressive strength test

Table 45 Triaxial compressive strength testing results of porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

And-04-02-TR-01 10803 5366 285 04 1459 And-06-04-TR-03 10806 5366 284 07 1526 And-06-02-TR-02 10806 5366 283 14 1636 And-08-01-TR-04 10665 5366 284 28 2034 And-08-02-TR-05 10948 5366 283 41 2520

Table 46 Triaxial compressive strength testing results of tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

TST-01-01-TR-04 10989 5366 266 04 1061 TST 02-01-TR-01 10852 5366 262 07 1238 TST-06-01-TR-02 10889 5366 264 138 1415 TST-06-03-TR-03 10755 5366 264 201 1813 TST-06-08-TR-05 11025 5366 267 28 2056

36

Table 47 Triaxial compressive strength testing results of silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

SST-05-01-TR-01 10875 5366 266 04 1305 SST-07-02-TR-02 10790 5366 266 14 1371 SST-01-04-TR-03 11022 5366 267 28 1592 SST-01-03-TR-04 10713 5366 267 41 1901 SST-01-01-TR-05 10530 5366 265 55 2255

The results of triaxial tests are shown in Table 42 Figures 413 and 414

show the shear failure by triaxial loading at various confining pressures (σ3) for the

three rock types The relationship between σ1 and σ3 can be represented by the

Coulomb criterion (Hoek 1990)

τ = c + σ tan φi (44)

where τ is the shear stress c is the cohesion σ is the normal stress and φi is the

internal friction angle The parameters c and φi are determined by Mohr-Coulomb

diagram as shown in Figures 415 through 417

37

φi =54˚ Andesite

Figure 415 Mohr-Coulomb diagram for andesite

φi = 55˚

Tuffaceous Sandstone

Figure 416 Mohr-Coulomb diagram for pebbly tuffaceous sandstone

38

Silicified tuffaceous sandstone

φi = 49˚

Figure 417 Mohr-Coulomb diagram for silicified tuffaceous sandstone

Table 48 Results of triaxial compressive strength tests on three rock types

Rock Type

Number of

Samples

Average Density (gcc)

Cohesion c (MPa)

Internal Friction Angle φi (degrees)

Porphyritic Andesite 5 283 33 54

Tuffaceous Sandstone 5 265 28 55 Silicified Tuffaceous Sandstone 5 267 36 49

423 Brazilian Tensile Strength Tests

The objectives of the Brazilian tensile strength test are to determine

the tensile strength of rock The Brazilian tensile strength tests are performed on all

rock types Sample preparation and test procedure are followed the ASTM standard

(ASTM D3967-81) and the

39

ISRM suggested method (Brown 1981) Ten specimens for each rock

type have been tested The specimens have the diameter of 55 mm with 25 mm thick

The Brazilian tensile strength of rock can be calculated by the following

equation (Jaeger and Cook 1979)

σB = (2pf) (πDt) (45)

where σB is the Brazilian tensile strength pf is the failure load D is the diameter

of disk specimen and t is the thickness of disk specimen All of specimens failed

along the loading diameter (Figure 420) The results of Brazilian tensile strengths

are shown in Table 49 The tensile strength trends to decrease as the specimen size

(diameter) increase and can be expressed by a power equation (Evans 1961)

σB = A (D)-B (46)

where A and B are constants depending upon the nature of rock

424 Conventional point load index (CPL) tests

The objectives of CPL tests are to determine the point load strength index for

use in the estimation of the compressive strength of the rocks The sample

preparation test procedure and calculation are followed the standard practices

(ASTM D 5731-02) and the ISRM suggested method (Brown 1981) Twenty

specimens of each rock types are tested The length-to-diameter (LD) ratio of the

specimen is constant at 10 The specimen diameter and thickness are maintained

constant at 54 mm (Figure 421) The core specimen is loaded along its axis as

shown in Figure 422 Each specimen is loaded to failure at a constant rate such that

40

(a)

(b)

(c)

Figure 418 Pre-test samples for Brazilian tensile strength test (a) porphyritic

andesite (b) tuffaceous sandstone and (c) silicified tuffaceous

sandstone

41

Figure 419 Brazilian tensile strength test arrangement

Table 49 Results of Brazilian tensile strength tests of three rock types

Rock Type

Average Diameter

(mm)

Average Length (mm)

Average Density (gcc)

Number of

Samples

Brazilian Tensile

Strength σB (MPa)

Porphyritic andesite 5366 2672 283 10 170plusmn16

Tuffaceous sandstone 5366 2737 265 10 131plusmn33

Silicified tuffaceous sandstone

5366 2670 267 10 191plusmn32

42

(a)

(b)

(c)

Figure 420 Post-test specimens (a) porphyritic andesite (b) tuffaceous sandstone

and (c) silicified tuffaceous sandstone

43

Figure 421 Pre-test samples of porphyritic andesite for conventional point load

strength index test

Figure 422 Conventional point load strength index test arrangement

44

failures occur within 5-10 minutes Post-failure characteristics are observed

The point load strength index for axial loading (Is) is calculated by the

equation

Is = pf De2 (47)

where pf is the load at failure De is the equivalent core diameter (for axial loading

De2 = 4Aπ and A=WD) A is the minimum cross-sectional area of a plane through

the platen contact points W is the specimen width (thickness of core) and D is the

specimen diameter The post-test specimens are shown in Figure 423

The testing results of all three rock types are shown in Table 410 The

point load strength index of andesite pebbly tuffaceous sandstone and silicified

tuffaceous sandstone are average as 81 plusmn 12 102 plusmn 20 and 108 plusmn 22 MPa

Table 410 Results of conventional point load strength index tests of three rock types

Rock Types Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index

Is (MPa) Porphyritic Andesite 5493 5366 283 81plusmn12 Tuffaceous Sandstone 5545 5366 265 102plusmn20 Silicified Tuffaceous Sandstone 5491 5366 268 108plusmn22

45

Figure 423 Post-Test rock specimens from conventional point load strength index

tests (a) porphyritic andesite (b) tuffaceous sandstone and (c)

silicified tuffaceous sandstone

46

43 Modified point load (MPL) tests

The objectives of the modified point load (MPL) tests are to measure the

strength of rock between the loading points and to produce failure stress results for

various specimen sizes and shapes The results are complied and evaluated to

determine the mathematical relationship between the strengths and specimen

dimensions which are used to predict the elastic modulus and uniaxial and triaxial

compressive strengths and Brazilian tensile strength of the rocks

The testing apparatus for the proposed MPL testing are similar to those of the

conventional point load (CPL) test except that the loading points are cylindrical

shape and cut flat with the circular cross-sectional area instead of using half-spherical

shape (Tepnarong 2001) The loading platens used in this research are 7 10 and 15

mm in diameter and the thickness-to-loading point diameter ratio (td) of about 25

The specimen diameter-to-loading point diameter is varying from 5 to 100 The load

is applied at the rate of 200 Ns Fifty specimens are prepared and tested for each

rock type The vertical deformations (δ) are monitored One cycle of unloading and

reloading is made at about 40 failure load Then the load is increased to failure

The MPL strength (PMPL) is calculated by

PMPL = pf ((π4)(d2)) (48)

where pf is the applied load at failure and d is the diameter of loading point Figure

26 shows the example of post-test specimen shear cone are usually formed

underneath the loading points and two or three tension-induced cracks are commonly

found across the specimens

47

The MPL testing method is divided into 4 schemes based on its objective

elastic modulus uniaxial and triaxial compressive strengths and Brazilian tensile

strength determination

Figure 424 Conventional and modified loading points(Tepnarong 2006)

Figure 425 MPL testing arrangement

48

Tension-induced crack Shear cone

Shear cone

Tension-induced crack

Figure 426 Post-test specimen the tension-induced crack commonly found across

the specimen and shear cone usually formed underneath the loading

platens

49

Table 411 Results of modified point load tests on porphyritic andesite

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-01 246 543 280 125 159 And-MPL-02 351 632 370 180 471 And-MPL-03 236 634 150 170 191 And-MPL-04 266 960 250 234 319 And-MPL-05 284 903 370 369 471 And-MPL-06 245 793 280 182 357 And-MPL-07 263 874 260 234 331 And-MPL-08 261 980 210 171 268 And-MPL-09 280 777 270 056 344 And-MPL-10 244 569 280 124 159 And-MPL-11 251 613 650 138 368 And-MPL-12 226 631 600 189 340 And-MPL-13 233 1126 180 151 468 And-MPL-14 279 1203 220 165 572 And-MPL-15 239 503 400 011 227 And-MPL-16 281 474 300 012 170 And-MPL-17 305 861 390 021 497 And-MPL-18 233 653 500 008 283 And-MPL-19 294 1386 380 200 484 And-MPL-20 265 860 410 017 522 And-MPL-21 238 425 550 087 311 And-MPL-22 230 417 450 087 255 And-MPL-23 223 557 500 231 283 And-MPL-24 250 760 550 112 311 And-MPL-25 259 1243 180 585 468 And-MPL-26 303 560 310 143 395 And-MPL-27 273 1640 390 156 497 And-MPL-28 282 906 220 200 280 And-MPL-29 311 934 290 156 369 And-MPL-30 246 1314 250 650 650 And-MPL-31 262 982 200 175 255 And-MPL-32 260 1147 180 156 468 And-MPL-33 240 700 450 101 255 And-MPL-34 304 800 240 135 306 And-MPL-35 250 455 220 127 280 And-MPL-36 243 1697 120 292 312 And-MPL-37 333 1520 310 156 395 And-MPL-38 238 661 170 260 442

50

Table 411 Results of modified point load tests on porphyritic andesite (Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-39 318 347 130 186 338 And-MPL-40 245 551 150 260 390 And-MPL-41 207 561 150 325 390 And-MPL-42 223 425 500 231 283 And-MPL-43 207 561 150 346 390 And-MPL-44 324 340 310 234 395 And-MPL-45 275 426 240 169 306 And-MPL-46 302 397 130 175 166 And-MPL-47 255 314 100 170 127 And-MPL-48 257 220 250 094 142 And-MPL-49 256 214 130 057 74 And-MPL-50 243 166 180 078 102

51

Table 412 Results of modified point load tests on tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-01 270 546 220 212 293 TST -MPL-02 258 787 230 326 293 TST -MPL-03 275 730 200 143 255 TST -MPL-04 282 715 400 143 510 TST -MPL-05 254 1345 220 264 280 TST -MPL-06 292 893 200 143 255 TST -MPL-07 243 853 550 112 311 TST -MPL-08 287 1047 210 319 268 TST -MPL-09 230 787 370 212 471 TST -MPL-10 230 427 260 132 147 TST -MPL-11 282 1243 450 319 573 TST -MPL-12 254 604 200 127 255 TST -MPL-13 288 1180 290 159 369 TST -MPL-14 251 631 410 170 232 TST -MPL-15 214 1104 120 260 312 TST -MPL-16 229 486 380 102 215 TST -MPL-17 259 715 110 650 286 TST -MPL-18 243 285 180 073 102 TST -MPL-19 285 316 130 128 130 TST -MPL-20 241 295 180 170 102 TST -MPL-21 298 417 300 100 170 TST -MPL-22 265 642 300 088 170 TST -MPL-23 314 611 450 101 255 TST -MPL-24 303 481 650 124 368 TST -MPL-25 223 223 260 126 331 TST -MPL-26 273 652 260 178 331 TST -MPL-27 216 887 420 170 535 TST -MPL-28 319 718 290 164 369 TST -MPL-29 231 516 200 128 255 TST -MPL-30 260 641 380 280 484 TST -MPL-31 287 496 330 158 420 TST -MPL-32 264 368 230 170 293 TST -MPL-33 238 415 230 130 293 TST -MPL-34 271 824 140 260 364 TST -MPL-35 283 800 220 325 572 TST -MPL-36 242 1013 180 325 468 TST -MPL-37 254 715 90 217 234 TST -MPL-38 210 755 150 520 390

52

Table 412 Results of modified point load tests on tuffaceous sandstone

(Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-39 293 508 110 260 286 TST -MPL-40 273 410 100 347 260 TST -MPL-41 234 628 80 260 208 TST -MPL-42 259 433 130 260 338 TST -MPL-43 265 546 220 435 280 TST -MPL-44 255 829 260 222 147 TST -MPL-45 254 368 240 315 306 TST -MPL-46 293 695 370 222 210 TST -MPL-47 247 297 180 128 102 TST -MPL-48 310 611 300 237 170 TST -MPL-49 225 337 160 371 416 TST -MPL-50 259 410 120 394 312

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-01 300 782 170 280 442 SST-MPL-02 250 480 220 307 572 SST-MPL-03 314 424 340 356 433 SST-MPL-04 292 809 220 450 572 SST-MPL-05 275 1142 300 532 780 SST -MPL-06 308 490 190 273 494 SST -MPL-07 317 611 280 418 728 SST -MPL-08 233 684 240 414 624 SST -MPL-09 255 480 230 371 598 SST -MPL-10 217 772 120 958 312 SST -MPL-11 312 903 270 400 702 SST -MPL-12 255 1094 150 272 390 SST -MPL-13 286 742 400 408 510 SST -MPL-14 248 615 350 296 198 SST -MPL-15 253 805 210 282 546 SST -MPL-16 243 1094 150 260 390

53

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

(Continued)

Specimen Number td Dd Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-17 234 1090 250 416 650 SST -MPL-18 253 1371 240 473 624 SST -MPL-19 327 434 320 330 408 SST -MPL-20 270 310 390 278 497 SST -MPL-21 269 691 410 185 522 SST -MPL-22 312 504 380 182 484 SST -MPL-23 319 627 260 150 331 SST -MPL-24 281 689 330 295 420 SST -MPL-25 210 720 390 259 497 SST -MPL-26 303 775 370 221 471 SST -MPL-27 272 714 310 274 395 SST -MPL-28 292 855 600 209 764 SST -MPL-29 310 742 400 176 510 SST -MPL-30 284 847 410 158 522 SST -MPL-31 320 891 650 464 828 SST -MPL-32 261 256 400 178 226 SST -MPL-33 224 405 550 131 311 SST -MPL-34 231 379 450 215 255 SST -MPL-35 290 442 1050 190 594 SST -MPL-36 241 521 500 102 283 SST -MPL-37 275 605 600 067 340 SST -MPL-38 263 616 650 127 368 SST -MPL-39 227 615 350 229 198 SST -MPL-40 236 508 550 090 311 SST -MPL-41 318 1142 300 498 780 SST -MPL-42 303 809 210 392 546 SST -MPL-43 228 805 210 244 546 SST -MPL-44 283 1142 300 571 780 SST -MPL-45 277 772 120 780 312 SST -MPL-46 288 1206 280 411 728 SST -MPL-47 250 508 570 309 323 SST -MPL-48 275 442 1050 338 594 SST -MPL-49 272 605 650 254 368 SST -MPL-50 260 805 200 360 520

54

431 Modified point load tests for elastic modulus measurement

The MPL tests are carried out with the measurement of axial

deformation for use in elastic modulus estimation Fifty irregular specimens for each

rock type are tested The specimen thickness-to-loading diameter (td) is about 25

and the specimen diameter -to-loading diameter (Dd) is varied from 25 to 50 Cyclic

loading is performed while monitoring displacement (δ)

The testing apparatus used in this experiment includes the point load

tester model SBEL PLT-75 and the modified point load platens The displacement

digital gages with a precision up to 0001 mm are used to monitor the axial

deformation of rock between the loading points as loading decreases The cyclic

load is applied along the specimen axis and is performed by systematically increasing

and decreasing loads on the test specimen After unloading the axial load is

increased until the failure occurs Cyclic loading is performed on the specimens in

an attempt at determining the elastic deformation The ratio of change of stress to

displacement (∆P∆δ) is measured from unloading curve Post-failure characteristics

are observed and recorded Photographs are taken of the failed specimens

The results of the deformation measurement by MPL tests are shown

in Tables411 through 413 The stresses (P) are plotted as a function of axial

displacement (δ) and shown in Figures B1 through B150 (Appendix B) The results

of ∆P∆δ are used to estimate the elastic modulus of the specimen

The elastic modulus predictions from MPL results can be made by

using the value of αE plotted as a function of Ded for various td ratios as shown in

Figure 427 and the MPL elastic modulus can be expressed as

55

⎟⎠⎞

⎜⎝⎛

ΔΔ

⎟⎟⎠

⎞⎜⎜⎝

⎛=

δαPtE

Empl (Tepnarong 2006) (49)

where Empl is the elastic modulus predicted from MPL results αE is displacement

function value from numerical analysis and ∆P∆δ is the ratio of change of stress to

displacement which is measured from unloading curve of MPL tests and t is the

specimen thickness The value of αE used in the calculation is 260 for td ratio equal

to 25-30 (Tepnarong 2006) The results of elastic modulus predictions from MPL

tests are tabulated in Tables 414 through 416 Table 417 compares the elastic

modulus obtained from standard uniaxial compressive strength test (ASTM D3148-

96) with those predicted by MPL test

The values of Empl for each specimen with P-δ curve are shown in

Appendix B The MPL method under-estimates the elastic modulus of all tested

rocks This is the primarily because the actual loaded area may be smaller than that

used in the calculation due to the roughness of the specimen surfaces As a result the

contact area used to calculate PMPL is larger than the actual In addition the EMPL

tends to show a high intrinsic variation (high standard deviation) This is because the

loading areas of MPL specimens are small This phenomenon conforms by the test

results obtained by Fuenkajorn and Deamen (1992) They conclude that smaller test

specimens not only exhibit a higher strength than larger one (size effect) but also

show a high intrinsic variability due to the heterogeneity of rock fabric particularly at

small sizes This implied that to obtain a good prediction (accurate result) of the rock

elasticity a large amount of MPL specimens are desirable This drawback may be

compensated by the ease of testing and the low cost of sample preparation

56

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (MPa)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure 427 Example of P-δ curve for porphyritic andesite specimen The ratio of

∆P∆δ is used to predict the elastic modulus of MPL specimen (Empl)

57

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-01 246 543 125 260 1776 And-MPL-02 351 632 180 260 2430 And-MPL-03 236 634 170 260 1546 And-MPL-04 266 960 234 260 2390 And-MPL-05 284 903 369 260 4031 And-MPL-06 245 793 182 260 1712 And-MPL-07 263 874 234 260 2367 And-MPL-08 261 980 171 260 1717 And-MPL-09 280 777 056 260 603 And-MPL-10 244 569 124 260 1748 And-MPL-11 251 613 138 260 2001 And-MPL-12 226 631 189 260 2464 And-MPL-13 233 1126 151 260 947 And-MPL-14 279 1203 165 260 1239 And-MPL-15 239 503 011 260 151 And-MPL-16 281 474 012 260 195 And-MPL-17 305 861 021 260 247 And-MPL-18 233 653 008 260 108 And-MPL-19 294 1386 200 260 2263 And-MPL-20 265 860 017 260 173 And-MPL-21 238 425 087 260 1195 And-MPL-22 230 417 087 260 1154 And-MPL-23 223 557 231 260 2976 And-MPL-24 250 760 112 260 1615 And-MPL-25 259 1243 585 260 4073 And-MPL-26 303 560 143 260 1667 And-MPL-27 273 1640 156 260 1639 And-MPL-28 282 906 200 260 2172 And-MPL-29 311 934 156 260 1868 And-MPL-30 246 1314 650 260 4310 And-MPL-31 262 982 175 260 1766 And-MPL-32 260 1147 156 260 1093 And-MPL-33 240 700 101 260 1398 And-MPL-34 304 800 135 260 1576 And-MPL-35 250 455 127 260 1221 And-MPL-36 243 1697 292 260 1909 And-MPL-37 333 1520 156 260 2000 And-MPL-38 238 661 260 260 1665 And-MPL-39 318 347 186 260 1592 And-MPL-40 245 551 260 260 1712

58

And-MPL-41 207 561 325 260 1815

59

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-42 223 425 231 260 2976 And-MPL-43 207 561 346 260 1932 And-MPL-44 324 340 234 260 2912 And-MPL-45 275 426 169 260 1785 And-MPL-46 302 397 175 260 2033 And-MPL-47 255 314 170 260 1667 And-MPL-48 257 220 094 260 1393 And-MPL-49 256 214 057 260 843 And-MPL-50 243 166 078 260 1094 Average 1743 Standard Deviation 910

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-01 300 782 280 260 2262 SST -MPL-02 250 480 307 260 2066 SST -MPL-03 314 424 356 260 4302 SST -MPL-04 292 809 450 260 3533 SST -MPL-05 275 1142 532 260 3939 SST -MPL-06 308 490 273 260 2266 SST -MPL-07 317 611 418 260 3572 SST -MPL-08 233 684 414 260 2595 SST -MPL-09 255 480 371 260 2546 SST -MPL-10 217 772 958 260 5593 SST -MPL-11 312 903 400 260 3360 SST -MPL-12 255 1094 272 260 1864 SST -MPL-13 286 742 408 260 4435 SST -MPL-14 248 615 296 260 4235 SST -MPL-15 253 805 282 260 1918 SST -MPL-16 243 1094 260 260 1698 SST -MPL-17 234 1090 416 260 2621 SST -MPL-18 253 1371 473 260 3224 SST -MPL-19 327 434 330 260 4153 SST -MPL-20 270 310 278 260 2863

60

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-21 269 691 185 260 1914 SST -MPL-22 312 504 182 260 2183 SST -MPL-23 319 627 150 260 1839 SST -MPL-24 281 689 295 260 3193 SST -MPL-25 210 720 259 260 2090 SST -MPL-26 303 775 221 260 2577 SST -MPL-27 272 714 274 260 2862 SST -MPL-28 292 855 209 260 2350 SST -MPL-29 310 742 176 260 2097 SST -MPL-30 284 847 158 260 1728 SST -MPL-31 320 891 464 260 5707 SST -MPL-32 261 256 178 260 2678 SST -MPL-33 224 405 131 260 1690 SST -MPL-34 231 379 215 260 2863 SST -MPL-35 290 442 190 260 3174 SST -MPL-36 241 521 102 260 1416 SST -MPL-37 275 605 067 260 1064 SST -MPL-38 263 616 127 260 1926 SST -MPL-39 227 615 229 260 3005 SST -MPL-40 236 508 090 260 1226 SST -MPL-41 318 1142 498 260 4264 SST -MPL-42 303 809 392 260 3196 SST -MPL-43 228 805 244 260 1500 SST -MPL-44 283 1142 571 260 4348 SST -MPL-45 277 772 780 260 5826 SST -MPL-46 288 1206 411 260 3184 SST -MPL-47 250 508 309 260 4464 SST -MPL-48 275 442 338 260 5364 SST -MPL-49 272 605 254 260 3981 SST -MPL-50 260 805 360 260 2523 Average 2986 Standard Deviation 1190

61

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-01 270 546 212 260 2202 TST -MPL-02 258 787 326 260 3232 TST -MPL-03 275 730 143 260 1513 TST -MPL-04 282 715 143 260 1551 TST -MPL-05 254 1345 264 260 2579 TST -MPL-06 292 893 143 260 1606 TST -MPL-07 243 853 112 260 2273 TST -MPL-08 287 1047 319 260 3521 TST -MPL-09 230 787 212 260 1875 TST -MPL-10 230 427 132 260 1752 TST -MPL-11 282 1243 319 260 3455 TST -MPL-12 254 604 127 260 1241 TST -MPL-13 288 1180 159 260 1764 TST -MPL-14 251 631 170 260 2465 TST -MPL-15 214 1104 260 260 1500 TST -MPL-16 229 486 102 260 1345 TST -MPL-17 259 715 650 260 4530 TST -MPL-18 243 285 073 260 1025 TST -MPL-19 285 316 128 260 2105 TST -MPL-20 241 295 170 260 2360 TST -MPL-21 298 417 100 260 1722 TST -MPL-22 265 642 088 260 896 TST -MPL-23 314 611 101 260 1830 TST -MPL-24 303 481 124 260 2166 TST -MPL-25 223 223 126 260 1083 TST -MPL-26 273 652 178 260 1869 TST -MPL-27 216 887 170 260 2065 TST -MPL-28 319 718 164 260 2011 TST -MPL-29 310 742 128 260 1136 TST -MPL-30 260 641 280 260 2800 TST -MPL-31 287 496 158 260 1742 TST -MPL-32 264 368 170 260 1725 TST -MPL-33 238 415 130 260 1192 TST -MPL-34 271 824 260 260 1942 TST -MPL-35 283 800 325 260 2478 TST -MPL-36 242 1013 325 260 2115 TST -MPL-37 254 715 217 260 1484 TST -MPL-38 210 755 520 260 2944 TST -MPL-39 293 508 260 260 2052 TST -MPL-40 273 410 347 260 2552

62

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-41 234 628 260 260 1638 TST -MPL-42 259 433 260 260 1814 TST -MPL-43 265 546 435 260 4440 TST -MPL-44 255 829 222 260 3265 TST -MPL-45 254 368 315 260 3075 TST -MPL-46 293 695 222 260 2502 TST -MPL-47 247 297 128 260 1827 TST -MPL-48 310 611 237 260 4240 TST -MPL-49 225 337 371 260 2252 TST -MPL-50 259 410 394 260 2746 Average 2190 Standard Deviation 830

Table 417 Comparisons of elastic modulus results obtained from uniaxial

compressive strength tests and those from modified point load tests

Rock Type Tangential Elastic Modulus from UCS

tests Et (GPa)

Elastic Modulus from MPL tests

Empl (GPa) Porphyritic andesite 430plusmn34 174plusmn91

Silicified tuffaceous sandstone 633plusmn80 299plusmn119

tuffaceous sandstone 513plusmn53 219plusmn83

432 Modified point load tests predicting uniaxial compressive strength

The uniaxial compressive strength of MPL specimens can be predicted

by plotting Pmpl as a function of diameter ratio Ded as shown in Figures 428 through

430 At diameter ratio equal to unity the Pmpl represents the uniaxial compressive

strength of rock The uniaxial compressive strength predicted from MPL tests

compared with those from CPL test and UCS standard test is shown in Table 418

63

UCS PREDICTION OF PORPHYRITIC ANDESITE FROM MPL TESTS

Pmpl = 11844(Ded)05489

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ded Ratio

MPL

Stre

ngth

(MPa

)

Figure 428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests

64

UCS PREDICTION OF SILICIFIED TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 11463(Ded)07447

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ded Ratio

MPL

-Str

engt

h (M

Pa)

Figure 429 Uniaxial compressive strength predicted for silicified tuffaceous

sandstone from MPL tests

65

UCS PREDICTION OF TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 10222(Ded)05457

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ded Ratio

MPL

-Stre

ngth

(MPa

)

Figure 430 Uniaxial compressive strength predicted for tuffaceous sandstone from

MPL tests

Table 418 Comparison the test results between UCS CPL Brazilian tensile

strength and MPL tests

Uniaxial Compressive Strength (MPa)

Tensile Strength (MPa) Rock Type UCS

Testing CPL

Prediction MPL

PredictionBrazilian Testing

MPL Prediction

And 1150 1944 plusmn12 1005 170plusmn16 139plusmn43 TST 1114 2448plusmn20 1308 131plusmn33 121plusmn73 SST 1207 2592plusmn22 1022 191plusmn32 171plusmn126

433 Modified Point Load Tests for Tensile Strength Predictions

The MPL results determine the rock tensile strength by using the

relationship of the failure stresses (Pmpl) as a function of specimen thickness to

66

loading diameter ratio (td) The tensile strength from MPL prediction can be

expressed as an empirical equation (Tepnarong 2001)

σt mpl = Pmpl (αT ln (td)+βT) (410)

where αT = 133 ln (Ded)-756 and βT= -70 ln (Ded)+ 1952

The results of tensile strengths of all rock types are shown in Tables

419through 421 The predicted tensile strengths are compared with the Brazilian

tensile strengths for the three rock types in Table 418 A close agreement of the

results obtained between two methods The discrepancies of the results are less than

the standard deviation of the results

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa)

And-MPL-01 246 543 159 1495 767 750 And-MPL-02 351 632 471 1697 661 1688 And-MPL-03 236 634 191 1701 659 900 And-MPL-04 266 960 319 2252 369 1240 And-MPL-05 284 903 471 2170 412 1761 And-MPL-06 245 793 357 1999 502 1558 And-MPL-07 263 874 331 2127 435 1330 And-MPL-08 261 980 268 2279 355 1053 And-MPL-09 280 777 344 1971 517 1351 And-MPL-10 244 569 159 1557 734 746 And-MPL-11 251 613 368 1656 683 1666 And-MPL-12 226 631 340 1695 662 1662 And-MPL-13 233 1126 468 2464 257 2000 And-MPL-14 279 1203 572 2552 211 2022 And-MPL-15 239 503 227 1392 822 1114 And-MPL-16 281 474 170 1314 863 765 And-MPL-17 305 861 497 2108 445 1776 And-MPL-18 233 653 283 1740 638 1340 And-MPL-19 294 1386 484 2741 112 1577 And-MPL-20 265 860 522 2106 446 2091

67

And-MPL-21 238 425 311 1169 939 1595 And-MPL-22 230 417 255 1142 953 1338 And-MPL-23 223 557 283 1529 749 1431 And-MPL-24 250 760 311 1941 532 1347 And-MPL-25 259 1243 468 2596 188 1763 And-MPL-26 303 560 395 1535 746 1613

68

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) And-MPL-27 273 1640 497 2964 -006 1671 And-MPL-28 282 906 280 2252 369 1035 And-MPL-29 311 934 369 2216 388 1272 And-MPL-30 246 1314 650 2670 149 2543 And-MPL-31 262 982 255 2282 353 997 And-MPL-32 260 1147 468 2488 244 1783 And-MPL-33 240 700 255 1832 590 1161 And-MPL-34 304 800 306 2010 496 1121 And-MPL-35 250 455 280 1259 891 1370 And-MPL-36 243 1697 312 3010 -030 1181 And-MPL-37 333 1520 395 2863 047 1130 And-MPL-38 238 661 442 1755 630 2054 And-MPL-39 318 347 338 897 1082 1594 And-MPL-40 245 551 390 1513 758 1847 And-MPL-41 207 561 390 1537 745 2089 And-MPL-42 223 425 283 1169 939 1507 And-MPL-43 207 561 390 1537 745 2089 And-MPL-44 324 340 395 871 1096 1864 And-MPL-45 275 426 306 1172 937 1441 And-MPL-46 302 397 166 1079 986 760 And-MPL-47 255 314 127 766 1151 1159 And-MPL-48 257 220 142 291 1401 845 And-MPL-49 256 214 74 257 1419 443 And-MPL-50 243 166 102 -078 1595 928 Average 1427 Standard Deviation 44

69

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) SST -MPL-01 300 782 442 1336 851 2018 SST -MPL-02 250 480 572 1331 853 2759 SST -MPL-03 314 424 433 1196 924 1888 SST -MPL-04 292 809 572 2024 489 2155 SST -MPL-05 275 1142 780 2483 247 2827 SST -MPL-06 308 490 494 1357 840 2086 SST -MPL-07 317 611 728 1651 685 2808 SST -MPL-08 233 684 624 1800 606 2932 SST -MPL-09 255 480 598 1331 853 2849 SST -MPL-10 217 772 312 1962 522 1529 SST -MPL-11 312 903 702 2170 412 2436 SST -MPL-12 255 1094 390 2426 277 1533 SST -MPL-13 286 742 510 1910 549 2011 SST -MPL-14 248 615 198 1661 680 905 SST -MPL-15 253 805 546 2017 492 2312 SST -MPL-16 243 1094 390 2426 277 1607 SST -MPL-17 234 1090 650 2421 280 2780 SST -MPL-18 253 1371 624 2726 120 2354 SST -MPL-19 327 434 408 1196 924 1740 SST -MPL-20 270 310 497 748 1160 2618 SST -MPL-21 269 691 522 1816 599 2181 SST -MPL-22 312 504 484 1394 821 2012 SST -MPL-23 319 627 331 1686 667 1263 SST -MPL-24 281 689 420 1812 601 1699 SST -MPL-25 210 720 497 1869 570 2541 SST -MPL-26 303 775 471 1968 519 1745 SST -MPL-27 272 714 395 1859 576 1623 SST -MPL-28 292 855 764 2098 450 2830 SST -MPL-29 310 742 510 1910 549 1881 SST -MPL-30 284 847 522 2087 456 1981 SST -MPL-31 320 891 828 2153 421 2832 SST -MPL-32 261 256 226 492 1295 1282 SST -MPL-33 224 405 311 1106 972 1672 SST -MPL-34 231 379 255 1017 1019 1363 SST -MPL-35 290 442 594 1221 912 2690 SST -MPL-36 241 521 283 1439 797 1374 SST -MPL-37 275 605 340 1639 692 1445 SST -MPL-38 263 616 368 1661 680 1611

70

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded Pmpl (MPa)

αT βT σt mpl (MPa)

SST -MPL-39 227 615 198 1661 680 969 SST -MPL-40 236 508 311 1406 814 1540 SST -MPL-41 318 1142 780 2483 247 2500 SST -MPL-42 303 809 546 2024 489 1999 SST -MPL-43 228 805 546 2017 492 2530 SST -MPL-44 283 1142 780 2483 247 2757 SST -MPL-45 277 772 312 1962 522 1236 SST -MPL-46 288 1206 728 2555 209 2502 SST -MPL-47 250 508 323 1406 814 1533 SST -MPL-48 275 442 594 1221 912 2769 SST -MPL-49 272 605 368 1639 692 1580 SST -MPL-50 260 805 520 2017 492 2147 Average 2045 Standard Deviation 56

71

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-01 270 546 293 1502 763 1299 TST -MPL-02 258 787 293 1988 508 1226 TST -MPL-03 275 730 255 1888 560 1031 TST -MPL-04 282 715 510 1860 575 2035 TST -MPL-05 254 1345 280 2701 133 1058 TST -MPL-06 292 893 255 2156 420 933 TST -MPL-07 243 853 311 2095 451 1346 TST -MPL-08 287 1047 268 2279 355 970 TST -MPL-09 230 787 471 1988 508 2179 TST -MPL-10 230 427 147 1176 935 769 TST -MPL-11 282 1243 573 2596 188 1994 TST -MPL-12 254 604 255 1636 693 1149 TST -MPL-13 288 1180 369 2527 224 1274 TST -MPL-14 251 631 232 1695 662 1044 TST -MPL-15 214 1104 312 2438 271 1465 TST -MPL-16 229 486 215 1347 845 1098 TST -MPL-17 259 715 286 1861 575 1220 TST -MPL-18 243 285 102 637 1219 571 TST -MPL-19 285 316 130 776 1146 665 TST -MPL-20 241 295 102 685 1194 568 TST -MPL-21 298 417 170 1143 952 771 TST -MPL-22 265 642 170 1178 934 1059 TST -MPL-23 314 611 255 1652 685 989 TST -MPL-24 303 481 368 1423 805 1545 TST -MPL-25 223 223 331 313 1389 2018 TST -MPL-26 273 652 331 1738 640 1389 TST -MPL-27 216 887 535 2146 424 1850 TST -MPL-28 319 718 369 1866 572 1350 TST -MPL-29 231 516 255 1425 804 1276 TST -MPL-30 260 641 484 1715 651 2114 TST -MPL-31 287 496 420 1373 832 1846 TST -MPL-32 264 368 293 976 1041 1475 TST -MPL-33 238 415 293 1151 948 1504 TST -MPL-34 271 824 364 2049 476 1418 TST -MPL-35 283 800 572 2010 496 2210 TST -MPL-36 242 1013 468 2324 331 1965 TST -MPL-37 254 715 234 1861 575 1013 TST -MPL-38 210 755 390 1932 537 1976

72

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-39 293 508 286 1406 814 1229 TST -MPL-40 273 410 260 1124 963 1243 TST -MPL-41 234 628 208 1688 666 990 TST -MPL-42 259 433 338 1194 926 1639 TST -MPL-43 265 546 280 1502 763 1257 TST -MPL-44 255 829 147 2057 472 614 TST -MPL-45 254 368 306 976 1041 1568 TST -MPL-46 293 695 210 1822 595 1846 TST -MPL-47 247 297 102 691 1190 561 TST -MPL-48 310 611 170 1652 685 665 TST -MPL-49 225 337 416 1939 533 1972 TST -MPL-50 259 410 312 1120 965 1537 Average 1336 Standard Deviation 56

434 Modified point load tests for triaxial compressive strength predictions

The objective of this section is to predict the triaxial compressive strength

of intact rock specimens by using the MPL results (modified point load strength Pmpl) It

is speculated that increase of applied load (σ1) will invoke a confining pressure (σ3) on

the imaginary cylindrical profile between the two loading points This is due to the

effect of Poissonrsquos ratio (ν) which causing a potential expansion of rock in this cylinder

The greater the σ1 the greater the σ3 in addition Poissonrsquos ratios also affect the

magnitude of σ3 The magnitude of σ3 also depends on the specimen shape particularly

the Ded ratio In principle σ3 will equal zero for Ded ratio equal to unity But when

Ded ratio is very large approaching infinity σ3 will reach its maximum This maximum

value of σ3 will also depend on the rock Poissonrsquos ratio From computer simulation of

td =25 the variation of σ1 σ3 ratio can be simply expressed by Tepnarong (2006) as

73

(σ1 σ3) = 2 ((ν (1ndashν) (1-(dDe) 2)) (411)

where ν is the Poissonrsquos ratio of rock specimen d is the modified point load diameter

and De is the equivalent diameter of the specimen The Poissonrsquos ratio of rock

specimen used in equation 411 can be assumed to be 25 The σ1 σ3 ratio tends to be

independent of Ded for Ded greater than 10 This implies that when MPL specimen

diameter is more than 10 times of the loading point diameter the magnitude of σ3 is

approaching its maximum value (Tepnarong 2006)

It should be pointed out that approach used here to determine σ3

assumes that there is no shear stress (τrz) along the imagination cylinder As a result

the magnitude of σ3 determined here would be higher than the actual σ3 applied in the

true triaxial test specimen This mean that the σ1 σ3 ratios at failure obtained from

MPL tests will be lower than the actual failure stress ratio from the true triaxial tests

From the concept of σ1 σ3-Ded relation proposed the major and

minor principal stresses at failure (σ1 σ3) can be predicted from the measured MPL

failure stress Pmpl and Ded ratio The Poissonrsquos ratio used here is equal to 025

Comparison between the failure stress (σ1 σ3) obtained from the

standard triaxial compressive strength testing (ASTM D7012-07) and those predicted

from MPL test results are made graphically in Figures 431 through 433 for ν =025

The figures are plotted the maximum shear stress (frac12(σ1-σ3)) as a function of mean

shear stress (frac12(σ1+σ3)) indicating that the predicted failure stresses under-estimate

the value obtained from the standard testing This is because of the assumption of no

shear stresses developed on the surface of the imaginary cylinder The under

prediction may be due to the intrinsic variability of the rocks The predictions are

also sensitive to assumed Poissonrsquos ratio The Poissonrsquos ratio of the tested specimens

74

may be lower than the assumed value of 025 This comparison implies that the

triaxial strength predicted from MPL test will be more conservative than those from

the standard testing method

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests

Specimen Number

td Ded σ1

(MPa)σ3

(MPa)Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-01 246 543 159 2527 6663 9190 And-MPL-02 351 632 471 7583 19776 27358 And-MPL-03 236 634 191 3075 8017 11091 And-MPL-04 266 960 319 5198 13325 18522 And-MPL-05 284 903 471 7682 19726 27408 And-MPL-06 245 793 357 5792 14938 20730 And-MPL-07 263 874 331 5393 13864 19257 And-MPL-08 261 980 268 4368 11192 15560 And-MPL-09 280 777 344 5581 14407 19988 And-MPL-10 244 569 159 2535 6659 9194 And-MPL-11 251 613 368 5911 15445 21356 And-MPL-12 226 631 340 5465 14253 19717 And-MPL-13 233 1126 468 7660 19568 27228 And-MPL-14 279 1203 572 9372 23911 33283 And-MPL-15 239 503 227 3589 9529 13118 And-MPL-16 281 474 170 2678 7154 9831 And-MPL-17 305 861 497 8087 20797 28884 And-MPL-18 233 653 283 4561 11874 16435 And-MPL-19 294 1386 484 7946 20231 28177 And-MPL-20 265 860 522 8501 21864 30365 And-MPL-21 238 425 311 4854 13143 17997 And-MPL-22 230 417 255 3962 10758 14720 And-MPL-23 223 557 283 4521 11894 16415 And-MPL-24 250 760 311 5049 13045 18094 And-MPL-25 259 1243 468 7671 19562 27234 And-MPL-26 303 560 395 6308 16591 22899 And-MPL-27 273 1640 497 8167 20757 28924 And-MPL-28 282 906 280 4574 11726 16300 And-MPL-29 311 934 369 6026 15459 21484 And-MPL-30 246 1314 650 1066 27166 37828 And-MPL-31 262 982 255 4160 10659 14819 And-MPL-32 260 1147 468 7663 19567 27229

75

And-MPL-33 240 700 255 4118 10680 14798 And-MPL-34 304 800 306 4966 12804 17770

76

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-35 250 455 280 4401 11812 16213 And-MPL-36 243 1697 312 5130 13034 18163 And-MPL-37 333 1520 395 6488 16501 22989 And-MPL-38 238 661 442 7125 18535 25661 And-MPL-39 318 347 338 5112 14342 19455 And-MPL-40 245 551 390 6222 16387 22609 And-MPL-41 207 561 390 6230 16383 22613 And-MPL-42 223 425 283 4413 11948 16361 And-MPL-43 207 561 390 6230 16383 22613 And-MPL-44 324 340 395 5952 16769 22721 And-MPL-45 275 426 306 4767 12903 17670 And-MPL-46 302 397 166 2559 7001 9560 And-MPL-47 255 314 127 3211 9223 12433 And-MPL-48 257 220 142 1852 6151 8003 And-MPL-49 256 214 74 950 3205 4155 And-MPL-50 243 166 102 1493 6331 7823

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-01 300 782 442 7389 19703 27092 SST -MPL-02 250 480 572 9028 24083 33112 SST -MPL-03 314 424 433 6767 18273 25040 SST -MPL-04 292 809 572 9293 23951 33244 SST -MPL-05 275 1142 780 1277 32611 45382 SST -MPL-06 308 490 494 7811 20792 28603 SST -MPL-07 317 611 728 1169 30552 42241 SST -MPL-08 233 684 624 1008 26160 36235 SST -MPL-09 255 480 598 9439 25178 34617 SST -MPL-10 217 772 312 5061 13068 18129 SST -MPL-11 312 903 702 1144 29377 40817 SST -MPL-12 255 1094 390 6381 16308 22689 SST -MPL-13 286 742 510 8255 21350 29605 SST -MPL-14 248 615 198 3183 8316 11500

77

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-15 253 805 546 8869 22863 31732 SST -MPL-16 243 1094 390 6381 16308 22689 SST -MPL-17 234 1090 650 1063 27180 37814 SST -MPL-18 253 1371 624 1024 26077 36317 SST -MPL-19 327 434 408 6369 17198 23567 SST -MPL-20 270 310 497 7344 21169 28513 SST -MPL-21 269 691 522 8438 21896 30333 SST -MPL-22 312 504 484 7672 20368 28040 SST -MPL-23 319 627 331 5626 13897 19224 SST -MPL-24 281 689 420 6790 17624 24414 SST -MPL-25 210 720 497 8039 20821 28860 SST -MPL-26 303 775 471 7648 19743 27391 SST -MPL-27 272 714 395 6388 16551 22939 SST -MPL-28 292 855 764 1244 31997 44436 SST -MPL-29 310 742 510 8255 21350 29605 SST -MPL-30 284 847 522 8498 21866 30364 SST -MPL-31 320 891 828 1349 34656 48146 SST -MPL-32 261 256 226 3165 9741 12906 SST -MPL-33 224 405 311 4825 13157 17982 SST -MPL-34 231 379 255 3912 10783 14695 SST -MPL-35 290 442 594 9307 25071 34377 SST -MPL-36 241 521 283 4499 11905 16404 SST -MPL-37 275 605 340 5452 14259 19711 SST -MPL-38 263 616 368 5912 15445 21357 SST -MPL-39 227 615 198 3183 8316 11500 SST -MPL-40 236 508 311 4939 13100 18039 SST -MPL-41 318 1142 780 1277 32611 45382 SST -MPL-42 303 809 546 8870 22862 31733 SST -MPL-43 228 805 546 8869 22863 31732 SST -MPL-44 283 1142 780 1277 32611 45382 SST -MPL-45 277 772 312 5061 13068 18129 SST -MPL-46 288 1206 728 1193 30433 42361 SST -MPL-47 250 508 323 5119 13577 18695 SST -MPL-48 275 442 594 9307 25071 34377 SST -MPL-49 272 605 368 5906 15447 21354 SST -MPL-50 260 805 520 8447 21774 30221

78

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-01 270 546 293 4672 12313 16986 TST -MPL-02 258 787 293 4756 12272 17028 TST -MPL-03 275 730 255 4125 10676 14801 TST -MPL-04 282 715 510 8243 21356 29599 TST -MPL-05 254 1345 280 4599 11713 16312 TST -MPL-06 292 893 255 4151 10663 14814 TST -MPL-07 243 853 311 5067 13036 18103 TST -MPL-08 287 1047 268 4368 11192 15560 TST -MPL-09 230 787 471 7651 19741 27393 TST -MPL-10 230 427 147 2296 6212 8508 TST -MPL-11 282 1243 573 9397 23964 33361 TST -MPL-12 254 604 255 4089 10695 14783 TST -MPL-13 288 1180 369 6052 15445 21497 TST -MPL-14 251 631 232 3734 9739 13474 TST -MPL-15 214 1104 312 5105 13046 18151 TST -MPL-16 229 486 215 3400 9057 12457 TST -MPL-17 259 715 286 4626 11986 16612 TST -MPL-18 243 285 102 1474 4358 5833 TST -MPL-19 285 316 130 1934 5544 7478 TST -MPL-20 241 295 102 1489 4351 5840 TST -MPL-21 298 417 170 2641 7172 9813 TST -MPL-22 265 642 170 2650 7168 9817 TST -MPL-23 314 611 255 4091 10693 14784 TST -MPL-24 303 481 368 5843 15476 21322 TST -MPL-25 223 223 331 4370 14376 18745 TST -MPL-26 273 652 331 5336 13892 19229 TST -MPL-27 216 887 535 8716 22394 31109 TST -MPL-28 319 718 369 5977 15483 21460 TST -MPL-29 231 516 255 4046 10716 14762 TST -MPL-30 260 641 484 7793 20307 28100 TST -MPL-31 287 496 420 6654 17692 24346 TST -MPL-32 264 368 293 4477 12411 16888 TST -MPL-33 238 415 293 4560 12370 16930 TST -MPL-34 271 824 364 5917 15240 21157 TST -MPL-35 283 800 572 9290 23953 33242 TST -MPL-36 242 1013 468 7646 19575 27221 TST -MPL-37 254 715 234 3785 9806 13592 TST -MPL-38 210 755 390 6321 16338 22659

79

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-39 293 508 286 4536 12031 16567 TST -MPL-40 273 410 260 4036 10981 15017 TST -MPL-41 234 628 208 3345 8727 12071 TST -MPL-42 259 433 338 5279 14259 19538 TST -MPL-43 265 546 280 4469 11778 16247 TST -MPL-44 255 829 147 2394 6163 8557 TST -MPL-45 254 368 306 4671 12951 17622 TST -MPL-46 293 695 210 7616 19759 27375 TST -MPL-47 247 297 102 1491 4359 5841 TST -MPL-48 310 611 170 2728 7129 9870 TST -MPL-49 225 337 416 6744 17426 24170 TST -MPL-50 259 410 312 4841 13178 18019

ANDESITE

τm= 07103σm + 26

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=

((σ

1-σ

3)2

) (M

Pa)

MPL PredictionTriaxial Compressive

Figure 431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and MPL test

80

SILICIFIED TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=(

( σ1minus

σ3)

2)

(MPa

)MPL Prediction

Triaxial Compressive Strength test

Figure 432 Comparisons of triaxial compressive strength criterion of silicified

tuffaceous sandstone between the triaxial compressive strength test

and MPL test

81

TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stress σm=((σ1+σ3)2) (MPa)

Max

imum

shea

r st

res

τ m=(

( σ1-

σ3)

2)

(MPa

)

MPL Prediction

Triaxial Compressive Strength test

Figure 433 Comparisons of triaxial compressive strength criterion of tuffaceous

sandstone between the triaxial compressive strength test and MPL

test

Table 425 compares the triaxial test results in terms of the cohesion c

and internal friction angle φi by assuming the failure mode follows the Coulombrsquos

criterion The c and φi values are calculated from the test results and the predicted

results by the assumption of Coulombrsquos criterion (Jaeger and Cook 1978) Table

425 shows that the strengths predicted by MPL testing of all rock types under-

estimate those obtained from the standard triaxial testing This is probably the actual

Poissonrsquos ratio of the rock specimens are probably lower than those assumed in the

model simulation which is assumed the Poissonrsquos ratio as 025

82

Table 425 Comparisons of the internal friction angle and cohesion between MPL

predictions and triaxial compressive strength tests

Triaxial Compressive Strength Test

MPL Predictions (ν=025) Rock Type

c (MPa) φi (degrees) c (MPa) φi (degrees)

Porphyritic Andesite 12 69 4 45

Silicified Tuffaceous Sandstone 13 65 3 46

Tuffaceous Sandstone 7 73 2 46

CHAPTER V

FINITE DIFFERENCE ANALYSES

51 Objectives

The objective of the finite difference analyses is to verify that the equivalent

diameter of rock specimens used in the MPL strength prediction is appropriate The

finite difference analyses using FLAC software is made to determine the MPL

strength for various specimen diameters (D) with a constant cross-sectional area

52 Model characteristics

The analyses are made in axis symmetry Four specimen models with the

constant thickness of 318 cm are loaded with 10 cm diameter loading point The

diameter of the specimen (D) models is varied from 508 cm to 762 cm Each

specimen has a constant cross-sectional area of 1613 cm2 as shown in Figure 51

through 55 The load is applied to the specimens until failure occurs and then the

failure loads (P) are recorded

53 Results of finite difference analyses

The results of numerical simulation are shown in Table 51 The results

suggest that the MPL strength remains roughly constant when the same equivalent

diameter (De) is used It can be concluded that the equivalent diameter used in this

research is appropriate to predict the MPL strength

80

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm

81

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm

82

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm

Table 51 Summary of the results from numerical simulations

Model Number

Specimen Thickness

t (cm)

Specimen Diameter

D (cm)

Cross-Sectional

Are of Specimen

A (cm2)

Equivalent Diameter

De (cm)

Failure Load P

(kN)

1 318 508 1613 508 4485 2 318 572 1613 508 4630 3 318 635 1613 508 4614 4 318 698 1613 508 4627 5 318 762 1613 508 4590

CHAPTER VI

DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS

This chapter discusses various aspects of the proposed MPL testing technique

for determining the elastic modulus uniaxial and triaxial compressive strengths and

tensile strength of intact rock specimens The discussed issues include reliability of

the testing results validity scope and limitations of the proposed method of

calculations and accuracy of the predicted rock properties

61 Discussions

1) For selection of rock specimens for MPL testing in this research an

attempt has been made to select the specimens particularly in obtaining a high degree

of uniformity of rock matrix so as to reduce the intrinsic variability of the mechanical

test results and hence clearly reveals of the relation between the standard test results

with the MPL test results Nevertheless a high degree of intrinsic variability

remains as evidenced from the results of the characterization testing For all tested

rock types here the igneous rocks are normally heterogeneous The high intrinsic

variability is caused by the degree of weathering among specimens and the

distribution of rock fragments in the groundmass which promotes the different

orientations of cleavage planes and pore spaces to become a weak plane in rock

specimens Silicified tuffaceous sandstone the high standard deviation may be

caused by the silicified degree in rock specimens

84

2) For prediction of elastic modulus of rock specimens the effects of the

heterogeneity that cause the selective weak planes are enhanced during the MPL

testing This is because the applied loading areas are much smaller than those under

standard uniaxial compressive strength testing This load condition yields a high

degree of intrinsic variability of the MPL testing results The standard deviation of

the elastic modulus predicted from MPL results are in the range between 35-50

This means that in order to obtain the accurate prediction a large number of rock

specimens is necessary for each rock types and that the MPL testing is more

applicable in fine-grained rocks than coarse-grained rocks Another factor is the

uneven contacts between the loading platens and the rock surfaces which caused the

elastic modulus of all rock types that predicted from MPL testing to be lower

compared with those from the uniaxial compressive strength

3) Equivalent diameter used to define the rock specimen width (perpendicular

to the loading direction) seems adequate for use in MPL predictions of rock

compressive and tensile strengths

4) Determination of σ3 at failure for the MPL testing is the empirical In fact

results from the numerical simulation indicate that σ3 distribution along the imaginary

cylinder between the loading points is not uniform particularly for low td ratio

(lower than 25) Along this cylinder σ3 is tension near the loading point and

becomes compression in the mid-length of the MPL specimen There are also shear

stresses along the imaginary cylinder The induced stress states along the assume

cylinder in MPL specimen are therefore different from those the actual triaxial

strength testing specimen The MPL method can not satisfactorily predict the triaxial

compressive strength of all tested rock types primarily due to the heterogeneity of

85

rock specimens that is the different sizes of phenocrysts in igneous rock in lateral and

horizontal directions This promotes the different failure formations

62 Conclusions

The objective of this research is to determine the elastic modulus uniaxial

compressive strength tensile strength and triaxial compressive strength of rock

specimens by using the modified point load (MPL) test method Three rock types

used in this research are porphyritic andesite silicified tuffaceous sandstone and

tuffaceous sandstone Prior to performing the modified point load testing the

standard characterization testing is carried out on these rock types to obtain the data

basis for use to compare the results from MPL testing The MPL specimens are

irregular-shaped with the specimen thickness to loading platen diameter (td) varies

from 25-35 and the equivalent diameter of specimen to loading platen diameter

(Ded) varies from 15 to 20 Loading platen diameters used in this research are 7 10

and 15 mm Finite different analysis is used to verify the equivalent diameter that use

to calculate rock properties from MPL tests

The research results illustrate that the elastic modulus estimated from MPL tests

under-estimates those obtained from the ASTM standard test with the standard

deviation of 40 for porphyritic andesite 48 for silicified tuffaceous sandstone and

43 for tuffaceous sandstone The MPL test method can satisfactorily predict the

uniaxial compressive strength and tensile strength of all rock types tested here The

conventional point load test method over-predicts the actual strength results by much as

100 The MPL method however can not predict the triaxial compressive strengths

for three rock types tested here primarily due to heterogeneous and different

86

weathering degree of rock specimens and uneven surface of rock specimens This

suggests that the smooth and parallel contact surfaces on opposite side of the loading

points are important for determining the strength of rock specimens for MPL method

63 Recommendations

The assessment of predictive capability of the proposed MPL testing technique

has been limited to three rock types More testing is needed to confirm the applicability

and limitations of the proposed method Some obvious future research needs are

summarized as follows

1) More testing is required for elastic modulus and triaxial compressive strength

on different rock types Smooth and parallel of rock specimen surfaces in the opposite

sides should be prepared for all rock types The results may also reveal the impacts of

grain size on elasticity and strength of obtained under different loading areas And the

effects of size of the areas underneath the applied load should be further investigated

2) To truly confirm the validity of MPL predictions for the elastic modulus and

strength of rocks may be desirable to obtain the actual Poissonrsquos ratio of all rock types

The results could reveal the accuracy of the predicted elastic modulus under the assumed

Poissonrsquos ratio of 025 Comparison between the elastic modulus obtained from the

actual Poissonrsquos ratio may show the validity of assumption of the Poissonrsquos ratio posed

here

3) All tests made in this research are on dry specimens the results of pore

pressure and degree of saturation have not been investigated It is desirable to learn also

the proposed MPL testing technique can yield the intact rock properties under

different degree of saturation

88

REFERENCES

ASTM D2664-86 Standard test method for triaxial compressive strength of

undrained rock core specimens without pore pressure measurements In

Annual Book of ASTM Standards (Vol 0408) Philadelphia American

Society for Testing and Materials

ASTM D7012-07 Standard test method for compressive strength and elastic moduli

of intact rock core specimens under varying states of stress and

temperatures In Annual Book of ASTM Standards (Vol 0408) West

Conshohocken American Society for Testing and Materials

ASTM D3967-81 Standard test method for splitting tensile strength of intact rock

core specimens In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

ASTM D4543-85 Standard test method for preparing rock core specimens and

determining dimensional and shape tolerances In Annual Book of ASTM

Standards (Vol 0408) Philadelphia American Society for Testing and

Materials

ASTM D5731-95 Standard test method for determination of point load strength

index of rock In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

Bieniawski Z T (1974) Estimating of the strength of rock materials J Inst

Min Metall 7 123-137

Bieniawski Z T (1975) The point-load test in geotechnical practice Engng

Geol 9 1-11

89

Bieniawski Z T and Bernede M J (1979) Suggested methods for determining the

uniaxial compressive strength and deferability of rock material for ISRM

Commission on Standardization of Laboratory and Field test Int J Rock

Mech Min Sci 16 (2)xxxx (page no)

Bray J W (1987) Some applications of elastic theory In E T Brown (ed)

Analytical and Computational Methods in Engineering Rock

Mechanics (pp 32-94) Allen amp Unwin London

Broch E and Franklin J A (1972) The point-load test Int J Rock Mech Min

Sci 9 669-697

Book N (1977) The use of irregular specimens for rock strength tests Int J

Rock Mech Min Sci amp Geomech Abstr 14 193-202

Book N (1979) Estimating the triaxial strength of rocks Int J Rock Mech Min

Sci amp Geomech Abstr 16 261-264

Book N (1980) Size correction for point load testing Int J Rock Mech Min

Sci 17231-235 [Technical note]

Book N (1985) The equivalent core diameter method of size and shape correction

in point load testing Int J Rock Mech Min Sci amp Geomech Abstr

22 61-70

Brown E T (1981) Rock characterization Testing and Monitoring ISRM

Suggestion Methods New York International Society for Rock

Mechanics Pergamon Press

Butenuth C (1997) Comparison of tensile strength values of rocks determined by

point load and direct tensile tests Rock Mech Rock Engng 30 65-72

90

Cargill J S and Shakoor A (1992) Evaluation of empirical methods for measuring

the uniaxial compressive strength Int J Rock Mech Min Sci 27 495-503

Chau KT (1997) Youngrsquos modulus interpreted from compression tests with end

friction J Engng Mech January 1-7 plat Ann Inst Tech Trav Publics

58 967-971

Chau KT and Wei X X (1999) A new analytic solution for the diametral point

load strength test on finite solid circular cylinders Int J Solids and

Structures 38(9) 1459-1481

Chau KT and Wong R HC (1996) Uniaxial compressive strength and point

load strength Int J Rock Mech Min Sci 33183-188

Davis R O and Selvadurai APS (1996) Elasticity and Geomechanics New

York Cambridge University Press 198 p

Deere DU and Miller R P (1966) Engineering Classification and Index

Properties for Intact Rock US Air Force Weapons Lab Rep AFWL-

TR-65-116

Durelli A J and Parks V (1962) Relationship of size and stress gradient to brittle

failure stress In Proceeding of the 4th US National Cong Of Appl

Mech (pp 931-938)

Evans I (1961) The tensile strength of coal Colliery Eng 38 428-434

Fairhurst C (1961) Laboratory measurement of some physical properties of rock

In Proceeding of the 4th Symp Rock Mech (pp 105-118) Penn State

University

Farmer I (1983) Engineering Behavior of Rocks New York Chapman and Hall

208 p

91

Forster I R (1983) The influence of core sample geometry on axial load test Int

J Rock Mech Min Sci 20 291-295

Fuenkajorn K (2002) Modified point load test determining uniaxial compressive

strength of intact rock In Proceeding of 5th North American Rock

Mechanics Symposium and the 17th Tunneling Association of Canada

Conference (NARMS-TAC 2002) (pp ) Toronto

Fuenkajorn K and Daemen J J K (1986) Shape effect on ring test tensile

strength In Key to Energy Production Proceeding of the 27th US

Symposium on Rock Mechanics (pp 155-163) Tuscaloosa University of

Alabama

Fuenkajorn K and Daemen J J K (1991b) An empirical strength criterion for

heterogeneous welded tuff In ASME Applied Mechanics and

Biomechanics Summer Conference Columbus Ohio University

Fuenkajorn K and Daemen J J K (1992) An empirical strength criterion for

heterogeneous tuff Int J Engineering Geology 32 209-223

Fuenkajorn K and Tepnarong P (2001) Size and stress gradient effects on the

modified point load strength of Saraburi Marble In the 6th Mining

Metallurgical and Petroleum Engineering Conference Bangkok

Thailand(pp)

Ghosh A Fuenkajorn K and Daemen J J K (1995) Tensile strength of welded

Apache Leap tuff investigation for scale effects In Proceeding of the 35th

US Rock Mech Symposium (pp 459-646) University of Navada Reno

Goodman R E (1980) Methods of Geological Engineering in Discontinuous

Rock New York Wiley and Sons

92

Greminger M (1982) Experimental studies of the influence of rock anisotropy on

size and shape effects in point-load testing Int J Rock Mech Min Sci

19 241-246

Gunsallus K L and Kulhawy F H (1984) A comparative evaluation of rock

strength measures Int J Rock Mech Min Sci 21 233-248

Hassani F P Scoble M J and Whittaker B N (1980) Application of point load

index test to strength determination of rock and proposals for new size-

correction chart (pp 543-564) Rolla

Hiramatsu Y and Oka Y (1966) Determination of tensile strength of rock by a

compression test of irregular test piece Int J Rock Mech Min Sci 3

89-99

Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the

Hoek-Brown falure criterion-Technical note Int J Rock Mech Min Sci

amp Geomech Abstr 27 227-229

Hoek E and Brown E T (1980a) Empirical strength criterion for rock masses J

Geotech Eng Div 106 (GT9) 1013-1035

Hondros G (1959) The evaluation of Poissonrsquos ratio and modulus of material of a

low tensile resistance by the Brazilian (indirect tensile) test with particular

reference to concrete Aust J Appl Sci 10 243-264

Horii H and Nemat-Nasser S (1985) Compression-induced microcrack growth in

brittle solids axial splitting and shear failure J Geophts Res 90 3105-

3125

93

Hudson J A Brown E T and Fairhurst C (1971) Shape of the complete stress-

strain curve for rock In Proceeding of the 13th US Symp Rock Mech (pp

773-795) Urbana

ISRM (1985) Suggested method for determining point load strength Int J Rock

Mech Min Sci amp Geomech Abstr 22 53-60

ISRM (1985) Suggested methods for deformability determination using a flexible

dilatometer Int J Rock Mech Min Sci amp Geomech Abstr 24 123-134

Jaeger J C and Cook N G W (1979) Fundamentals of Rock Mechanics

London Chapman and Hall 593 p

Kaczynski R R (1986) Scale effect during compressive strength of rocks In

Proceeding of 5th Int Assoc Eng Geol Congr p 371-373

Lama R D and Vutukuri V S (1978) Testing techniques and results In

Handbook on Mechanical Properties of Rock Vol III No 2 Trans

Tech Publications (International Standard Book Number 0-87849-022-1

Clausthal Germany)

Lonborg N (1967) The strength-size relation of granite Int J Rock Mech Min

Sci 4 269-272

Miller R P (1965) Engineering Classification and Index Properties for Intact

Rock PhD Dissertation Univ Of Illinois Urbana III 92 p

Nimick F B (1988) Empirical relations between porosity and the mechanical

properties of tuff In Key Questions in Rock Mechanics (pp 741-742)

Balkema Rotterdam

Obert L and Stephenson D E (1965) Stress conditions under which core disking

occurs Trans Soc Min Eng AIME 232 227-235

94

Panek L A and Fannon T A (1992) Size and shape effects in point load tests

of irregular rock fragments J Rock Mechanics and Rock Engineering

25 109-140

Pells P J N (1975) The use of point load test in predicting the compressive

strength of rock material Aust Geotech (pp 54-56) G5(N1)

Reichmuth D R (1968) Point-load testing of brittle materials to determine the

tensile strength and relative brittleness In Proceeding of the 9th US Symp

Rock Mech (pp 134-159) University of Colorado

Sammis C G and Ashby M F (1986) The failure of brittle porous solid under

compressive stress state Acta Metall 34 511-526

Serata S and Fuenkajorn K (1992a) Finite element progam lsquoGEOrsquo for modeling

brittle-ductile deterioration of aging earth structures In SMRI Paper

Presented at the Solution Mining Research Institute Fall Meeting

October 19-22 Houston Texas 24p

Sheorey P R Biswas A K and Choubey V D (1989) An empirical failure

criterion of rocks and jointed rock masses Eng Geol 26 141-159

Stowe R L (1969) Strength and deformation properties of granite basalt

limestone and tuff US Army Corps of Engineers WES Misc Paper C-69-1

Taliercio A and Sacchi Landrianni G (1988) Failure criterion for layered rock

Int J Rock Mech Min Sci amp Geomech Abstr 25 299-305

Tepnarong P (2001) Theoretical and experimental studies to determine

compressive and tensile strengths of rocks using modified point load

testing M Eng Thesis Suranaree University of Technology Thailand

95

Tepnarong P (2006) Theoretical and experimental studies to determine elastic

modulus and triaxial compressive strength of intact rocks by modified

point load testing PhD Eng Thesis Suranaree University of

Technology Thailand

Tepnarong P and Fuenkajorn K (2004) Determining of elasticity and strengths

of intact rocks using modified point load test In Proceeding of the ISRM

International Symposium 3rd ASRM Vol 2 (pp 397-392)

Timoshenko S (1958) Strength of materials I Element Theory and Problems

(3rd ed) Princeton N J D Van Nostard

Timoshenko S and Goodier J N (1951) Theory of Elasticity (2nd ed) New

York McGraw-Hill

Truk N and Dearman W R (1985) Improvements in the determination of point

load strength Bull Int Assoc Eng Geol 31 137-142

Truk N and Dearman W R (1986) A correction equation on the influence of

length-to-diameter ratio on uniaxial compressive strength of rocks J Eng

Geol 22 293-300

Wei X X and Chau K T (2002) Analytic solution for finite transversely

isotropic circular cylinder under the axial point load test J Eng Mech

(pp 209-219)Vol

Wei X X and Chau K T and Wong R H C (1999) Analytic solution for

axial point load strength test on solid circular cylinders J Eng Mech (pp

1349-1357) Vol

96

Wijk G (1978) Some new theoretical aspects of indirect measurements of the

tensile strength of rocks Int J Rock Mech Min Sci amp Geomech

Abstr 15 149-160

Wijk G (1980) The point load test for the tensile strength of rock Geotech Test

ASTM 3 49-54

APPENDIX A

CHARACTERIZATION TEST RESULTS

97

Table A-1 Results of conventional point load strength index test on porphyritic

andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

And-06-05-CPL-01 5397 5366 284 52 And-06-05-CPL-02 5332 5366 283 78 And-08-04-CPL-03 5432 5366 284 90 And-08-04-CPL-04 5482 5366 286 87 And-06-01-CPL-05 5330 5366 285 76 And-06-01-CPL-06 5613 5366 284 76 And-04-04-CPL-07 5617 5366 281 75 And-04-05-CPL-08 5525 5366 282 75 And-03-02-CPL-09 5595 5366 280 85 And-03-02-CPL-10 5535 5366 283 85 And-06-06-CPL-11 5475 5366 283 75 And-09-01-CPL-12 5552 5366 286 90 And-09-01-CPL-13 5503 5366 283 90 And-02-04-CPL-14 5542 5366 282 85 And-09-03-CPL-15 5607 5366 282 85 And-09-03-CPL-16 5452 5366 285 96 And-01-03-CPL-17 5530 5366 283 87 And-01-03-CPL-18 5313 5366 283 90 And-01-04-CPL-19 5465 5366 284 56 And-01-04-CPL-20 5572 5366 283 97

Average 81plusmn12

98

Table A-2 Results of conventional point load strength index test on silicified

tuffaceous sand stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

SST-02-03-CPL-01 5373 5366 268 125 SST-06-04-CPL-02 5469 5366 268 70 SST-02-07-CPL-03 5505 5366 269 70 SST-02-06-CPL-04 5518 5366 267 130 SST-02-04-CPL-05 5626 5366 267 125 SST-02-03-CPL-06 5139 5366 270 132 SST-02-03-CPL-07 5483 5366 271 71 SST-02-05-CPL-08 5340 5366 266 125 SST-02-05-CPL-09 5399 5366 265 70 SST-07-05-CPL-10 5643 5366 263 99 SST-07-05-CPL-11 5381 5366 266 106 SST-05-02-CPL-12 5439 5366 274 104 SST-05-02-CPL-13 5491 5366 271 104 SST-03-04-CPL-14 5430 5366 263 113 SST-03-04-CPL-15 5556 5366 263 106 SST-09-03-CPL-16 5491 5366 272 125 SST-09-03-CPL-17 5703 5366 271 125 SST-01-01-CPL-18 5705 5366 267 132 SST-02-07-CPL-19 5596 5366 269 111 SST-02-07-CPL-20 5527 5366 271 118

Average 108plusmn22

99

Table A-3 Results of conventional point load strength index test on tuffaceous sand

stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

TST-06-05-CPL-01 5657 5366 263 125 TST-06-05-CPL-02 5781 5366 264 109 TST-02-05-CPL-03 5686 5366 263 106 TST-02-05-CPL-04 5747 5366 264 80 TST-08-03-CPL-05 5606 5366 268 115 TST-08-03-CPL-06 5574 5366 266 118 TST-08-01-CPL-07 5491 5366 268 111 TST-08-01-CPL-08 5478 5366 268 115 TST-04-02-CPL-09 5422 5366 263 103 TST-04-02-CPL-10 5387 5366 264 111 TST-08-04-CPL-11 5371 5366 267 115 TST-08-04-CPL-12 5463 5366 267 113 TST-06-07-CPL-13 5545 5366 267 108 TST-04-01-CPL-14 5729 5366 261 59 TST-06-06-CPL-15 5457 5366 261 99 TST-06-06-CPL-16 5469 5366 263 109 TST-06-06-CPL-17 5497 5366 266 122 TST-04-03-CPL-18 5550 5366 261 87 TST-04-03-CPL-19 5521 5366 262 52 TST-04-05-CPL-20 5477 5366 264 87

Average 102plusmn20

100

Table A-4 Results of uniaxial compressive strength tests and elastic modulus

measurements on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-5 Results of uniaxial compressive strength tests and elastic modulus

measurements on silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

Table A-6 Results of uniaxial compressive strength tests and elastic modulus

measurements on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

101

Table A-7 Results of Brazilian tensile strength tests on porphyritic andesite

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

And-04-03-BZ-01 2628 5366 281 395 178 And-04-03-BZ-02 2551 5366 279 350 163 And-04-03-BZ-03 2755 5366 285 380 164 And-04-03-BZ-04 2669 5366 279 415 184 And-04-06-BZ-05 2686 5366 280 320 141 And-04-06-BZ-06 2699 5366 286 415 182 And-04-06-BZ-07 2649 5366 282 395 177 And-04-06-BZ-08 2642 5366 286 340 153 And-06-01-BZ-09 2678 5366 286 435 193 And-06-01-BZ-10 2758 5366 285 385 166

Average 170plusmn16

Table A-8 Results of Brazilian tensile strength tests on silicified tuffaceous

sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

SST-02-02-BZ-01 2507 5366 265 450 213 SST-01-06-BZ-02 2664 5366 264 520 232 SST-01-02-BZ-03 2595 5366 262 400 183 SST-01-02-BZ-04 2593 5366 261 320 146 SST-01-02-BZ-05 2608 5366 266 500 228 SST-02-01-BZ-06 2710 5366 266 500 220 SST-02-01-BZ-07 2654 5366 262 450 201 SST-01-05-BZ-08 2778 5366 268 350 150 SST-01-05-BZ-09 2793 5366 266 400 170 SST-01-05-BZ-10 2795 5366 266 400 170

Average 191plusmn32

102

Table A-9 esults of Brazilian tensile strength tests on tuffaceous sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

TST-02-03-BZ-01 2811 5366 260 360 152 TST-02-03-BZ-02 2757 5366 260 255 110 TST-02-03-BZ-03 2739 5366 262 325 141 TST-02-03-BZ-04 2688 5366 263 175 77 TST-06-04-BZ-05 2765 5366 266 450 193 TST-06-04-BZ-06 2729 5366 264 280 122 TST-06-04-BZ-07 2730 5366 260 230 100 TST-06-02-BZ-08 2748 5366 264 285 123 TST-06-02-BZ-09 2743 5366 261 290 125 TST-06-02-BZ-10 2658 5366 265 370 165

Average 131plusmn33

Table A-10 esults of triaxial compressive strength tests on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-11 Results of triaxial compressive strength tests on silicified tuffaceous

sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

103

Table A-12 Results of triaxial compressive strength tests on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

APPENDIX B

MODIFIED POINT LOAD TEST RESULTS FOR ELASTIC

MODULUS PREDICTION

116

AND-MPL-01

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 125 GPamm

Figure B1 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-01

And-MPL-02

00500

100015002000250030003500400045005000

0 005 01 015 02 025 03 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 180 GPamm

Figure B2 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-02

117

And-MPL-03

00200400600800

100012001400160018002000

000 002 004 006 008 010 012 014

Diplacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B3 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-03

And-MPL-04

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B4 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-04

118

And-MPL-05

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 369 GPamm

Figure B5 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-05

And-MPL-06

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B6 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-06

119

And-MPL-07

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss (

MPa

)

ΔPΔδ = 234 GPamm

Figure B7 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-07

And-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 171 GPamm

Figure B8 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-08

120

And-MPL-09

00

500

1000

1500

2000

2500

3000

3500

000 020 040 060 080 100 120 140Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 056 GPamm

Figure B9 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-09

And-MPL-10

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 124 GPamm

Figure B10 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-10

121

And-MPL-11

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030 035 040Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 138 GPamm

Figure B11 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-11

And-MPL-12

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 189 GPamm

Figure B12 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-12

122

And-MPL-13

00500

100015002000250030003500400045005000

000 010 020 030 040 050 060

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 151 GPamm

Figure B13 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-13

And-MPL-14

00

1000

2000

3000

4000

5000

6000

7000

000 010 020 030 040 050 060Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 165 GPamm

Figure B14 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-14

123

And-MPL-15

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120 140 160Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 011 GPamm

Figure B15 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-15

And-MPL-16

00

200

400

600

800

1000

1200

1400

1600

1800

000 050 100 150 200Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 012 GPamm

Figure B16 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-16

124

And-MPL-17

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120

Displacement (mm)

Stre

ss P

(MPa

) ΔPΔδ = 021 GPamm

Figure B17 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-17

And-MPL-18

00

500

1000

1500

2000

2500

3000

000 050 100 150 200 250 300 350Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 008 GPamm

Figure B18 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-18

125

And-MPL-19

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B19 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-19

And-MPL-20

00

1000

2000

3000

4000

5000

6000

000 050 100 150 200 250 300

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 017 GPamm

Figure B20 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-20

126

And-MPL-21

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B21 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-21

And-MPL-22

00

500

1000

1500

2000

2500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B22 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-22

127

And-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B23 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-23

And-MPL-24

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =112 GPamm

Figure B24 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-24

128

And-MPL-25

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 585 GPamm

Figure B25 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-25

And-MPL-26

00500

10001500200025003000350040004500

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 143 GPamm

Figure B26 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-26

129

And-MPL-27

00500

10001500200025003000350040004500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B27 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-27

And-MPL-28

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B28 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-28

130

And-MPL-29

00500

1000150020002500300035004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B29 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-29

And-MPL-30

00

1000

2000

3000

4000

5000

6000

7000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B30 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-30

131

And-MPL-31

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B31 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-31

And-MPL-32

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B32 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-32

132

And-MPL-33

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 101 GPamm

Figure B33 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-33

And-MPL-34

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 135 GPamm

Figure B34 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-34

133

And-MPL-35

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 127 GPamm

Figure B35 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-35

And-MPL-36

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 292 GPamm

Figure B36 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-36

134

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B37 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-37

And-MPL-38

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B38 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-38

135

And-MPL-39

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 186 GPamm

Figure B39 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-39

And-MPL-40

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 20 GPamm

Figure B40 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-40

136

And-MPL-41

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B41 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-41

And-MPL-42

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B42 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-42

137

And-MPL-43

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 346 GPamm

Figure B43 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-43

And-MPL-44

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B44 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-44

138

And-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 169 GPamm

Figure B45 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-45

And-MPL-46

00

200

400

600

800

1000

1200

1400

1600

1800

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B46 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-46

139

And-MPL-47

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B47 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-47

And-MPL-48

00

200

400

600

800

1000

1200

1400

1600

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 094 GPamm

Figure B48 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-48

140

And-MPL-49

00

100

200

300

400

500

600

700

800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 057 GPamm

Figure B49 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-49

And-MPL-50

00

200

400

600

800

1000

1200

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 078 GPamm

Figure B50 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-50

141

SST-MPL-01

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 280 GPamm

Figure B51 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-01

SST-MPL-02

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 307 GPamm

Figure B52 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-02

142

SST-MPL-03

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 356 GPamm

Figure B53 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-03

SST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 450 GPamm

Figure B54 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-04

143

SST-MPL-05

00100020003000400050006000700080009000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 532 GPamm

Figure B55 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-05

SST-MPL-06

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 273 GPamm

Figure B56 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-06

144

SST-MPL-07

0010002000300040005000600070008000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 418 GPamm

Figure B57 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-07

SST-MPL-08

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 414 GPamm

Figure B58 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-08

145

SST-MPL-09

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B59 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-09

SST-MPL-10

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 958 GPamm

Figure B60 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-10

146

SST-MPL-11

00

10002000

300040005000

60007000

8000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 400 GPamm

Figure B61 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-11

SST-MPL-12

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 272 GPamm

Figure B62 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-12

147

SST-MPL-13

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 408 GPamm

Figure B63 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-13

SST-MPL-14

00

500

1000

1500

2000

2500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 296 GPamm

Figure B64 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-14

148

SST-MPL-15

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 282 GPamm

Figure B65 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-15

SST-MPL-16

00500

1000150020002500300035004000

000 005 010 015 020

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 26 GPamm

Figure B66 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-16

149

SST-MPL-17

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 416 GPamm

Figure B67 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-17

SST-MPL-18

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 473 GPamm

Figure B68 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-18

150

SST-MPL-19

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 330 GPamm

Figure B69 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-19

SST-MPL-20

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 278 GPamm

Figure B70 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-20

151

SST-MPL-21

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 185 GPamm

Figure B71 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-21

SST-MPL-22

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B72 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-22

152

SST-MPL-23

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 15 GPamm

Figure B73 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-23

SST-MPL-24

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 295 GPamm

Figure B74 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-24

153

SST-MPL-25

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 259 GPamm

Figure B75 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-25

SST-MPL-26

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 221 GPamm

Figure B76 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-26

154

SST-MPL-27

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 274 GPamm

Figure B77 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-27

SST-MPL-28

0010002000300040005000600070008000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 209 GPamm

Figure B78 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-28

155

SST-MPL-29

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 176 GPamm

Figure B79 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-29

SST-MPL-30

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B80 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-30

156

SST-MPL-31

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 464 GPamm

Figure B81 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-31

SST-MPL-32

00

500

1000

1500

2000

2500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 178 GPamm

Figure B82 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-32

157

SST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 131 GPamm

Figure B83 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-33

SST-MPL-34

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 215 GPamm

Figure B84 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-34

158

SST-MPL-35

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 190 GPamm

Figure B85 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-35

SST-MPL-36

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B86 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-36

159

SST-MPL-37

00500

1000150020002500300035004000

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 067 GPamm

Figure B87 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-37

AND-MPL-38

00

500

10001500

2000

2500

3000

35004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 127 GPamm

Figure B88 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-38

160

SST-MPL-39

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 229 GPamm

Figure B89 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-39

SST-MPL-40

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 090 GPamm

Figure B90 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-40

161

SST-MPL-41

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 498 GPamm

Figure B91 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-41

SST-MPL-42

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 392 GPamm

Figure B92 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-42

162

SST-MPL-43

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 244 GPamm

Figure B93 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-43

SST-MPL-44

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 571 GPamm

Figure B94 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-44

163

SST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 001 002 003 004 005 006 007 008

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 780 GPamm

Figure B95 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-45

SST-MPL-46

0010002000300040005000600070008000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 411 GPamm

Figure B96 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-46

164

SST-MPL-47

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 309 GPamm

Figure B97 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-47

SST-MPL-48

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 338 GPamm

Figure B98 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-48

165

SST-MPL-49

00500

1000150020002500300035004000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 254 GPamm

Figure B99 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-49

SST-MPL-50

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 360 GPamm

Figure B100 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-50

166

TST-MPL -01

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 212GPamm

Figure B101 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-01

TST-MPL-02

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=326 GPamm

Figure B102 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-02

167

TST-MPL-03

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacememt (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B103 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-03

TST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B104 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-04

168

TST-MPL-05

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 264 GPamm

Figure B105 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-05

TST-MPL-06

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacment (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B106 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-06

169

TST-MPL-07

00

500

1000

1500

2000

2500

3000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 162 GPamm

Figure B107 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-07

TST-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=319 GPamm

Figure B108 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-08

170

TST-MPL-09

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =212 GPamm

Figure B109 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-09

TST-MPL-10

00200400600800

1000120014001600

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 132GPamm

Figure B110 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-10

171

TST-MPL-11

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =319 GPamm

Figure B111 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-11

TST-MPL-12

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 127 GPamm

Figure B112 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-12

172

TST-MPL-13

00500

1000150020002500300035004000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 159 GPamm

Figure B113 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-13

TST-MPL-14

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =170 GPamm

Figure B114 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-14

173

TST-MPL-15

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 260 GPamm

Figure B115 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-15

TST-MPL-16

00500

100015002000250030003500400045005000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B116 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-16

174

TST-MPL-17

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B117 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-17

TST-MPL-18

00

200

400

600

800

1000

1200

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=073 GPamm

Figure B118 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-18

175

TST-MPL-19

00

200

400

600

800

1000

1200

1400

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B119 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-19

TST-MPL-20

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=170 GPamm

Figure B120 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-20

176

TST-MPL-21

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=100 GPamm

Figure B121 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-21

TST-MPL-22

00200400600800

10001200140016001800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 088 GPamm

Figure B122 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-22

177

TST-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 101 GPamm

Figure B123 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-23

TST-MPL-24

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 124 GPamm

Figure B124 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-24

178

TST-MPL-25

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 126 GPamm

Figure B125 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-25

TST-MPL-26

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 178 GPamm

Figure B126 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-26

179

TST-MPL-27

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B127 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-27

TST-MPL-28

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 164 GPamm

Figure B128 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-28

180

TST-MPL-29

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B129 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-29

TST-MPL-30

00500

100015002000250030003500400045005000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =280 GPamm

Figure B130 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-30

181

TST-MPL-31

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B131 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-31

TST-MPL-32

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B132 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-32

182

TST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 130 GPa mm

Figure B133 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-33

TST-MPL-34

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B134 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-34

183

TST-MPL-35

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B135 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-35

TST-MPL-36

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B136 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-36

184

TST-MPL-37

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 217 GPamm

Figure B137 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-37

TST-MPL-38

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 52 GPamm

Figure B138 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-38

185

TST-MPL-39

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B139 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-39

TST-MPL-40

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 347 GPamm

Figure B140 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-40

186

TST-MPL-41

00

500

1000

1500

2000

2500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B141 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-41

TST-MPL-42

00

500

1000

1500

2000

2500

3000

3500

4000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B142 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-42

187

TST-MPL -43

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 435 GPamm

Figure B143 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-43

TST-MPL-44

00

200

400

600

800

1000

1200

1400

1600

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B144 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-44

188

TST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 315 GPamm

Figure B145 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-45

TST-MPL-46

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B146 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-46

189

TST-MPL-47

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=128 GPamm

Figure B147 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-47

TST-MPL-48

00200400600800

10001200140016001800

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 237GPamm

Figure B148 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-48

190

TST-MPL-49

00

500

1000

1500

2000

2500

3000

3500

4000

4500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B149 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-49

TST-MPL-50

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 394 GPamm

Figure B150 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-50

BIOGRAPHY

Mr Chatchai Intaraprasit was born on July 30 1973 in Khon Kaen province

Thailand He received his Bachelorrsquos Degree in Science (Geotechnology) from Khon

Kaen University in 1996 He worked with the construction company for ten years

after graduated the Bachelorrsquos Degree For his post-graduate he continued to study

with a Masterrsquos Degree in the Geological Engineering Program Institute of

Engineering Suranaree University of Technology He has published a technical

papers related to rock mechanics as in 2009 ldquoModified point load testing of volcanic

rocks from Chatree gold minerdquo in the proceeding of the second Thailand symposium

on rock mechanics Chonburi Thailand For his work he is working as a

geotechnical engineer at Akara mining company limited Phichit province Thailand

  • cover
  • abstractpdf
  • CHAPTER I
  • CHAPTER II
  • CHAPTER III
  • CHAPTER IV
  • CHAPTER V
  • CHAPTER VI
  • REFERENCES
  • APPENDIX A
  • APPENDIX B
  • BIOGRAPHY
Page 5: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·

II

สาขาวชา เทคโนโลยธรณ ลายมอชอนกศกษา ปการศกษา 2552 ลายมอชออาจารยทปรกษา

การทดสอบจดกดแบบปรบเปลยนและการทดสอบจดกดแบบดงเดมจะถกนามาพจารณา อาจมการประยกตการคานวณทเปนแบบแผนของการทดสอบจดกดแบบปรบเปล ยน เพ อเพ มความสามารถในการคาดคะเนคณสมบตทางกลศาสตรของหนตวอยางทมรปรางไมเปนรปทรงทางเรขาคณตไดดยงขน

CHATCHAI INTARAPRASIT MODIFIED POINT LOAD TESTS OF PIT

WALL ROCK AT CHATREE GOLD MINE THESIS ADVISOR ASSOC PROF

KITTITEP FUENKAJORN Ph D PE 191 PP

TRIAXIAL COMPRESSIVE STRENGTHUNIAXIAL COMPRESSIVE

STRENGTH ELASIC MODULUS POINT LOADTENSILE STRENGTH

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strengths and elastic modulus of intact rock

specimens in the laboratory This method was invented and patented by Suranaree

University of Technology The test apparatus and procedure are intended to be

inexpensive and easy compared to the relevant conventional methods of determining

the mechanical properties of intact rock eg those given by the International Society

for Rock Mechanics (ISRM) and the American Society for Testing and materials

(ASTM) In the past much of the MPL testing practices have been concentrated on

circular and rectangular disk specimens While it has been claimed that MPL method

is applicable to all rock shapes the test results from irregular lumps of rock have been

rare and hence are not sufficient to confirm that the MPL testing technique is truly

valid or even adequate to determine the basic rock mechanical properties in the field

where rock drilling and cutting devices are not available

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine will be used

as rock samples A minimum of 150 samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone will be collected from the site The

IV

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure will be used to calculate the elastic modulus and strengths of the rocks

Uniaxial and triaxial compression tests Brazilian tension test and conventional point

load test will also be conducted on the three rock types to obtain data basis for

comparing with those from the MPL testing Finite difference analysis will be

performed to obtain stress distribution within the MPL samples under different td and

Dd ratios The effects of the sample irregularity will be quantitatively assessed

Similarity and discrepancy of the test results from the MPL method and from the

conventional methods will be examined Modification of the MPL calculation

scheme may be made to enhance its predictive capability for the mechanical

properties of irregular shaped specimens

School of Geotechnology Students Signature

Academic Year 2009 Advisors Signature

ACKNOWLEDGMENTS

I wish to acknowledge the funding support of Suranaree University of

Technology (SUT) and Akara Mining Company Limited

I would like to express my sincere thanks to Assoc Prof Dr Kittitep

Fuenkajorn thesis advisor who gave a critical review and constant encouragement

throughout the course of this research Further appreciation is extended to Asst Prof

Thara Lekuthai chairman school of Geotechnology and Dr Prachya Tepnarong

Suranaree University of Technology who are member of my examination committee

Grateful thanks are given to all staffs of Geomechanics Research Unit Institute of

Engineering who supported my work

Chatchai Intaraprasit

TABLE OF CONTENTS

Page

ABSTRACT (THAI) I

ABSTRACT (ENGLISH) III

ACKNOWLEDGEMENTS V

TABLE OF CONTENTS VI

LIST OF TABLES IX

LIST OF FIGURES XIII

LIST OF SYMBOLS AND ABBREVIATIONS XVII

CHAPTER

I INTRODUCTION 1

11 Background and rationale 1

12 Research objectives 2

13 Research concept 3

14 Research methodology 3

141 Literature review 3

142 Sample collection and preparation 5

143 Theoretical study of the rock failure

mechanism 5

144 Laboratory testing 5

1441 Characterization tests 5

VII

TABLE OF CONTENTS (Continued)

Page

1442 Modified point load tests 6

145 Analysis 6

146 Thesis Writing and Presentation 6

15 Scope and Limitations 7

16 Thesis Contents 7

II LITERATURE REVIEW 8

21 Introduction 8

22 Conventional point load tests 8

23 Modified point load tests 11

24 Characterization tests 14

241 Uniaxial compressive strength tests 14

242 Triaxial compressive strength tests 15

243 Brazilian tensile strength tests 16

25 Size effects on compressive strength 16

III SAMPLE COLLECTION AND PREPARATION 17

31 Sample collection 17

32 Rock descriptions 17

33 Sample preparation 20

IV LABORATORY TESTS 22

41 Literature reviews 22

VIII

TABLE OF CONTENTS (Continued)

Page

411 Displacement Function 22

42 Basic Characterization Tests 23

421 Uniaxial Compressive Strength Tests

and Elastic Modulus Measurements 23

422 Triaxial Compressive Strength Tests 31

423 Brazilian Tensile Strength Tests 38

424 Conventional Point Load Index (CPL) Tests 39

43 Modified Point Load (MPL) Tests 46

431 Modified Point Load Tests for Elastic

Modulus Measurement 54

432 Modified Point Load Tests predicting

Uniaxial Compressive Strength 61

433 Modified Point Load Tests for Tensile

Strength Predictions 63

434 Modified Point Load Tests for Triaxial

Compressive Strength Predictions 69

V FINITE DIFFERENCE ANALYSIS 79

51 Objectives 79

52 Model Characteristics 79

53 Results of finite difference analyses 79

IX

TABLE OF CONTENTS (Continued)

Page

VI DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS 83

61 Discussions 83

62 Conclusions 85

63 Recommendations 86

REFERENCES 87

APPENDICES

APPENDIX A CHARACTERIZATION TEST RESULTS 96

APPENDIX B MODIFIED POINT LOAD TEST RESULTS FOR

ELASTIC MODULUS PREDICTION 104

BIOGRAPHY 180

LIST OF TABLES

Table Page

31 The nominal sizes of specimens following the ASTM standard

practices for the characterization tests 20

41 Testing results of porphyritic andesite 30

42 Testing results of tuffaceous sandstone 30

43 Testing results of silicified tuffaceous sandstone 30

44 Uniaxial compressive strength and tangent elastic modulus

measurement results of three rock types 31

45 Triaxial compressive strength testing results of porphyritic andesite 35

46 Triaxial compressive strength testing results of

tuffaceous sandstone 35

47 Triaxial compressive strength testing results of silicified

tuffaceous sandstone 36

48 Results of triaxial compressive strength tests on three rock types 38

49 The results of Brazilian tensile strength tests of three rock types 41

410 Results of conventional point load strength index tests of

three rock types 44

411 Results of modified point load tests on porphyritic andesite 49

412 Results of modified point load tests on tuffaceous sandstone 51

413 Results of modified point load tests on silicified tuffaceous sandstone 52

X

LIST OF TABLE (Continued)

Table Page

414 Results of elastic modulus calculation from MPL tests on porphyritic andesite57

415 Results of elastic modulus calculation from MPL tests on

silicified tuffaceous sandstone 58

416 Results of elastic modulus calculation from MPL tests on

tuffaceous sandstone 60

417 Comparisons of elastic modulus results obtained from

uniaxial compressive strength tests and those from modified

point load tests 61

418 Comparison the test results between UCS CPL Brazilian

tensile strength and MPL tests 63

419 Results of tensile strengths of porphyritic andesite predicted from MPL tests 64

420 Results of tensile strengths of silicified tuffaceous sandstone

predicted from MPL tests 66

421 Results of tensile strengths of tuffaceous sandstone

predicted from MPL tests 68

422 Results of triaxial strengths of porphyritic andesite predicted from MPL tests 71

423 Results of triaxial strengths of silicified tuffaceous sandstone

predicted from MPL tests 72

424 Results of triaxial strengths of tuffaceous sandstone

predicted from MPL tests 74

XI

LIST OF TABLE (Continued)

Table Page

425 Comparisons of the internal friction angle and cohesion

between MPL predictions and triaxial compressive strength tests 78

51 Summary of the results from numerical simulations 82

A1 Results of conventional point load strength index test on porphyritic andesite 97

A2 Results of conventional point load strength index test on

silicified tuffaceous sandstone 98

A3 Results of conventional point load strength index test on

tuffaceous sandstone 99

A4 Results of uniaxial compressive strength tests and elastic

modulus measurement on porphyritic andesite 100

A5 Results of uniaxial compressive strength tests and elastic

modulus measurement on silicified tuffaceous sandstone 100

A6 Results of uniaxial compressive strength tests and elastic

modulus measurement on tuffaceous sandstone 100

A7 Results of Brazilian tensile strength tests on porphyritic andesite 101

A8 Results of Brazilian tensile strength tests on silicified

tuffaceous sandstone 101

A9 Results of Brazilian tensile strength tests on

tuffaceous sandstone 102

A10 Results of triaxial compressive strength tests on porphyritic andesite 102

XII

LIST OF TABLE (Continued)

Table Page

A11 Results of triaxial compressive strength tests on

silicified tuffaceous Sandstone 102

A12 Results of Brazilian tensile strength tests on

tuffaceous sandstone 103

LIST OF FIGURES

Figure Page

11 Research plan 4

21 Loading system of the conventional point load (CPL) 10

22 Standard loading platen shape for the conventional point

load testing 10

31 The location of rock samples collected area 19

32 Some prepared rock specimens of porphyritic andesite for MPL Tests 21

33 The concept of specimen preparation for MPL testing 21

41 Pre-test samples of porphyritic andesite for UCS test 25

42 Pre-test samples of tuffaceous sandstone for UCS test 25

43 Pre-test samples of silicified tuffaceous sandstone for UCS test 26

44 Preparation of testing apparatus of porphyritic andesite for UCS test 26

45 Post-test rock samples of porphyritic andesite from UCS test 27

46 Post-test rock samples of tuffaceous sandstone

from UCS test 27

47 Post-test rock samples of tuffaceous sandstone from UCS 28

48 Results of uniaxial compressive strength tests and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted

as a function of axial strains 28

XIV

LIST OF FIGURES (Continued)

Figure Page

49 Results of uniaxial compressive strength tests and elastic

modulus measurements of tuffaceous sandstone (Top)

and silicified tuffaceous sandstone (Bottom) The axial

stresses are plotted as a function of axial strains 29

410 Pre-test samples for triaxial compressive strength test the

top is porphyritic andesite and the bottom is tuffaceous sandstone 32

411 Pre-test sample of silicified tuffaceous sandstone for triaxial

compressive strength test 33

412 Triaxial testing apparatus 33

413 Post-test rock samples from triaxial compressive strength tests

The top is porphyritic andesite and the bottom is tuffaceous sandstone 34

414 Post-test rock samples of silicified tuffaceous sandstone from

triaxial compressive strength test 35

415 Mohr-Coulomb diagram for porphyritic andesite 37

416 Mohr-Coulomb diagram for tuffaceous sandstone 37

417 Mohr-Coulomb diagram for silicified tuffaceous sandstone 38

418 Pre-test samples for Brazilian tensile strength test (a) porphyritic andesite

(b) tuffaceous sandstone and

(c) silicified tuffaceous sandstone 40

419 Brazilian tensile strength test arrangement 41

XV

LIST OF FIGURES (Continued)

Figure Page

420 Post-test specimens (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 42

421 Pre-test samples of porphyritic andesite for conventional point load

strength index test 43

422 Conventional point load strength index test arrangement 43

423 Post-test specimens from conventional point load

strength index tests (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 45

424 Conventional and modified loading points 47

425 MPL testing arrangement 47

426 Post-test specimen the tension-induced crack commonly

found across the specimen and shear cone usually formed

underneath the loading platens 48

427 Example of P-δ curve for porphyritic andesite specimen The ratio

of ∆P∆δ is used to predict the elastic modulus of MPL

specimen (Empl) 56

428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests 62

429 Uniaxial compressive strength predicted for silicified

tuffaceous sandstone from MPL tests 62

XVI

LIST OF FIGURES (Continued)

Figure Page

430 Uniaxial compressive strength predicted for tuffaceous

sandstone from MPL tests 63

431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and

modified point load test 75

432 Comparisons of triaxial compressive strength criterion of

silicified tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 76

433 Comparisons of triaxial compressive strength criterion of

tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 77

51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm 80

52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm 80

53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm 81

54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm 81

55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm 82

LIST OF SYMBOLS AND ABBREVIATIONS

A = Original cross-section Area

c = cohesive strength

CP = Conventional Point Load

D = Diameter of Rock Specimen

D = Diameter of Loading Point

De = Equivalent Diameter

E = Youngrsquos Modulus

Empl = Elastic Modulus by MPL Test

Et = Tangent Elastic Modulus

IS = Point Load Strength Index

L = Original Specimen Length

LD = Length-to-Diameter Ratio

MPL = Modified Point Load

Pf = Failure Load

Pmpl = Modified Point Load Strength

t = Specimen Thickness

α = Coefficient of Stress

αE = Displacement Function

β = Coefficient of the Shape

∆L = Axial Deformation

XVIII

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

∆P = Change in Applied Stress

∆δ = Change in Vertical of Point Load Platens

εaxial = Axial Strain

ν = Poissonrsquos Ratio

ρ = Rock Density

σ = Normal Stress

σ1 = Maximum Principal Stress (Vertical Stress)

σ3 = Minimum Principal Stress (Horizontal Stress)

σB = Brazilian Tensile Stress

σc = Uniaxial Compressive Strength (UCS)

σm = Mean Stress

τ = Shear Stress

τoct = Octahedral Shear Stress

φi = angle of Internal friction

CHAPTER I

INTRODUCTION

11 Background and rationale

In geological exploration mechanical rock properties are one of the most

important parameters that will be used in the analysis and design of engineering

structures in rock mass To obtain these properties the rock from the site is extracted

normally by mean of core drilling and then transported the cores to the laboratory

where the mechanical testing can be conducted Laboratory testing machine is

normally huge and can not be transported to the site On site testing of the rocks may

be carried out by some techniques but only on a very limited scale This method is

called for point load strength Index testing However this test provides unreliable

results and lacks theoretical supports Its results may imply to other important

properties (eg compressive and tensile strength) but only based on an empirical

formula which usually poses a high degree of uncertainty

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strength and elastic modulus of intact rock

specimens in the laboratory (Tepnarong 2001) This method was invented and

patented by Suranaree University of Technology The test apparatus and procedure

are intended to be in expensive and easy compared to the relevant conventional

methods of determining the mechanical properties of intact rock eg those given by

the International Society for Rock Mechanics (ISRM) and the American Society for

2

Testing and Materials (ASTM) In the past much of the MPL testing practices has

been concentrated on circular and disk specimens While it has been claimed that

MPL method is applicable to all rock shapes the test results from irregular lumps of

rock have been rare and hence are not sufficient to confirm that the MPL testing

technique is truly valid or even adequate to determine the basic rock mechanical

properties in the field where rock drilling and cutting devices are not available

12 Research objectives

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine are used as

rock samples A minimum of 150 rock samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone are collected from the site The

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure are used to calculate the elastic modulus and strengths of rocks Uniaxial and

triaxial compression tests Brazilian tension test and conventional point load test are

conducted on the three rock types to obtain data basis for comparing with those from

MPL testing Finite difference analysis is performed to obtain stress distribution

within the MPL samples under different td and Dd ratios The effect of the

irregularity is quantitatively assessed Similarity and discrepancy of the test results

from the MPL method and from the conventional method are examined

Modification of the MPL calculation scheme may be made to enhance its predictive

capability for the mechanical properties of irregular shaped specimens

3

13 Research concept

A modified point load (MPL) testing technique was proposed by Fuenkajorn

and Tepnarong (2001) and Fuenkajorn (2002) The objectives of this testing are to

determine the elastic modulus uniaxial compressive strength and tensile strength of

intact rocks The application of testing apparatus is modified from the loading

platens of the conventional point load (CPL) testing to the cylindrical shapes that

have the circular cross-section while they are half-spherical shapes in CPL

The modes of failure for the MPL specimens are governed by the ratio of

specimen diameter to loading platen diameter (Dd) and the ratio of specimen

thickness to loading platen diameter (td) This research involves using the MPL

results to estimate the triaxial compressive strength of specimens which various Dd

and td ratios and compare to the conventional compressive strength test

14 Research methodology

This research consists of six main tasks literature review sample collection

and preparation laboratory testing finite difference analysis comparison discussions

and conclusions The work plan is illustrated in the Figure 11

141 Literature review

Literature review is carried out to study the state-of-the-art of CPL and MPL

techniques including theories test procedure results analysis and applications The

sources of information are from journals technical reports and conference papers A

summary of literature review is given in this thesis Discussions have been also been

made on the advantages and disadvantages of the testing the validity of the test results

4

Preparation

Literature Review

Sample Collection and Preparation

Theoretical Study

Laboratory Ex

Figure 11 Research methodology

periments

MPL Tests Characterization Tests

Comparisons

Discussions

Laboratory Testing

Various Dd UCS Tests

Various td Brazilian Tension Tests

Triaxial Compressive Strength Tests

CPL Tests

Conclusions

5

when correlating with the uniaxial compressive strength of rocks and on the failure

mechanism the specimens

142 Sample collection and preparation

Rock samples are collected from the north pit-wall of Khao

Moh at Chatree gold mine Three rock types are tested with a minimum of 50

samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable Sample preparation is carried out in the laboratory at Suranaree

University of Technology

143 Theoretical study of the rock failure mechanism

The theoretical work primarily involves numerical analyses on

the MPL specimens under various shapes Failure mechanism of the modified point

load test specimens is analyzed in terms of stress distributions along loaded axis The

finite difference code FLAC is used in the simulation The mathematical solutions

are derived to correlate the MPL strengths of irregular-shaped samples with the

uniaxial and traiaxial compressive strengths tensile strength and elastic modulus of

rock specimens

144 Laboratory testing

Three prepared rock type samples are tested in laboratory

which are divided into two main groups as follows

1441 Characterization tests

The characterization tests include uniaxial compressive

strength tests (ASTM D7012-07) Brazilian tensile strength tests (ASTM D3967

1981) triaxial compressive strength tests (ASTM D7012-07) and conventional point

6

load index tests (ASTM D5731 1995) The characterization testing results are used

in verifications of the proposed MPL concept

1442 Modified point load tests

Three rock types of rock from the north pit-wall of

Khao Moh at Chatree gold mine are used as rock samples A minimum of 150 rock

samples of porphyritic andesite silicified-tuffaceous sandstone and tuffaceous

sandstone are used in the MPL testing The sample thickness-to-loading diameter

ratio (td) is varied from 2 to 3 and the sample diameter-to-loading diameter ratio

(Dd) from 5 to 10 The sample deformation and failure are used to calculate the

elastic modulus and strengths of rocks The MPL testing results are compared with

the standard tests and correlated the relations in terms of mathematic formulas

145 Analysis

Finite difference analysis is performed to obtain stress

distribution within the MPL samples under various shapes with different td and Dd

ratios The effect of the irregularity is quantitatively assessed Similarity and

discrepancy of the test results from the MPL method and from the conventional

method are examined Modification of the MPL calculation scheme may be made to

enhance its predictive capability for the mechanical properties of irregular shaped

specimens

146 Thesis writing and presentation

All aspects of the theoretical and experimental studies

mentioned are documented and incorporated into the thesis The thesis discusses the

validity and potential applications of the results

7

15 Scope and limitations

The scope and limitations of the research include as follows

1 Three rock types of rock from the pit wall of Chatree gold mine are

selected as a prime candidate for use in the experiment

2 The analytical and experimental work assumes linearly elastic

homogeneous and isotropic conditions

3 The effects of loading rate and temperature are not considered All tests

are conducted at room temperature

4 MPL tests are conducted on a minimum of 50 samples

5 The investigation of failure mode is on macroscopic scale Macroscopic

phenomena during failure are not considered

6 The finite difference analysis is made in axis symmetric and assumed

elastic homogeneous and isotropic conditions

7 Comparison of the results from MPL tests and conventional method is

made

16 Thesis contents

The first chapter includes six sections It introduces the thesis by briefly

describing the background and rationale and identifying the research objectives that

are describes in the first and second section The third section describes the proposed

concept of the new testing technique The fourth section describes the research

methodology The fifth section identifies the scope and limitation of the research and

the description of the overview of contents in this thesis are in the sixth section

CHAPTER II

LITERATURE REVIEW

21 Introduction

This chapter summarizes the results of literature review carried out to improve an

understanding of the applications of modified point load testing to predict the strengths and

elastic modulus of the intact rock The topics reviewed here include conventional point

load test modified point load test characterization tests and size effects

22 Conventional point load tests

Conventional point load (CPL) testing is intended as an index test for the strength

classification of rock material It has long been practiced to obtain an indicator of the

uniaxial compressive strength (UCS) of intact rocks The testing equipment (Figure 21)

is essentially a loading system comprising a loading flame hydraulic oil pump ram and

loading platens The geometry of the loading platen is standardized (Figure 22) having

60 degrees angle of the cone with 5 mm radius of curvature at the cone tip It is made of

hardened steel The CPL test method has been widely employed because the test

procedure and sample preparation are simple quick and inexpensive as compared with

conventional tests as the unconfined compressive strength test Starting with a simple

method to obtain a rock properties index the International Society for Rock Mechanics

(ISRM) commissions on testing methods have issued a recommended procedure for the

point load testing (ISRM 1985) the test has also been established as a standard test

method by the American Society for Testing and Materials in 1995 (ASTM 1995)

9

Although the point load test has been studied extensively (eg Broch and Franklin

1972 Bieniawski 1974 and 1975 Wijk 1980 Brook 1985) the theoretical solutions

for the test result remain rare Several attempts have been made to truly understand

the failure mechanism and the impact of the specimen size on the point load strength

results It is commonly agreed that tensile failure is induced along the axis between

loading points (Evans 1961 Hiramutsu 1976 Wijk 1978 1980) The most

commonly accepted formula relating the CPL index and the UCS is proposed by

Broch and Franklin (1972) The UCS (or σc) can be estimated as about 24 times of

the point load strength index (Is) of rock specimens with the diameter-to-length ratio

of 05 The IS value should also be corrected to a value equivalent to the specimen

diameter of 50 mm The factor of 24 can sometimes load to an error in the prediction

of the UCS Most previous studied have been done experimentally but rare

theoretical attempt has been made to study the validity of Broch and Franklin

formula

The CPL testing has been performed using a variety of sizes and shapes of

rock specimen (Wijk 1980 Foster 1983 Panek and Fannon 1992 Chau and Wong

1996 Butenuth 1997) This is to determine the most suitable specimen sizes These

investigations have proposed empirical relations between the IS and σc to be

universally applicable to various rock types However some uncertainly of these

relations remains

Panek and Fannon (1992) show the results of the CPL tests UCS tests and

Brazilian tension tests that are performed on three hard rocks (iron-formation

metadiabase and ophitic basalt) The CPL strength is analyzed in terms of the

10

Figure 21 Loading system of the conventional point load (CPL) (Tepnarong 2001)

Figure 22 Standard loading platen shape for the conventional point load testing

(ISRM suggested method and ASTM D5731-95)

11

size and shape effects More than 500 an irregular lumps were tested in the field

The shape effect exponents for compression have been found to be varied with rock

types The shape effect exponents in CPL tests are constant for the three rocks

Panek and Fannon (1992) recommended that the monitoring of the compressive and

tensile strengths should have various sizes and shapes of specimen to obtain the

certain properties

Chau and Wong (1996) study analytically the conversion factor relating

between σc and IS A wide range of the ratios of the uniaxial compressive strength to

the point load index has been observed among various rock types It has been found

that the uniaxial compressive strength of rocks can vary from 62 (Nevada test site

tuff) to 105 (Flaming Gorge shale) times the IS depending on rock type The

conversion factor relating σc to be Is depends on compressive and tensile strengths

the Poissonrsquos ratio and the length and diameter of specimen The conversion factor

of 24 (Broch and Franklin 1972) falls within this range but it is no by meaning

universal

23 Modified point load tests

Tepnarong (2001) proposed a modified point load testing method to correlate

the results with the uniaxial compressive strength (UCS) and tensile strength of intact

rocks The primary objective of the research is to develop the inexpensive and

reliable rock testing method for use in field and laboratory The test apparatus is

similar to the conventional point load (CPL) except that the loading points are cut

flat to have a circular cross-section area instead of using a half-spherical shape To

derive a new solution finite element analyses and laboratory experiments were

12

carried out The simulation results suggested that the applied stress required failing

the MPL specimen increased logarithmically as the specimen thickness or diameter

increased The MPL tests CPL tests UCS tests and Brazilian tension tests were

performed on Saraburi marble under a variety of sizes and shapes The UCS test

results indicated that the strengths decreased with increased the length-to-diameter

ratio The test results can be postulated that the MPL strength can be correlated with

the compressive strength when the MPL specimens are relatively thin and should be

an indicator of the tensile strength when the specimens are significantly larger than

the diameter of the loading points Predictive capability of the MPL and CPL

techniques were assessed Extrapolation of the test results suggested that the MPL

results predicted the UCS of the rock specimens better than the CPL testing The

tensile strength predicted by the MPL also agreed reasonably well with the Brazilian

tensile strength of the rock

Tepnarong (2006) proposed the modified point load testing technique to

determine the elastic modulus and triaxial compressive strength of intact rocks The

loading platens are made of harden steel and have diameter (d) varying from 5 10

15 20 25 to 30 mm The rock specimens tested were marble basalt sandstone

granite and rock salt Basic characterization tests were first performed to obtain

elastic and strength properties of the rock specimen under standard testing methods

(ASTM) The MPL specimens were prepared to have nominal diameters (D) ranging

from 38 mm to 100 mm with thickness varying from 18 mm to 63 mm Testing on

these circular disk specimens was a precursory step to the application on irregular-

shaped specimens The load was applied along the specimen axis while monitoring

the increased of the load and vertical displacement until failure Finite element

13

analyses were performed to determine the stress and deformation of the MPL

specimens under various Dd and td ratios The numerical results were also used to

develop the relationship between the load increases (∆P) and the rock deformation

(∆δ) between the loading platens The MPL testing predicts the intact rock elastic

modulus (Empl) by using an equation Empl = (tαE) (∆P∆δ) where t represents the

specimen thickness and αE is the displacement function derived from numerical

simulation The elastic modulus predicted by MPL testing agrees reasonably well

with those obtained from the standard uniaxial compressive tests The predicted Empl

values show significantly high standard deviation caused by high intrinsic variability

of the rock fabric This effect is enhanced by the small size of the loading area of the

MPL specimens as compared to the specimen size used in standard test methods

The results of the numerical simulation were used to determine the minimum

principal stress (σ3) at failure corresponding to the maximum applied principal stress

(σ1) A simple relation can therefore be developed between σ1 σ3 ratio Poissonrsquos ratio

(ν) and diameter ratio (Dd) to estimate the triaxial compressive strengths of the rock

specimens σ1 σ3 = 2[(ν(1-ν))(1-(dD)2)]-1 The MPL test results from specimens with

various Dd ratios can provide σ1 and σ3 at failure by assuming that ν = 025 and that

failure mode follows Coulomb criterion The MPL predicted triaxial strengths agree

very well with the triaxial strength obtained from the standard triaxial testing (ASTM)

The discrepancy is about 2-3 which may be due to the assumed Poissonrsquos ratio of 25

and due to the assumption used in the determination of σ3 at failure In summary even

through slight discrepancies remain in the application of MPL results to determine the

elastic modulus and triaxial compressive strength of intact rocks this approach of

14

predicting the rock properties shows a good potential and seems promising considering

the low cost of testing technique and ease of sample preparation

24 Characterization tests

241 Uniaxial compressive strength tests

The uniaxial compressive strength test is the most common laboratory

test undertaken for rock mechanics studies In 1972 the International Society of Rock

Mechanics (ISRM) published a suggested method for performing UCS tests (Brown

1981) Bieniawski and Bernede (1979) proposed the procedures in American Society

for Testing and Materials (ASTM) designation D2938

The tests are also the most used tests for estimating the elastic

modulus of rock (ASTM D7012) The axial strain can be measured with strain gages

mounted on the specimen or with the Linear Variable Differential Tranformers

(LVDTs) attached parallel to the length of the specimen The lateral strain can be

measured using strain gages around the circumference or using the LVDTs across

the specimen diameter

The UCS (σc) is expressed as the ratio of the peak load (P) to the

initial cross-section area (A)

σc= PA (21)

And the Youngrsquos modulus (E) can be calculated by

E= ΔσΔε (22)

Where Δσ is the change in stress and Δε is the change in strain

15

The ratio of lateral strain and axial strain magnitudes (εlatεax) determines the value of

Poissonrsquo ratio (ν)

ν = - (εlatεax) (23)

242 Triaxial compressive strength tests

Hoek and Brown (1980b) and Elliott and Brown (1986) used the

triaxaial compressive strength tests to gain an understanding of rock behavior under a

three-dimensions state of stress and to verify and even validate mathematical

expressions that have been derived to represent rock behavior in analytical and

numerical models

The common procedures are described in ASTM designation D7012 to

determine the triaxial strengths and D7012 to determine the elastic moduli and in

ISRM suggested methods (Brown 1981)

The axial strain can be measured with strain gages mounted on the

specimen or with the LVTDs attached parallel to the length of the specimen The

lateral strain can be measured using strain gages around the circumstance within the

jacket rubber

At the peak load the stress conditions are σ1 = PA σ3=p where P is

the maximum load parallel to the cylinder axis A is the initial cross-section area and

p is the pressure in the confining medium

The Youngrsquos modulus (E) and Poissonrsquos ratio (ν) can be calculated by

E = Δ(σ1-σ3)Δ εax (24)

and

16

ν = (slope of axial curve) (slope of lateral curve) (25)

where Δ(σ1-σ3) is the change in differential stress and Δ εax is the change in axial strain

243 Brazilian tensile strength tests

Caneiro (1974) and Akazawa (1953) proposed the Brazilian tensile

strength test of intact rocks Specifications of Brazilian tensile strength test have been

established by ASTM D3967 and suggested approach is provided by ISRM (Brown 1981)

Jaeger and Cook (1979) proposed the equation for calculate the

Brazilian tensile strength as

σB = (2P) ( πDt) (26)

where P is the failure load D is the disk diameter and t is the disk thickness

25 Size effects on compressive strength

The uniaxial compressive strength normally tested on cylindrical-shaped

specimens The length-to-diameter (LD) ratio of the specimen influences the

measured strength Typically the strength decreases with increasing the LD ratio

but it tends to become constant or ratios in the order of 21 to 31 (Hudson et al 1971

Obert and Duvall 1967) For higher ratios the specimen strength may be influenced

by bulking

The size of specimen may influence the strength of rock Weibull (1951)

proposed that a large specimen contains more flaws than a small one The large

specimen therefore also has flaws with critical orientation relative to the applied

shear stresses than the small specimen A large specimen with a given shape is

17

therefore likely to fail and exhibit lower strength than a small specimen with the same

shape (Bieniawski 1968 Jaeker and Cook 1979 Kaczynski 1986)

Tepnarong (2001) investigated the results of uniaxial compressive strength

test on Saraburi marble and found that the strengths decrease with increase the

length-to-diameter (LD) ratio And this relationship can be described by the power

law The size effects on uniaxial compressive strength are obscured by the intrinsic

variability of the marble The Brazilian tensile strengths also decreased as the

specimen diameter increased

CHAPTER III

SAMPLE COLLECTION AND PREAPATION

This chapter describes the sample collection and sample preparation

procedure to be used in the characterization and modified point load testing The

rock types to be used including porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone Locations of sample collection rock description are

described

31 Sample collection

Three rock types include porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone collected from Chatree Gold Mine Akara Mining Company

Limited Phichit Thailand are used in this research The rock samples are collected

from the north pit-wall of Khao Moh Three rock types are tested with a minimum of

50 samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable The collected location is shown in Figure 31

32 Rock descriptions

Three rock types are used in this research there are porphyritic andesite

silicified tuffaceous sandstone and tuffaceous sandstone Tuffaceous sandstone is

medium brownish grey the clasts are andesite rhyolite andesitic tuff and quartz

fragments and sub-rounded to sub-angular matrix sand andesitic tuff rock fragment

19

19

Figure 31 The location of rock samples collected area

lt 10 quartz 3 pyrite and litho-facies massive ungraded clast supported

moderately sorted Silicified tuffaceous sandstone is medium brown clasts are fine to

medium sand and silt sub-rounded shape quartz rich with siliceous matrix massive

non-graded well sorted moderately Silicified Porphyritic andesite is grayish green

medium-coarse euhedral evenly distributed phenocrysts are abundant most

conspicuous are hornblende phenocrysts fine-grained groundmass Those samples

are collected from Chatree Gold Mine Akara mining Co Ltd Phichit Thailand

20

33 Sample preparation

Sample preparation has been carried out to obtain different sizes and shapes

for testing It is conducted in the laboratory facility at Suranaree University of

Technology For characterization testing the process includes coring and grinding

Preparation of rock samples for characterization test follows the ASTM standard

(ASTM D4543-85) The nominal sizes of specimen that following the ASTM

standard practices for the characterization tests are shown in table 31 And grinding

surface at the top and bottom of specimens at the position of loading platens for

unsure that the loading platens are attach to the specimen surfaces and perpendicular

each others as shown in Figure 32 The shapes of specimens are irregularity-shaped

The ratio of specimen thickness to platen diameter (td) is around 20-30 and the

specimen diameter to platen diameter (Dd) varies from 5 to 10

Table 31 The nominal sizes of specimens following the ASTM standard practices

for the characterization tests

Testing Methods

LD Ratio

Nominal Diameter

(mm)

Nominal Length (mm)

Number of Specimens

1UniaxialCompressive Strength Test and Elastic Modulus Measurement (ASTM D7012)

25 54 135 10

2 Triaxial Compressive Strength Test (ASTM D7012) 20 54 108 10

3 Brazilian Tensile Strength Test (ASTM D3967) 05 54 27 10

4 Point Load Strength Index Test (ASTM D 5731) 10 54 54 10

21

Figure 32 Some prepared rock specimens of porphyritic andesite for MPL Tests

td asymp20 to 30

Figure 33 The concept of specimen preparation for MPL testing

CHAPTER IV

LABORATORY TESTS

Laboratory testing is divided into two main tasks including the

characterization tests and the modified point load tests Three rock types porphyritic

andesite silicified-tuffaceous sandstone and tuffaceous sandstone are used in this

research

41 Literature reviews

411 Displacement function

Tepnarong (2006) proposed a method to compute the vertical

displacement of the loading point as affected by the specimen diameter and thickness

(Dd and td ratios) by used the series of finite element analyses To accomplish this

a displacement function (αE) is introduced as (∆P∆δ)middot(tE) where ∆P is the change in

applied stress ∆δ is the change in vertical displacement of point load platens t is the

specimen thickness and E is elastic modulus of rock specimen The displacement

function is plotted as a function of Dd And found that the αE is dimensionless and

independent of rock elastic modulus αE trend to be independent of Dd when Dd is

beyond 15 The αE is sensitive to ν particularly when υ is between 025 and 05 This

agrees with the assumption that as the Poissonrsquos ratio increases the αE value will

increase because under higher ν the ∆δ will be reduced This is due to the large

confinement resulting from the higher Poissonrsquos ratio Nevertheless most rocks have

Poissonrsquos ratio within a range between 020 and 030 particularly for moderate to

23

hard rocks As a result the Poissonrsquos ratio of 025 will provide a reasonable

prediction of the value of αE values

Figure 51 plots αE or (∆P∆δ)middot(tE) as a function of td for the ratios of Dd ge

10 The displacement function increase as the td increases which can be expressed

by a power equation

αE = (∆P∆δ)middot(tE) = 150 (td)064 (51)

by using the least square fitting The curve fit gives good correlation (R2=0998)

These curves can be used to estimate the elastic modulus of rock from MPL results

By measuring the MPL specimen thickness t and the increment of applied stress (∆P)

and displacement (∆δ)

42 Basic characterization tests

The objectives of the basic characterization tests are to determine the

mechanical properties of each rock type to compare their results with those from the

modified point load tests (MPL) The basic characterization tests include uniaxial

compressive strength (UCS) tests with elastic modulus measurements triaxial

compressive strength tests Brazilian tensile strength tests and conventional point load

strength index tests

421 Uniaxial compressive strength tests and elastic modulus

measurements

The uniaxial compressive strength tests are conducted on the three

rock types Sample preparation and test procedure are followed the ASTM standards

(ASTM D7012) and the ISRM suggested methods (Brown 1981) The core size is

24

54 mm in diameter (NX size) and the ratio of the length to diameter is 25 A total of

10 specimens are tested for each rock type

A constant loading rate of 05 to 10 MPas is applied to the specimens

until failure occurs Tangent elastic modulus is measured at stress level equal to 50

of the uniaxial compressive strength Post-failure characteristics are observed

The uniaxial compressive strength (σc) is calculated by dividing the

maximum load by the original cross-section area of loading platen

σc= pf A (41)

where pf is the maximum failure load and A is the original cross-section area of

loading platen The tangent elastic modulus (Et) is calculated by the following

equation

Et = (Δσaxial) (Δε axial) (42)

And the axial strain can be calculated from

ε axial = ΔLL (43)

where the ΔL is the axial deformation and L is the original length of specimen

The average uniaxial compressive strength and tangent elastic

modulus of each rock types are shown in Tables 41 through 44

25

Figure 41 Pre-test samples of porphyritic andesite for UCS test

Figure 42 Pre-test samples of tuffaceous sandstone for UCS test

26

Figure 43 Pre-test samples of silicified tuffaceous sandstone for UCS test

Figure 44 Preparation of testing apparatus for UCS test

27

Figure 45 Post-test rock samples of porphyritic andesite from UCS test

Figure 46 Post-test rock samples of tuffaceous sandstone from UCS test

28

Figure 47 Post-test rock samples of silicified-tuffaceous sandstone from UCS

0

50

100

150

0 0001 0002 0003 0004 0005Axial Strain

Axi

al S

tres

s (M

Pa)

Andesite04

03

01

05

02

Andesite

Figure 48 Results of uniaxial compressive strength test and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted as

a function of axial strain

29

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Strain

Axi

al S

tres

s (M

Pa)

Pebbly Tuffacious Sandstone

04

03

05

01

02

Tuffaceous Sandstone

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Stain

Axi

al S

tres

s (M

Pa)

Silicified Tuffacious Sandstone

0103

05

0402

Silicified Tuffaceous Sandstone

Figure 49 Results of uniaxial compressive strength test and elastic modulus

measurements of tuffaceous sandstone (top) and silicified tuffaceous

sandstone (bottom) The axial stresses are plotted as a function of axial

strain

30

Table 41 Testing results of porphyritic andesite

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 5366 13486 282 1327 451 And-06-03-UCS-02 5366 13494 283 1106 397 And-02-01-UCS-03 5366 13485 280 1061 470 And-08-03-UCS-04 5366 13417 284 1282 392 And-04-04-UCS-05 5366 13564 285 973 438

Average 1150 plusmn 150 430 34 plusmn

Table 42 Testing results of tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 5366 13810 266 1017 538 TST-01-02-UCS-02 5366 13236 268 1238 545 TST-02-04-UCS-03 5366 13558 264 973 441 TST-06-09-UCS-04 5366 13515 267 1459 475 TST-02-02-UCS-05 5366 13745 263 884 566

Average 1114 plusmn 233 513 53 plusmn

Table 43 Testing results of silicified tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 5366 13309 271 1194 656 SST-07-01-UCS-02 5366 13547 267 930 632 SST-07-03-UCS-03 5366 13095 268 1194 503 SST-02-06-UCS-04 5366 13475 269 1614 661 SST-06-02-UCS-05 5366 13577 270 1106 713

Average 1207 plusmn 252 633 80 plusmn

31

Table 44 Uniaxial compressive strength and tangent elastic modulus measurement

results of three rock types

Rock Type

Number of Test

Samples

Uniaxial Compressive Strength σc (MPa)

Tangential Elastic Modulus

Et (GPa)

Porphyritic andesite 50 1150plusmn150 430plusmn34 Silicified-tuffaceous sandstone 50 1207plusmn252 633plusmn80

Tuffaceous sandstone 50 1114plusmn233 513plusmn53

422 Triaxial compressive strength tests

The objective of the triaxial compressive strength test is to determine

the compressive strength of rock specimens under various confining pressures The

sample preparation and test procedure are followed the ASTM standard (ASTM

D7012-07) and the ISRM suggested method (Brown 1981) A total of 16 rock

specimens are tested under various confining pressures 6 specimens of porphyritic

andesite 5 specimens of silicified-tuffaceous sandstone and 5 specimens of

tuffaceous sandstone The applied load onto the specimens is at constant rate until

failure occurred within 5 to 10 minutes of loading under each confining pressure

The constant confining pressures used in this experiment are ranged from 0345 067

138 276 and 414 MPa (50 100 200 400 and 600 psi) in andesite 0345 069

276 414 and 552 MPa (50 100 400 600 and 800 psi) in silicified-tuffaceous

sandstone and 0345 069 138 207 and 276 MPa (50 100 200 300 and 400 psi)

in pebbly tuffaceous sandstone Post-failure characteristics are observed

32

Figure 410 Pre-test samples for triaxial compressive strength test the top is

porphyritic andesite and the bottom is tuffaceous sandstone

33

Figure 411 Pre-test samples of silicified tuffaceous sandstone for triaxial

compressive strength test

Hook cell

Figure 412 Triaxial testing apparatus

34

Figure 413 Post-test rock samples from triaxial compressive strength tests The top

is porphyritic andesite and the bottom is tuffaceous sandstone

35

Figure 414 Post-test rock samples of silicified tuffaceous sandstone from triaxial

compressive strength test

Table 45 Triaxial compressive strength testing results of porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

And-04-02-TR-01 10803 5366 285 04 1459 And-06-04-TR-03 10806 5366 284 07 1526 And-06-02-TR-02 10806 5366 283 14 1636 And-08-01-TR-04 10665 5366 284 28 2034 And-08-02-TR-05 10948 5366 283 41 2520

Table 46 Triaxial compressive strength testing results of tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

TST-01-01-TR-04 10989 5366 266 04 1061 TST 02-01-TR-01 10852 5366 262 07 1238 TST-06-01-TR-02 10889 5366 264 138 1415 TST-06-03-TR-03 10755 5366 264 201 1813 TST-06-08-TR-05 11025 5366 267 28 2056

36

Table 47 Triaxial compressive strength testing results of silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

SST-05-01-TR-01 10875 5366 266 04 1305 SST-07-02-TR-02 10790 5366 266 14 1371 SST-01-04-TR-03 11022 5366 267 28 1592 SST-01-03-TR-04 10713 5366 267 41 1901 SST-01-01-TR-05 10530 5366 265 55 2255

The results of triaxial tests are shown in Table 42 Figures 413 and 414

show the shear failure by triaxial loading at various confining pressures (σ3) for the

three rock types The relationship between σ1 and σ3 can be represented by the

Coulomb criterion (Hoek 1990)

τ = c + σ tan φi (44)

where τ is the shear stress c is the cohesion σ is the normal stress and φi is the

internal friction angle The parameters c and φi are determined by Mohr-Coulomb

diagram as shown in Figures 415 through 417

37

φi =54˚ Andesite

Figure 415 Mohr-Coulomb diagram for andesite

φi = 55˚

Tuffaceous Sandstone

Figure 416 Mohr-Coulomb diagram for pebbly tuffaceous sandstone

38

Silicified tuffaceous sandstone

φi = 49˚

Figure 417 Mohr-Coulomb diagram for silicified tuffaceous sandstone

Table 48 Results of triaxial compressive strength tests on three rock types

Rock Type

Number of

Samples

Average Density (gcc)

Cohesion c (MPa)

Internal Friction Angle φi (degrees)

Porphyritic Andesite 5 283 33 54

Tuffaceous Sandstone 5 265 28 55 Silicified Tuffaceous Sandstone 5 267 36 49

423 Brazilian Tensile Strength Tests

The objectives of the Brazilian tensile strength test are to determine

the tensile strength of rock The Brazilian tensile strength tests are performed on all

rock types Sample preparation and test procedure are followed the ASTM standard

(ASTM D3967-81) and the

39

ISRM suggested method (Brown 1981) Ten specimens for each rock

type have been tested The specimens have the diameter of 55 mm with 25 mm thick

The Brazilian tensile strength of rock can be calculated by the following

equation (Jaeger and Cook 1979)

σB = (2pf) (πDt) (45)

where σB is the Brazilian tensile strength pf is the failure load D is the diameter

of disk specimen and t is the thickness of disk specimen All of specimens failed

along the loading diameter (Figure 420) The results of Brazilian tensile strengths

are shown in Table 49 The tensile strength trends to decrease as the specimen size

(diameter) increase and can be expressed by a power equation (Evans 1961)

σB = A (D)-B (46)

where A and B are constants depending upon the nature of rock

424 Conventional point load index (CPL) tests

The objectives of CPL tests are to determine the point load strength index for

use in the estimation of the compressive strength of the rocks The sample

preparation test procedure and calculation are followed the standard practices

(ASTM D 5731-02) and the ISRM suggested method (Brown 1981) Twenty

specimens of each rock types are tested The length-to-diameter (LD) ratio of the

specimen is constant at 10 The specimen diameter and thickness are maintained

constant at 54 mm (Figure 421) The core specimen is loaded along its axis as

shown in Figure 422 Each specimen is loaded to failure at a constant rate such that

40

(a)

(b)

(c)

Figure 418 Pre-test samples for Brazilian tensile strength test (a) porphyritic

andesite (b) tuffaceous sandstone and (c) silicified tuffaceous

sandstone

41

Figure 419 Brazilian tensile strength test arrangement

Table 49 Results of Brazilian tensile strength tests of three rock types

Rock Type

Average Diameter

(mm)

Average Length (mm)

Average Density (gcc)

Number of

Samples

Brazilian Tensile

Strength σB (MPa)

Porphyritic andesite 5366 2672 283 10 170plusmn16

Tuffaceous sandstone 5366 2737 265 10 131plusmn33

Silicified tuffaceous sandstone

5366 2670 267 10 191plusmn32

42

(a)

(b)

(c)

Figure 420 Post-test specimens (a) porphyritic andesite (b) tuffaceous sandstone

and (c) silicified tuffaceous sandstone

43

Figure 421 Pre-test samples of porphyritic andesite for conventional point load

strength index test

Figure 422 Conventional point load strength index test arrangement

44

failures occur within 5-10 minutes Post-failure characteristics are observed

The point load strength index for axial loading (Is) is calculated by the

equation

Is = pf De2 (47)

where pf is the load at failure De is the equivalent core diameter (for axial loading

De2 = 4Aπ and A=WD) A is the minimum cross-sectional area of a plane through

the platen contact points W is the specimen width (thickness of core) and D is the

specimen diameter The post-test specimens are shown in Figure 423

The testing results of all three rock types are shown in Table 410 The

point load strength index of andesite pebbly tuffaceous sandstone and silicified

tuffaceous sandstone are average as 81 plusmn 12 102 plusmn 20 and 108 plusmn 22 MPa

Table 410 Results of conventional point load strength index tests of three rock types

Rock Types Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index

Is (MPa) Porphyritic Andesite 5493 5366 283 81plusmn12 Tuffaceous Sandstone 5545 5366 265 102plusmn20 Silicified Tuffaceous Sandstone 5491 5366 268 108plusmn22

45

Figure 423 Post-Test rock specimens from conventional point load strength index

tests (a) porphyritic andesite (b) tuffaceous sandstone and (c)

silicified tuffaceous sandstone

46

43 Modified point load (MPL) tests

The objectives of the modified point load (MPL) tests are to measure the

strength of rock between the loading points and to produce failure stress results for

various specimen sizes and shapes The results are complied and evaluated to

determine the mathematical relationship between the strengths and specimen

dimensions which are used to predict the elastic modulus and uniaxial and triaxial

compressive strengths and Brazilian tensile strength of the rocks

The testing apparatus for the proposed MPL testing are similar to those of the

conventional point load (CPL) test except that the loading points are cylindrical

shape and cut flat with the circular cross-sectional area instead of using half-spherical

shape (Tepnarong 2001) The loading platens used in this research are 7 10 and 15

mm in diameter and the thickness-to-loading point diameter ratio (td) of about 25

The specimen diameter-to-loading point diameter is varying from 5 to 100 The load

is applied at the rate of 200 Ns Fifty specimens are prepared and tested for each

rock type The vertical deformations (δ) are monitored One cycle of unloading and

reloading is made at about 40 failure load Then the load is increased to failure

The MPL strength (PMPL) is calculated by

PMPL = pf ((π4)(d2)) (48)

where pf is the applied load at failure and d is the diameter of loading point Figure

26 shows the example of post-test specimen shear cone are usually formed

underneath the loading points and two or three tension-induced cracks are commonly

found across the specimens

47

The MPL testing method is divided into 4 schemes based on its objective

elastic modulus uniaxial and triaxial compressive strengths and Brazilian tensile

strength determination

Figure 424 Conventional and modified loading points(Tepnarong 2006)

Figure 425 MPL testing arrangement

48

Tension-induced crack Shear cone

Shear cone

Tension-induced crack

Figure 426 Post-test specimen the tension-induced crack commonly found across

the specimen and shear cone usually formed underneath the loading

platens

49

Table 411 Results of modified point load tests on porphyritic andesite

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-01 246 543 280 125 159 And-MPL-02 351 632 370 180 471 And-MPL-03 236 634 150 170 191 And-MPL-04 266 960 250 234 319 And-MPL-05 284 903 370 369 471 And-MPL-06 245 793 280 182 357 And-MPL-07 263 874 260 234 331 And-MPL-08 261 980 210 171 268 And-MPL-09 280 777 270 056 344 And-MPL-10 244 569 280 124 159 And-MPL-11 251 613 650 138 368 And-MPL-12 226 631 600 189 340 And-MPL-13 233 1126 180 151 468 And-MPL-14 279 1203 220 165 572 And-MPL-15 239 503 400 011 227 And-MPL-16 281 474 300 012 170 And-MPL-17 305 861 390 021 497 And-MPL-18 233 653 500 008 283 And-MPL-19 294 1386 380 200 484 And-MPL-20 265 860 410 017 522 And-MPL-21 238 425 550 087 311 And-MPL-22 230 417 450 087 255 And-MPL-23 223 557 500 231 283 And-MPL-24 250 760 550 112 311 And-MPL-25 259 1243 180 585 468 And-MPL-26 303 560 310 143 395 And-MPL-27 273 1640 390 156 497 And-MPL-28 282 906 220 200 280 And-MPL-29 311 934 290 156 369 And-MPL-30 246 1314 250 650 650 And-MPL-31 262 982 200 175 255 And-MPL-32 260 1147 180 156 468 And-MPL-33 240 700 450 101 255 And-MPL-34 304 800 240 135 306 And-MPL-35 250 455 220 127 280 And-MPL-36 243 1697 120 292 312 And-MPL-37 333 1520 310 156 395 And-MPL-38 238 661 170 260 442

50

Table 411 Results of modified point load tests on porphyritic andesite (Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-39 318 347 130 186 338 And-MPL-40 245 551 150 260 390 And-MPL-41 207 561 150 325 390 And-MPL-42 223 425 500 231 283 And-MPL-43 207 561 150 346 390 And-MPL-44 324 340 310 234 395 And-MPL-45 275 426 240 169 306 And-MPL-46 302 397 130 175 166 And-MPL-47 255 314 100 170 127 And-MPL-48 257 220 250 094 142 And-MPL-49 256 214 130 057 74 And-MPL-50 243 166 180 078 102

51

Table 412 Results of modified point load tests on tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-01 270 546 220 212 293 TST -MPL-02 258 787 230 326 293 TST -MPL-03 275 730 200 143 255 TST -MPL-04 282 715 400 143 510 TST -MPL-05 254 1345 220 264 280 TST -MPL-06 292 893 200 143 255 TST -MPL-07 243 853 550 112 311 TST -MPL-08 287 1047 210 319 268 TST -MPL-09 230 787 370 212 471 TST -MPL-10 230 427 260 132 147 TST -MPL-11 282 1243 450 319 573 TST -MPL-12 254 604 200 127 255 TST -MPL-13 288 1180 290 159 369 TST -MPL-14 251 631 410 170 232 TST -MPL-15 214 1104 120 260 312 TST -MPL-16 229 486 380 102 215 TST -MPL-17 259 715 110 650 286 TST -MPL-18 243 285 180 073 102 TST -MPL-19 285 316 130 128 130 TST -MPL-20 241 295 180 170 102 TST -MPL-21 298 417 300 100 170 TST -MPL-22 265 642 300 088 170 TST -MPL-23 314 611 450 101 255 TST -MPL-24 303 481 650 124 368 TST -MPL-25 223 223 260 126 331 TST -MPL-26 273 652 260 178 331 TST -MPL-27 216 887 420 170 535 TST -MPL-28 319 718 290 164 369 TST -MPL-29 231 516 200 128 255 TST -MPL-30 260 641 380 280 484 TST -MPL-31 287 496 330 158 420 TST -MPL-32 264 368 230 170 293 TST -MPL-33 238 415 230 130 293 TST -MPL-34 271 824 140 260 364 TST -MPL-35 283 800 220 325 572 TST -MPL-36 242 1013 180 325 468 TST -MPL-37 254 715 90 217 234 TST -MPL-38 210 755 150 520 390

52

Table 412 Results of modified point load tests on tuffaceous sandstone

(Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-39 293 508 110 260 286 TST -MPL-40 273 410 100 347 260 TST -MPL-41 234 628 80 260 208 TST -MPL-42 259 433 130 260 338 TST -MPL-43 265 546 220 435 280 TST -MPL-44 255 829 260 222 147 TST -MPL-45 254 368 240 315 306 TST -MPL-46 293 695 370 222 210 TST -MPL-47 247 297 180 128 102 TST -MPL-48 310 611 300 237 170 TST -MPL-49 225 337 160 371 416 TST -MPL-50 259 410 120 394 312

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-01 300 782 170 280 442 SST-MPL-02 250 480 220 307 572 SST-MPL-03 314 424 340 356 433 SST-MPL-04 292 809 220 450 572 SST-MPL-05 275 1142 300 532 780 SST -MPL-06 308 490 190 273 494 SST -MPL-07 317 611 280 418 728 SST -MPL-08 233 684 240 414 624 SST -MPL-09 255 480 230 371 598 SST -MPL-10 217 772 120 958 312 SST -MPL-11 312 903 270 400 702 SST -MPL-12 255 1094 150 272 390 SST -MPL-13 286 742 400 408 510 SST -MPL-14 248 615 350 296 198 SST -MPL-15 253 805 210 282 546 SST -MPL-16 243 1094 150 260 390

53

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

(Continued)

Specimen Number td Dd Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-17 234 1090 250 416 650 SST -MPL-18 253 1371 240 473 624 SST -MPL-19 327 434 320 330 408 SST -MPL-20 270 310 390 278 497 SST -MPL-21 269 691 410 185 522 SST -MPL-22 312 504 380 182 484 SST -MPL-23 319 627 260 150 331 SST -MPL-24 281 689 330 295 420 SST -MPL-25 210 720 390 259 497 SST -MPL-26 303 775 370 221 471 SST -MPL-27 272 714 310 274 395 SST -MPL-28 292 855 600 209 764 SST -MPL-29 310 742 400 176 510 SST -MPL-30 284 847 410 158 522 SST -MPL-31 320 891 650 464 828 SST -MPL-32 261 256 400 178 226 SST -MPL-33 224 405 550 131 311 SST -MPL-34 231 379 450 215 255 SST -MPL-35 290 442 1050 190 594 SST -MPL-36 241 521 500 102 283 SST -MPL-37 275 605 600 067 340 SST -MPL-38 263 616 650 127 368 SST -MPL-39 227 615 350 229 198 SST -MPL-40 236 508 550 090 311 SST -MPL-41 318 1142 300 498 780 SST -MPL-42 303 809 210 392 546 SST -MPL-43 228 805 210 244 546 SST -MPL-44 283 1142 300 571 780 SST -MPL-45 277 772 120 780 312 SST -MPL-46 288 1206 280 411 728 SST -MPL-47 250 508 570 309 323 SST -MPL-48 275 442 1050 338 594 SST -MPL-49 272 605 650 254 368 SST -MPL-50 260 805 200 360 520

54

431 Modified point load tests for elastic modulus measurement

The MPL tests are carried out with the measurement of axial

deformation for use in elastic modulus estimation Fifty irregular specimens for each

rock type are tested The specimen thickness-to-loading diameter (td) is about 25

and the specimen diameter -to-loading diameter (Dd) is varied from 25 to 50 Cyclic

loading is performed while monitoring displacement (δ)

The testing apparatus used in this experiment includes the point load

tester model SBEL PLT-75 and the modified point load platens The displacement

digital gages with a precision up to 0001 mm are used to monitor the axial

deformation of rock between the loading points as loading decreases The cyclic

load is applied along the specimen axis and is performed by systematically increasing

and decreasing loads on the test specimen After unloading the axial load is

increased until the failure occurs Cyclic loading is performed on the specimens in

an attempt at determining the elastic deformation The ratio of change of stress to

displacement (∆P∆δ) is measured from unloading curve Post-failure characteristics

are observed and recorded Photographs are taken of the failed specimens

The results of the deformation measurement by MPL tests are shown

in Tables411 through 413 The stresses (P) are plotted as a function of axial

displacement (δ) and shown in Figures B1 through B150 (Appendix B) The results

of ∆P∆δ are used to estimate the elastic modulus of the specimen

The elastic modulus predictions from MPL results can be made by

using the value of αE plotted as a function of Ded for various td ratios as shown in

Figure 427 and the MPL elastic modulus can be expressed as

55

⎟⎠⎞

⎜⎝⎛

ΔΔ

⎟⎟⎠

⎞⎜⎜⎝

⎛=

δαPtE

Empl (Tepnarong 2006) (49)

where Empl is the elastic modulus predicted from MPL results αE is displacement

function value from numerical analysis and ∆P∆δ is the ratio of change of stress to

displacement which is measured from unloading curve of MPL tests and t is the

specimen thickness The value of αE used in the calculation is 260 for td ratio equal

to 25-30 (Tepnarong 2006) The results of elastic modulus predictions from MPL

tests are tabulated in Tables 414 through 416 Table 417 compares the elastic

modulus obtained from standard uniaxial compressive strength test (ASTM D3148-

96) with those predicted by MPL test

The values of Empl for each specimen with P-δ curve are shown in

Appendix B The MPL method under-estimates the elastic modulus of all tested

rocks This is the primarily because the actual loaded area may be smaller than that

used in the calculation due to the roughness of the specimen surfaces As a result the

contact area used to calculate PMPL is larger than the actual In addition the EMPL

tends to show a high intrinsic variation (high standard deviation) This is because the

loading areas of MPL specimens are small This phenomenon conforms by the test

results obtained by Fuenkajorn and Deamen (1992) They conclude that smaller test

specimens not only exhibit a higher strength than larger one (size effect) but also

show a high intrinsic variability due to the heterogeneity of rock fabric particularly at

small sizes This implied that to obtain a good prediction (accurate result) of the rock

elasticity a large amount of MPL specimens are desirable This drawback may be

compensated by the ease of testing and the low cost of sample preparation

56

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (MPa)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure 427 Example of P-δ curve for porphyritic andesite specimen The ratio of

∆P∆δ is used to predict the elastic modulus of MPL specimen (Empl)

57

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-01 246 543 125 260 1776 And-MPL-02 351 632 180 260 2430 And-MPL-03 236 634 170 260 1546 And-MPL-04 266 960 234 260 2390 And-MPL-05 284 903 369 260 4031 And-MPL-06 245 793 182 260 1712 And-MPL-07 263 874 234 260 2367 And-MPL-08 261 980 171 260 1717 And-MPL-09 280 777 056 260 603 And-MPL-10 244 569 124 260 1748 And-MPL-11 251 613 138 260 2001 And-MPL-12 226 631 189 260 2464 And-MPL-13 233 1126 151 260 947 And-MPL-14 279 1203 165 260 1239 And-MPL-15 239 503 011 260 151 And-MPL-16 281 474 012 260 195 And-MPL-17 305 861 021 260 247 And-MPL-18 233 653 008 260 108 And-MPL-19 294 1386 200 260 2263 And-MPL-20 265 860 017 260 173 And-MPL-21 238 425 087 260 1195 And-MPL-22 230 417 087 260 1154 And-MPL-23 223 557 231 260 2976 And-MPL-24 250 760 112 260 1615 And-MPL-25 259 1243 585 260 4073 And-MPL-26 303 560 143 260 1667 And-MPL-27 273 1640 156 260 1639 And-MPL-28 282 906 200 260 2172 And-MPL-29 311 934 156 260 1868 And-MPL-30 246 1314 650 260 4310 And-MPL-31 262 982 175 260 1766 And-MPL-32 260 1147 156 260 1093 And-MPL-33 240 700 101 260 1398 And-MPL-34 304 800 135 260 1576 And-MPL-35 250 455 127 260 1221 And-MPL-36 243 1697 292 260 1909 And-MPL-37 333 1520 156 260 2000 And-MPL-38 238 661 260 260 1665 And-MPL-39 318 347 186 260 1592 And-MPL-40 245 551 260 260 1712

58

And-MPL-41 207 561 325 260 1815

59

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-42 223 425 231 260 2976 And-MPL-43 207 561 346 260 1932 And-MPL-44 324 340 234 260 2912 And-MPL-45 275 426 169 260 1785 And-MPL-46 302 397 175 260 2033 And-MPL-47 255 314 170 260 1667 And-MPL-48 257 220 094 260 1393 And-MPL-49 256 214 057 260 843 And-MPL-50 243 166 078 260 1094 Average 1743 Standard Deviation 910

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-01 300 782 280 260 2262 SST -MPL-02 250 480 307 260 2066 SST -MPL-03 314 424 356 260 4302 SST -MPL-04 292 809 450 260 3533 SST -MPL-05 275 1142 532 260 3939 SST -MPL-06 308 490 273 260 2266 SST -MPL-07 317 611 418 260 3572 SST -MPL-08 233 684 414 260 2595 SST -MPL-09 255 480 371 260 2546 SST -MPL-10 217 772 958 260 5593 SST -MPL-11 312 903 400 260 3360 SST -MPL-12 255 1094 272 260 1864 SST -MPL-13 286 742 408 260 4435 SST -MPL-14 248 615 296 260 4235 SST -MPL-15 253 805 282 260 1918 SST -MPL-16 243 1094 260 260 1698 SST -MPL-17 234 1090 416 260 2621 SST -MPL-18 253 1371 473 260 3224 SST -MPL-19 327 434 330 260 4153 SST -MPL-20 270 310 278 260 2863

60

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-21 269 691 185 260 1914 SST -MPL-22 312 504 182 260 2183 SST -MPL-23 319 627 150 260 1839 SST -MPL-24 281 689 295 260 3193 SST -MPL-25 210 720 259 260 2090 SST -MPL-26 303 775 221 260 2577 SST -MPL-27 272 714 274 260 2862 SST -MPL-28 292 855 209 260 2350 SST -MPL-29 310 742 176 260 2097 SST -MPL-30 284 847 158 260 1728 SST -MPL-31 320 891 464 260 5707 SST -MPL-32 261 256 178 260 2678 SST -MPL-33 224 405 131 260 1690 SST -MPL-34 231 379 215 260 2863 SST -MPL-35 290 442 190 260 3174 SST -MPL-36 241 521 102 260 1416 SST -MPL-37 275 605 067 260 1064 SST -MPL-38 263 616 127 260 1926 SST -MPL-39 227 615 229 260 3005 SST -MPL-40 236 508 090 260 1226 SST -MPL-41 318 1142 498 260 4264 SST -MPL-42 303 809 392 260 3196 SST -MPL-43 228 805 244 260 1500 SST -MPL-44 283 1142 571 260 4348 SST -MPL-45 277 772 780 260 5826 SST -MPL-46 288 1206 411 260 3184 SST -MPL-47 250 508 309 260 4464 SST -MPL-48 275 442 338 260 5364 SST -MPL-49 272 605 254 260 3981 SST -MPL-50 260 805 360 260 2523 Average 2986 Standard Deviation 1190

61

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-01 270 546 212 260 2202 TST -MPL-02 258 787 326 260 3232 TST -MPL-03 275 730 143 260 1513 TST -MPL-04 282 715 143 260 1551 TST -MPL-05 254 1345 264 260 2579 TST -MPL-06 292 893 143 260 1606 TST -MPL-07 243 853 112 260 2273 TST -MPL-08 287 1047 319 260 3521 TST -MPL-09 230 787 212 260 1875 TST -MPL-10 230 427 132 260 1752 TST -MPL-11 282 1243 319 260 3455 TST -MPL-12 254 604 127 260 1241 TST -MPL-13 288 1180 159 260 1764 TST -MPL-14 251 631 170 260 2465 TST -MPL-15 214 1104 260 260 1500 TST -MPL-16 229 486 102 260 1345 TST -MPL-17 259 715 650 260 4530 TST -MPL-18 243 285 073 260 1025 TST -MPL-19 285 316 128 260 2105 TST -MPL-20 241 295 170 260 2360 TST -MPL-21 298 417 100 260 1722 TST -MPL-22 265 642 088 260 896 TST -MPL-23 314 611 101 260 1830 TST -MPL-24 303 481 124 260 2166 TST -MPL-25 223 223 126 260 1083 TST -MPL-26 273 652 178 260 1869 TST -MPL-27 216 887 170 260 2065 TST -MPL-28 319 718 164 260 2011 TST -MPL-29 310 742 128 260 1136 TST -MPL-30 260 641 280 260 2800 TST -MPL-31 287 496 158 260 1742 TST -MPL-32 264 368 170 260 1725 TST -MPL-33 238 415 130 260 1192 TST -MPL-34 271 824 260 260 1942 TST -MPL-35 283 800 325 260 2478 TST -MPL-36 242 1013 325 260 2115 TST -MPL-37 254 715 217 260 1484 TST -MPL-38 210 755 520 260 2944 TST -MPL-39 293 508 260 260 2052 TST -MPL-40 273 410 347 260 2552

62

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-41 234 628 260 260 1638 TST -MPL-42 259 433 260 260 1814 TST -MPL-43 265 546 435 260 4440 TST -MPL-44 255 829 222 260 3265 TST -MPL-45 254 368 315 260 3075 TST -MPL-46 293 695 222 260 2502 TST -MPL-47 247 297 128 260 1827 TST -MPL-48 310 611 237 260 4240 TST -MPL-49 225 337 371 260 2252 TST -MPL-50 259 410 394 260 2746 Average 2190 Standard Deviation 830

Table 417 Comparisons of elastic modulus results obtained from uniaxial

compressive strength tests and those from modified point load tests

Rock Type Tangential Elastic Modulus from UCS

tests Et (GPa)

Elastic Modulus from MPL tests

Empl (GPa) Porphyritic andesite 430plusmn34 174plusmn91

Silicified tuffaceous sandstone 633plusmn80 299plusmn119

tuffaceous sandstone 513plusmn53 219plusmn83

432 Modified point load tests predicting uniaxial compressive strength

The uniaxial compressive strength of MPL specimens can be predicted

by plotting Pmpl as a function of diameter ratio Ded as shown in Figures 428 through

430 At diameter ratio equal to unity the Pmpl represents the uniaxial compressive

strength of rock The uniaxial compressive strength predicted from MPL tests

compared with those from CPL test and UCS standard test is shown in Table 418

63

UCS PREDICTION OF PORPHYRITIC ANDESITE FROM MPL TESTS

Pmpl = 11844(Ded)05489

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ded Ratio

MPL

Stre

ngth

(MPa

)

Figure 428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests

64

UCS PREDICTION OF SILICIFIED TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 11463(Ded)07447

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ded Ratio

MPL

-Str

engt

h (M

Pa)

Figure 429 Uniaxial compressive strength predicted for silicified tuffaceous

sandstone from MPL tests

65

UCS PREDICTION OF TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 10222(Ded)05457

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ded Ratio

MPL

-Stre

ngth

(MPa

)

Figure 430 Uniaxial compressive strength predicted for tuffaceous sandstone from

MPL tests

Table 418 Comparison the test results between UCS CPL Brazilian tensile

strength and MPL tests

Uniaxial Compressive Strength (MPa)

Tensile Strength (MPa) Rock Type UCS

Testing CPL

Prediction MPL

PredictionBrazilian Testing

MPL Prediction

And 1150 1944 plusmn12 1005 170plusmn16 139plusmn43 TST 1114 2448plusmn20 1308 131plusmn33 121plusmn73 SST 1207 2592plusmn22 1022 191plusmn32 171plusmn126

433 Modified Point Load Tests for Tensile Strength Predictions

The MPL results determine the rock tensile strength by using the

relationship of the failure stresses (Pmpl) as a function of specimen thickness to

66

loading diameter ratio (td) The tensile strength from MPL prediction can be

expressed as an empirical equation (Tepnarong 2001)

σt mpl = Pmpl (αT ln (td)+βT) (410)

where αT = 133 ln (Ded)-756 and βT= -70 ln (Ded)+ 1952

The results of tensile strengths of all rock types are shown in Tables

419through 421 The predicted tensile strengths are compared with the Brazilian

tensile strengths for the three rock types in Table 418 A close agreement of the

results obtained between two methods The discrepancies of the results are less than

the standard deviation of the results

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa)

And-MPL-01 246 543 159 1495 767 750 And-MPL-02 351 632 471 1697 661 1688 And-MPL-03 236 634 191 1701 659 900 And-MPL-04 266 960 319 2252 369 1240 And-MPL-05 284 903 471 2170 412 1761 And-MPL-06 245 793 357 1999 502 1558 And-MPL-07 263 874 331 2127 435 1330 And-MPL-08 261 980 268 2279 355 1053 And-MPL-09 280 777 344 1971 517 1351 And-MPL-10 244 569 159 1557 734 746 And-MPL-11 251 613 368 1656 683 1666 And-MPL-12 226 631 340 1695 662 1662 And-MPL-13 233 1126 468 2464 257 2000 And-MPL-14 279 1203 572 2552 211 2022 And-MPL-15 239 503 227 1392 822 1114 And-MPL-16 281 474 170 1314 863 765 And-MPL-17 305 861 497 2108 445 1776 And-MPL-18 233 653 283 1740 638 1340 And-MPL-19 294 1386 484 2741 112 1577 And-MPL-20 265 860 522 2106 446 2091

67

And-MPL-21 238 425 311 1169 939 1595 And-MPL-22 230 417 255 1142 953 1338 And-MPL-23 223 557 283 1529 749 1431 And-MPL-24 250 760 311 1941 532 1347 And-MPL-25 259 1243 468 2596 188 1763 And-MPL-26 303 560 395 1535 746 1613

68

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) And-MPL-27 273 1640 497 2964 -006 1671 And-MPL-28 282 906 280 2252 369 1035 And-MPL-29 311 934 369 2216 388 1272 And-MPL-30 246 1314 650 2670 149 2543 And-MPL-31 262 982 255 2282 353 997 And-MPL-32 260 1147 468 2488 244 1783 And-MPL-33 240 700 255 1832 590 1161 And-MPL-34 304 800 306 2010 496 1121 And-MPL-35 250 455 280 1259 891 1370 And-MPL-36 243 1697 312 3010 -030 1181 And-MPL-37 333 1520 395 2863 047 1130 And-MPL-38 238 661 442 1755 630 2054 And-MPL-39 318 347 338 897 1082 1594 And-MPL-40 245 551 390 1513 758 1847 And-MPL-41 207 561 390 1537 745 2089 And-MPL-42 223 425 283 1169 939 1507 And-MPL-43 207 561 390 1537 745 2089 And-MPL-44 324 340 395 871 1096 1864 And-MPL-45 275 426 306 1172 937 1441 And-MPL-46 302 397 166 1079 986 760 And-MPL-47 255 314 127 766 1151 1159 And-MPL-48 257 220 142 291 1401 845 And-MPL-49 256 214 74 257 1419 443 And-MPL-50 243 166 102 -078 1595 928 Average 1427 Standard Deviation 44

69

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) SST -MPL-01 300 782 442 1336 851 2018 SST -MPL-02 250 480 572 1331 853 2759 SST -MPL-03 314 424 433 1196 924 1888 SST -MPL-04 292 809 572 2024 489 2155 SST -MPL-05 275 1142 780 2483 247 2827 SST -MPL-06 308 490 494 1357 840 2086 SST -MPL-07 317 611 728 1651 685 2808 SST -MPL-08 233 684 624 1800 606 2932 SST -MPL-09 255 480 598 1331 853 2849 SST -MPL-10 217 772 312 1962 522 1529 SST -MPL-11 312 903 702 2170 412 2436 SST -MPL-12 255 1094 390 2426 277 1533 SST -MPL-13 286 742 510 1910 549 2011 SST -MPL-14 248 615 198 1661 680 905 SST -MPL-15 253 805 546 2017 492 2312 SST -MPL-16 243 1094 390 2426 277 1607 SST -MPL-17 234 1090 650 2421 280 2780 SST -MPL-18 253 1371 624 2726 120 2354 SST -MPL-19 327 434 408 1196 924 1740 SST -MPL-20 270 310 497 748 1160 2618 SST -MPL-21 269 691 522 1816 599 2181 SST -MPL-22 312 504 484 1394 821 2012 SST -MPL-23 319 627 331 1686 667 1263 SST -MPL-24 281 689 420 1812 601 1699 SST -MPL-25 210 720 497 1869 570 2541 SST -MPL-26 303 775 471 1968 519 1745 SST -MPL-27 272 714 395 1859 576 1623 SST -MPL-28 292 855 764 2098 450 2830 SST -MPL-29 310 742 510 1910 549 1881 SST -MPL-30 284 847 522 2087 456 1981 SST -MPL-31 320 891 828 2153 421 2832 SST -MPL-32 261 256 226 492 1295 1282 SST -MPL-33 224 405 311 1106 972 1672 SST -MPL-34 231 379 255 1017 1019 1363 SST -MPL-35 290 442 594 1221 912 2690 SST -MPL-36 241 521 283 1439 797 1374 SST -MPL-37 275 605 340 1639 692 1445 SST -MPL-38 263 616 368 1661 680 1611

70

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded Pmpl (MPa)

αT βT σt mpl (MPa)

SST -MPL-39 227 615 198 1661 680 969 SST -MPL-40 236 508 311 1406 814 1540 SST -MPL-41 318 1142 780 2483 247 2500 SST -MPL-42 303 809 546 2024 489 1999 SST -MPL-43 228 805 546 2017 492 2530 SST -MPL-44 283 1142 780 2483 247 2757 SST -MPL-45 277 772 312 1962 522 1236 SST -MPL-46 288 1206 728 2555 209 2502 SST -MPL-47 250 508 323 1406 814 1533 SST -MPL-48 275 442 594 1221 912 2769 SST -MPL-49 272 605 368 1639 692 1580 SST -MPL-50 260 805 520 2017 492 2147 Average 2045 Standard Deviation 56

71

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-01 270 546 293 1502 763 1299 TST -MPL-02 258 787 293 1988 508 1226 TST -MPL-03 275 730 255 1888 560 1031 TST -MPL-04 282 715 510 1860 575 2035 TST -MPL-05 254 1345 280 2701 133 1058 TST -MPL-06 292 893 255 2156 420 933 TST -MPL-07 243 853 311 2095 451 1346 TST -MPL-08 287 1047 268 2279 355 970 TST -MPL-09 230 787 471 1988 508 2179 TST -MPL-10 230 427 147 1176 935 769 TST -MPL-11 282 1243 573 2596 188 1994 TST -MPL-12 254 604 255 1636 693 1149 TST -MPL-13 288 1180 369 2527 224 1274 TST -MPL-14 251 631 232 1695 662 1044 TST -MPL-15 214 1104 312 2438 271 1465 TST -MPL-16 229 486 215 1347 845 1098 TST -MPL-17 259 715 286 1861 575 1220 TST -MPL-18 243 285 102 637 1219 571 TST -MPL-19 285 316 130 776 1146 665 TST -MPL-20 241 295 102 685 1194 568 TST -MPL-21 298 417 170 1143 952 771 TST -MPL-22 265 642 170 1178 934 1059 TST -MPL-23 314 611 255 1652 685 989 TST -MPL-24 303 481 368 1423 805 1545 TST -MPL-25 223 223 331 313 1389 2018 TST -MPL-26 273 652 331 1738 640 1389 TST -MPL-27 216 887 535 2146 424 1850 TST -MPL-28 319 718 369 1866 572 1350 TST -MPL-29 231 516 255 1425 804 1276 TST -MPL-30 260 641 484 1715 651 2114 TST -MPL-31 287 496 420 1373 832 1846 TST -MPL-32 264 368 293 976 1041 1475 TST -MPL-33 238 415 293 1151 948 1504 TST -MPL-34 271 824 364 2049 476 1418 TST -MPL-35 283 800 572 2010 496 2210 TST -MPL-36 242 1013 468 2324 331 1965 TST -MPL-37 254 715 234 1861 575 1013 TST -MPL-38 210 755 390 1932 537 1976

72

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-39 293 508 286 1406 814 1229 TST -MPL-40 273 410 260 1124 963 1243 TST -MPL-41 234 628 208 1688 666 990 TST -MPL-42 259 433 338 1194 926 1639 TST -MPL-43 265 546 280 1502 763 1257 TST -MPL-44 255 829 147 2057 472 614 TST -MPL-45 254 368 306 976 1041 1568 TST -MPL-46 293 695 210 1822 595 1846 TST -MPL-47 247 297 102 691 1190 561 TST -MPL-48 310 611 170 1652 685 665 TST -MPL-49 225 337 416 1939 533 1972 TST -MPL-50 259 410 312 1120 965 1537 Average 1336 Standard Deviation 56

434 Modified point load tests for triaxial compressive strength predictions

The objective of this section is to predict the triaxial compressive strength

of intact rock specimens by using the MPL results (modified point load strength Pmpl) It

is speculated that increase of applied load (σ1) will invoke a confining pressure (σ3) on

the imaginary cylindrical profile between the two loading points This is due to the

effect of Poissonrsquos ratio (ν) which causing a potential expansion of rock in this cylinder

The greater the σ1 the greater the σ3 in addition Poissonrsquos ratios also affect the

magnitude of σ3 The magnitude of σ3 also depends on the specimen shape particularly

the Ded ratio In principle σ3 will equal zero for Ded ratio equal to unity But when

Ded ratio is very large approaching infinity σ3 will reach its maximum This maximum

value of σ3 will also depend on the rock Poissonrsquos ratio From computer simulation of

td =25 the variation of σ1 σ3 ratio can be simply expressed by Tepnarong (2006) as

73

(σ1 σ3) = 2 ((ν (1ndashν) (1-(dDe) 2)) (411)

where ν is the Poissonrsquos ratio of rock specimen d is the modified point load diameter

and De is the equivalent diameter of the specimen The Poissonrsquos ratio of rock

specimen used in equation 411 can be assumed to be 25 The σ1 σ3 ratio tends to be

independent of Ded for Ded greater than 10 This implies that when MPL specimen

diameter is more than 10 times of the loading point diameter the magnitude of σ3 is

approaching its maximum value (Tepnarong 2006)

It should be pointed out that approach used here to determine σ3

assumes that there is no shear stress (τrz) along the imagination cylinder As a result

the magnitude of σ3 determined here would be higher than the actual σ3 applied in the

true triaxial test specimen This mean that the σ1 σ3 ratios at failure obtained from

MPL tests will be lower than the actual failure stress ratio from the true triaxial tests

From the concept of σ1 σ3-Ded relation proposed the major and

minor principal stresses at failure (σ1 σ3) can be predicted from the measured MPL

failure stress Pmpl and Ded ratio The Poissonrsquos ratio used here is equal to 025

Comparison between the failure stress (σ1 σ3) obtained from the

standard triaxial compressive strength testing (ASTM D7012-07) and those predicted

from MPL test results are made graphically in Figures 431 through 433 for ν =025

The figures are plotted the maximum shear stress (frac12(σ1-σ3)) as a function of mean

shear stress (frac12(σ1+σ3)) indicating that the predicted failure stresses under-estimate

the value obtained from the standard testing This is because of the assumption of no

shear stresses developed on the surface of the imaginary cylinder The under

prediction may be due to the intrinsic variability of the rocks The predictions are

also sensitive to assumed Poissonrsquos ratio The Poissonrsquos ratio of the tested specimens

74

may be lower than the assumed value of 025 This comparison implies that the

triaxial strength predicted from MPL test will be more conservative than those from

the standard testing method

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests

Specimen Number

td Ded σ1

(MPa)σ3

(MPa)Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-01 246 543 159 2527 6663 9190 And-MPL-02 351 632 471 7583 19776 27358 And-MPL-03 236 634 191 3075 8017 11091 And-MPL-04 266 960 319 5198 13325 18522 And-MPL-05 284 903 471 7682 19726 27408 And-MPL-06 245 793 357 5792 14938 20730 And-MPL-07 263 874 331 5393 13864 19257 And-MPL-08 261 980 268 4368 11192 15560 And-MPL-09 280 777 344 5581 14407 19988 And-MPL-10 244 569 159 2535 6659 9194 And-MPL-11 251 613 368 5911 15445 21356 And-MPL-12 226 631 340 5465 14253 19717 And-MPL-13 233 1126 468 7660 19568 27228 And-MPL-14 279 1203 572 9372 23911 33283 And-MPL-15 239 503 227 3589 9529 13118 And-MPL-16 281 474 170 2678 7154 9831 And-MPL-17 305 861 497 8087 20797 28884 And-MPL-18 233 653 283 4561 11874 16435 And-MPL-19 294 1386 484 7946 20231 28177 And-MPL-20 265 860 522 8501 21864 30365 And-MPL-21 238 425 311 4854 13143 17997 And-MPL-22 230 417 255 3962 10758 14720 And-MPL-23 223 557 283 4521 11894 16415 And-MPL-24 250 760 311 5049 13045 18094 And-MPL-25 259 1243 468 7671 19562 27234 And-MPL-26 303 560 395 6308 16591 22899 And-MPL-27 273 1640 497 8167 20757 28924 And-MPL-28 282 906 280 4574 11726 16300 And-MPL-29 311 934 369 6026 15459 21484 And-MPL-30 246 1314 650 1066 27166 37828 And-MPL-31 262 982 255 4160 10659 14819 And-MPL-32 260 1147 468 7663 19567 27229

75

And-MPL-33 240 700 255 4118 10680 14798 And-MPL-34 304 800 306 4966 12804 17770

76

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-35 250 455 280 4401 11812 16213 And-MPL-36 243 1697 312 5130 13034 18163 And-MPL-37 333 1520 395 6488 16501 22989 And-MPL-38 238 661 442 7125 18535 25661 And-MPL-39 318 347 338 5112 14342 19455 And-MPL-40 245 551 390 6222 16387 22609 And-MPL-41 207 561 390 6230 16383 22613 And-MPL-42 223 425 283 4413 11948 16361 And-MPL-43 207 561 390 6230 16383 22613 And-MPL-44 324 340 395 5952 16769 22721 And-MPL-45 275 426 306 4767 12903 17670 And-MPL-46 302 397 166 2559 7001 9560 And-MPL-47 255 314 127 3211 9223 12433 And-MPL-48 257 220 142 1852 6151 8003 And-MPL-49 256 214 74 950 3205 4155 And-MPL-50 243 166 102 1493 6331 7823

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-01 300 782 442 7389 19703 27092 SST -MPL-02 250 480 572 9028 24083 33112 SST -MPL-03 314 424 433 6767 18273 25040 SST -MPL-04 292 809 572 9293 23951 33244 SST -MPL-05 275 1142 780 1277 32611 45382 SST -MPL-06 308 490 494 7811 20792 28603 SST -MPL-07 317 611 728 1169 30552 42241 SST -MPL-08 233 684 624 1008 26160 36235 SST -MPL-09 255 480 598 9439 25178 34617 SST -MPL-10 217 772 312 5061 13068 18129 SST -MPL-11 312 903 702 1144 29377 40817 SST -MPL-12 255 1094 390 6381 16308 22689 SST -MPL-13 286 742 510 8255 21350 29605 SST -MPL-14 248 615 198 3183 8316 11500

77

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-15 253 805 546 8869 22863 31732 SST -MPL-16 243 1094 390 6381 16308 22689 SST -MPL-17 234 1090 650 1063 27180 37814 SST -MPL-18 253 1371 624 1024 26077 36317 SST -MPL-19 327 434 408 6369 17198 23567 SST -MPL-20 270 310 497 7344 21169 28513 SST -MPL-21 269 691 522 8438 21896 30333 SST -MPL-22 312 504 484 7672 20368 28040 SST -MPL-23 319 627 331 5626 13897 19224 SST -MPL-24 281 689 420 6790 17624 24414 SST -MPL-25 210 720 497 8039 20821 28860 SST -MPL-26 303 775 471 7648 19743 27391 SST -MPL-27 272 714 395 6388 16551 22939 SST -MPL-28 292 855 764 1244 31997 44436 SST -MPL-29 310 742 510 8255 21350 29605 SST -MPL-30 284 847 522 8498 21866 30364 SST -MPL-31 320 891 828 1349 34656 48146 SST -MPL-32 261 256 226 3165 9741 12906 SST -MPL-33 224 405 311 4825 13157 17982 SST -MPL-34 231 379 255 3912 10783 14695 SST -MPL-35 290 442 594 9307 25071 34377 SST -MPL-36 241 521 283 4499 11905 16404 SST -MPL-37 275 605 340 5452 14259 19711 SST -MPL-38 263 616 368 5912 15445 21357 SST -MPL-39 227 615 198 3183 8316 11500 SST -MPL-40 236 508 311 4939 13100 18039 SST -MPL-41 318 1142 780 1277 32611 45382 SST -MPL-42 303 809 546 8870 22862 31733 SST -MPL-43 228 805 546 8869 22863 31732 SST -MPL-44 283 1142 780 1277 32611 45382 SST -MPL-45 277 772 312 5061 13068 18129 SST -MPL-46 288 1206 728 1193 30433 42361 SST -MPL-47 250 508 323 5119 13577 18695 SST -MPL-48 275 442 594 9307 25071 34377 SST -MPL-49 272 605 368 5906 15447 21354 SST -MPL-50 260 805 520 8447 21774 30221

78

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-01 270 546 293 4672 12313 16986 TST -MPL-02 258 787 293 4756 12272 17028 TST -MPL-03 275 730 255 4125 10676 14801 TST -MPL-04 282 715 510 8243 21356 29599 TST -MPL-05 254 1345 280 4599 11713 16312 TST -MPL-06 292 893 255 4151 10663 14814 TST -MPL-07 243 853 311 5067 13036 18103 TST -MPL-08 287 1047 268 4368 11192 15560 TST -MPL-09 230 787 471 7651 19741 27393 TST -MPL-10 230 427 147 2296 6212 8508 TST -MPL-11 282 1243 573 9397 23964 33361 TST -MPL-12 254 604 255 4089 10695 14783 TST -MPL-13 288 1180 369 6052 15445 21497 TST -MPL-14 251 631 232 3734 9739 13474 TST -MPL-15 214 1104 312 5105 13046 18151 TST -MPL-16 229 486 215 3400 9057 12457 TST -MPL-17 259 715 286 4626 11986 16612 TST -MPL-18 243 285 102 1474 4358 5833 TST -MPL-19 285 316 130 1934 5544 7478 TST -MPL-20 241 295 102 1489 4351 5840 TST -MPL-21 298 417 170 2641 7172 9813 TST -MPL-22 265 642 170 2650 7168 9817 TST -MPL-23 314 611 255 4091 10693 14784 TST -MPL-24 303 481 368 5843 15476 21322 TST -MPL-25 223 223 331 4370 14376 18745 TST -MPL-26 273 652 331 5336 13892 19229 TST -MPL-27 216 887 535 8716 22394 31109 TST -MPL-28 319 718 369 5977 15483 21460 TST -MPL-29 231 516 255 4046 10716 14762 TST -MPL-30 260 641 484 7793 20307 28100 TST -MPL-31 287 496 420 6654 17692 24346 TST -MPL-32 264 368 293 4477 12411 16888 TST -MPL-33 238 415 293 4560 12370 16930 TST -MPL-34 271 824 364 5917 15240 21157 TST -MPL-35 283 800 572 9290 23953 33242 TST -MPL-36 242 1013 468 7646 19575 27221 TST -MPL-37 254 715 234 3785 9806 13592 TST -MPL-38 210 755 390 6321 16338 22659

79

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-39 293 508 286 4536 12031 16567 TST -MPL-40 273 410 260 4036 10981 15017 TST -MPL-41 234 628 208 3345 8727 12071 TST -MPL-42 259 433 338 5279 14259 19538 TST -MPL-43 265 546 280 4469 11778 16247 TST -MPL-44 255 829 147 2394 6163 8557 TST -MPL-45 254 368 306 4671 12951 17622 TST -MPL-46 293 695 210 7616 19759 27375 TST -MPL-47 247 297 102 1491 4359 5841 TST -MPL-48 310 611 170 2728 7129 9870 TST -MPL-49 225 337 416 6744 17426 24170 TST -MPL-50 259 410 312 4841 13178 18019

ANDESITE

τm= 07103σm + 26

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=

((σ

1-σ

3)2

) (M

Pa)

MPL PredictionTriaxial Compressive

Figure 431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and MPL test

80

SILICIFIED TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=(

( σ1minus

σ3)

2)

(MPa

)MPL Prediction

Triaxial Compressive Strength test

Figure 432 Comparisons of triaxial compressive strength criterion of silicified

tuffaceous sandstone between the triaxial compressive strength test

and MPL test

81

TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stress σm=((σ1+σ3)2) (MPa)

Max

imum

shea

r st

res

τ m=(

( σ1-

σ3)

2)

(MPa

)

MPL Prediction

Triaxial Compressive Strength test

Figure 433 Comparisons of triaxial compressive strength criterion of tuffaceous

sandstone between the triaxial compressive strength test and MPL

test

Table 425 compares the triaxial test results in terms of the cohesion c

and internal friction angle φi by assuming the failure mode follows the Coulombrsquos

criterion The c and φi values are calculated from the test results and the predicted

results by the assumption of Coulombrsquos criterion (Jaeger and Cook 1978) Table

425 shows that the strengths predicted by MPL testing of all rock types under-

estimate those obtained from the standard triaxial testing This is probably the actual

Poissonrsquos ratio of the rock specimens are probably lower than those assumed in the

model simulation which is assumed the Poissonrsquos ratio as 025

82

Table 425 Comparisons of the internal friction angle and cohesion between MPL

predictions and triaxial compressive strength tests

Triaxial Compressive Strength Test

MPL Predictions (ν=025) Rock Type

c (MPa) φi (degrees) c (MPa) φi (degrees)

Porphyritic Andesite 12 69 4 45

Silicified Tuffaceous Sandstone 13 65 3 46

Tuffaceous Sandstone 7 73 2 46

CHAPTER V

FINITE DIFFERENCE ANALYSES

51 Objectives

The objective of the finite difference analyses is to verify that the equivalent

diameter of rock specimens used in the MPL strength prediction is appropriate The

finite difference analyses using FLAC software is made to determine the MPL

strength for various specimen diameters (D) with a constant cross-sectional area

52 Model characteristics

The analyses are made in axis symmetry Four specimen models with the

constant thickness of 318 cm are loaded with 10 cm diameter loading point The

diameter of the specimen (D) models is varied from 508 cm to 762 cm Each

specimen has a constant cross-sectional area of 1613 cm2 as shown in Figure 51

through 55 The load is applied to the specimens until failure occurs and then the

failure loads (P) are recorded

53 Results of finite difference analyses

The results of numerical simulation are shown in Table 51 The results

suggest that the MPL strength remains roughly constant when the same equivalent

diameter (De) is used It can be concluded that the equivalent diameter used in this

research is appropriate to predict the MPL strength

80

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm

81

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm

82

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm

Table 51 Summary of the results from numerical simulations

Model Number

Specimen Thickness

t (cm)

Specimen Diameter

D (cm)

Cross-Sectional

Are of Specimen

A (cm2)

Equivalent Diameter

De (cm)

Failure Load P

(kN)

1 318 508 1613 508 4485 2 318 572 1613 508 4630 3 318 635 1613 508 4614 4 318 698 1613 508 4627 5 318 762 1613 508 4590

CHAPTER VI

DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS

This chapter discusses various aspects of the proposed MPL testing technique

for determining the elastic modulus uniaxial and triaxial compressive strengths and

tensile strength of intact rock specimens The discussed issues include reliability of

the testing results validity scope and limitations of the proposed method of

calculations and accuracy of the predicted rock properties

61 Discussions

1) For selection of rock specimens for MPL testing in this research an

attempt has been made to select the specimens particularly in obtaining a high degree

of uniformity of rock matrix so as to reduce the intrinsic variability of the mechanical

test results and hence clearly reveals of the relation between the standard test results

with the MPL test results Nevertheless a high degree of intrinsic variability

remains as evidenced from the results of the characterization testing For all tested

rock types here the igneous rocks are normally heterogeneous The high intrinsic

variability is caused by the degree of weathering among specimens and the

distribution of rock fragments in the groundmass which promotes the different

orientations of cleavage planes and pore spaces to become a weak plane in rock

specimens Silicified tuffaceous sandstone the high standard deviation may be

caused by the silicified degree in rock specimens

84

2) For prediction of elastic modulus of rock specimens the effects of the

heterogeneity that cause the selective weak planes are enhanced during the MPL

testing This is because the applied loading areas are much smaller than those under

standard uniaxial compressive strength testing This load condition yields a high

degree of intrinsic variability of the MPL testing results The standard deviation of

the elastic modulus predicted from MPL results are in the range between 35-50

This means that in order to obtain the accurate prediction a large number of rock

specimens is necessary for each rock types and that the MPL testing is more

applicable in fine-grained rocks than coarse-grained rocks Another factor is the

uneven contacts between the loading platens and the rock surfaces which caused the

elastic modulus of all rock types that predicted from MPL testing to be lower

compared with those from the uniaxial compressive strength

3) Equivalent diameter used to define the rock specimen width (perpendicular

to the loading direction) seems adequate for use in MPL predictions of rock

compressive and tensile strengths

4) Determination of σ3 at failure for the MPL testing is the empirical In fact

results from the numerical simulation indicate that σ3 distribution along the imaginary

cylinder between the loading points is not uniform particularly for low td ratio

(lower than 25) Along this cylinder σ3 is tension near the loading point and

becomes compression in the mid-length of the MPL specimen There are also shear

stresses along the imaginary cylinder The induced stress states along the assume

cylinder in MPL specimen are therefore different from those the actual triaxial

strength testing specimen The MPL method can not satisfactorily predict the triaxial

compressive strength of all tested rock types primarily due to the heterogeneity of

85

rock specimens that is the different sizes of phenocrysts in igneous rock in lateral and

horizontal directions This promotes the different failure formations

62 Conclusions

The objective of this research is to determine the elastic modulus uniaxial

compressive strength tensile strength and triaxial compressive strength of rock

specimens by using the modified point load (MPL) test method Three rock types

used in this research are porphyritic andesite silicified tuffaceous sandstone and

tuffaceous sandstone Prior to performing the modified point load testing the

standard characterization testing is carried out on these rock types to obtain the data

basis for use to compare the results from MPL testing The MPL specimens are

irregular-shaped with the specimen thickness to loading platen diameter (td) varies

from 25-35 and the equivalent diameter of specimen to loading platen diameter

(Ded) varies from 15 to 20 Loading platen diameters used in this research are 7 10

and 15 mm Finite different analysis is used to verify the equivalent diameter that use

to calculate rock properties from MPL tests

The research results illustrate that the elastic modulus estimated from MPL tests

under-estimates those obtained from the ASTM standard test with the standard

deviation of 40 for porphyritic andesite 48 for silicified tuffaceous sandstone and

43 for tuffaceous sandstone The MPL test method can satisfactorily predict the

uniaxial compressive strength and tensile strength of all rock types tested here The

conventional point load test method over-predicts the actual strength results by much as

100 The MPL method however can not predict the triaxial compressive strengths

for three rock types tested here primarily due to heterogeneous and different

86

weathering degree of rock specimens and uneven surface of rock specimens This

suggests that the smooth and parallel contact surfaces on opposite side of the loading

points are important for determining the strength of rock specimens for MPL method

63 Recommendations

The assessment of predictive capability of the proposed MPL testing technique

has been limited to three rock types More testing is needed to confirm the applicability

and limitations of the proposed method Some obvious future research needs are

summarized as follows

1) More testing is required for elastic modulus and triaxial compressive strength

on different rock types Smooth and parallel of rock specimen surfaces in the opposite

sides should be prepared for all rock types The results may also reveal the impacts of

grain size on elasticity and strength of obtained under different loading areas And the

effects of size of the areas underneath the applied load should be further investigated

2) To truly confirm the validity of MPL predictions for the elastic modulus and

strength of rocks may be desirable to obtain the actual Poissonrsquos ratio of all rock types

The results could reveal the accuracy of the predicted elastic modulus under the assumed

Poissonrsquos ratio of 025 Comparison between the elastic modulus obtained from the

actual Poissonrsquos ratio may show the validity of assumption of the Poissonrsquos ratio posed

here

3) All tests made in this research are on dry specimens the results of pore

pressure and degree of saturation have not been investigated It is desirable to learn also

the proposed MPL testing technique can yield the intact rock properties under

different degree of saturation

88

REFERENCES

ASTM D2664-86 Standard test method for triaxial compressive strength of

undrained rock core specimens without pore pressure measurements In

Annual Book of ASTM Standards (Vol 0408) Philadelphia American

Society for Testing and Materials

ASTM D7012-07 Standard test method for compressive strength and elastic moduli

of intact rock core specimens under varying states of stress and

temperatures In Annual Book of ASTM Standards (Vol 0408) West

Conshohocken American Society for Testing and Materials

ASTM D3967-81 Standard test method for splitting tensile strength of intact rock

core specimens In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

ASTM D4543-85 Standard test method for preparing rock core specimens and

determining dimensional and shape tolerances In Annual Book of ASTM

Standards (Vol 0408) Philadelphia American Society for Testing and

Materials

ASTM D5731-95 Standard test method for determination of point load strength

index of rock In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

Bieniawski Z T (1974) Estimating of the strength of rock materials J Inst

Min Metall 7 123-137

Bieniawski Z T (1975) The point-load test in geotechnical practice Engng

Geol 9 1-11

89

Bieniawski Z T and Bernede M J (1979) Suggested methods for determining the

uniaxial compressive strength and deferability of rock material for ISRM

Commission on Standardization of Laboratory and Field test Int J Rock

Mech Min Sci 16 (2)xxxx (page no)

Bray J W (1987) Some applications of elastic theory In E T Brown (ed)

Analytical and Computational Methods in Engineering Rock

Mechanics (pp 32-94) Allen amp Unwin London

Broch E and Franklin J A (1972) The point-load test Int J Rock Mech Min

Sci 9 669-697

Book N (1977) The use of irregular specimens for rock strength tests Int J

Rock Mech Min Sci amp Geomech Abstr 14 193-202

Book N (1979) Estimating the triaxial strength of rocks Int J Rock Mech Min

Sci amp Geomech Abstr 16 261-264

Book N (1980) Size correction for point load testing Int J Rock Mech Min

Sci 17231-235 [Technical note]

Book N (1985) The equivalent core diameter method of size and shape correction

in point load testing Int J Rock Mech Min Sci amp Geomech Abstr

22 61-70

Brown E T (1981) Rock characterization Testing and Monitoring ISRM

Suggestion Methods New York International Society for Rock

Mechanics Pergamon Press

Butenuth C (1997) Comparison of tensile strength values of rocks determined by

point load and direct tensile tests Rock Mech Rock Engng 30 65-72

90

Cargill J S and Shakoor A (1992) Evaluation of empirical methods for measuring

the uniaxial compressive strength Int J Rock Mech Min Sci 27 495-503

Chau KT (1997) Youngrsquos modulus interpreted from compression tests with end

friction J Engng Mech January 1-7 plat Ann Inst Tech Trav Publics

58 967-971

Chau KT and Wei X X (1999) A new analytic solution for the diametral point

load strength test on finite solid circular cylinders Int J Solids and

Structures 38(9) 1459-1481

Chau KT and Wong R HC (1996) Uniaxial compressive strength and point

load strength Int J Rock Mech Min Sci 33183-188

Davis R O and Selvadurai APS (1996) Elasticity and Geomechanics New

York Cambridge University Press 198 p

Deere DU and Miller R P (1966) Engineering Classification and Index

Properties for Intact Rock US Air Force Weapons Lab Rep AFWL-

TR-65-116

Durelli A J and Parks V (1962) Relationship of size and stress gradient to brittle

failure stress In Proceeding of the 4th US National Cong Of Appl

Mech (pp 931-938)

Evans I (1961) The tensile strength of coal Colliery Eng 38 428-434

Fairhurst C (1961) Laboratory measurement of some physical properties of rock

In Proceeding of the 4th Symp Rock Mech (pp 105-118) Penn State

University

Farmer I (1983) Engineering Behavior of Rocks New York Chapman and Hall

208 p

91

Forster I R (1983) The influence of core sample geometry on axial load test Int

J Rock Mech Min Sci 20 291-295

Fuenkajorn K (2002) Modified point load test determining uniaxial compressive

strength of intact rock In Proceeding of 5th North American Rock

Mechanics Symposium and the 17th Tunneling Association of Canada

Conference (NARMS-TAC 2002) (pp ) Toronto

Fuenkajorn K and Daemen J J K (1986) Shape effect on ring test tensile

strength In Key to Energy Production Proceeding of the 27th US

Symposium on Rock Mechanics (pp 155-163) Tuscaloosa University of

Alabama

Fuenkajorn K and Daemen J J K (1991b) An empirical strength criterion for

heterogeneous welded tuff In ASME Applied Mechanics and

Biomechanics Summer Conference Columbus Ohio University

Fuenkajorn K and Daemen J J K (1992) An empirical strength criterion for

heterogeneous tuff Int J Engineering Geology 32 209-223

Fuenkajorn K and Tepnarong P (2001) Size and stress gradient effects on the

modified point load strength of Saraburi Marble In the 6th Mining

Metallurgical and Petroleum Engineering Conference Bangkok

Thailand(pp)

Ghosh A Fuenkajorn K and Daemen J J K (1995) Tensile strength of welded

Apache Leap tuff investigation for scale effects In Proceeding of the 35th

US Rock Mech Symposium (pp 459-646) University of Navada Reno

Goodman R E (1980) Methods of Geological Engineering in Discontinuous

Rock New York Wiley and Sons

92

Greminger M (1982) Experimental studies of the influence of rock anisotropy on

size and shape effects in point-load testing Int J Rock Mech Min Sci

19 241-246

Gunsallus K L and Kulhawy F H (1984) A comparative evaluation of rock

strength measures Int J Rock Mech Min Sci 21 233-248

Hassani F P Scoble M J and Whittaker B N (1980) Application of point load

index test to strength determination of rock and proposals for new size-

correction chart (pp 543-564) Rolla

Hiramatsu Y and Oka Y (1966) Determination of tensile strength of rock by a

compression test of irregular test piece Int J Rock Mech Min Sci 3

89-99

Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the

Hoek-Brown falure criterion-Technical note Int J Rock Mech Min Sci

amp Geomech Abstr 27 227-229

Hoek E and Brown E T (1980a) Empirical strength criterion for rock masses J

Geotech Eng Div 106 (GT9) 1013-1035

Hondros G (1959) The evaluation of Poissonrsquos ratio and modulus of material of a

low tensile resistance by the Brazilian (indirect tensile) test with particular

reference to concrete Aust J Appl Sci 10 243-264

Horii H and Nemat-Nasser S (1985) Compression-induced microcrack growth in

brittle solids axial splitting and shear failure J Geophts Res 90 3105-

3125

93

Hudson J A Brown E T and Fairhurst C (1971) Shape of the complete stress-

strain curve for rock In Proceeding of the 13th US Symp Rock Mech (pp

773-795) Urbana

ISRM (1985) Suggested method for determining point load strength Int J Rock

Mech Min Sci amp Geomech Abstr 22 53-60

ISRM (1985) Suggested methods for deformability determination using a flexible

dilatometer Int J Rock Mech Min Sci amp Geomech Abstr 24 123-134

Jaeger J C and Cook N G W (1979) Fundamentals of Rock Mechanics

London Chapman and Hall 593 p

Kaczynski R R (1986) Scale effect during compressive strength of rocks In

Proceeding of 5th Int Assoc Eng Geol Congr p 371-373

Lama R D and Vutukuri V S (1978) Testing techniques and results In

Handbook on Mechanical Properties of Rock Vol III No 2 Trans

Tech Publications (International Standard Book Number 0-87849-022-1

Clausthal Germany)

Lonborg N (1967) The strength-size relation of granite Int J Rock Mech Min

Sci 4 269-272

Miller R P (1965) Engineering Classification and Index Properties for Intact

Rock PhD Dissertation Univ Of Illinois Urbana III 92 p

Nimick F B (1988) Empirical relations between porosity and the mechanical

properties of tuff In Key Questions in Rock Mechanics (pp 741-742)

Balkema Rotterdam

Obert L and Stephenson D E (1965) Stress conditions under which core disking

occurs Trans Soc Min Eng AIME 232 227-235

94

Panek L A and Fannon T A (1992) Size and shape effects in point load tests

of irregular rock fragments J Rock Mechanics and Rock Engineering

25 109-140

Pells P J N (1975) The use of point load test in predicting the compressive

strength of rock material Aust Geotech (pp 54-56) G5(N1)

Reichmuth D R (1968) Point-load testing of brittle materials to determine the

tensile strength and relative brittleness In Proceeding of the 9th US Symp

Rock Mech (pp 134-159) University of Colorado

Sammis C G and Ashby M F (1986) The failure of brittle porous solid under

compressive stress state Acta Metall 34 511-526

Serata S and Fuenkajorn K (1992a) Finite element progam lsquoGEOrsquo for modeling

brittle-ductile deterioration of aging earth structures In SMRI Paper

Presented at the Solution Mining Research Institute Fall Meeting

October 19-22 Houston Texas 24p

Sheorey P R Biswas A K and Choubey V D (1989) An empirical failure

criterion of rocks and jointed rock masses Eng Geol 26 141-159

Stowe R L (1969) Strength and deformation properties of granite basalt

limestone and tuff US Army Corps of Engineers WES Misc Paper C-69-1

Taliercio A and Sacchi Landrianni G (1988) Failure criterion for layered rock

Int J Rock Mech Min Sci amp Geomech Abstr 25 299-305

Tepnarong P (2001) Theoretical and experimental studies to determine

compressive and tensile strengths of rocks using modified point load

testing M Eng Thesis Suranaree University of Technology Thailand

95

Tepnarong P (2006) Theoretical and experimental studies to determine elastic

modulus and triaxial compressive strength of intact rocks by modified

point load testing PhD Eng Thesis Suranaree University of

Technology Thailand

Tepnarong P and Fuenkajorn K (2004) Determining of elasticity and strengths

of intact rocks using modified point load test In Proceeding of the ISRM

International Symposium 3rd ASRM Vol 2 (pp 397-392)

Timoshenko S (1958) Strength of materials I Element Theory and Problems

(3rd ed) Princeton N J D Van Nostard

Timoshenko S and Goodier J N (1951) Theory of Elasticity (2nd ed) New

York McGraw-Hill

Truk N and Dearman W R (1985) Improvements in the determination of point

load strength Bull Int Assoc Eng Geol 31 137-142

Truk N and Dearman W R (1986) A correction equation on the influence of

length-to-diameter ratio on uniaxial compressive strength of rocks J Eng

Geol 22 293-300

Wei X X and Chau K T (2002) Analytic solution for finite transversely

isotropic circular cylinder under the axial point load test J Eng Mech

(pp 209-219)Vol

Wei X X and Chau K T and Wong R H C (1999) Analytic solution for

axial point load strength test on solid circular cylinders J Eng Mech (pp

1349-1357) Vol

96

Wijk G (1978) Some new theoretical aspects of indirect measurements of the

tensile strength of rocks Int J Rock Mech Min Sci amp Geomech

Abstr 15 149-160

Wijk G (1980) The point load test for the tensile strength of rock Geotech Test

ASTM 3 49-54

APPENDIX A

CHARACTERIZATION TEST RESULTS

97

Table A-1 Results of conventional point load strength index test on porphyritic

andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

And-06-05-CPL-01 5397 5366 284 52 And-06-05-CPL-02 5332 5366 283 78 And-08-04-CPL-03 5432 5366 284 90 And-08-04-CPL-04 5482 5366 286 87 And-06-01-CPL-05 5330 5366 285 76 And-06-01-CPL-06 5613 5366 284 76 And-04-04-CPL-07 5617 5366 281 75 And-04-05-CPL-08 5525 5366 282 75 And-03-02-CPL-09 5595 5366 280 85 And-03-02-CPL-10 5535 5366 283 85 And-06-06-CPL-11 5475 5366 283 75 And-09-01-CPL-12 5552 5366 286 90 And-09-01-CPL-13 5503 5366 283 90 And-02-04-CPL-14 5542 5366 282 85 And-09-03-CPL-15 5607 5366 282 85 And-09-03-CPL-16 5452 5366 285 96 And-01-03-CPL-17 5530 5366 283 87 And-01-03-CPL-18 5313 5366 283 90 And-01-04-CPL-19 5465 5366 284 56 And-01-04-CPL-20 5572 5366 283 97

Average 81plusmn12

98

Table A-2 Results of conventional point load strength index test on silicified

tuffaceous sand stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

SST-02-03-CPL-01 5373 5366 268 125 SST-06-04-CPL-02 5469 5366 268 70 SST-02-07-CPL-03 5505 5366 269 70 SST-02-06-CPL-04 5518 5366 267 130 SST-02-04-CPL-05 5626 5366 267 125 SST-02-03-CPL-06 5139 5366 270 132 SST-02-03-CPL-07 5483 5366 271 71 SST-02-05-CPL-08 5340 5366 266 125 SST-02-05-CPL-09 5399 5366 265 70 SST-07-05-CPL-10 5643 5366 263 99 SST-07-05-CPL-11 5381 5366 266 106 SST-05-02-CPL-12 5439 5366 274 104 SST-05-02-CPL-13 5491 5366 271 104 SST-03-04-CPL-14 5430 5366 263 113 SST-03-04-CPL-15 5556 5366 263 106 SST-09-03-CPL-16 5491 5366 272 125 SST-09-03-CPL-17 5703 5366 271 125 SST-01-01-CPL-18 5705 5366 267 132 SST-02-07-CPL-19 5596 5366 269 111 SST-02-07-CPL-20 5527 5366 271 118

Average 108plusmn22

99

Table A-3 Results of conventional point load strength index test on tuffaceous sand

stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

TST-06-05-CPL-01 5657 5366 263 125 TST-06-05-CPL-02 5781 5366 264 109 TST-02-05-CPL-03 5686 5366 263 106 TST-02-05-CPL-04 5747 5366 264 80 TST-08-03-CPL-05 5606 5366 268 115 TST-08-03-CPL-06 5574 5366 266 118 TST-08-01-CPL-07 5491 5366 268 111 TST-08-01-CPL-08 5478 5366 268 115 TST-04-02-CPL-09 5422 5366 263 103 TST-04-02-CPL-10 5387 5366 264 111 TST-08-04-CPL-11 5371 5366 267 115 TST-08-04-CPL-12 5463 5366 267 113 TST-06-07-CPL-13 5545 5366 267 108 TST-04-01-CPL-14 5729 5366 261 59 TST-06-06-CPL-15 5457 5366 261 99 TST-06-06-CPL-16 5469 5366 263 109 TST-06-06-CPL-17 5497 5366 266 122 TST-04-03-CPL-18 5550 5366 261 87 TST-04-03-CPL-19 5521 5366 262 52 TST-04-05-CPL-20 5477 5366 264 87

Average 102plusmn20

100

Table A-4 Results of uniaxial compressive strength tests and elastic modulus

measurements on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-5 Results of uniaxial compressive strength tests and elastic modulus

measurements on silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

Table A-6 Results of uniaxial compressive strength tests and elastic modulus

measurements on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

101

Table A-7 Results of Brazilian tensile strength tests on porphyritic andesite

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

And-04-03-BZ-01 2628 5366 281 395 178 And-04-03-BZ-02 2551 5366 279 350 163 And-04-03-BZ-03 2755 5366 285 380 164 And-04-03-BZ-04 2669 5366 279 415 184 And-04-06-BZ-05 2686 5366 280 320 141 And-04-06-BZ-06 2699 5366 286 415 182 And-04-06-BZ-07 2649 5366 282 395 177 And-04-06-BZ-08 2642 5366 286 340 153 And-06-01-BZ-09 2678 5366 286 435 193 And-06-01-BZ-10 2758 5366 285 385 166

Average 170plusmn16

Table A-8 Results of Brazilian tensile strength tests on silicified tuffaceous

sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

SST-02-02-BZ-01 2507 5366 265 450 213 SST-01-06-BZ-02 2664 5366 264 520 232 SST-01-02-BZ-03 2595 5366 262 400 183 SST-01-02-BZ-04 2593 5366 261 320 146 SST-01-02-BZ-05 2608 5366 266 500 228 SST-02-01-BZ-06 2710 5366 266 500 220 SST-02-01-BZ-07 2654 5366 262 450 201 SST-01-05-BZ-08 2778 5366 268 350 150 SST-01-05-BZ-09 2793 5366 266 400 170 SST-01-05-BZ-10 2795 5366 266 400 170

Average 191plusmn32

102

Table A-9 esults of Brazilian tensile strength tests on tuffaceous sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

TST-02-03-BZ-01 2811 5366 260 360 152 TST-02-03-BZ-02 2757 5366 260 255 110 TST-02-03-BZ-03 2739 5366 262 325 141 TST-02-03-BZ-04 2688 5366 263 175 77 TST-06-04-BZ-05 2765 5366 266 450 193 TST-06-04-BZ-06 2729 5366 264 280 122 TST-06-04-BZ-07 2730 5366 260 230 100 TST-06-02-BZ-08 2748 5366 264 285 123 TST-06-02-BZ-09 2743 5366 261 290 125 TST-06-02-BZ-10 2658 5366 265 370 165

Average 131plusmn33

Table A-10 esults of triaxial compressive strength tests on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-11 Results of triaxial compressive strength tests on silicified tuffaceous

sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

103

Table A-12 Results of triaxial compressive strength tests on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

APPENDIX B

MODIFIED POINT LOAD TEST RESULTS FOR ELASTIC

MODULUS PREDICTION

116

AND-MPL-01

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 125 GPamm

Figure B1 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-01

And-MPL-02

00500

100015002000250030003500400045005000

0 005 01 015 02 025 03 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 180 GPamm

Figure B2 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-02

117

And-MPL-03

00200400600800

100012001400160018002000

000 002 004 006 008 010 012 014

Diplacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B3 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-03

And-MPL-04

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B4 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-04

118

And-MPL-05

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 369 GPamm

Figure B5 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-05

And-MPL-06

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B6 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-06

119

And-MPL-07

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss (

MPa

)

ΔPΔδ = 234 GPamm

Figure B7 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-07

And-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 171 GPamm

Figure B8 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-08

120

And-MPL-09

00

500

1000

1500

2000

2500

3000

3500

000 020 040 060 080 100 120 140Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 056 GPamm

Figure B9 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-09

And-MPL-10

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 124 GPamm

Figure B10 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-10

121

And-MPL-11

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030 035 040Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 138 GPamm

Figure B11 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-11

And-MPL-12

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 189 GPamm

Figure B12 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-12

122

And-MPL-13

00500

100015002000250030003500400045005000

000 010 020 030 040 050 060

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 151 GPamm

Figure B13 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-13

And-MPL-14

00

1000

2000

3000

4000

5000

6000

7000

000 010 020 030 040 050 060Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 165 GPamm

Figure B14 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-14

123

And-MPL-15

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120 140 160Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 011 GPamm

Figure B15 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-15

And-MPL-16

00

200

400

600

800

1000

1200

1400

1600

1800

000 050 100 150 200Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 012 GPamm

Figure B16 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-16

124

And-MPL-17

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120

Displacement (mm)

Stre

ss P

(MPa

) ΔPΔδ = 021 GPamm

Figure B17 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-17

And-MPL-18

00

500

1000

1500

2000

2500

3000

000 050 100 150 200 250 300 350Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 008 GPamm

Figure B18 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-18

125

And-MPL-19

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B19 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-19

And-MPL-20

00

1000

2000

3000

4000

5000

6000

000 050 100 150 200 250 300

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 017 GPamm

Figure B20 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-20

126

And-MPL-21

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B21 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-21

And-MPL-22

00

500

1000

1500

2000

2500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B22 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-22

127

And-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B23 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-23

And-MPL-24

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =112 GPamm

Figure B24 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-24

128

And-MPL-25

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 585 GPamm

Figure B25 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-25

And-MPL-26

00500

10001500200025003000350040004500

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 143 GPamm

Figure B26 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-26

129

And-MPL-27

00500

10001500200025003000350040004500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B27 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-27

And-MPL-28

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B28 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-28

130

And-MPL-29

00500

1000150020002500300035004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B29 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-29

And-MPL-30

00

1000

2000

3000

4000

5000

6000

7000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B30 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-30

131

And-MPL-31

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B31 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-31

And-MPL-32

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B32 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-32

132

And-MPL-33

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 101 GPamm

Figure B33 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-33

And-MPL-34

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 135 GPamm

Figure B34 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-34

133

And-MPL-35

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 127 GPamm

Figure B35 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-35

And-MPL-36

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 292 GPamm

Figure B36 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-36

134

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B37 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-37

And-MPL-38

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B38 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-38

135

And-MPL-39

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 186 GPamm

Figure B39 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-39

And-MPL-40

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 20 GPamm

Figure B40 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-40

136

And-MPL-41

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B41 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-41

And-MPL-42

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B42 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-42

137

And-MPL-43

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 346 GPamm

Figure B43 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-43

And-MPL-44

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B44 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-44

138

And-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 169 GPamm

Figure B45 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-45

And-MPL-46

00

200

400

600

800

1000

1200

1400

1600

1800

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B46 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-46

139

And-MPL-47

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B47 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-47

And-MPL-48

00

200

400

600

800

1000

1200

1400

1600

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 094 GPamm

Figure B48 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-48

140

And-MPL-49

00

100

200

300

400

500

600

700

800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 057 GPamm

Figure B49 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-49

And-MPL-50

00

200

400

600

800

1000

1200

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 078 GPamm

Figure B50 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-50

141

SST-MPL-01

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 280 GPamm

Figure B51 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-01

SST-MPL-02

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 307 GPamm

Figure B52 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-02

142

SST-MPL-03

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 356 GPamm

Figure B53 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-03

SST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 450 GPamm

Figure B54 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-04

143

SST-MPL-05

00100020003000400050006000700080009000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 532 GPamm

Figure B55 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-05

SST-MPL-06

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 273 GPamm

Figure B56 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-06

144

SST-MPL-07

0010002000300040005000600070008000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 418 GPamm

Figure B57 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-07

SST-MPL-08

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 414 GPamm

Figure B58 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-08

145

SST-MPL-09

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B59 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-09

SST-MPL-10

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 958 GPamm

Figure B60 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-10

146

SST-MPL-11

00

10002000

300040005000

60007000

8000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 400 GPamm

Figure B61 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-11

SST-MPL-12

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 272 GPamm

Figure B62 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-12

147

SST-MPL-13

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 408 GPamm

Figure B63 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-13

SST-MPL-14

00

500

1000

1500

2000

2500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 296 GPamm

Figure B64 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-14

148

SST-MPL-15

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 282 GPamm

Figure B65 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-15

SST-MPL-16

00500

1000150020002500300035004000

000 005 010 015 020

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 26 GPamm

Figure B66 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-16

149

SST-MPL-17

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 416 GPamm

Figure B67 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-17

SST-MPL-18

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 473 GPamm

Figure B68 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-18

150

SST-MPL-19

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 330 GPamm

Figure B69 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-19

SST-MPL-20

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 278 GPamm

Figure B70 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-20

151

SST-MPL-21

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 185 GPamm

Figure B71 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-21

SST-MPL-22

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B72 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-22

152

SST-MPL-23

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 15 GPamm

Figure B73 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-23

SST-MPL-24

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 295 GPamm

Figure B74 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-24

153

SST-MPL-25

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 259 GPamm

Figure B75 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-25

SST-MPL-26

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 221 GPamm

Figure B76 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-26

154

SST-MPL-27

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 274 GPamm

Figure B77 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-27

SST-MPL-28

0010002000300040005000600070008000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 209 GPamm

Figure B78 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-28

155

SST-MPL-29

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 176 GPamm

Figure B79 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-29

SST-MPL-30

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B80 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-30

156

SST-MPL-31

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 464 GPamm

Figure B81 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-31

SST-MPL-32

00

500

1000

1500

2000

2500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 178 GPamm

Figure B82 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-32

157

SST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 131 GPamm

Figure B83 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-33

SST-MPL-34

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 215 GPamm

Figure B84 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-34

158

SST-MPL-35

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 190 GPamm

Figure B85 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-35

SST-MPL-36

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B86 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-36

159

SST-MPL-37

00500

1000150020002500300035004000

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 067 GPamm

Figure B87 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-37

AND-MPL-38

00

500

10001500

2000

2500

3000

35004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 127 GPamm

Figure B88 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-38

160

SST-MPL-39

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 229 GPamm

Figure B89 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-39

SST-MPL-40

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 090 GPamm

Figure B90 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-40

161

SST-MPL-41

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 498 GPamm

Figure B91 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-41

SST-MPL-42

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 392 GPamm

Figure B92 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-42

162

SST-MPL-43

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 244 GPamm

Figure B93 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-43

SST-MPL-44

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 571 GPamm

Figure B94 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-44

163

SST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 001 002 003 004 005 006 007 008

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 780 GPamm

Figure B95 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-45

SST-MPL-46

0010002000300040005000600070008000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 411 GPamm

Figure B96 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-46

164

SST-MPL-47

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 309 GPamm

Figure B97 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-47

SST-MPL-48

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 338 GPamm

Figure B98 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-48

165

SST-MPL-49

00500

1000150020002500300035004000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 254 GPamm

Figure B99 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-49

SST-MPL-50

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 360 GPamm

Figure B100 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-50

166

TST-MPL -01

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 212GPamm

Figure B101 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-01

TST-MPL-02

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=326 GPamm

Figure B102 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-02

167

TST-MPL-03

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacememt (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B103 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-03

TST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B104 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-04

168

TST-MPL-05

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 264 GPamm

Figure B105 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-05

TST-MPL-06

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacment (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B106 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-06

169

TST-MPL-07

00

500

1000

1500

2000

2500

3000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 162 GPamm

Figure B107 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-07

TST-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=319 GPamm

Figure B108 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-08

170

TST-MPL-09

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =212 GPamm

Figure B109 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-09

TST-MPL-10

00200400600800

1000120014001600

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 132GPamm

Figure B110 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-10

171

TST-MPL-11

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =319 GPamm

Figure B111 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-11

TST-MPL-12

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 127 GPamm

Figure B112 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-12

172

TST-MPL-13

00500

1000150020002500300035004000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 159 GPamm

Figure B113 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-13

TST-MPL-14

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =170 GPamm

Figure B114 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-14

173

TST-MPL-15

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 260 GPamm

Figure B115 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-15

TST-MPL-16

00500

100015002000250030003500400045005000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B116 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-16

174

TST-MPL-17

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B117 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-17

TST-MPL-18

00

200

400

600

800

1000

1200

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=073 GPamm

Figure B118 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-18

175

TST-MPL-19

00

200

400

600

800

1000

1200

1400

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B119 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-19

TST-MPL-20

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=170 GPamm

Figure B120 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-20

176

TST-MPL-21

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=100 GPamm

Figure B121 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-21

TST-MPL-22

00200400600800

10001200140016001800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 088 GPamm

Figure B122 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-22

177

TST-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 101 GPamm

Figure B123 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-23

TST-MPL-24

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 124 GPamm

Figure B124 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-24

178

TST-MPL-25

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 126 GPamm

Figure B125 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-25

TST-MPL-26

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 178 GPamm

Figure B126 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-26

179

TST-MPL-27

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B127 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-27

TST-MPL-28

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 164 GPamm

Figure B128 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-28

180

TST-MPL-29

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B129 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-29

TST-MPL-30

00500

100015002000250030003500400045005000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =280 GPamm

Figure B130 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-30

181

TST-MPL-31

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B131 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-31

TST-MPL-32

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B132 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-32

182

TST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 130 GPa mm

Figure B133 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-33

TST-MPL-34

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B134 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-34

183

TST-MPL-35

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B135 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-35

TST-MPL-36

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B136 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-36

184

TST-MPL-37

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 217 GPamm

Figure B137 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-37

TST-MPL-38

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 52 GPamm

Figure B138 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-38

185

TST-MPL-39

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B139 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-39

TST-MPL-40

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 347 GPamm

Figure B140 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-40

186

TST-MPL-41

00

500

1000

1500

2000

2500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B141 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-41

TST-MPL-42

00

500

1000

1500

2000

2500

3000

3500

4000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B142 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-42

187

TST-MPL -43

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 435 GPamm

Figure B143 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-43

TST-MPL-44

00

200

400

600

800

1000

1200

1400

1600

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B144 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-44

188

TST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 315 GPamm

Figure B145 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-45

TST-MPL-46

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B146 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-46

189

TST-MPL-47

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=128 GPamm

Figure B147 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-47

TST-MPL-48

00200400600800

10001200140016001800

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 237GPamm

Figure B148 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-48

190

TST-MPL-49

00

500

1000

1500

2000

2500

3000

3500

4000

4500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B149 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-49

TST-MPL-50

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 394 GPamm

Figure B150 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-50

BIOGRAPHY

Mr Chatchai Intaraprasit was born on July 30 1973 in Khon Kaen province

Thailand He received his Bachelorrsquos Degree in Science (Geotechnology) from Khon

Kaen University in 1996 He worked with the construction company for ten years

after graduated the Bachelorrsquos Degree For his post-graduate he continued to study

with a Masterrsquos Degree in the Geological Engineering Program Institute of

Engineering Suranaree University of Technology He has published a technical

papers related to rock mechanics as in 2009 ldquoModified point load testing of volcanic

rocks from Chatree gold minerdquo in the proceeding of the second Thailand symposium

on rock mechanics Chonburi Thailand For his work he is working as a

geotechnical engineer at Akara mining company limited Phichit province Thailand

  • cover
  • abstractpdf
  • CHAPTER I
  • CHAPTER II
  • CHAPTER III
  • CHAPTER IV
  • CHAPTER V
  • CHAPTER VI
  • REFERENCES
  • APPENDIX A
  • APPENDIX B
  • BIOGRAPHY
Page 6: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·

CHATCHAI INTARAPRASIT MODIFIED POINT LOAD TESTS OF PIT

WALL ROCK AT CHATREE GOLD MINE THESIS ADVISOR ASSOC PROF

KITTITEP FUENKAJORN Ph D PE 191 PP

TRIAXIAL COMPRESSIVE STRENGTHUNIAXIAL COMPRESSIVE

STRENGTH ELASIC MODULUS POINT LOADTENSILE STRENGTH

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strengths and elastic modulus of intact rock

specimens in the laboratory This method was invented and patented by Suranaree

University of Technology The test apparatus and procedure are intended to be

inexpensive and easy compared to the relevant conventional methods of determining

the mechanical properties of intact rock eg those given by the International Society

for Rock Mechanics (ISRM) and the American Society for Testing and materials

(ASTM) In the past much of the MPL testing practices have been concentrated on

circular and rectangular disk specimens While it has been claimed that MPL method

is applicable to all rock shapes the test results from irregular lumps of rock have been

rare and hence are not sufficient to confirm that the MPL testing technique is truly

valid or even adequate to determine the basic rock mechanical properties in the field

where rock drilling and cutting devices are not available

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine will be used

as rock samples A minimum of 150 samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone will be collected from the site The

IV

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure will be used to calculate the elastic modulus and strengths of the rocks

Uniaxial and triaxial compression tests Brazilian tension test and conventional point

load test will also be conducted on the three rock types to obtain data basis for

comparing with those from the MPL testing Finite difference analysis will be

performed to obtain stress distribution within the MPL samples under different td and

Dd ratios The effects of the sample irregularity will be quantitatively assessed

Similarity and discrepancy of the test results from the MPL method and from the

conventional methods will be examined Modification of the MPL calculation

scheme may be made to enhance its predictive capability for the mechanical

properties of irregular shaped specimens

School of Geotechnology Students Signature

Academic Year 2009 Advisors Signature

ACKNOWLEDGMENTS

I wish to acknowledge the funding support of Suranaree University of

Technology (SUT) and Akara Mining Company Limited

I would like to express my sincere thanks to Assoc Prof Dr Kittitep

Fuenkajorn thesis advisor who gave a critical review and constant encouragement

throughout the course of this research Further appreciation is extended to Asst Prof

Thara Lekuthai chairman school of Geotechnology and Dr Prachya Tepnarong

Suranaree University of Technology who are member of my examination committee

Grateful thanks are given to all staffs of Geomechanics Research Unit Institute of

Engineering who supported my work

Chatchai Intaraprasit

TABLE OF CONTENTS

Page

ABSTRACT (THAI) I

ABSTRACT (ENGLISH) III

ACKNOWLEDGEMENTS V

TABLE OF CONTENTS VI

LIST OF TABLES IX

LIST OF FIGURES XIII

LIST OF SYMBOLS AND ABBREVIATIONS XVII

CHAPTER

I INTRODUCTION 1

11 Background and rationale 1

12 Research objectives 2

13 Research concept 3

14 Research methodology 3

141 Literature review 3

142 Sample collection and preparation 5

143 Theoretical study of the rock failure

mechanism 5

144 Laboratory testing 5

1441 Characterization tests 5

VII

TABLE OF CONTENTS (Continued)

Page

1442 Modified point load tests 6

145 Analysis 6

146 Thesis Writing and Presentation 6

15 Scope and Limitations 7

16 Thesis Contents 7

II LITERATURE REVIEW 8

21 Introduction 8

22 Conventional point load tests 8

23 Modified point load tests 11

24 Characterization tests 14

241 Uniaxial compressive strength tests 14

242 Triaxial compressive strength tests 15

243 Brazilian tensile strength tests 16

25 Size effects on compressive strength 16

III SAMPLE COLLECTION AND PREPARATION 17

31 Sample collection 17

32 Rock descriptions 17

33 Sample preparation 20

IV LABORATORY TESTS 22

41 Literature reviews 22

VIII

TABLE OF CONTENTS (Continued)

Page

411 Displacement Function 22

42 Basic Characterization Tests 23

421 Uniaxial Compressive Strength Tests

and Elastic Modulus Measurements 23

422 Triaxial Compressive Strength Tests 31

423 Brazilian Tensile Strength Tests 38

424 Conventional Point Load Index (CPL) Tests 39

43 Modified Point Load (MPL) Tests 46

431 Modified Point Load Tests for Elastic

Modulus Measurement 54

432 Modified Point Load Tests predicting

Uniaxial Compressive Strength 61

433 Modified Point Load Tests for Tensile

Strength Predictions 63

434 Modified Point Load Tests for Triaxial

Compressive Strength Predictions 69

V FINITE DIFFERENCE ANALYSIS 79

51 Objectives 79

52 Model Characteristics 79

53 Results of finite difference analyses 79

IX

TABLE OF CONTENTS (Continued)

Page

VI DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS 83

61 Discussions 83

62 Conclusions 85

63 Recommendations 86

REFERENCES 87

APPENDICES

APPENDIX A CHARACTERIZATION TEST RESULTS 96

APPENDIX B MODIFIED POINT LOAD TEST RESULTS FOR

ELASTIC MODULUS PREDICTION 104

BIOGRAPHY 180

LIST OF TABLES

Table Page

31 The nominal sizes of specimens following the ASTM standard

practices for the characterization tests 20

41 Testing results of porphyritic andesite 30

42 Testing results of tuffaceous sandstone 30

43 Testing results of silicified tuffaceous sandstone 30

44 Uniaxial compressive strength and tangent elastic modulus

measurement results of three rock types 31

45 Triaxial compressive strength testing results of porphyritic andesite 35

46 Triaxial compressive strength testing results of

tuffaceous sandstone 35

47 Triaxial compressive strength testing results of silicified

tuffaceous sandstone 36

48 Results of triaxial compressive strength tests on three rock types 38

49 The results of Brazilian tensile strength tests of three rock types 41

410 Results of conventional point load strength index tests of

three rock types 44

411 Results of modified point load tests on porphyritic andesite 49

412 Results of modified point load tests on tuffaceous sandstone 51

413 Results of modified point load tests on silicified tuffaceous sandstone 52

X

LIST OF TABLE (Continued)

Table Page

414 Results of elastic modulus calculation from MPL tests on porphyritic andesite57

415 Results of elastic modulus calculation from MPL tests on

silicified tuffaceous sandstone 58

416 Results of elastic modulus calculation from MPL tests on

tuffaceous sandstone 60

417 Comparisons of elastic modulus results obtained from

uniaxial compressive strength tests and those from modified

point load tests 61

418 Comparison the test results between UCS CPL Brazilian

tensile strength and MPL tests 63

419 Results of tensile strengths of porphyritic andesite predicted from MPL tests 64

420 Results of tensile strengths of silicified tuffaceous sandstone

predicted from MPL tests 66

421 Results of tensile strengths of tuffaceous sandstone

predicted from MPL tests 68

422 Results of triaxial strengths of porphyritic andesite predicted from MPL tests 71

423 Results of triaxial strengths of silicified tuffaceous sandstone

predicted from MPL tests 72

424 Results of triaxial strengths of tuffaceous sandstone

predicted from MPL tests 74

XI

LIST OF TABLE (Continued)

Table Page

425 Comparisons of the internal friction angle and cohesion

between MPL predictions and triaxial compressive strength tests 78

51 Summary of the results from numerical simulations 82

A1 Results of conventional point load strength index test on porphyritic andesite 97

A2 Results of conventional point load strength index test on

silicified tuffaceous sandstone 98

A3 Results of conventional point load strength index test on

tuffaceous sandstone 99

A4 Results of uniaxial compressive strength tests and elastic

modulus measurement on porphyritic andesite 100

A5 Results of uniaxial compressive strength tests and elastic

modulus measurement on silicified tuffaceous sandstone 100

A6 Results of uniaxial compressive strength tests and elastic

modulus measurement on tuffaceous sandstone 100

A7 Results of Brazilian tensile strength tests on porphyritic andesite 101

A8 Results of Brazilian tensile strength tests on silicified

tuffaceous sandstone 101

A9 Results of Brazilian tensile strength tests on

tuffaceous sandstone 102

A10 Results of triaxial compressive strength tests on porphyritic andesite 102

XII

LIST OF TABLE (Continued)

Table Page

A11 Results of triaxial compressive strength tests on

silicified tuffaceous Sandstone 102

A12 Results of Brazilian tensile strength tests on

tuffaceous sandstone 103

LIST OF FIGURES

Figure Page

11 Research plan 4

21 Loading system of the conventional point load (CPL) 10

22 Standard loading platen shape for the conventional point

load testing 10

31 The location of rock samples collected area 19

32 Some prepared rock specimens of porphyritic andesite for MPL Tests 21

33 The concept of specimen preparation for MPL testing 21

41 Pre-test samples of porphyritic andesite for UCS test 25

42 Pre-test samples of tuffaceous sandstone for UCS test 25

43 Pre-test samples of silicified tuffaceous sandstone for UCS test 26

44 Preparation of testing apparatus of porphyritic andesite for UCS test 26

45 Post-test rock samples of porphyritic andesite from UCS test 27

46 Post-test rock samples of tuffaceous sandstone

from UCS test 27

47 Post-test rock samples of tuffaceous sandstone from UCS 28

48 Results of uniaxial compressive strength tests and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted

as a function of axial strains 28

XIV

LIST OF FIGURES (Continued)

Figure Page

49 Results of uniaxial compressive strength tests and elastic

modulus measurements of tuffaceous sandstone (Top)

and silicified tuffaceous sandstone (Bottom) The axial

stresses are plotted as a function of axial strains 29

410 Pre-test samples for triaxial compressive strength test the

top is porphyritic andesite and the bottom is tuffaceous sandstone 32

411 Pre-test sample of silicified tuffaceous sandstone for triaxial

compressive strength test 33

412 Triaxial testing apparatus 33

413 Post-test rock samples from triaxial compressive strength tests

The top is porphyritic andesite and the bottom is tuffaceous sandstone 34

414 Post-test rock samples of silicified tuffaceous sandstone from

triaxial compressive strength test 35

415 Mohr-Coulomb diagram for porphyritic andesite 37

416 Mohr-Coulomb diagram for tuffaceous sandstone 37

417 Mohr-Coulomb diagram for silicified tuffaceous sandstone 38

418 Pre-test samples for Brazilian tensile strength test (a) porphyritic andesite

(b) tuffaceous sandstone and

(c) silicified tuffaceous sandstone 40

419 Brazilian tensile strength test arrangement 41

XV

LIST OF FIGURES (Continued)

Figure Page

420 Post-test specimens (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 42

421 Pre-test samples of porphyritic andesite for conventional point load

strength index test 43

422 Conventional point load strength index test arrangement 43

423 Post-test specimens from conventional point load

strength index tests (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 45

424 Conventional and modified loading points 47

425 MPL testing arrangement 47

426 Post-test specimen the tension-induced crack commonly

found across the specimen and shear cone usually formed

underneath the loading platens 48

427 Example of P-δ curve for porphyritic andesite specimen The ratio

of ∆P∆δ is used to predict the elastic modulus of MPL

specimen (Empl) 56

428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests 62

429 Uniaxial compressive strength predicted for silicified

tuffaceous sandstone from MPL tests 62

XVI

LIST OF FIGURES (Continued)

Figure Page

430 Uniaxial compressive strength predicted for tuffaceous

sandstone from MPL tests 63

431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and

modified point load test 75

432 Comparisons of triaxial compressive strength criterion of

silicified tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 76

433 Comparisons of triaxial compressive strength criterion of

tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 77

51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm 80

52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm 80

53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm 81

54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm 81

55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm 82

LIST OF SYMBOLS AND ABBREVIATIONS

A = Original cross-section Area

c = cohesive strength

CP = Conventional Point Load

D = Diameter of Rock Specimen

D = Diameter of Loading Point

De = Equivalent Diameter

E = Youngrsquos Modulus

Empl = Elastic Modulus by MPL Test

Et = Tangent Elastic Modulus

IS = Point Load Strength Index

L = Original Specimen Length

LD = Length-to-Diameter Ratio

MPL = Modified Point Load

Pf = Failure Load

Pmpl = Modified Point Load Strength

t = Specimen Thickness

α = Coefficient of Stress

αE = Displacement Function

β = Coefficient of the Shape

∆L = Axial Deformation

XVIII

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

∆P = Change in Applied Stress

∆δ = Change in Vertical of Point Load Platens

εaxial = Axial Strain

ν = Poissonrsquos Ratio

ρ = Rock Density

σ = Normal Stress

σ1 = Maximum Principal Stress (Vertical Stress)

σ3 = Minimum Principal Stress (Horizontal Stress)

σB = Brazilian Tensile Stress

σc = Uniaxial Compressive Strength (UCS)

σm = Mean Stress

τ = Shear Stress

τoct = Octahedral Shear Stress

φi = angle of Internal friction

CHAPTER I

INTRODUCTION

11 Background and rationale

In geological exploration mechanical rock properties are one of the most

important parameters that will be used in the analysis and design of engineering

structures in rock mass To obtain these properties the rock from the site is extracted

normally by mean of core drilling and then transported the cores to the laboratory

where the mechanical testing can be conducted Laboratory testing machine is

normally huge and can not be transported to the site On site testing of the rocks may

be carried out by some techniques but only on a very limited scale This method is

called for point load strength Index testing However this test provides unreliable

results and lacks theoretical supports Its results may imply to other important

properties (eg compressive and tensile strength) but only based on an empirical

formula which usually poses a high degree of uncertainty

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strength and elastic modulus of intact rock

specimens in the laboratory (Tepnarong 2001) This method was invented and

patented by Suranaree University of Technology The test apparatus and procedure

are intended to be in expensive and easy compared to the relevant conventional

methods of determining the mechanical properties of intact rock eg those given by

the International Society for Rock Mechanics (ISRM) and the American Society for

2

Testing and Materials (ASTM) In the past much of the MPL testing practices has

been concentrated on circular and disk specimens While it has been claimed that

MPL method is applicable to all rock shapes the test results from irregular lumps of

rock have been rare and hence are not sufficient to confirm that the MPL testing

technique is truly valid or even adequate to determine the basic rock mechanical

properties in the field where rock drilling and cutting devices are not available

12 Research objectives

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine are used as

rock samples A minimum of 150 rock samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone are collected from the site The

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure are used to calculate the elastic modulus and strengths of rocks Uniaxial and

triaxial compression tests Brazilian tension test and conventional point load test are

conducted on the three rock types to obtain data basis for comparing with those from

MPL testing Finite difference analysis is performed to obtain stress distribution

within the MPL samples under different td and Dd ratios The effect of the

irregularity is quantitatively assessed Similarity and discrepancy of the test results

from the MPL method and from the conventional method are examined

Modification of the MPL calculation scheme may be made to enhance its predictive

capability for the mechanical properties of irregular shaped specimens

3

13 Research concept

A modified point load (MPL) testing technique was proposed by Fuenkajorn

and Tepnarong (2001) and Fuenkajorn (2002) The objectives of this testing are to

determine the elastic modulus uniaxial compressive strength and tensile strength of

intact rocks The application of testing apparatus is modified from the loading

platens of the conventional point load (CPL) testing to the cylindrical shapes that

have the circular cross-section while they are half-spherical shapes in CPL

The modes of failure for the MPL specimens are governed by the ratio of

specimen diameter to loading platen diameter (Dd) and the ratio of specimen

thickness to loading platen diameter (td) This research involves using the MPL

results to estimate the triaxial compressive strength of specimens which various Dd

and td ratios and compare to the conventional compressive strength test

14 Research methodology

This research consists of six main tasks literature review sample collection

and preparation laboratory testing finite difference analysis comparison discussions

and conclusions The work plan is illustrated in the Figure 11

141 Literature review

Literature review is carried out to study the state-of-the-art of CPL and MPL

techniques including theories test procedure results analysis and applications The

sources of information are from journals technical reports and conference papers A

summary of literature review is given in this thesis Discussions have been also been

made on the advantages and disadvantages of the testing the validity of the test results

4

Preparation

Literature Review

Sample Collection and Preparation

Theoretical Study

Laboratory Ex

Figure 11 Research methodology

periments

MPL Tests Characterization Tests

Comparisons

Discussions

Laboratory Testing

Various Dd UCS Tests

Various td Brazilian Tension Tests

Triaxial Compressive Strength Tests

CPL Tests

Conclusions

5

when correlating with the uniaxial compressive strength of rocks and on the failure

mechanism the specimens

142 Sample collection and preparation

Rock samples are collected from the north pit-wall of Khao

Moh at Chatree gold mine Three rock types are tested with a minimum of 50

samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable Sample preparation is carried out in the laboratory at Suranaree

University of Technology

143 Theoretical study of the rock failure mechanism

The theoretical work primarily involves numerical analyses on

the MPL specimens under various shapes Failure mechanism of the modified point

load test specimens is analyzed in terms of stress distributions along loaded axis The

finite difference code FLAC is used in the simulation The mathematical solutions

are derived to correlate the MPL strengths of irregular-shaped samples with the

uniaxial and traiaxial compressive strengths tensile strength and elastic modulus of

rock specimens

144 Laboratory testing

Three prepared rock type samples are tested in laboratory

which are divided into two main groups as follows

1441 Characterization tests

The characterization tests include uniaxial compressive

strength tests (ASTM D7012-07) Brazilian tensile strength tests (ASTM D3967

1981) triaxial compressive strength tests (ASTM D7012-07) and conventional point

6

load index tests (ASTM D5731 1995) The characterization testing results are used

in verifications of the proposed MPL concept

1442 Modified point load tests

Three rock types of rock from the north pit-wall of

Khao Moh at Chatree gold mine are used as rock samples A minimum of 150 rock

samples of porphyritic andesite silicified-tuffaceous sandstone and tuffaceous

sandstone are used in the MPL testing The sample thickness-to-loading diameter

ratio (td) is varied from 2 to 3 and the sample diameter-to-loading diameter ratio

(Dd) from 5 to 10 The sample deformation and failure are used to calculate the

elastic modulus and strengths of rocks The MPL testing results are compared with

the standard tests and correlated the relations in terms of mathematic formulas

145 Analysis

Finite difference analysis is performed to obtain stress

distribution within the MPL samples under various shapes with different td and Dd

ratios The effect of the irregularity is quantitatively assessed Similarity and

discrepancy of the test results from the MPL method and from the conventional

method are examined Modification of the MPL calculation scheme may be made to

enhance its predictive capability for the mechanical properties of irregular shaped

specimens

146 Thesis writing and presentation

All aspects of the theoretical and experimental studies

mentioned are documented and incorporated into the thesis The thesis discusses the

validity and potential applications of the results

7

15 Scope and limitations

The scope and limitations of the research include as follows

1 Three rock types of rock from the pit wall of Chatree gold mine are

selected as a prime candidate for use in the experiment

2 The analytical and experimental work assumes linearly elastic

homogeneous and isotropic conditions

3 The effects of loading rate and temperature are not considered All tests

are conducted at room temperature

4 MPL tests are conducted on a minimum of 50 samples

5 The investigation of failure mode is on macroscopic scale Macroscopic

phenomena during failure are not considered

6 The finite difference analysis is made in axis symmetric and assumed

elastic homogeneous and isotropic conditions

7 Comparison of the results from MPL tests and conventional method is

made

16 Thesis contents

The first chapter includes six sections It introduces the thesis by briefly

describing the background and rationale and identifying the research objectives that

are describes in the first and second section The third section describes the proposed

concept of the new testing technique The fourth section describes the research

methodology The fifth section identifies the scope and limitation of the research and

the description of the overview of contents in this thesis are in the sixth section

CHAPTER II

LITERATURE REVIEW

21 Introduction

This chapter summarizes the results of literature review carried out to improve an

understanding of the applications of modified point load testing to predict the strengths and

elastic modulus of the intact rock The topics reviewed here include conventional point

load test modified point load test characterization tests and size effects

22 Conventional point load tests

Conventional point load (CPL) testing is intended as an index test for the strength

classification of rock material It has long been practiced to obtain an indicator of the

uniaxial compressive strength (UCS) of intact rocks The testing equipment (Figure 21)

is essentially a loading system comprising a loading flame hydraulic oil pump ram and

loading platens The geometry of the loading platen is standardized (Figure 22) having

60 degrees angle of the cone with 5 mm radius of curvature at the cone tip It is made of

hardened steel The CPL test method has been widely employed because the test

procedure and sample preparation are simple quick and inexpensive as compared with

conventional tests as the unconfined compressive strength test Starting with a simple

method to obtain a rock properties index the International Society for Rock Mechanics

(ISRM) commissions on testing methods have issued a recommended procedure for the

point load testing (ISRM 1985) the test has also been established as a standard test

method by the American Society for Testing and Materials in 1995 (ASTM 1995)

9

Although the point load test has been studied extensively (eg Broch and Franklin

1972 Bieniawski 1974 and 1975 Wijk 1980 Brook 1985) the theoretical solutions

for the test result remain rare Several attempts have been made to truly understand

the failure mechanism and the impact of the specimen size on the point load strength

results It is commonly agreed that tensile failure is induced along the axis between

loading points (Evans 1961 Hiramutsu 1976 Wijk 1978 1980) The most

commonly accepted formula relating the CPL index and the UCS is proposed by

Broch and Franklin (1972) The UCS (or σc) can be estimated as about 24 times of

the point load strength index (Is) of rock specimens with the diameter-to-length ratio

of 05 The IS value should also be corrected to a value equivalent to the specimen

diameter of 50 mm The factor of 24 can sometimes load to an error in the prediction

of the UCS Most previous studied have been done experimentally but rare

theoretical attempt has been made to study the validity of Broch and Franklin

formula

The CPL testing has been performed using a variety of sizes and shapes of

rock specimen (Wijk 1980 Foster 1983 Panek and Fannon 1992 Chau and Wong

1996 Butenuth 1997) This is to determine the most suitable specimen sizes These

investigations have proposed empirical relations between the IS and σc to be

universally applicable to various rock types However some uncertainly of these

relations remains

Panek and Fannon (1992) show the results of the CPL tests UCS tests and

Brazilian tension tests that are performed on three hard rocks (iron-formation

metadiabase and ophitic basalt) The CPL strength is analyzed in terms of the

10

Figure 21 Loading system of the conventional point load (CPL) (Tepnarong 2001)

Figure 22 Standard loading platen shape for the conventional point load testing

(ISRM suggested method and ASTM D5731-95)

11

size and shape effects More than 500 an irregular lumps were tested in the field

The shape effect exponents for compression have been found to be varied with rock

types The shape effect exponents in CPL tests are constant for the three rocks

Panek and Fannon (1992) recommended that the monitoring of the compressive and

tensile strengths should have various sizes and shapes of specimen to obtain the

certain properties

Chau and Wong (1996) study analytically the conversion factor relating

between σc and IS A wide range of the ratios of the uniaxial compressive strength to

the point load index has been observed among various rock types It has been found

that the uniaxial compressive strength of rocks can vary from 62 (Nevada test site

tuff) to 105 (Flaming Gorge shale) times the IS depending on rock type The

conversion factor relating σc to be Is depends on compressive and tensile strengths

the Poissonrsquos ratio and the length and diameter of specimen The conversion factor

of 24 (Broch and Franklin 1972) falls within this range but it is no by meaning

universal

23 Modified point load tests

Tepnarong (2001) proposed a modified point load testing method to correlate

the results with the uniaxial compressive strength (UCS) and tensile strength of intact

rocks The primary objective of the research is to develop the inexpensive and

reliable rock testing method for use in field and laboratory The test apparatus is

similar to the conventional point load (CPL) except that the loading points are cut

flat to have a circular cross-section area instead of using a half-spherical shape To

derive a new solution finite element analyses and laboratory experiments were

12

carried out The simulation results suggested that the applied stress required failing

the MPL specimen increased logarithmically as the specimen thickness or diameter

increased The MPL tests CPL tests UCS tests and Brazilian tension tests were

performed on Saraburi marble under a variety of sizes and shapes The UCS test

results indicated that the strengths decreased with increased the length-to-diameter

ratio The test results can be postulated that the MPL strength can be correlated with

the compressive strength when the MPL specimens are relatively thin and should be

an indicator of the tensile strength when the specimens are significantly larger than

the diameter of the loading points Predictive capability of the MPL and CPL

techniques were assessed Extrapolation of the test results suggested that the MPL

results predicted the UCS of the rock specimens better than the CPL testing The

tensile strength predicted by the MPL also agreed reasonably well with the Brazilian

tensile strength of the rock

Tepnarong (2006) proposed the modified point load testing technique to

determine the elastic modulus and triaxial compressive strength of intact rocks The

loading platens are made of harden steel and have diameter (d) varying from 5 10

15 20 25 to 30 mm The rock specimens tested were marble basalt sandstone

granite and rock salt Basic characterization tests were first performed to obtain

elastic and strength properties of the rock specimen under standard testing methods

(ASTM) The MPL specimens were prepared to have nominal diameters (D) ranging

from 38 mm to 100 mm with thickness varying from 18 mm to 63 mm Testing on

these circular disk specimens was a precursory step to the application on irregular-

shaped specimens The load was applied along the specimen axis while monitoring

the increased of the load and vertical displacement until failure Finite element

13

analyses were performed to determine the stress and deformation of the MPL

specimens under various Dd and td ratios The numerical results were also used to

develop the relationship between the load increases (∆P) and the rock deformation

(∆δ) between the loading platens The MPL testing predicts the intact rock elastic

modulus (Empl) by using an equation Empl = (tαE) (∆P∆δ) where t represents the

specimen thickness and αE is the displacement function derived from numerical

simulation The elastic modulus predicted by MPL testing agrees reasonably well

with those obtained from the standard uniaxial compressive tests The predicted Empl

values show significantly high standard deviation caused by high intrinsic variability

of the rock fabric This effect is enhanced by the small size of the loading area of the

MPL specimens as compared to the specimen size used in standard test methods

The results of the numerical simulation were used to determine the minimum

principal stress (σ3) at failure corresponding to the maximum applied principal stress

(σ1) A simple relation can therefore be developed between σ1 σ3 ratio Poissonrsquos ratio

(ν) and diameter ratio (Dd) to estimate the triaxial compressive strengths of the rock

specimens σ1 σ3 = 2[(ν(1-ν))(1-(dD)2)]-1 The MPL test results from specimens with

various Dd ratios can provide σ1 and σ3 at failure by assuming that ν = 025 and that

failure mode follows Coulomb criterion The MPL predicted triaxial strengths agree

very well with the triaxial strength obtained from the standard triaxial testing (ASTM)

The discrepancy is about 2-3 which may be due to the assumed Poissonrsquos ratio of 25

and due to the assumption used in the determination of σ3 at failure In summary even

through slight discrepancies remain in the application of MPL results to determine the

elastic modulus and triaxial compressive strength of intact rocks this approach of

14

predicting the rock properties shows a good potential and seems promising considering

the low cost of testing technique and ease of sample preparation

24 Characterization tests

241 Uniaxial compressive strength tests

The uniaxial compressive strength test is the most common laboratory

test undertaken for rock mechanics studies In 1972 the International Society of Rock

Mechanics (ISRM) published a suggested method for performing UCS tests (Brown

1981) Bieniawski and Bernede (1979) proposed the procedures in American Society

for Testing and Materials (ASTM) designation D2938

The tests are also the most used tests for estimating the elastic

modulus of rock (ASTM D7012) The axial strain can be measured with strain gages

mounted on the specimen or with the Linear Variable Differential Tranformers

(LVDTs) attached parallel to the length of the specimen The lateral strain can be

measured using strain gages around the circumference or using the LVDTs across

the specimen diameter

The UCS (σc) is expressed as the ratio of the peak load (P) to the

initial cross-section area (A)

σc= PA (21)

And the Youngrsquos modulus (E) can be calculated by

E= ΔσΔε (22)

Where Δσ is the change in stress and Δε is the change in strain

15

The ratio of lateral strain and axial strain magnitudes (εlatεax) determines the value of

Poissonrsquo ratio (ν)

ν = - (εlatεax) (23)

242 Triaxial compressive strength tests

Hoek and Brown (1980b) and Elliott and Brown (1986) used the

triaxaial compressive strength tests to gain an understanding of rock behavior under a

three-dimensions state of stress and to verify and even validate mathematical

expressions that have been derived to represent rock behavior in analytical and

numerical models

The common procedures are described in ASTM designation D7012 to

determine the triaxial strengths and D7012 to determine the elastic moduli and in

ISRM suggested methods (Brown 1981)

The axial strain can be measured with strain gages mounted on the

specimen or with the LVTDs attached parallel to the length of the specimen The

lateral strain can be measured using strain gages around the circumstance within the

jacket rubber

At the peak load the stress conditions are σ1 = PA σ3=p where P is

the maximum load parallel to the cylinder axis A is the initial cross-section area and

p is the pressure in the confining medium

The Youngrsquos modulus (E) and Poissonrsquos ratio (ν) can be calculated by

E = Δ(σ1-σ3)Δ εax (24)

and

16

ν = (slope of axial curve) (slope of lateral curve) (25)

where Δ(σ1-σ3) is the change in differential stress and Δ εax is the change in axial strain

243 Brazilian tensile strength tests

Caneiro (1974) and Akazawa (1953) proposed the Brazilian tensile

strength test of intact rocks Specifications of Brazilian tensile strength test have been

established by ASTM D3967 and suggested approach is provided by ISRM (Brown 1981)

Jaeger and Cook (1979) proposed the equation for calculate the

Brazilian tensile strength as

σB = (2P) ( πDt) (26)

where P is the failure load D is the disk diameter and t is the disk thickness

25 Size effects on compressive strength

The uniaxial compressive strength normally tested on cylindrical-shaped

specimens The length-to-diameter (LD) ratio of the specimen influences the

measured strength Typically the strength decreases with increasing the LD ratio

but it tends to become constant or ratios in the order of 21 to 31 (Hudson et al 1971

Obert and Duvall 1967) For higher ratios the specimen strength may be influenced

by bulking

The size of specimen may influence the strength of rock Weibull (1951)

proposed that a large specimen contains more flaws than a small one The large

specimen therefore also has flaws with critical orientation relative to the applied

shear stresses than the small specimen A large specimen with a given shape is

17

therefore likely to fail and exhibit lower strength than a small specimen with the same

shape (Bieniawski 1968 Jaeker and Cook 1979 Kaczynski 1986)

Tepnarong (2001) investigated the results of uniaxial compressive strength

test on Saraburi marble and found that the strengths decrease with increase the

length-to-diameter (LD) ratio And this relationship can be described by the power

law The size effects on uniaxial compressive strength are obscured by the intrinsic

variability of the marble The Brazilian tensile strengths also decreased as the

specimen diameter increased

CHAPTER III

SAMPLE COLLECTION AND PREAPATION

This chapter describes the sample collection and sample preparation

procedure to be used in the characterization and modified point load testing The

rock types to be used including porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone Locations of sample collection rock description are

described

31 Sample collection

Three rock types include porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone collected from Chatree Gold Mine Akara Mining Company

Limited Phichit Thailand are used in this research The rock samples are collected

from the north pit-wall of Khao Moh Three rock types are tested with a minimum of

50 samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable The collected location is shown in Figure 31

32 Rock descriptions

Three rock types are used in this research there are porphyritic andesite

silicified tuffaceous sandstone and tuffaceous sandstone Tuffaceous sandstone is

medium brownish grey the clasts are andesite rhyolite andesitic tuff and quartz

fragments and sub-rounded to sub-angular matrix sand andesitic tuff rock fragment

19

19

Figure 31 The location of rock samples collected area

lt 10 quartz 3 pyrite and litho-facies massive ungraded clast supported

moderately sorted Silicified tuffaceous sandstone is medium brown clasts are fine to

medium sand and silt sub-rounded shape quartz rich with siliceous matrix massive

non-graded well sorted moderately Silicified Porphyritic andesite is grayish green

medium-coarse euhedral evenly distributed phenocrysts are abundant most

conspicuous are hornblende phenocrysts fine-grained groundmass Those samples

are collected from Chatree Gold Mine Akara mining Co Ltd Phichit Thailand

20

33 Sample preparation

Sample preparation has been carried out to obtain different sizes and shapes

for testing It is conducted in the laboratory facility at Suranaree University of

Technology For characterization testing the process includes coring and grinding

Preparation of rock samples for characterization test follows the ASTM standard

(ASTM D4543-85) The nominal sizes of specimen that following the ASTM

standard practices for the characterization tests are shown in table 31 And grinding

surface at the top and bottom of specimens at the position of loading platens for

unsure that the loading platens are attach to the specimen surfaces and perpendicular

each others as shown in Figure 32 The shapes of specimens are irregularity-shaped

The ratio of specimen thickness to platen diameter (td) is around 20-30 and the

specimen diameter to platen diameter (Dd) varies from 5 to 10

Table 31 The nominal sizes of specimens following the ASTM standard practices

for the characterization tests

Testing Methods

LD Ratio

Nominal Diameter

(mm)

Nominal Length (mm)

Number of Specimens

1UniaxialCompressive Strength Test and Elastic Modulus Measurement (ASTM D7012)

25 54 135 10

2 Triaxial Compressive Strength Test (ASTM D7012) 20 54 108 10

3 Brazilian Tensile Strength Test (ASTM D3967) 05 54 27 10

4 Point Load Strength Index Test (ASTM D 5731) 10 54 54 10

21

Figure 32 Some prepared rock specimens of porphyritic andesite for MPL Tests

td asymp20 to 30

Figure 33 The concept of specimen preparation for MPL testing

CHAPTER IV

LABORATORY TESTS

Laboratory testing is divided into two main tasks including the

characterization tests and the modified point load tests Three rock types porphyritic

andesite silicified-tuffaceous sandstone and tuffaceous sandstone are used in this

research

41 Literature reviews

411 Displacement function

Tepnarong (2006) proposed a method to compute the vertical

displacement of the loading point as affected by the specimen diameter and thickness

(Dd and td ratios) by used the series of finite element analyses To accomplish this

a displacement function (αE) is introduced as (∆P∆δ)middot(tE) where ∆P is the change in

applied stress ∆δ is the change in vertical displacement of point load platens t is the

specimen thickness and E is elastic modulus of rock specimen The displacement

function is plotted as a function of Dd And found that the αE is dimensionless and

independent of rock elastic modulus αE trend to be independent of Dd when Dd is

beyond 15 The αE is sensitive to ν particularly when υ is between 025 and 05 This

agrees with the assumption that as the Poissonrsquos ratio increases the αE value will

increase because under higher ν the ∆δ will be reduced This is due to the large

confinement resulting from the higher Poissonrsquos ratio Nevertheless most rocks have

Poissonrsquos ratio within a range between 020 and 030 particularly for moderate to

23

hard rocks As a result the Poissonrsquos ratio of 025 will provide a reasonable

prediction of the value of αE values

Figure 51 plots αE or (∆P∆δ)middot(tE) as a function of td for the ratios of Dd ge

10 The displacement function increase as the td increases which can be expressed

by a power equation

αE = (∆P∆δ)middot(tE) = 150 (td)064 (51)

by using the least square fitting The curve fit gives good correlation (R2=0998)

These curves can be used to estimate the elastic modulus of rock from MPL results

By measuring the MPL specimen thickness t and the increment of applied stress (∆P)

and displacement (∆δ)

42 Basic characterization tests

The objectives of the basic characterization tests are to determine the

mechanical properties of each rock type to compare their results with those from the

modified point load tests (MPL) The basic characterization tests include uniaxial

compressive strength (UCS) tests with elastic modulus measurements triaxial

compressive strength tests Brazilian tensile strength tests and conventional point load

strength index tests

421 Uniaxial compressive strength tests and elastic modulus

measurements

The uniaxial compressive strength tests are conducted on the three

rock types Sample preparation and test procedure are followed the ASTM standards

(ASTM D7012) and the ISRM suggested methods (Brown 1981) The core size is

24

54 mm in diameter (NX size) and the ratio of the length to diameter is 25 A total of

10 specimens are tested for each rock type

A constant loading rate of 05 to 10 MPas is applied to the specimens

until failure occurs Tangent elastic modulus is measured at stress level equal to 50

of the uniaxial compressive strength Post-failure characteristics are observed

The uniaxial compressive strength (σc) is calculated by dividing the

maximum load by the original cross-section area of loading platen

σc= pf A (41)

where pf is the maximum failure load and A is the original cross-section area of

loading platen The tangent elastic modulus (Et) is calculated by the following

equation

Et = (Δσaxial) (Δε axial) (42)

And the axial strain can be calculated from

ε axial = ΔLL (43)

where the ΔL is the axial deformation and L is the original length of specimen

The average uniaxial compressive strength and tangent elastic

modulus of each rock types are shown in Tables 41 through 44

25

Figure 41 Pre-test samples of porphyritic andesite for UCS test

Figure 42 Pre-test samples of tuffaceous sandstone for UCS test

26

Figure 43 Pre-test samples of silicified tuffaceous sandstone for UCS test

Figure 44 Preparation of testing apparatus for UCS test

27

Figure 45 Post-test rock samples of porphyritic andesite from UCS test

Figure 46 Post-test rock samples of tuffaceous sandstone from UCS test

28

Figure 47 Post-test rock samples of silicified-tuffaceous sandstone from UCS

0

50

100

150

0 0001 0002 0003 0004 0005Axial Strain

Axi

al S

tres

s (M

Pa)

Andesite04

03

01

05

02

Andesite

Figure 48 Results of uniaxial compressive strength test and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted as

a function of axial strain

29

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Strain

Axi

al S

tres

s (M

Pa)

Pebbly Tuffacious Sandstone

04

03

05

01

02

Tuffaceous Sandstone

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Stain

Axi

al S

tres

s (M

Pa)

Silicified Tuffacious Sandstone

0103

05

0402

Silicified Tuffaceous Sandstone

Figure 49 Results of uniaxial compressive strength test and elastic modulus

measurements of tuffaceous sandstone (top) and silicified tuffaceous

sandstone (bottom) The axial stresses are plotted as a function of axial

strain

30

Table 41 Testing results of porphyritic andesite

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 5366 13486 282 1327 451 And-06-03-UCS-02 5366 13494 283 1106 397 And-02-01-UCS-03 5366 13485 280 1061 470 And-08-03-UCS-04 5366 13417 284 1282 392 And-04-04-UCS-05 5366 13564 285 973 438

Average 1150 plusmn 150 430 34 plusmn

Table 42 Testing results of tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 5366 13810 266 1017 538 TST-01-02-UCS-02 5366 13236 268 1238 545 TST-02-04-UCS-03 5366 13558 264 973 441 TST-06-09-UCS-04 5366 13515 267 1459 475 TST-02-02-UCS-05 5366 13745 263 884 566

Average 1114 plusmn 233 513 53 plusmn

Table 43 Testing results of silicified tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 5366 13309 271 1194 656 SST-07-01-UCS-02 5366 13547 267 930 632 SST-07-03-UCS-03 5366 13095 268 1194 503 SST-02-06-UCS-04 5366 13475 269 1614 661 SST-06-02-UCS-05 5366 13577 270 1106 713

Average 1207 plusmn 252 633 80 plusmn

31

Table 44 Uniaxial compressive strength and tangent elastic modulus measurement

results of three rock types

Rock Type

Number of Test

Samples

Uniaxial Compressive Strength σc (MPa)

Tangential Elastic Modulus

Et (GPa)

Porphyritic andesite 50 1150plusmn150 430plusmn34 Silicified-tuffaceous sandstone 50 1207plusmn252 633plusmn80

Tuffaceous sandstone 50 1114plusmn233 513plusmn53

422 Triaxial compressive strength tests

The objective of the triaxial compressive strength test is to determine

the compressive strength of rock specimens under various confining pressures The

sample preparation and test procedure are followed the ASTM standard (ASTM

D7012-07) and the ISRM suggested method (Brown 1981) A total of 16 rock

specimens are tested under various confining pressures 6 specimens of porphyritic

andesite 5 specimens of silicified-tuffaceous sandstone and 5 specimens of

tuffaceous sandstone The applied load onto the specimens is at constant rate until

failure occurred within 5 to 10 minutes of loading under each confining pressure

The constant confining pressures used in this experiment are ranged from 0345 067

138 276 and 414 MPa (50 100 200 400 and 600 psi) in andesite 0345 069

276 414 and 552 MPa (50 100 400 600 and 800 psi) in silicified-tuffaceous

sandstone and 0345 069 138 207 and 276 MPa (50 100 200 300 and 400 psi)

in pebbly tuffaceous sandstone Post-failure characteristics are observed

32

Figure 410 Pre-test samples for triaxial compressive strength test the top is

porphyritic andesite and the bottom is tuffaceous sandstone

33

Figure 411 Pre-test samples of silicified tuffaceous sandstone for triaxial

compressive strength test

Hook cell

Figure 412 Triaxial testing apparatus

34

Figure 413 Post-test rock samples from triaxial compressive strength tests The top

is porphyritic andesite and the bottom is tuffaceous sandstone

35

Figure 414 Post-test rock samples of silicified tuffaceous sandstone from triaxial

compressive strength test

Table 45 Triaxial compressive strength testing results of porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

And-04-02-TR-01 10803 5366 285 04 1459 And-06-04-TR-03 10806 5366 284 07 1526 And-06-02-TR-02 10806 5366 283 14 1636 And-08-01-TR-04 10665 5366 284 28 2034 And-08-02-TR-05 10948 5366 283 41 2520

Table 46 Triaxial compressive strength testing results of tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

TST-01-01-TR-04 10989 5366 266 04 1061 TST 02-01-TR-01 10852 5366 262 07 1238 TST-06-01-TR-02 10889 5366 264 138 1415 TST-06-03-TR-03 10755 5366 264 201 1813 TST-06-08-TR-05 11025 5366 267 28 2056

36

Table 47 Triaxial compressive strength testing results of silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

SST-05-01-TR-01 10875 5366 266 04 1305 SST-07-02-TR-02 10790 5366 266 14 1371 SST-01-04-TR-03 11022 5366 267 28 1592 SST-01-03-TR-04 10713 5366 267 41 1901 SST-01-01-TR-05 10530 5366 265 55 2255

The results of triaxial tests are shown in Table 42 Figures 413 and 414

show the shear failure by triaxial loading at various confining pressures (σ3) for the

three rock types The relationship between σ1 and σ3 can be represented by the

Coulomb criterion (Hoek 1990)

τ = c + σ tan φi (44)

where τ is the shear stress c is the cohesion σ is the normal stress and φi is the

internal friction angle The parameters c and φi are determined by Mohr-Coulomb

diagram as shown in Figures 415 through 417

37

φi =54˚ Andesite

Figure 415 Mohr-Coulomb diagram for andesite

φi = 55˚

Tuffaceous Sandstone

Figure 416 Mohr-Coulomb diagram for pebbly tuffaceous sandstone

38

Silicified tuffaceous sandstone

φi = 49˚

Figure 417 Mohr-Coulomb diagram for silicified tuffaceous sandstone

Table 48 Results of triaxial compressive strength tests on three rock types

Rock Type

Number of

Samples

Average Density (gcc)

Cohesion c (MPa)

Internal Friction Angle φi (degrees)

Porphyritic Andesite 5 283 33 54

Tuffaceous Sandstone 5 265 28 55 Silicified Tuffaceous Sandstone 5 267 36 49

423 Brazilian Tensile Strength Tests

The objectives of the Brazilian tensile strength test are to determine

the tensile strength of rock The Brazilian tensile strength tests are performed on all

rock types Sample preparation and test procedure are followed the ASTM standard

(ASTM D3967-81) and the

39

ISRM suggested method (Brown 1981) Ten specimens for each rock

type have been tested The specimens have the diameter of 55 mm with 25 mm thick

The Brazilian tensile strength of rock can be calculated by the following

equation (Jaeger and Cook 1979)

σB = (2pf) (πDt) (45)

where σB is the Brazilian tensile strength pf is the failure load D is the diameter

of disk specimen and t is the thickness of disk specimen All of specimens failed

along the loading diameter (Figure 420) The results of Brazilian tensile strengths

are shown in Table 49 The tensile strength trends to decrease as the specimen size

(diameter) increase and can be expressed by a power equation (Evans 1961)

σB = A (D)-B (46)

where A and B are constants depending upon the nature of rock

424 Conventional point load index (CPL) tests

The objectives of CPL tests are to determine the point load strength index for

use in the estimation of the compressive strength of the rocks The sample

preparation test procedure and calculation are followed the standard practices

(ASTM D 5731-02) and the ISRM suggested method (Brown 1981) Twenty

specimens of each rock types are tested The length-to-diameter (LD) ratio of the

specimen is constant at 10 The specimen diameter and thickness are maintained

constant at 54 mm (Figure 421) The core specimen is loaded along its axis as

shown in Figure 422 Each specimen is loaded to failure at a constant rate such that

40

(a)

(b)

(c)

Figure 418 Pre-test samples for Brazilian tensile strength test (a) porphyritic

andesite (b) tuffaceous sandstone and (c) silicified tuffaceous

sandstone

41

Figure 419 Brazilian tensile strength test arrangement

Table 49 Results of Brazilian tensile strength tests of three rock types

Rock Type

Average Diameter

(mm)

Average Length (mm)

Average Density (gcc)

Number of

Samples

Brazilian Tensile

Strength σB (MPa)

Porphyritic andesite 5366 2672 283 10 170plusmn16

Tuffaceous sandstone 5366 2737 265 10 131plusmn33

Silicified tuffaceous sandstone

5366 2670 267 10 191plusmn32

42

(a)

(b)

(c)

Figure 420 Post-test specimens (a) porphyritic andesite (b) tuffaceous sandstone

and (c) silicified tuffaceous sandstone

43

Figure 421 Pre-test samples of porphyritic andesite for conventional point load

strength index test

Figure 422 Conventional point load strength index test arrangement

44

failures occur within 5-10 minutes Post-failure characteristics are observed

The point load strength index for axial loading (Is) is calculated by the

equation

Is = pf De2 (47)

where pf is the load at failure De is the equivalent core diameter (for axial loading

De2 = 4Aπ and A=WD) A is the minimum cross-sectional area of a plane through

the platen contact points W is the specimen width (thickness of core) and D is the

specimen diameter The post-test specimens are shown in Figure 423

The testing results of all three rock types are shown in Table 410 The

point load strength index of andesite pebbly tuffaceous sandstone and silicified

tuffaceous sandstone are average as 81 plusmn 12 102 plusmn 20 and 108 plusmn 22 MPa

Table 410 Results of conventional point load strength index tests of three rock types

Rock Types Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index

Is (MPa) Porphyritic Andesite 5493 5366 283 81plusmn12 Tuffaceous Sandstone 5545 5366 265 102plusmn20 Silicified Tuffaceous Sandstone 5491 5366 268 108plusmn22

45

Figure 423 Post-Test rock specimens from conventional point load strength index

tests (a) porphyritic andesite (b) tuffaceous sandstone and (c)

silicified tuffaceous sandstone

46

43 Modified point load (MPL) tests

The objectives of the modified point load (MPL) tests are to measure the

strength of rock between the loading points and to produce failure stress results for

various specimen sizes and shapes The results are complied and evaluated to

determine the mathematical relationship between the strengths and specimen

dimensions which are used to predict the elastic modulus and uniaxial and triaxial

compressive strengths and Brazilian tensile strength of the rocks

The testing apparatus for the proposed MPL testing are similar to those of the

conventional point load (CPL) test except that the loading points are cylindrical

shape and cut flat with the circular cross-sectional area instead of using half-spherical

shape (Tepnarong 2001) The loading platens used in this research are 7 10 and 15

mm in diameter and the thickness-to-loading point diameter ratio (td) of about 25

The specimen diameter-to-loading point diameter is varying from 5 to 100 The load

is applied at the rate of 200 Ns Fifty specimens are prepared and tested for each

rock type The vertical deformations (δ) are monitored One cycle of unloading and

reloading is made at about 40 failure load Then the load is increased to failure

The MPL strength (PMPL) is calculated by

PMPL = pf ((π4)(d2)) (48)

where pf is the applied load at failure and d is the diameter of loading point Figure

26 shows the example of post-test specimen shear cone are usually formed

underneath the loading points and two or three tension-induced cracks are commonly

found across the specimens

47

The MPL testing method is divided into 4 schemes based on its objective

elastic modulus uniaxial and triaxial compressive strengths and Brazilian tensile

strength determination

Figure 424 Conventional and modified loading points(Tepnarong 2006)

Figure 425 MPL testing arrangement

48

Tension-induced crack Shear cone

Shear cone

Tension-induced crack

Figure 426 Post-test specimen the tension-induced crack commonly found across

the specimen and shear cone usually formed underneath the loading

platens

49

Table 411 Results of modified point load tests on porphyritic andesite

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-01 246 543 280 125 159 And-MPL-02 351 632 370 180 471 And-MPL-03 236 634 150 170 191 And-MPL-04 266 960 250 234 319 And-MPL-05 284 903 370 369 471 And-MPL-06 245 793 280 182 357 And-MPL-07 263 874 260 234 331 And-MPL-08 261 980 210 171 268 And-MPL-09 280 777 270 056 344 And-MPL-10 244 569 280 124 159 And-MPL-11 251 613 650 138 368 And-MPL-12 226 631 600 189 340 And-MPL-13 233 1126 180 151 468 And-MPL-14 279 1203 220 165 572 And-MPL-15 239 503 400 011 227 And-MPL-16 281 474 300 012 170 And-MPL-17 305 861 390 021 497 And-MPL-18 233 653 500 008 283 And-MPL-19 294 1386 380 200 484 And-MPL-20 265 860 410 017 522 And-MPL-21 238 425 550 087 311 And-MPL-22 230 417 450 087 255 And-MPL-23 223 557 500 231 283 And-MPL-24 250 760 550 112 311 And-MPL-25 259 1243 180 585 468 And-MPL-26 303 560 310 143 395 And-MPL-27 273 1640 390 156 497 And-MPL-28 282 906 220 200 280 And-MPL-29 311 934 290 156 369 And-MPL-30 246 1314 250 650 650 And-MPL-31 262 982 200 175 255 And-MPL-32 260 1147 180 156 468 And-MPL-33 240 700 450 101 255 And-MPL-34 304 800 240 135 306 And-MPL-35 250 455 220 127 280 And-MPL-36 243 1697 120 292 312 And-MPL-37 333 1520 310 156 395 And-MPL-38 238 661 170 260 442

50

Table 411 Results of modified point load tests on porphyritic andesite (Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-39 318 347 130 186 338 And-MPL-40 245 551 150 260 390 And-MPL-41 207 561 150 325 390 And-MPL-42 223 425 500 231 283 And-MPL-43 207 561 150 346 390 And-MPL-44 324 340 310 234 395 And-MPL-45 275 426 240 169 306 And-MPL-46 302 397 130 175 166 And-MPL-47 255 314 100 170 127 And-MPL-48 257 220 250 094 142 And-MPL-49 256 214 130 057 74 And-MPL-50 243 166 180 078 102

51

Table 412 Results of modified point load tests on tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-01 270 546 220 212 293 TST -MPL-02 258 787 230 326 293 TST -MPL-03 275 730 200 143 255 TST -MPL-04 282 715 400 143 510 TST -MPL-05 254 1345 220 264 280 TST -MPL-06 292 893 200 143 255 TST -MPL-07 243 853 550 112 311 TST -MPL-08 287 1047 210 319 268 TST -MPL-09 230 787 370 212 471 TST -MPL-10 230 427 260 132 147 TST -MPL-11 282 1243 450 319 573 TST -MPL-12 254 604 200 127 255 TST -MPL-13 288 1180 290 159 369 TST -MPL-14 251 631 410 170 232 TST -MPL-15 214 1104 120 260 312 TST -MPL-16 229 486 380 102 215 TST -MPL-17 259 715 110 650 286 TST -MPL-18 243 285 180 073 102 TST -MPL-19 285 316 130 128 130 TST -MPL-20 241 295 180 170 102 TST -MPL-21 298 417 300 100 170 TST -MPL-22 265 642 300 088 170 TST -MPL-23 314 611 450 101 255 TST -MPL-24 303 481 650 124 368 TST -MPL-25 223 223 260 126 331 TST -MPL-26 273 652 260 178 331 TST -MPL-27 216 887 420 170 535 TST -MPL-28 319 718 290 164 369 TST -MPL-29 231 516 200 128 255 TST -MPL-30 260 641 380 280 484 TST -MPL-31 287 496 330 158 420 TST -MPL-32 264 368 230 170 293 TST -MPL-33 238 415 230 130 293 TST -MPL-34 271 824 140 260 364 TST -MPL-35 283 800 220 325 572 TST -MPL-36 242 1013 180 325 468 TST -MPL-37 254 715 90 217 234 TST -MPL-38 210 755 150 520 390

52

Table 412 Results of modified point load tests on tuffaceous sandstone

(Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-39 293 508 110 260 286 TST -MPL-40 273 410 100 347 260 TST -MPL-41 234 628 80 260 208 TST -MPL-42 259 433 130 260 338 TST -MPL-43 265 546 220 435 280 TST -MPL-44 255 829 260 222 147 TST -MPL-45 254 368 240 315 306 TST -MPL-46 293 695 370 222 210 TST -MPL-47 247 297 180 128 102 TST -MPL-48 310 611 300 237 170 TST -MPL-49 225 337 160 371 416 TST -MPL-50 259 410 120 394 312

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-01 300 782 170 280 442 SST-MPL-02 250 480 220 307 572 SST-MPL-03 314 424 340 356 433 SST-MPL-04 292 809 220 450 572 SST-MPL-05 275 1142 300 532 780 SST -MPL-06 308 490 190 273 494 SST -MPL-07 317 611 280 418 728 SST -MPL-08 233 684 240 414 624 SST -MPL-09 255 480 230 371 598 SST -MPL-10 217 772 120 958 312 SST -MPL-11 312 903 270 400 702 SST -MPL-12 255 1094 150 272 390 SST -MPL-13 286 742 400 408 510 SST -MPL-14 248 615 350 296 198 SST -MPL-15 253 805 210 282 546 SST -MPL-16 243 1094 150 260 390

53

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

(Continued)

Specimen Number td Dd Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-17 234 1090 250 416 650 SST -MPL-18 253 1371 240 473 624 SST -MPL-19 327 434 320 330 408 SST -MPL-20 270 310 390 278 497 SST -MPL-21 269 691 410 185 522 SST -MPL-22 312 504 380 182 484 SST -MPL-23 319 627 260 150 331 SST -MPL-24 281 689 330 295 420 SST -MPL-25 210 720 390 259 497 SST -MPL-26 303 775 370 221 471 SST -MPL-27 272 714 310 274 395 SST -MPL-28 292 855 600 209 764 SST -MPL-29 310 742 400 176 510 SST -MPL-30 284 847 410 158 522 SST -MPL-31 320 891 650 464 828 SST -MPL-32 261 256 400 178 226 SST -MPL-33 224 405 550 131 311 SST -MPL-34 231 379 450 215 255 SST -MPL-35 290 442 1050 190 594 SST -MPL-36 241 521 500 102 283 SST -MPL-37 275 605 600 067 340 SST -MPL-38 263 616 650 127 368 SST -MPL-39 227 615 350 229 198 SST -MPL-40 236 508 550 090 311 SST -MPL-41 318 1142 300 498 780 SST -MPL-42 303 809 210 392 546 SST -MPL-43 228 805 210 244 546 SST -MPL-44 283 1142 300 571 780 SST -MPL-45 277 772 120 780 312 SST -MPL-46 288 1206 280 411 728 SST -MPL-47 250 508 570 309 323 SST -MPL-48 275 442 1050 338 594 SST -MPL-49 272 605 650 254 368 SST -MPL-50 260 805 200 360 520

54

431 Modified point load tests for elastic modulus measurement

The MPL tests are carried out with the measurement of axial

deformation for use in elastic modulus estimation Fifty irregular specimens for each

rock type are tested The specimen thickness-to-loading diameter (td) is about 25

and the specimen diameter -to-loading diameter (Dd) is varied from 25 to 50 Cyclic

loading is performed while monitoring displacement (δ)

The testing apparatus used in this experiment includes the point load

tester model SBEL PLT-75 and the modified point load platens The displacement

digital gages with a precision up to 0001 mm are used to monitor the axial

deformation of rock between the loading points as loading decreases The cyclic

load is applied along the specimen axis and is performed by systematically increasing

and decreasing loads on the test specimen After unloading the axial load is

increased until the failure occurs Cyclic loading is performed on the specimens in

an attempt at determining the elastic deformation The ratio of change of stress to

displacement (∆P∆δ) is measured from unloading curve Post-failure characteristics

are observed and recorded Photographs are taken of the failed specimens

The results of the deformation measurement by MPL tests are shown

in Tables411 through 413 The stresses (P) are plotted as a function of axial

displacement (δ) and shown in Figures B1 through B150 (Appendix B) The results

of ∆P∆δ are used to estimate the elastic modulus of the specimen

The elastic modulus predictions from MPL results can be made by

using the value of αE plotted as a function of Ded for various td ratios as shown in

Figure 427 and the MPL elastic modulus can be expressed as

55

⎟⎠⎞

⎜⎝⎛

ΔΔ

⎟⎟⎠

⎞⎜⎜⎝

⎛=

δαPtE

Empl (Tepnarong 2006) (49)

where Empl is the elastic modulus predicted from MPL results αE is displacement

function value from numerical analysis and ∆P∆δ is the ratio of change of stress to

displacement which is measured from unloading curve of MPL tests and t is the

specimen thickness The value of αE used in the calculation is 260 for td ratio equal

to 25-30 (Tepnarong 2006) The results of elastic modulus predictions from MPL

tests are tabulated in Tables 414 through 416 Table 417 compares the elastic

modulus obtained from standard uniaxial compressive strength test (ASTM D3148-

96) with those predicted by MPL test

The values of Empl for each specimen with P-δ curve are shown in

Appendix B The MPL method under-estimates the elastic modulus of all tested

rocks This is the primarily because the actual loaded area may be smaller than that

used in the calculation due to the roughness of the specimen surfaces As a result the

contact area used to calculate PMPL is larger than the actual In addition the EMPL

tends to show a high intrinsic variation (high standard deviation) This is because the

loading areas of MPL specimens are small This phenomenon conforms by the test

results obtained by Fuenkajorn and Deamen (1992) They conclude that smaller test

specimens not only exhibit a higher strength than larger one (size effect) but also

show a high intrinsic variability due to the heterogeneity of rock fabric particularly at

small sizes This implied that to obtain a good prediction (accurate result) of the rock

elasticity a large amount of MPL specimens are desirable This drawback may be

compensated by the ease of testing and the low cost of sample preparation

56

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (MPa)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure 427 Example of P-δ curve for porphyritic andesite specimen The ratio of

∆P∆δ is used to predict the elastic modulus of MPL specimen (Empl)

57

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-01 246 543 125 260 1776 And-MPL-02 351 632 180 260 2430 And-MPL-03 236 634 170 260 1546 And-MPL-04 266 960 234 260 2390 And-MPL-05 284 903 369 260 4031 And-MPL-06 245 793 182 260 1712 And-MPL-07 263 874 234 260 2367 And-MPL-08 261 980 171 260 1717 And-MPL-09 280 777 056 260 603 And-MPL-10 244 569 124 260 1748 And-MPL-11 251 613 138 260 2001 And-MPL-12 226 631 189 260 2464 And-MPL-13 233 1126 151 260 947 And-MPL-14 279 1203 165 260 1239 And-MPL-15 239 503 011 260 151 And-MPL-16 281 474 012 260 195 And-MPL-17 305 861 021 260 247 And-MPL-18 233 653 008 260 108 And-MPL-19 294 1386 200 260 2263 And-MPL-20 265 860 017 260 173 And-MPL-21 238 425 087 260 1195 And-MPL-22 230 417 087 260 1154 And-MPL-23 223 557 231 260 2976 And-MPL-24 250 760 112 260 1615 And-MPL-25 259 1243 585 260 4073 And-MPL-26 303 560 143 260 1667 And-MPL-27 273 1640 156 260 1639 And-MPL-28 282 906 200 260 2172 And-MPL-29 311 934 156 260 1868 And-MPL-30 246 1314 650 260 4310 And-MPL-31 262 982 175 260 1766 And-MPL-32 260 1147 156 260 1093 And-MPL-33 240 700 101 260 1398 And-MPL-34 304 800 135 260 1576 And-MPL-35 250 455 127 260 1221 And-MPL-36 243 1697 292 260 1909 And-MPL-37 333 1520 156 260 2000 And-MPL-38 238 661 260 260 1665 And-MPL-39 318 347 186 260 1592 And-MPL-40 245 551 260 260 1712

58

And-MPL-41 207 561 325 260 1815

59

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-42 223 425 231 260 2976 And-MPL-43 207 561 346 260 1932 And-MPL-44 324 340 234 260 2912 And-MPL-45 275 426 169 260 1785 And-MPL-46 302 397 175 260 2033 And-MPL-47 255 314 170 260 1667 And-MPL-48 257 220 094 260 1393 And-MPL-49 256 214 057 260 843 And-MPL-50 243 166 078 260 1094 Average 1743 Standard Deviation 910

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-01 300 782 280 260 2262 SST -MPL-02 250 480 307 260 2066 SST -MPL-03 314 424 356 260 4302 SST -MPL-04 292 809 450 260 3533 SST -MPL-05 275 1142 532 260 3939 SST -MPL-06 308 490 273 260 2266 SST -MPL-07 317 611 418 260 3572 SST -MPL-08 233 684 414 260 2595 SST -MPL-09 255 480 371 260 2546 SST -MPL-10 217 772 958 260 5593 SST -MPL-11 312 903 400 260 3360 SST -MPL-12 255 1094 272 260 1864 SST -MPL-13 286 742 408 260 4435 SST -MPL-14 248 615 296 260 4235 SST -MPL-15 253 805 282 260 1918 SST -MPL-16 243 1094 260 260 1698 SST -MPL-17 234 1090 416 260 2621 SST -MPL-18 253 1371 473 260 3224 SST -MPL-19 327 434 330 260 4153 SST -MPL-20 270 310 278 260 2863

60

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-21 269 691 185 260 1914 SST -MPL-22 312 504 182 260 2183 SST -MPL-23 319 627 150 260 1839 SST -MPL-24 281 689 295 260 3193 SST -MPL-25 210 720 259 260 2090 SST -MPL-26 303 775 221 260 2577 SST -MPL-27 272 714 274 260 2862 SST -MPL-28 292 855 209 260 2350 SST -MPL-29 310 742 176 260 2097 SST -MPL-30 284 847 158 260 1728 SST -MPL-31 320 891 464 260 5707 SST -MPL-32 261 256 178 260 2678 SST -MPL-33 224 405 131 260 1690 SST -MPL-34 231 379 215 260 2863 SST -MPL-35 290 442 190 260 3174 SST -MPL-36 241 521 102 260 1416 SST -MPL-37 275 605 067 260 1064 SST -MPL-38 263 616 127 260 1926 SST -MPL-39 227 615 229 260 3005 SST -MPL-40 236 508 090 260 1226 SST -MPL-41 318 1142 498 260 4264 SST -MPL-42 303 809 392 260 3196 SST -MPL-43 228 805 244 260 1500 SST -MPL-44 283 1142 571 260 4348 SST -MPL-45 277 772 780 260 5826 SST -MPL-46 288 1206 411 260 3184 SST -MPL-47 250 508 309 260 4464 SST -MPL-48 275 442 338 260 5364 SST -MPL-49 272 605 254 260 3981 SST -MPL-50 260 805 360 260 2523 Average 2986 Standard Deviation 1190

61

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-01 270 546 212 260 2202 TST -MPL-02 258 787 326 260 3232 TST -MPL-03 275 730 143 260 1513 TST -MPL-04 282 715 143 260 1551 TST -MPL-05 254 1345 264 260 2579 TST -MPL-06 292 893 143 260 1606 TST -MPL-07 243 853 112 260 2273 TST -MPL-08 287 1047 319 260 3521 TST -MPL-09 230 787 212 260 1875 TST -MPL-10 230 427 132 260 1752 TST -MPL-11 282 1243 319 260 3455 TST -MPL-12 254 604 127 260 1241 TST -MPL-13 288 1180 159 260 1764 TST -MPL-14 251 631 170 260 2465 TST -MPL-15 214 1104 260 260 1500 TST -MPL-16 229 486 102 260 1345 TST -MPL-17 259 715 650 260 4530 TST -MPL-18 243 285 073 260 1025 TST -MPL-19 285 316 128 260 2105 TST -MPL-20 241 295 170 260 2360 TST -MPL-21 298 417 100 260 1722 TST -MPL-22 265 642 088 260 896 TST -MPL-23 314 611 101 260 1830 TST -MPL-24 303 481 124 260 2166 TST -MPL-25 223 223 126 260 1083 TST -MPL-26 273 652 178 260 1869 TST -MPL-27 216 887 170 260 2065 TST -MPL-28 319 718 164 260 2011 TST -MPL-29 310 742 128 260 1136 TST -MPL-30 260 641 280 260 2800 TST -MPL-31 287 496 158 260 1742 TST -MPL-32 264 368 170 260 1725 TST -MPL-33 238 415 130 260 1192 TST -MPL-34 271 824 260 260 1942 TST -MPL-35 283 800 325 260 2478 TST -MPL-36 242 1013 325 260 2115 TST -MPL-37 254 715 217 260 1484 TST -MPL-38 210 755 520 260 2944 TST -MPL-39 293 508 260 260 2052 TST -MPL-40 273 410 347 260 2552

62

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-41 234 628 260 260 1638 TST -MPL-42 259 433 260 260 1814 TST -MPL-43 265 546 435 260 4440 TST -MPL-44 255 829 222 260 3265 TST -MPL-45 254 368 315 260 3075 TST -MPL-46 293 695 222 260 2502 TST -MPL-47 247 297 128 260 1827 TST -MPL-48 310 611 237 260 4240 TST -MPL-49 225 337 371 260 2252 TST -MPL-50 259 410 394 260 2746 Average 2190 Standard Deviation 830

Table 417 Comparisons of elastic modulus results obtained from uniaxial

compressive strength tests and those from modified point load tests

Rock Type Tangential Elastic Modulus from UCS

tests Et (GPa)

Elastic Modulus from MPL tests

Empl (GPa) Porphyritic andesite 430plusmn34 174plusmn91

Silicified tuffaceous sandstone 633plusmn80 299plusmn119

tuffaceous sandstone 513plusmn53 219plusmn83

432 Modified point load tests predicting uniaxial compressive strength

The uniaxial compressive strength of MPL specimens can be predicted

by plotting Pmpl as a function of diameter ratio Ded as shown in Figures 428 through

430 At diameter ratio equal to unity the Pmpl represents the uniaxial compressive

strength of rock The uniaxial compressive strength predicted from MPL tests

compared with those from CPL test and UCS standard test is shown in Table 418

63

UCS PREDICTION OF PORPHYRITIC ANDESITE FROM MPL TESTS

Pmpl = 11844(Ded)05489

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ded Ratio

MPL

Stre

ngth

(MPa

)

Figure 428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests

64

UCS PREDICTION OF SILICIFIED TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 11463(Ded)07447

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ded Ratio

MPL

-Str

engt

h (M

Pa)

Figure 429 Uniaxial compressive strength predicted for silicified tuffaceous

sandstone from MPL tests

65

UCS PREDICTION OF TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 10222(Ded)05457

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ded Ratio

MPL

-Stre

ngth

(MPa

)

Figure 430 Uniaxial compressive strength predicted for tuffaceous sandstone from

MPL tests

Table 418 Comparison the test results between UCS CPL Brazilian tensile

strength and MPL tests

Uniaxial Compressive Strength (MPa)

Tensile Strength (MPa) Rock Type UCS

Testing CPL

Prediction MPL

PredictionBrazilian Testing

MPL Prediction

And 1150 1944 plusmn12 1005 170plusmn16 139plusmn43 TST 1114 2448plusmn20 1308 131plusmn33 121plusmn73 SST 1207 2592plusmn22 1022 191plusmn32 171plusmn126

433 Modified Point Load Tests for Tensile Strength Predictions

The MPL results determine the rock tensile strength by using the

relationship of the failure stresses (Pmpl) as a function of specimen thickness to

66

loading diameter ratio (td) The tensile strength from MPL prediction can be

expressed as an empirical equation (Tepnarong 2001)

σt mpl = Pmpl (αT ln (td)+βT) (410)

where αT = 133 ln (Ded)-756 and βT= -70 ln (Ded)+ 1952

The results of tensile strengths of all rock types are shown in Tables

419through 421 The predicted tensile strengths are compared with the Brazilian

tensile strengths for the three rock types in Table 418 A close agreement of the

results obtained between two methods The discrepancies of the results are less than

the standard deviation of the results

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa)

And-MPL-01 246 543 159 1495 767 750 And-MPL-02 351 632 471 1697 661 1688 And-MPL-03 236 634 191 1701 659 900 And-MPL-04 266 960 319 2252 369 1240 And-MPL-05 284 903 471 2170 412 1761 And-MPL-06 245 793 357 1999 502 1558 And-MPL-07 263 874 331 2127 435 1330 And-MPL-08 261 980 268 2279 355 1053 And-MPL-09 280 777 344 1971 517 1351 And-MPL-10 244 569 159 1557 734 746 And-MPL-11 251 613 368 1656 683 1666 And-MPL-12 226 631 340 1695 662 1662 And-MPL-13 233 1126 468 2464 257 2000 And-MPL-14 279 1203 572 2552 211 2022 And-MPL-15 239 503 227 1392 822 1114 And-MPL-16 281 474 170 1314 863 765 And-MPL-17 305 861 497 2108 445 1776 And-MPL-18 233 653 283 1740 638 1340 And-MPL-19 294 1386 484 2741 112 1577 And-MPL-20 265 860 522 2106 446 2091

67

And-MPL-21 238 425 311 1169 939 1595 And-MPL-22 230 417 255 1142 953 1338 And-MPL-23 223 557 283 1529 749 1431 And-MPL-24 250 760 311 1941 532 1347 And-MPL-25 259 1243 468 2596 188 1763 And-MPL-26 303 560 395 1535 746 1613

68

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) And-MPL-27 273 1640 497 2964 -006 1671 And-MPL-28 282 906 280 2252 369 1035 And-MPL-29 311 934 369 2216 388 1272 And-MPL-30 246 1314 650 2670 149 2543 And-MPL-31 262 982 255 2282 353 997 And-MPL-32 260 1147 468 2488 244 1783 And-MPL-33 240 700 255 1832 590 1161 And-MPL-34 304 800 306 2010 496 1121 And-MPL-35 250 455 280 1259 891 1370 And-MPL-36 243 1697 312 3010 -030 1181 And-MPL-37 333 1520 395 2863 047 1130 And-MPL-38 238 661 442 1755 630 2054 And-MPL-39 318 347 338 897 1082 1594 And-MPL-40 245 551 390 1513 758 1847 And-MPL-41 207 561 390 1537 745 2089 And-MPL-42 223 425 283 1169 939 1507 And-MPL-43 207 561 390 1537 745 2089 And-MPL-44 324 340 395 871 1096 1864 And-MPL-45 275 426 306 1172 937 1441 And-MPL-46 302 397 166 1079 986 760 And-MPL-47 255 314 127 766 1151 1159 And-MPL-48 257 220 142 291 1401 845 And-MPL-49 256 214 74 257 1419 443 And-MPL-50 243 166 102 -078 1595 928 Average 1427 Standard Deviation 44

69

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) SST -MPL-01 300 782 442 1336 851 2018 SST -MPL-02 250 480 572 1331 853 2759 SST -MPL-03 314 424 433 1196 924 1888 SST -MPL-04 292 809 572 2024 489 2155 SST -MPL-05 275 1142 780 2483 247 2827 SST -MPL-06 308 490 494 1357 840 2086 SST -MPL-07 317 611 728 1651 685 2808 SST -MPL-08 233 684 624 1800 606 2932 SST -MPL-09 255 480 598 1331 853 2849 SST -MPL-10 217 772 312 1962 522 1529 SST -MPL-11 312 903 702 2170 412 2436 SST -MPL-12 255 1094 390 2426 277 1533 SST -MPL-13 286 742 510 1910 549 2011 SST -MPL-14 248 615 198 1661 680 905 SST -MPL-15 253 805 546 2017 492 2312 SST -MPL-16 243 1094 390 2426 277 1607 SST -MPL-17 234 1090 650 2421 280 2780 SST -MPL-18 253 1371 624 2726 120 2354 SST -MPL-19 327 434 408 1196 924 1740 SST -MPL-20 270 310 497 748 1160 2618 SST -MPL-21 269 691 522 1816 599 2181 SST -MPL-22 312 504 484 1394 821 2012 SST -MPL-23 319 627 331 1686 667 1263 SST -MPL-24 281 689 420 1812 601 1699 SST -MPL-25 210 720 497 1869 570 2541 SST -MPL-26 303 775 471 1968 519 1745 SST -MPL-27 272 714 395 1859 576 1623 SST -MPL-28 292 855 764 2098 450 2830 SST -MPL-29 310 742 510 1910 549 1881 SST -MPL-30 284 847 522 2087 456 1981 SST -MPL-31 320 891 828 2153 421 2832 SST -MPL-32 261 256 226 492 1295 1282 SST -MPL-33 224 405 311 1106 972 1672 SST -MPL-34 231 379 255 1017 1019 1363 SST -MPL-35 290 442 594 1221 912 2690 SST -MPL-36 241 521 283 1439 797 1374 SST -MPL-37 275 605 340 1639 692 1445 SST -MPL-38 263 616 368 1661 680 1611

70

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded Pmpl (MPa)

αT βT σt mpl (MPa)

SST -MPL-39 227 615 198 1661 680 969 SST -MPL-40 236 508 311 1406 814 1540 SST -MPL-41 318 1142 780 2483 247 2500 SST -MPL-42 303 809 546 2024 489 1999 SST -MPL-43 228 805 546 2017 492 2530 SST -MPL-44 283 1142 780 2483 247 2757 SST -MPL-45 277 772 312 1962 522 1236 SST -MPL-46 288 1206 728 2555 209 2502 SST -MPL-47 250 508 323 1406 814 1533 SST -MPL-48 275 442 594 1221 912 2769 SST -MPL-49 272 605 368 1639 692 1580 SST -MPL-50 260 805 520 2017 492 2147 Average 2045 Standard Deviation 56

71

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-01 270 546 293 1502 763 1299 TST -MPL-02 258 787 293 1988 508 1226 TST -MPL-03 275 730 255 1888 560 1031 TST -MPL-04 282 715 510 1860 575 2035 TST -MPL-05 254 1345 280 2701 133 1058 TST -MPL-06 292 893 255 2156 420 933 TST -MPL-07 243 853 311 2095 451 1346 TST -MPL-08 287 1047 268 2279 355 970 TST -MPL-09 230 787 471 1988 508 2179 TST -MPL-10 230 427 147 1176 935 769 TST -MPL-11 282 1243 573 2596 188 1994 TST -MPL-12 254 604 255 1636 693 1149 TST -MPL-13 288 1180 369 2527 224 1274 TST -MPL-14 251 631 232 1695 662 1044 TST -MPL-15 214 1104 312 2438 271 1465 TST -MPL-16 229 486 215 1347 845 1098 TST -MPL-17 259 715 286 1861 575 1220 TST -MPL-18 243 285 102 637 1219 571 TST -MPL-19 285 316 130 776 1146 665 TST -MPL-20 241 295 102 685 1194 568 TST -MPL-21 298 417 170 1143 952 771 TST -MPL-22 265 642 170 1178 934 1059 TST -MPL-23 314 611 255 1652 685 989 TST -MPL-24 303 481 368 1423 805 1545 TST -MPL-25 223 223 331 313 1389 2018 TST -MPL-26 273 652 331 1738 640 1389 TST -MPL-27 216 887 535 2146 424 1850 TST -MPL-28 319 718 369 1866 572 1350 TST -MPL-29 231 516 255 1425 804 1276 TST -MPL-30 260 641 484 1715 651 2114 TST -MPL-31 287 496 420 1373 832 1846 TST -MPL-32 264 368 293 976 1041 1475 TST -MPL-33 238 415 293 1151 948 1504 TST -MPL-34 271 824 364 2049 476 1418 TST -MPL-35 283 800 572 2010 496 2210 TST -MPL-36 242 1013 468 2324 331 1965 TST -MPL-37 254 715 234 1861 575 1013 TST -MPL-38 210 755 390 1932 537 1976

72

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-39 293 508 286 1406 814 1229 TST -MPL-40 273 410 260 1124 963 1243 TST -MPL-41 234 628 208 1688 666 990 TST -MPL-42 259 433 338 1194 926 1639 TST -MPL-43 265 546 280 1502 763 1257 TST -MPL-44 255 829 147 2057 472 614 TST -MPL-45 254 368 306 976 1041 1568 TST -MPL-46 293 695 210 1822 595 1846 TST -MPL-47 247 297 102 691 1190 561 TST -MPL-48 310 611 170 1652 685 665 TST -MPL-49 225 337 416 1939 533 1972 TST -MPL-50 259 410 312 1120 965 1537 Average 1336 Standard Deviation 56

434 Modified point load tests for triaxial compressive strength predictions

The objective of this section is to predict the triaxial compressive strength

of intact rock specimens by using the MPL results (modified point load strength Pmpl) It

is speculated that increase of applied load (σ1) will invoke a confining pressure (σ3) on

the imaginary cylindrical profile between the two loading points This is due to the

effect of Poissonrsquos ratio (ν) which causing a potential expansion of rock in this cylinder

The greater the σ1 the greater the σ3 in addition Poissonrsquos ratios also affect the

magnitude of σ3 The magnitude of σ3 also depends on the specimen shape particularly

the Ded ratio In principle σ3 will equal zero for Ded ratio equal to unity But when

Ded ratio is very large approaching infinity σ3 will reach its maximum This maximum

value of σ3 will also depend on the rock Poissonrsquos ratio From computer simulation of

td =25 the variation of σ1 σ3 ratio can be simply expressed by Tepnarong (2006) as

73

(σ1 σ3) = 2 ((ν (1ndashν) (1-(dDe) 2)) (411)

where ν is the Poissonrsquos ratio of rock specimen d is the modified point load diameter

and De is the equivalent diameter of the specimen The Poissonrsquos ratio of rock

specimen used in equation 411 can be assumed to be 25 The σ1 σ3 ratio tends to be

independent of Ded for Ded greater than 10 This implies that when MPL specimen

diameter is more than 10 times of the loading point diameter the magnitude of σ3 is

approaching its maximum value (Tepnarong 2006)

It should be pointed out that approach used here to determine σ3

assumes that there is no shear stress (τrz) along the imagination cylinder As a result

the magnitude of σ3 determined here would be higher than the actual σ3 applied in the

true triaxial test specimen This mean that the σ1 σ3 ratios at failure obtained from

MPL tests will be lower than the actual failure stress ratio from the true triaxial tests

From the concept of σ1 σ3-Ded relation proposed the major and

minor principal stresses at failure (σ1 σ3) can be predicted from the measured MPL

failure stress Pmpl and Ded ratio The Poissonrsquos ratio used here is equal to 025

Comparison between the failure stress (σ1 σ3) obtained from the

standard triaxial compressive strength testing (ASTM D7012-07) and those predicted

from MPL test results are made graphically in Figures 431 through 433 for ν =025

The figures are plotted the maximum shear stress (frac12(σ1-σ3)) as a function of mean

shear stress (frac12(σ1+σ3)) indicating that the predicted failure stresses under-estimate

the value obtained from the standard testing This is because of the assumption of no

shear stresses developed on the surface of the imaginary cylinder The under

prediction may be due to the intrinsic variability of the rocks The predictions are

also sensitive to assumed Poissonrsquos ratio The Poissonrsquos ratio of the tested specimens

74

may be lower than the assumed value of 025 This comparison implies that the

triaxial strength predicted from MPL test will be more conservative than those from

the standard testing method

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests

Specimen Number

td Ded σ1

(MPa)σ3

(MPa)Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-01 246 543 159 2527 6663 9190 And-MPL-02 351 632 471 7583 19776 27358 And-MPL-03 236 634 191 3075 8017 11091 And-MPL-04 266 960 319 5198 13325 18522 And-MPL-05 284 903 471 7682 19726 27408 And-MPL-06 245 793 357 5792 14938 20730 And-MPL-07 263 874 331 5393 13864 19257 And-MPL-08 261 980 268 4368 11192 15560 And-MPL-09 280 777 344 5581 14407 19988 And-MPL-10 244 569 159 2535 6659 9194 And-MPL-11 251 613 368 5911 15445 21356 And-MPL-12 226 631 340 5465 14253 19717 And-MPL-13 233 1126 468 7660 19568 27228 And-MPL-14 279 1203 572 9372 23911 33283 And-MPL-15 239 503 227 3589 9529 13118 And-MPL-16 281 474 170 2678 7154 9831 And-MPL-17 305 861 497 8087 20797 28884 And-MPL-18 233 653 283 4561 11874 16435 And-MPL-19 294 1386 484 7946 20231 28177 And-MPL-20 265 860 522 8501 21864 30365 And-MPL-21 238 425 311 4854 13143 17997 And-MPL-22 230 417 255 3962 10758 14720 And-MPL-23 223 557 283 4521 11894 16415 And-MPL-24 250 760 311 5049 13045 18094 And-MPL-25 259 1243 468 7671 19562 27234 And-MPL-26 303 560 395 6308 16591 22899 And-MPL-27 273 1640 497 8167 20757 28924 And-MPL-28 282 906 280 4574 11726 16300 And-MPL-29 311 934 369 6026 15459 21484 And-MPL-30 246 1314 650 1066 27166 37828 And-MPL-31 262 982 255 4160 10659 14819 And-MPL-32 260 1147 468 7663 19567 27229

75

And-MPL-33 240 700 255 4118 10680 14798 And-MPL-34 304 800 306 4966 12804 17770

76

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-35 250 455 280 4401 11812 16213 And-MPL-36 243 1697 312 5130 13034 18163 And-MPL-37 333 1520 395 6488 16501 22989 And-MPL-38 238 661 442 7125 18535 25661 And-MPL-39 318 347 338 5112 14342 19455 And-MPL-40 245 551 390 6222 16387 22609 And-MPL-41 207 561 390 6230 16383 22613 And-MPL-42 223 425 283 4413 11948 16361 And-MPL-43 207 561 390 6230 16383 22613 And-MPL-44 324 340 395 5952 16769 22721 And-MPL-45 275 426 306 4767 12903 17670 And-MPL-46 302 397 166 2559 7001 9560 And-MPL-47 255 314 127 3211 9223 12433 And-MPL-48 257 220 142 1852 6151 8003 And-MPL-49 256 214 74 950 3205 4155 And-MPL-50 243 166 102 1493 6331 7823

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-01 300 782 442 7389 19703 27092 SST -MPL-02 250 480 572 9028 24083 33112 SST -MPL-03 314 424 433 6767 18273 25040 SST -MPL-04 292 809 572 9293 23951 33244 SST -MPL-05 275 1142 780 1277 32611 45382 SST -MPL-06 308 490 494 7811 20792 28603 SST -MPL-07 317 611 728 1169 30552 42241 SST -MPL-08 233 684 624 1008 26160 36235 SST -MPL-09 255 480 598 9439 25178 34617 SST -MPL-10 217 772 312 5061 13068 18129 SST -MPL-11 312 903 702 1144 29377 40817 SST -MPL-12 255 1094 390 6381 16308 22689 SST -MPL-13 286 742 510 8255 21350 29605 SST -MPL-14 248 615 198 3183 8316 11500

77

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-15 253 805 546 8869 22863 31732 SST -MPL-16 243 1094 390 6381 16308 22689 SST -MPL-17 234 1090 650 1063 27180 37814 SST -MPL-18 253 1371 624 1024 26077 36317 SST -MPL-19 327 434 408 6369 17198 23567 SST -MPL-20 270 310 497 7344 21169 28513 SST -MPL-21 269 691 522 8438 21896 30333 SST -MPL-22 312 504 484 7672 20368 28040 SST -MPL-23 319 627 331 5626 13897 19224 SST -MPL-24 281 689 420 6790 17624 24414 SST -MPL-25 210 720 497 8039 20821 28860 SST -MPL-26 303 775 471 7648 19743 27391 SST -MPL-27 272 714 395 6388 16551 22939 SST -MPL-28 292 855 764 1244 31997 44436 SST -MPL-29 310 742 510 8255 21350 29605 SST -MPL-30 284 847 522 8498 21866 30364 SST -MPL-31 320 891 828 1349 34656 48146 SST -MPL-32 261 256 226 3165 9741 12906 SST -MPL-33 224 405 311 4825 13157 17982 SST -MPL-34 231 379 255 3912 10783 14695 SST -MPL-35 290 442 594 9307 25071 34377 SST -MPL-36 241 521 283 4499 11905 16404 SST -MPL-37 275 605 340 5452 14259 19711 SST -MPL-38 263 616 368 5912 15445 21357 SST -MPL-39 227 615 198 3183 8316 11500 SST -MPL-40 236 508 311 4939 13100 18039 SST -MPL-41 318 1142 780 1277 32611 45382 SST -MPL-42 303 809 546 8870 22862 31733 SST -MPL-43 228 805 546 8869 22863 31732 SST -MPL-44 283 1142 780 1277 32611 45382 SST -MPL-45 277 772 312 5061 13068 18129 SST -MPL-46 288 1206 728 1193 30433 42361 SST -MPL-47 250 508 323 5119 13577 18695 SST -MPL-48 275 442 594 9307 25071 34377 SST -MPL-49 272 605 368 5906 15447 21354 SST -MPL-50 260 805 520 8447 21774 30221

78

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-01 270 546 293 4672 12313 16986 TST -MPL-02 258 787 293 4756 12272 17028 TST -MPL-03 275 730 255 4125 10676 14801 TST -MPL-04 282 715 510 8243 21356 29599 TST -MPL-05 254 1345 280 4599 11713 16312 TST -MPL-06 292 893 255 4151 10663 14814 TST -MPL-07 243 853 311 5067 13036 18103 TST -MPL-08 287 1047 268 4368 11192 15560 TST -MPL-09 230 787 471 7651 19741 27393 TST -MPL-10 230 427 147 2296 6212 8508 TST -MPL-11 282 1243 573 9397 23964 33361 TST -MPL-12 254 604 255 4089 10695 14783 TST -MPL-13 288 1180 369 6052 15445 21497 TST -MPL-14 251 631 232 3734 9739 13474 TST -MPL-15 214 1104 312 5105 13046 18151 TST -MPL-16 229 486 215 3400 9057 12457 TST -MPL-17 259 715 286 4626 11986 16612 TST -MPL-18 243 285 102 1474 4358 5833 TST -MPL-19 285 316 130 1934 5544 7478 TST -MPL-20 241 295 102 1489 4351 5840 TST -MPL-21 298 417 170 2641 7172 9813 TST -MPL-22 265 642 170 2650 7168 9817 TST -MPL-23 314 611 255 4091 10693 14784 TST -MPL-24 303 481 368 5843 15476 21322 TST -MPL-25 223 223 331 4370 14376 18745 TST -MPL-26 273 652 331 5336 13892 19229 TST -MPL-27 216 887 535 8716 22394 31109 TST -MPL-28 319 718 369 5977 15483 21460 TST -MPL-29 231 516 255 4046 10716 14762 TST -MPL-30 260 641 484 7793 20307 28100 TST -MPL-31 287 496 420 6654 17692 24346 TST -MPL-32 264 368 293 4477 12411 16888 TST -MPL-33 238 415 293 4560 12370 16930 TST -MPL-34 271 824 364 5917 15240 21157 TST -MPL-35 283 800 572 9290 23953 33242 TST -MPL-36 242 1013 468 7646 19575 27221 TST -MPL-37 254 715 234 3785 9806 13592 TST -MPL-38 210 755 390 6321 16338 22659

79

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-39 293 508 286 4536 12031 16567 TST -MPL-40 273 410 260 4036 10981 15017 TST -MPL-41 234 628 208 3345 8727 12071 TST -MPL-42 259 433 338 5279 14259 19538 TST -MPL-43 265 546 280 4469 11778 16247 TST -MPL-44 255 829 147 2394 6163 8557 TST -MPL-45 254 368 306 4671 12951 17622 TST -MPL-46 293 695 210 7616 19759 27375 TST -MPL-47 247 297 102 1491 4359 5841 TST -MPL-48 310 611 170 2728 7129 9870 TST -MPL-49 225 337 416 6744 17426 24170 TST -MPL-50 259 410 312 4841 13178 18019

ANDESITE

τm= 07103σm + 26

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=

((σ

1-σ

3)2

) (M

Pa)

MPL PredictionTriaxial Compressive

Figure 431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and MPL test

80

SILICIFIED TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=(

( σ1minus

σ3)

2)

(MPa

)MPL Prediction

Triaxial Compressive Strength test

Figure 432 Comparisons of triaxial compressive strength criterion of silicified

tuffaceous sandstone between the triaxial compressive strength test

and MPL test

81

TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stress σm=((σ1+σ3)2) (MPa)

Max

imum

shea

r st

res

τ m=(

( σ1-

σ3)

2)

(MPa

)

MPL Prediction

Triaxial Compressive Strength test

Figure 433 Comparisons of triaxial compressive strength criterion of tuffaceous

sandstone between the triaxial compressive strength test and MPL

test

Table 425 compares the triaxial test results in terms of the cohesion c

and internal friction angle φi by assuming the failure mode follows the Coulombrsquos

criterion The c and φi values are calculated from the test results and the predicted

results by the assumption of Coulombrsquos criterion (Jaeger and Cook 1978) Table

425 shows that the strengths predicted by MPL testing of all rock types under-

estimate those obtained from the standard triaxial testing This is probably the actual

Poissonrsquos ratio of the rock specimens are probably lower than those assumed in the

model simulation which is assumed the Poissonrsquos ratio as 025

82

Table 425 Comparisons of the internal friction angle and cohesion between MPL

predictions and triaxial compressive strength tests

Triaxial Compressive Strength Test

MPL Predictions (ν=025) Rock Type

c (MPa) φi (degrees) c (MPa) φi (degrees)

Porphyritic Andesite 12 69 4 45

Silicified Tuffaceous Sandstone 13 65 3 46

Tuffaceous Sandstone 7 73 2 46

CHAPTER V

FINITE DIFFERENCE ANALYSES

51 Objectives

The objective of the finite difference analyses is to verify that the equivalent

diameter of rock specimens used in the MPL strength prediction is appropriate The

finite difference analyses using FLAC software is made to determine the MPL

strength for various specimen diameters (D) with a constant cross-sectional area

52 Model characteristics

The analyses are made in axis symmetry Four specimen models with the

constant thickness of 318 cm are loaded with 10 cm diameter loading point The

diameter of the specimen (D) models is varied from 508 cm to 762 cm Each

specimen has a constant cross-sectional area of 1613 cm2 as shown in Figure 51

through 55 The load is applied to the specimens until failure occurs and then the

failure loads (P) are recorded

53 Results of finite difference analyses

The results of numerical simulation are shown in Table 51 The results

suggest that the MPL strength remains roughly constant when the same equivalent

diameter (De) is used It can be concluded that the equivalent diameter used in this

research is appropriate to predict the MPL strength

80

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm

81

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm

82

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm

Table 51 Summary of the results from numerical simulations

Model Number

Specimen Thickness

t (cm)

Specimen Diameter

D (cm)

Cross-Sectional

Are of Specimen

A (cm2)

Equivalent Diameter

De (cm)

Failure Load P

(kN)

1 318 508 1613 508 4485 2 318 572 1613 508 4630 3 318 635 1613 508 4614 4 318 698 1613 508 4627 5 318 762 1613 508 4590

CHAPTER VI

DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS

This chapter discusses various aspects of the proposed MPL testing technique

for determining the elastic modulus uniaxial and triaxial compressive strengths and

tensile strength of intact rock specimens The discussed issues include reliability of

the testing results validity scope and limitations of the proposed method of

calculations and accuracy of the predicted rock properties

61 Discussions

1) For selection of rock specimens for MPL testing in this research an

attempt has been made to select the specimens particularly in obtaining a high degree

of uniformity of rock matrix so as to reduce the intrinsic variability of the mechanical

test results and hence clearly reveals of the relation between the standard test results

with the MPL test results Nevertheless a high degree of intrinsic variability

remains as evidenced from the results of the characterization testing For all tested

rock types here the igneous rocks are normally heterogeneous The high intrinsic

variability is caused by the degree of weathering among specimens and the

distribution of rock fragments in the groundmass which promotes the different

orientations of cleavage planes and pore spaces to become a weak plane in rock

specimens Silicified tuffaceous sandstone the high standard deviation may be

caused by the silicified degree in rock specimens

84

2) For prediction of elastic modulus of rock specimens the effects of the

heterogeneity that cause the selective weak planes are enhanced during the MPL

testing This is because the applied loading areas are much smaller than those under

standard uniaxial compressive strength testing This load condition yields a high

degree of intrinsic variability of the MPL testing results The standard deviation of

the elastic modulus predicted from MPL results are in the range between 35-50

This means that in order to obtain the accurate prediction a large number of rock

specimens is necessary for each rock types and that the MPL testing is more

applicable in fine-grained rocks than coarse-grained rocks Another factor is the

uneven contacts between the loading platens and the rock surfaces which caused the

elastic modulus of all rock types that predicted from MPL testing to be lower

compared with those from the uniaxial compressive strength

3) Equivalent diameter used to define the rock specimen width (perpendicular

to the loading direction) seems adequate for use in MPL predictions of rock

compressive and tensile strengths

4) Determination of σ3 at failure for the MPL testing is the empirical In fact

results from the numerical simulation indicate that σ3 distribution along the imaginary

cylinder between the loading points is not uniform particularly for low td ratio

(lower than 25) Along this cylinder σ3 is tension near the loading point and

becomes compression in the mid-length of the MPL specimen There are also shear

stresses along the imaginary cylinder The induced stress states along the assume

cylinder in MPL specimen are therefore different from those the actual triaxial

strength testing specimen The MPL method can not satisfactorily predict the triaxial

compressive strength of all tested rock types primarily due to the heterogeneity of

85

rock specimens that is the different sizes of phenocrysts in igneous rock in lateral and

horizontal directions This promotes the different failure formations

62 Conclusions

The objective of this research is to determine the elastic modulus uniaxial

compressive strength tensile strength and triaxial compressive strength of rock

specimens by using the modified point load (MPL) test method Three rock types

used in this research are porphyritic andesite silicified tuffaceous sandstone and

tuffaceous sandstone Prior to performing the modified point load testing the

standard characterization testing is carried out on these rock types to obtain the data

basis for use to compare the results from MPL testing The MPL specimens are

irregular-shaped with the specimen thickness to loading platen diameter (td) varies

from 25-35 and the equivalent diameter of specimen to loading platen diameter

(Ded) varies from 15 to 20 Loading platen diameters used in this research are 7 10

and 15 mm Finite different analysis is used to verify the equivalent diameter that use

to calculate rock properties from MPL tests

The research results illustrate that the elastic modulus estimated from MPL tests

under-estimates those obtained from the ASTM standard test with the standard

deviation of 40 for porphyritic andesite 48 for silicified tuffaceous sandstone and

43 for tuffaceous sandstone The MPL test method can satisfactorily predict the

uniaxial compressive strength and tensile strength of all rock types tested here The

conventional point load test method over-predicts the actual strength results by much as

100 The MPL method however can not predict the triaxial compressive strengths

for three rock types tested here primarily due to heterogeneous and different

86

weathering degree of rock specimens and uneven surface of rock specimens This

suggests that the smooth and parallel contact surfaces on opposite side of the loading

points are important for determining the strength of rock specimens for MPL method

63 Recommendations

The assessment of predictive capability of the proposed MPL testing technique

has been limited to three rock types More testing is needed to confirm the applicability

and limitations of the proposed method Some obvious future research needs are

summarized as follows

1) More testing is required for elastic modulus and triaxial compressive strength

on different rock types Smooth and parallel of rock specimen surfaces in the opposite

sides should be prepared for all rock types The results may also reveal the impacts of

grain size on elasticity and strength of obtained under different loading areas And the

effects of size of the areas underneath the applied load should be further investigated

2) To truly confirm the validity of MPL predictions for the elastic modulus and

strength of rocks may be desirable to obtain the actual Poissonrsquos ratio of all rock types

The results could reveal the accuracy of the predicted elastic modulus under the assumed

Poissonrsquos ratio of 025 Comparison between the elastic modulus obtained from the

actual Poissonrsquos ratio may show the validity of assumption of the Poissonrsquos ratio posed

here

3) All tests made in this research are on dry specimens the results of pore

pressure and degree of saturation have not been investigated It is desirable to learn also

the proposed MPL testing technique can yield the intact rock properties under

different degree of saturation

88

REFERENCES

ASTM D2664-86 Standard test method for triaxial compressive strength of

undrained rock core specimens without pore pressure measurements In

Annual Book of ASTM Standards (Vol 0408) Philadelphia American

Society for Testing and Materials

ASTM D7012-07 Standard test method for compressive strength and elastic moduli

of intact rock core specimens under varying states of stress and

temperatures In Annual Book of ASTM Standards (Vol 0408) West

Conshohocken American Society for Testing and Materials

ASTM D3967-81 Standard test method for splitting tensile strength of intact rock

core specimens In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

ASTM D4543-85 Standard test method for preparing rock core specimens and

determining dimensional and shape tolerances In Annual Book of ASTM

Standards (Vol 0408) Philadelphia American Society for Testing and

Materials

ASTM D5731-95 Standard test method for determination of point load strength

index of rock In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

Bieniawski Z T (1974) Estimating of the strength of rock materials J Inst

Min Metall 7 123-137

Bieniawski Z T (1975) The point-load test in geotechnical practice Engng

Geol 9 1-11

89

Bieniawski Z T and Bernede M J (1979) Suggested methods for determining the

uniaxial compressive strength and deferability of rock material for ISRM

Commission on Standardization of Laboratory and Field test Int J Rock

Mech Min Sci 16 (2)xxxx (page no)

Bray J W (1987) Some applications of elastic theory In E T Brown (ed)

Analytical and Computational Methods in Engineering Rock

Mechanics (pp 32-94) Allen amp Unwin London

Broch E and Franklin J A (1972) The point-load test Int J Rock Mech Min

Sci 9 669-697

Book N (1977) The use of irregular specimens for rock strength tests Int J

Rock Mech Min Sci amp Geomech Abstr 14 193-202

Book N (1979) Estimating the triaxial strength of rocks Int J Rock Mech Min

Sci amp Geomech Abstr 16 261-264

Book N (1980) Size correction for point load testing Int J Rock Mech Min

Sci 17231-235 [Technical note]

Book N (1985) The equivalent core diameter method of size and shape correction

in point load testing Int J Rock Mech Min Sci amp Geomech Abstr

22 61-70

Brown E T (1981) Rock characterization Testing and Monitoring ISRM

Suggestion Methods New York International Society for Rock

Mechanics Pergamon Press

Butenuth C (1997) Comparison of tensile strength values of rocks determined by

point load and direct tensile tests Rock Mech Rock Engng 30 65-72

90

Cargill J S and Shakoor A (1992) Evaluation of empirical methods for measuring

the uniaxial compressive strength Int J Rock Mech Min Sci 27 495-503

Chau KT (1997) Youngrsquos modulus interpreted from compression tests with end

friction J Engng Mech January 1-7 plat Ann Inst Tech Trav Publics

58 967-971

Chau KT and Wei X X (1999) A new analytic solution for the diametral point

load strength test on finite solid circular cylinders Int J Solids and

Structures 38(9) 1459-1481

Chau KT and Wong R HC (1996) Uniaxial compressive strength and point

load strength Int J Rock Mech Min Sci 33183-188

Davis R O and Selvadurai APS (1996) Elasticity and Geomechanics New

York Cambridge University Press 198 p

Deere DU and Miller R P (1966) Engineering Classification and Index

Properties for Intact Rock US Air Force Weapons Lab Rep AFWL-

TR-65-116

Durelli A J and Parks V (1962) Relationship of size and stress gradient to brittle

failure stress In Proceeding of the 4th US National Cong Of Appl

Mech (pp 931-938)

Evans I (1961) The tensile strength of coal Colliery Eng 38 428-434

Fairhurst C (1961) Laboratory measurement of some physical properties of rock

In Proceeding of the 4th Symp Rock Mech (pp 105-118) Penn State

University

Farmer I (1983) Engineering Behavior of Rocks New York Chapman and Hall

208 p

91

Forster I R (1983) The influence of core sample geometry on axial load test Int

J Rock Mech Min Sci 20 291-295

Fuenkajorn K (2002) Modified point load test determining uniaxial compressive

strength of intact rock In Proceeding of 5th North American Rock

Mechanics Symposium and the 17th Tunneling Association of Canada

Conference (NARMS-TAC 2002) (pp ) Toronto

Fuenkajorn K and Daemen J J K (1986) Shape effect on ring test tensile

strength In Key to Energy Production Proceeding of the 27th US

Symposium on Rock Mechanics (pp 155-163) Tuscaloosa University of

Alabama

Fuenkajorn K and Daemen J J K (1991b) An empirical strength criterion for

heterogeneous welded tuff In ASME Applied Mechanics and

Biomechanics Summer Conference Columbus Ohio University

Fuenkajorn K and Daemen J J K (1992) An empirical strength criterion for

heterogeneous tuff Int J Engineering Geology 32 209-223

Fuenkajorn K and Tepnarong P (2001) Size and stress gradient effects on the

modified point load strength of Saraburi Marble In the 6th Mining

Metallurgical and Petroleum Engineering Conference Bangkok

Thailand(pp)

Ghosh A Fuenkajorn K and Daemen J J K (1995) Tensile strength of welded

Apache Leap tuff investigation for scale effects In Proceeding of the 35th

US Rock Mech Symposium (pp 459-646) University of Navada Reno

Goodman R E (1980) Methods of Geological Engineering in Discontinuous

Rock New York Wiley and Sons

92

Greminger M (1982) Experimental studies of the influence of rock anisotropy on

size and shape effects in point-load testing Int J Rock Mech Min Sci

19 241-246

Gunsallus K L and Kulhawy F H (1984) A comparative evaluation of rock

strength measures Int J Rock Mech Min Sci 21 233-248

Hassani F P Scoble M J and Whittaker B N (1980) Application of point load

index test to strength determination of rock and proposals for new size-

correction chart (pp 543-564) Rolla

Hiramatsu Y and Oka Y (1966) Determination of tensile strength of rock by a

compression test of irregular test piece Int J Rock Mech Min Sci 3

89-99

Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the

Hoek-Brown falure criterion-Technical note Int J Rock Mech Min Sci

amp Geomech Abstr 27 227-229

Hoek E and Brown E T (1980a) Empirical strength criterion for rock masses J

Geotech Eng Div 106 (GT9) 1013-1035

Hondros G (1959) The evaluation of Poissonrsquos ratio and modulus of material of a

low tensile resistance by the Brazilian (indirect tensile) test with particular

reference to concrete Aust J Appl Sci 10 243-264

Horii H and Nemat-Nasser S (1985) Compression-induced microcrack growth in

brittle solids axial splitting and shear failure J Geophts Res 90 3105-

3125

93

Hudson J A Brown E T and Fairhurst C (1971) Shape of the complete stress-

strain curve for rock In Proceeding of the 13th US Symp Rock Mech (pp

773-795) Urbana

ISRM (1985) Suggested method for determining point load strength Int J Rock

Mech Min Sci amp Geomech Abstr 22 53-60

ISRM (1985) Suggested methods for deformability determination using a flexible

dilatometer Int J Rock Mech Min Sci amp Geomech Abstr 24 123-134

Jaeger J C and Cook N G W (1979) Fundamentals of Rock Mechanics

London Chapman and Hall 593 p

Kaczynski R R (1986) Scale effect during compressive strength of rocks In

Proceeding of 5th Int Assoc Eng Geol Congr p 371-373

Lama R D and Vutukuri V S (1978) Testing techniques and results In

Handbook on Mechanical Properties of Rock Vol III No 2 Trans

Tech Publications (International Standard Book Number 0-87849-022-1

Clausthal Germany)

Lonborg N (1967) The strength-size relation of granite Int J Rock Mech Min

Sci 4 269-272

Miller R P (1965) Engineering Classification and Index Properties for Intact

Rock PhD Dissertation Univ Of Illinois Urbana III 92 p

Nimick F B (1988) Empirical relations between porosity and the mechanical

properties of tuff In Key Questions in Rock Mechanics (pp 741-742)

Balkema Rotterdam

Obert L and Stephenson D E (1965) Stress conditions under which core disking

occurs Trans Soc Min Eng AIME 232 227-235

94

Panek L A and Fannon T A (1992) Size and shape effects in point load tests

of irregular rock fragments J Rock Mechanics and Rock Engineering

25 109-140

Pells P J N (1975) The use of point load test in predicting the compressive

strength of rock material Aust Geotech (pp 54-56) G5(N1)

Reichmuth D R (1968) Point-load testing of brittle materials to determine the

tensile strength and relative brittleness In Proceeding of the 9th US Symp

Rock Mech (pp 134-159) University of Colorado

Sammis C G and Ashby M F (1986) The failure of brittle porous solid under

compressive stress state Acta Metall 34 511-526

Serata S and Fuenkajorn K (1992a) Finite element progam lsquoGEOrsquo for modeling

brittle-ductile deterioration of aging earth structures In SMRI Paper

Presented at the Solution Mining Research Institute Fall Meeting

October 19-22 Houston Texas 24p

Sheorey P R Biswas A K and Choubey V D (1989) An empirical failure

criterion of rocks and jointed rock masses Eng Geol 26 141-159

Stowe R L (1969) Strength and deformation properties of granite basalt

limestone and tuff US Army Corps of Engineers WES Misc Paper C-69-1

Taliercio A and Sacchi Landrianni G (1988) Failure criterion for layered rock

Int J Rock Mech Min Sci amp Geomech Abstr 25 299-305

Tepnarong P (2001) Theoretical and experimental studies to determine

compressive and tensile strengths of rocks using modified point load

testing M Eng Thesis Suranaree University of Technology Thailand

95

Tepnarong P (2006) Theoretical and experimental studies to determine elastic

modulus and triaxial compressive strength of intact rocks by modified

point load testing PhD Eng Thesis Suranaree University of

Technology Thailand

Tepnarong P and Fuenkajorn K (2004) Determining of elasticity and strengths

of intact rocks using modified point load test In Proceeding of the ISRM

International Symposium 3rd ASRM Vol 2 (pp 397-392)

Timoshenko S (1958) Strength of materials I Element Theory and Problems

(3rd ed) Princeton N J D Van Nostard

Timoshenko S and Goodier J N (1951) Theory of Elasticity (2nd ed) New

York McGraw-Hill

Truk N and Dearman W R (1985) Improvements in the determination of point

load strength Bull Int Assoc Eng Geol 31 137-142

Truk N and Dearman W R (1986) A correction equation on the influence of

length-to-diameter ratio on uniaxial compressive strength of rocks J Eng

Geol 22 293-300

Wei X X and Chau K T (2002) Analytic solution for finite transversely

isotropic circular cylinder under the axial point load test J Eng Mech

(pp 209-219)Vol

Wei X X and Chau K T and Wong R H C (1999) Analytic solution for

axial point load strength test on solid circular cylinders J Eng Mech (pp

1349-1357) Vol

96

Wijk G (1978) Some new theoretical aspects of indirect measurements of the

tensile strength of rocks Int J Rock Mech Min Sci amp Geomech

Abstr 15 149-160

Wijk G (1980) The point load test for the tensile strength of rock Geotech Test

ASTM 3 49-54

APPENDIX A

CHARACTERIZATION TEST RESULTS

97

Table A-1 Results of conventional point load strength index test on porphyritic

andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

And-06-05-CPL-01 5397 5366 284 52 And-06-05-CPL-02 5332 5366 283 78 And-08-04-CPL-03 5432 5366 284 90 And-08-04-CPL-04 5482 5366 286 87 And-06-01-CPL-05 5330 5366 285 76 And-06-01-CPL-06 5613 5366 284 76 And-04-04-CPL-07 5617 5366 281 75 And-04-05-CPL-08 5525 5366 282 75 And-03-02-CPL-09 5595 5366 280 85 And-03-02-CPL-10 5535 5366 283 85 And-06-06-CPL-11 5475 5366 283 75 And-09-01-CPL-12 5552 5366 286 90 And-09-01-CPL-13 5503 5366 283 90 And-02-04-CPL-14 5542 5366 282 85 And-09-03-CPL-15 5607 5366 282 85 And-09-03-CPL-16 5452 5366 285 96 And-01-03-CPL-17 5530 5366 283 87 And-01-03-CPL-18 5313 5366 283 90 And-01-04-CPL-19 5465 5366 284 56 And-01-04-CPL-20 5572 5366 283 97

Average 81plusmn12

98

Table A-2 Results of conventional point load strength index test on silicified

tuffaceous sand stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

SST-02-03-CPL-01 5373 5366 268 125 SST-06-04-CPL-02 5469 5366 268 70 SST-02-07-CPL-03 5505 5366 269 70 SST-02-06-CPL-04 5518 5366 267 130 SST-02-04-CPL-05 5626 5366 267 125 SST-02-03-CPL-06 5139 5366 270 132 SST-02-03-CPL-07 5483 5366 271 71 SST-02-05-CPL-08 5340 5366 266 125 SST-02-05-CPL-09 5399 5366 265 70 SST-07-05-CPL-10 5643 5366 263 99 SST-07-05-CPL-11 5381 5366 266 106 SST-05-02-CPL-12 5439 5366 274 104 SST-05-02-CPL-13 5491 5366 271 104 SST-03-04-CPL-14 5430 5366 263 113 SST-03-04-CPL-15 5556 5366 263 106 SST-09-03-CPL-16 5491 5366 272 125 SST-09-03-CPL-17 5703 5366 271 125 SST-01-01-CPL-18 5705 5366 267 132 SST-02-07-CPL-19 5596 5366 269 111 SST-02-07-CPL-20 5527 5366 271 118

Average 108plusmn22

99

Table A-3 Results of conventional point load strength index test on tuffaceous sand

stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

TST-06-05-CPL-01 5657 5366 263 125 TST-06-05-CPL-02 5781 5366 264 109 TST-02-05-CPL-03 5686 5366 263 106 TST-02-05-CPL-04 5747 5366 264 80 TST-08-03-CPL-05 5606 5366 268 115 TST-08-03-CPL-06 5574 5366 266 118 TST-08-01-CPL-07 5491 5366 268 111 TST-08-01-CPL-08 5478 5366 268 115 TST-04-02-CPL-09 5422 5366 263 103 TST-04-02-CPL-10 5387 5366 264 111 TST-08-04-CPL-11 5371 5366 267 115 TST-08-04-CPL-12 5463 5366 267 113 TST-06-07-CPL-13 5545 5366 267 108 TST-04-01-CPL-14 5729 5366 261 59 TST-06-06-CPL-15 5457 5366 261 99 TST-06-06-CPL-16 5469 5366 263 109 TST-06-06-CPL-17 5497 5366 266 122 TST-04-03-CPL-18 5550 5366 261 87 TST-04-03-CPL-19 5521 5366 262 52 TST-04-05-CPL-20 5477 5366 264 87

Average 102plusmn20

100

Table A-4 Results of uniaxial compressive strength tests and elastic modulus

measurements on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-5 Results of uniaxial compressive strength tests and elastic modulus

measurements on silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

Table A-6 Results of uniaxial compressive strength tests and elastic modulus

measurements on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

101

Table A-7 Results of Brazilian tensile strength tests on porphyritic andesite

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

And-04-03-BZ-01 2628 5366 281 395 178 And-04-03-BZ-02 2551 5366 279 350 163 And-04-03-BZ-03 2755 5366 285 380 164 And-04-03-BZ-04 2669 5366 279 415 184 And-04-06-BZ-05 2686 5366 280 320 141 And-04-06-BZ-06 2699 5366 286 415 182 And-04-06-BZ-07 2649 5366 282 395 177 And-04-06-BZ-08 2642 5366 286 340 153 And-06-01-BZ-09 2678 5366 286 435 193 And-06-01-BZ-10 2758 5366 285 385 166

Average 170plusmn16

Table A-8 Results of Brazilian tensile strength tests on silicified tuffaceous

sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

SST-02-02-BZ-01 2507 5366 265 450 213 SST-01-06-BZ-02 2664 5366 264 520 232 SST-01-02-BZ-03 2595 5366 262 400 183 SST-01-02-BZ-04 2593 5366 261 320 146 SST-01-02-BZ-05 2608 5366 266 500 228 SST-02-01-BZ-06 2710 5366 266 500 220 SST-02-01-BZ-07 2654 5366 262 450 201 SST-01-05-BZ-08 2778 5366 268 350 150 SST-01-05-BZ-09 2793 5366 266 400 170 SST-01-05-BZ-10 2795 5366 266 400 170

Average 191plusmn32

102

Table A-9 esults of Brazilian tensile strength tests on tuffaceous sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

TST-02-03-BZ-01 2811 5366 260 360 152 TST-02-03-BZ-02 2757 5366 260 255 110 TST-02-03-BZ-03 2739 5366 262 325 141 TST-02-03-BZ-04 2688 5366 263 175 77 TST-06-04-BZ-05 2765 5366 266 450 193 TST-06-04-BZ-06 2729 5366 264 280 122 TST-06-04-BZ-07 2730 5366 260 230 100 TST-06-02-BZ-08 2748 5366 264 285 123 TST-06-02-BZ-09 2743 5366 261 290 125 TST-06-02-BZ-10 2658 5366 265 370 165

Average 131plusmn33

Table A-10 esults of triaxial compressive strength tests on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-11 Results of triaxial compressive strength tests on silicified tuffaceous

sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

103

Table A-12 Results of triaxial compressive strength tests on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

APPENDIX B

MODIFIED POINT LOAD TEST RESULTS FOR ELASTIC

MODULUS PREDICTION

116

AND-MPL-01

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 125 GPamm

Figure B1 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-01

And-MPL-02

00500

100015002000250030003500400045005000

0 005 01 015 02 025 03 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 180 GPamm

Figure B2 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-02

117

And-MPL-03

00200400600800

100012001400160018002000

000 002 004 006 008 010 012 014

Diplacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B3 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-03

And-MPL-04

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B4 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-04

118

And-MPL-05

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 369 GPamm

Figure B5 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-05

And-MPL-06

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B6 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-06

119

And-MPL-07

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss (

MPa

)

ΔPΔδ = 234 GPamm

Figure B7 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-07

And-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 171 GPamm

Figure B8 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-08

120

And-MPL-09

00

500

1000

1500

2000

2500

3000

3500

000 020 040 060 080 100 120 140Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 056 GPamm

Figure B9 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-09

And-MPL-10

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 124 GPamm

Figure B10 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-10

121

And-MPL-11

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030 035 040Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 138 GPamm

Figure B11 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-11

And-MPL-12

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 189 GPamm

Figure B12 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-12

122

And-MPL-13

00500

100015002000250030003500400045005000

000 010 020 030 040 050 060

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 151 GPamm

Figure B13 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-13

And-MPL-14

00

1000

2000

3000

4000

5000

6000

7000

000 010 020 030 040 050 060Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 165 GPamm

Figure B14 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-14

123

And-MPL-15

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120 140 160Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 011 GPamm

Figure B15 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-15

And-MPL-16

00

200

400

600

800

1000

1200

1400

1600

1800

000 050 100 150 200Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 012 GPamm

Figure B16 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-16

124

And-MPL-17

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120

Displacement (mm)

Stre

ss P

(MPa

) ΔPΔδ = 021 GPamm

Figure B17 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-17

And-MPL-18

00

500

1000

1500

2000

2500

3000

000 050 100 150 200 250 300 350Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 008 GPamm

Figure B18 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-18

125

And-MPL-19

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B19 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-19

And-MPL-20

00

1000

2000

3000

4000

5000

6000

000 050 100 150 200 250 300

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 017 GPamm

Figure B20 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-20

126

And-MPL-21

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B21 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-21

And-MPL-22

00

500

1000

1500

2000

2500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B22 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-22

127

And-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B23 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-23

And-MPL-24

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =112 GPamm

Figure B24 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-24

128

And-MPL-25

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 585 GPamm

Figure B25 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-25

And-MPL-26

00500

10001500200025003000350040004500

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 143 GPamm

Figure B26 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-26

129

And-MPL-27

00500

10001500200025003000350040004500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B27 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-27

And-MPL-28

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B28 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-28

130

And-MPL-29

00500

1000150020002500300035004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B29 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-29

And-MPL-30

00

1000

2000

3000

4000

5000

6000

7000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B30 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-30

131

And-MPL-31

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B31 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-31

And-MPL-32

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B32 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-32

132

And-MPL-33

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 101 GPamm

Figure B33 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-33

And-MPL-34

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 135 GPamm

Figure B34 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-34

133

And-MPL-35

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 127 GPamm

Figure B35 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-35

And-MPL-36

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 292 GPamm

Figure B36 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-36

134

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B37 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-37

And-MPL-38

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B38 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-38

135

And-MPL-39

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 186 GPamm

Figure B39 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-39

And-MPL-40

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 20 GPamm

Figure B40 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-40

136

And-MPL-41

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B41 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-41

And-MPL-42

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B42 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-42

137

And-MPL-43

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 346 GPamm

Figure B43 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-43

And-MPL-44

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B44 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-44

138

And-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 169 GPamm

Figure B45 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-45

And-MPL-46

00

200

400

600

800

1000

1200

1400

1600

1800

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B46 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-46

139

And-MPL-47

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B47 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-47

And-MPL-48

00

200

400

600

800

1000

1200

1400

1600

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 094 GPamm

Figure B48 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-48

140

And-MPL-49

00

100

200

300

400

500

600

700

800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 057 GPamm

Figure B49 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-49

And-MPL-50

00

200

400

600

800

1000

1200

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 078 GPamm

Figure B50 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-50

141

SST-MPL-01

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 280 GPamm

Figure B51 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-01

SST-MPL-02

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 307 GPamm

Figure B52 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-02

142

SST-MPL-03

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 356 GPamm

Figure B53 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-03

SST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 450 GPamm

Figure B54 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-04

143

SST-MPL-05

00100020003000400050006000700080009000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 532 GPamm

Figure B55 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-05

SST-MPL-06

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 273 GPamm

Figure B56 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-06

144

SST-MPL-07

0010002000300040005000600070008000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 418 GPamm

Figure B57 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-07

SST-MPL-08

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 414 GPamm

Figure B58 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-08

145

SST-MPL-09

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B59 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-09

SST-MPL-10

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 958 GPamm

Figure B60 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-10

146

SST-MPL-11

00

10002000

300040005000

60007000

8000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 400 GPamm

Figure B61 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-11

SST-MPL-12

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 272 GPamm

Figure B62 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-12

147

SST-MPL-13

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 408 GPamm

Figure B63 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-13

SST-MPL-14

00

500

1000

1500

2000

2500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 296 GPamm

Figure B64 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-14

148

SST-MPL-15

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 282 GPamm

Figure B65 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-15

SST-MPL-16

00500

1000150020002500300035004000

000 005 010 015 020

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 26 GPamm

Figure B66 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-16

149

SST-MPL-17

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 416 GPamm

Figure B67 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-17

SST-MPL-18

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 473 GPamm

Figure B68 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-18

150

SST-MPL-19

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 330 GPamm

Figure B69 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-19

SST-MPL-20

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 278 GPamm

Figure B70 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-20

151

SST-MPL-21

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 185 GPamm

Figure B71 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-21

SST-MPL-22

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B72 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-22

152

SST-MPL-23

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 15 GPamm

Figure B73 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-23

SST-MPL-24

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 295 GPamm

Figure B74 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-24

153

SST-MPL-25

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 259 GPamm

Figure B75 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-25

SST-MPL-26

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 221 GPamm

Figure B76 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-26

154

SST-MPL-27

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 274 GPamm

Figure B77 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-27

SST-MPL-28

0010002000300040005000600070008000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 209 GPamm

Figure B78 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-28

155

SST-MPL-29

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 176 GPamm

Figure B79 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-29

SST-MPL-30

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B80 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-30

156

SST-MPL-31

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 464 GPamm

Figure B81 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-31

SST-MPL-32

00

500

1000

1500

2000

2500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 178 GPamm

Figure B82 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-32

157

SST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 131 GPamm

Figure B83 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-33

SST-MPL-34

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 215 GPamm

Figure B84 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-34

158

SST-MPL-35

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 190 GPamm

Figure B85 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-35

SST-MPL-36

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B86 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-36

159

SST-MPL-37

00500

1000150020002500300035004000

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 067 GPamm

Figure B87 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-37

AND-MPL-38

00

500

10001500

2000

2500

3000

35004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 127 GPamm

Figure B88 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-38

160

SST-MPL-39

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 229 GPamm

Figure B89 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-39

SST-MPL-40

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 090 GPamm

Figure B90 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-40

161

SST-MPL-41

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 498 GPamm

Figure B91 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-41

SST-MPL-42

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 392 GPamm

Figure B92 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-42

162

SST-MPL-43

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 244 GPamm

Figure B93 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-43

SST-MPL-44

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 571 GPamm

Figure B94 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-44

163

SST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 001 002 003 004 005 006 007 008

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 780 GPamm

Figure B95 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-45

SST-MPL-46

0010002000300040005000600070008000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 411 GPamm

Figure B96 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-46

164

SST-MPL-47

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 309 GPamm

Figure B97 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-47

SST-MPL-48

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 338 GPamm

Figure B98 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-48

165

SST-MPL-49

00500

1000150020002500300035004000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 254 GPamm

Figure B99 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-49

SST-MPL-50

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 360 GPamm

Figure B100 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-50

166

TST-MPL -01

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 212GPamm

Figure B101 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-01

TST-MPL-02

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=326 GPamm

Figure B102 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-02

167

TST-MPL-03

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacememt (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B103 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-03

TST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B104 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-04

168

TST-MPL-05

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 264 GPamm

Figure B105 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-05

TST-MPL-06

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacment (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B106 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-06

169

TST-MPL-07

00

500

1000

1500

2000

2500

3000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 162 GPamm

Figure B107 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-07

TST-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=319 GPamm

Figure B108 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-08

170

TST-MPL-09

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =212 GPamm

Figure B109 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-09

TST-MPL-10

00200400600800

1000120014001600

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 132GPamm

Figure B110 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-10

171

TST-MPL-11

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =319 GPamm

Figure B111 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-11

TST-MPL-12

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 127 GPamm

Figure B112 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-12

172

TST-MPL-13

00500

1000150020002500300035004000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 159 GPamm

Figure B113 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-13

TST-MPL-14

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =170 GPamm

Figure B114 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-14

173

TST-MPL-15

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 260 GPamm

Figure B115 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-15

TST-MPL-16

00500

100015002000250030003500400045005000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B116 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-16

174

TST-MPL-17

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B117 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-17

TST-MPL-18

00

200

400

600

800

1000

1200

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=073 GPamm

Figure B118 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-18

175

TST-MPL-19

00

200

400

600

800

1000

1200

1400

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B119 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-19

TST-MPL-20

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=170 GPamm

Figure B120 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-20

176

TST-MPL-21

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=100 GPamm

Figure B121 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-21

TST-MPL-22

00200400600800

10001200140016001800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 088 GPamm

Figure B122 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-22

177

TST-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 101 GPamm

Figure B123 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-23

TST-MPL-24

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 124 GPamm

Figure B124 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-24

178

TST-MPL-25

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 126 GPamm

Figure B125 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-25

TST-MPL-26

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 178 GPamm

Figure B126 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-26

179

TST-MPL-27

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B127 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-27

TST-MPL-28

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 164 GPamm

Figure B128 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-28

180

TST-MPL-29

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B129 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-29

TST-MPL-30

00500

100015002000250030003500400045005000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =280 GPamm

Figure B130 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-30

181

TST-MPL-31

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B131 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-31

TST-MPL-32

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B132 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-32

182

TST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 130 GPa mm

Figure B133 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-33

TST-MPL-34

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B134 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-34

183

TST-MPL-35

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B135 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-35

TST-MPL-36

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B136 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-36

184

TST-MPL-37

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 217 GPamm

Figure B137 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-37

TST-MPL-38

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 52 GPamm

Figure B138 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-38

185

TST-MPL-39

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B139 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-39

TST-MPL-40

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 347 GPamm

Figure B140 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-40

186

TST-MPL-41

00

500

1000

1500

2000

2500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B141 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-41

TST-MPL-42

00

500

1000

1500

2000

2500

3000

3500

4000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B142 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-42

187

TST-MPL -43

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 435 GPamm

Figure B143 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-43

TST-MPL-44

00

200

400

600

800

1000

1200

1400

1600

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B144 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-44

188

TST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 315 GPamm

Figure B145 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-45

TST-MPL-46

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B146 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-46

189

TST-MPL-47

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=128 GPamm

Figure B147 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-47

TST-MPL-48

00200400600800

10001200140016001800

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 237GPamm

Figure B148 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-48

190

TST-MPL-49

00

500

1000

1500

2000

2500

3000

3500

4000

4500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B149 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-49

TST-MPL-50

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 394 GPamm

Figure B150 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-50

BIOGRAPHY

Mr Chatchai Intaraprasit was born on July 30 1973 in Khon Kaen province

Thailand He received his Bachelorrsquos Degree in Science (Geotechnology) from Khon

Kaen University in 1996 He worked with the construction company for ten years

after graduated the Bachelorrsquos Degree For his post-graduate he continued to study

with a Masterrsquos Degree in the Geological Engineering Program Institute of

Engineering Suranaree University of Technology He has published a technical

papers related to rock mechanics as in 2009 ldquoModified point load testing of volcanic

rocks from Chatree gold minerdquo in the proceeding of the second Thailand symposium

on rock mechanics Chonburi Thailand For his work he is working as a

geotechnical engineer at Akara mining company limited Phichit province Thailand

  • cover
  • abstractpdf
  • CHAPTER I
  • CHAPTER II
  • CHAPTER III
  • CHAPTER IV
  • CHAPTER V
  • CHAPTER VI
  • REFERENCES
  • APPENDIX A
  • APPENDIX B
  • BIOGRAPHY
Page 7: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·

IV

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure will be used to calculate the elastic modulus and strengths of the rocks

Uniaxial and triaxial compression tests Brazilian tension test and conventional point

load test will also be conducted on the three rock types to obtain data basis for

comparing with those from the MPL testing Finite difference analysis will be

performed to obtain stress distribution within the MPL samples under different td and

Dd ratios The effects of the sample irregularity will be quantitatively assessed

Similarity and discrepancy of the test results from the MPL method and from the

conventional methods will be examined Modification of the MPL calculation

scheme may be made to enhance its predictive capability for the mechanical

properties of irregular shaped specimens

School of Geotechnology Students Signature

Academic Year 2009 Advisors Signature

ACKNOWLEDGMENTS

I wish to acknowledge the funding support of Suranaree University of

Technology (SUT) and Akara Mining Company Limited

I would like to express my sincere thanks to Assoc Prof Dr Kittitep

Fuenkajorn thesis advisor who gave a critical review and constant encouragement

throughout the course of this research Further appreciation is extended to Asst Prof

Thara Lekuthai chairman school of Geotechnology and Dr Prachya Tepnarong

Suranaree University of Technology who are member of my examination committee

Grateful thanks are given to all staffs of Geomechanics Research Unit Institute of

Engineering who supported my work

Chatchai Intaraprasit

TABLE OF CONTENTS

Page

ABSTRACT (THAI) I

ABSTRACT (ENGLISH) III

ACKNOWLEDGEMENTS V

TABLE OF CONTENTS VI

LIST OF TABLES IX

LIST OF FIGURES XIII

LIST OF SYMBOLS AND ABBREVIATIONS XVII

CHAPTER

I INTRODUCTION 1

11 Background and rationale 1

12 Research objectives 2

13 Research concept 3

14 Research methodology 3

141 Literature review 3

142 Sample collection and preparation 5

143 Theoretical study of the rock failure

mechanism 5

144 Laboratory testing 5

1441 Characterization tests 5

VII

TABLE OF CONTENTS (Continued)

Page

1442 Modified point load tests 6

145 Analysis 6

146 Thesis Writing and Presentation 6

15 Scope and Limitations 7

16 Thesis Contents 7

II LITERATURE REVIEW 8

21 Introduction 8

22 Conventional point load tests 8

23 Modified point load tests 11

24 Characterization tests 14

241 Uniaxial compressive strength tests 14

242 Triaxial compressive strength tests 15

243 Brazilian tensile strength tests 16

25 Size effects on compressive strength 16

III SAMPLE COLLECTION AND PREPARATION 17

31 Sample collection 17

32 Rock descriptions 17

33 Sample preparation 20

IV LABORATORY TESTS 22

41 Literature reviews 22

VIII

TABLE OF CONTENTS (Continued)

Page

411 Displacement Function 22

42 Basic Characterization Tests 23

421 Uniaxial Compressive Strength Tests

and Elastic Modulus Measurements 23

422 Triaxial Compressive Strength Tests 31

423 Brazilian Tensile Strength Tests 38

424 Conventional Point Load Index (CPL) Tests 39

43 Modified Point Load (MPL) Tests 46

431 Modified Point Load Tests for Elastic

Modulus Measurement 54

432 Modified Point Load Tests predicting

Uniaxial Compressive Strength 61

433 Modified Point Load Tests for Tensile

Strength Predictions 63

434 Modified Point Load Tests for Triaxial

Compressive Strength Predictions 69

V FINITE DIFFERENCE ANALYSIS 79

51 Objectives 79

52 Model Characteristics 79

53 Results of finite difference analyses 79

IX

TABLE OF CONTENTS (Continued)

Page

VI DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS 83

61 Discussions 83

62 Conclusions 85

63 Recommendations 86

REFERENCES 87

APPENDICES

APPENDIX A CHARACTERIZATION TEST RESULTS 96

APPENDIX B MODIFIED POINT LOAD TEST RESULTS FOR

ELASTIC MODULUS PREDICTION 104

BIOGRAPHY 180

LIST OF TABLES

Table Page

31 The nominal sizes of specimens following the ASTM standard

practices for the characterization tests 20

41 Testing results of porphyritic andesite 30

42 Testing results of tuffaceous sandstone 30

43 Testing results of silicified tuffaceous sandstone 30

44 Uniaxial compressive strength and tangent elastic modulus

measurement results of three rock types 31

45 Triaxial compressive strength testing results of porphyritic andesite 35

46 Triaxial compressive strength testing results of

tuffaceous sandstone 35

47 Triaxial compressive strength testing results of silicified

tuffaceous sandstone 36

48 Results of triaxial compressive strength tests on three rock types 38

49 The results of Brazilian tensile strength tests of three rock types 41

410 Results of conventional point load strength index tests of

three rock types 44

411 Results of modified point load tests on porphyritic andesite 49

412 Results of modified point load tests on tuffaceous sandstone 51

413 Results of modified point load tests on silicified tuffaceous sandstone 52

X

LIST OF TABLE (Continued)

Table Page

414 Results of elastic modulus calculation from MPL tests on porphyritic andesite57

415 Results of elastic modulus calculation from MPL tests on

silicified tuffaceous sandstone 58

416 Results of elastic modulus calculation from MPL tests on

tuffaceous sandstone 60

417 Comparisons of elastic modulus results obtained from

uniaxial compressive strength tests and those from modified

point load tests 61

418 Comparison the test results between UCS CPL Brazilian

tensile strength and MPL tests 63

419 Results of tensile strengths of porphyritic andesite predicted from MPL tests 64

420 Results of tensile strengths of silicified tuffaceous sandstone

predicted from MPL tests 66

421 Results of tensile strengths of tuffaceous sandstone

predicted from MPL tests 68

422 Results of triaxial strengths of porphyritic andesite predicted from MPL tests 71

423 Results of triaxial strengths of silicified tuffaceous sandstone

predicted from MPL tests 72

424 Results of triaxial strengths of tuffaceous sandstone

predicted from MPL tests 74

XI

LIST OF TABLE (Continued)

Table Page

425 Comparisons of the internal friction angle and cohesion

between MPL predictions and triaxial compressive strength tests 78

51 Summary of the results from numerical simulations 82

A1 Results of conventional point load strength index test on porphyritic andesite 97

A2 Results of conventional point load strength index test on

silicified tuffaceous sandstone 98

A3 Results of conventional point load strength index test on

tuffaceous sandstone 99

A4 Results of uniaxial compressive strength tests and elastic

modulus measurement on porphyritic andesite 100

A5 Results of uniaxial compressive strength tests and elastic

modulus measurement on silicified tuffaceous sandstone 100

A6 Results of uniaxial compressive strength tests and elastic

modulus measurement on tuffaceous sandstone 100

A7 Results of Brazilian tensile strength tests on porphyritic andesite 101

A8 Results of Brazilian tensile strength tests on silicified

tuffaceous sandstone 101

A9 Results of Brazilian tensile strength tests on

tuffaceous sandstone 102

A10 Results of triaxial compressive strength tests on porphyritic andesite 102

XII

LIST OF TABLE (Continued)

Table Page

A11 Results of triaxial compressive strength tests on

silicified tuffaceous Sandstone 102

A12 Results of Brazilian tensile strength tests on

tuffaceous sandstone 103

LIST OF FIGURES

Figure Page

11 Research plan 4

21 Loading system of the conventional point load (CPL) 10

22 Standard loading platen shape for the conventional point

load testing 10

31 The location of rock samples collected area 19

32 Some prepared rock specimens of porphyritic andesite for MPL Tests 21

33 The concept of specimen preparation for MPL testing 21

41 Pre-test samples of porphyritic andesite for UCS test 25

42 Pre-test samples of tuffaceous sandstone for UCS test 25

43 Pre-test samples of silicified tuffaceous sandstone for UCS test 26

44 Preparation of testing apparatus of porphyritic andesite for UCS test 26

45 Post-test rock samples of porphyritic andesite from UCS test 27

46 Post-test rock samples of tuffaceous sandstone

from UCS test 27

47 Post-test rock samples of tuffaceous sandstone from UCS 28

48 Results of uniaxial compressive strength tests and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted

as a function of axial strains 28

XIV

LIST OF FIGURES (Continued)

Figure Page

49 Results of uniaxial compressive strength tests and elastic

modulus measurements of tuffaceous sandstone (Top)

and silicified tuffaceous sandstone (Bottom) The axial

stresses are plotted as a function of axial strains 29

410 Pre-test samples for triaxial compressive strength test the

top is porphyritic andesite and the bottom is tuffaceous sandstone 32

411 Pre-test sample of silicified tuffaceous sandstone for triaxial

compressive strength test 33

412 Triaxial testing apparatus 33

413 Post-test rock samples from triaxial compressive strength tests

The top is porphyritic andesite and the bottom is tuffaceous sandstone 34

414 Post-test rock samples of silicified tuffaceous sandstone from

triaxial compressive strength test 35

415 Mohr-Coulomb diagram for porphyritic andesite 37

416 Mohr-Coulomb diagram for tuffaceous sandstone 37

417 Mohr-Coulomb diagram for silicified tuffaceous sandstone 38

418 Pre-test samples for Brazilian tensile strength test (a) porphyritic andesite

(b) tuffaceous sandstone and

(c) silicified tuffaceous sandstone 40

419 Brazilian tensile strength test arrangement 41

XV

LIST OF FIGURES (Continued)

Figure Page

420 Post-test specimens (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 42

421 Pre-test samples of porphyritic andesite for conventional point load

strength index test 43

422 Conventional point load strength index test arrangement 43

423 Post-test specimens from conventional point load

strength index tests (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 45

424 Conventional and modified loading points 47

425 MPL testing arrangement 47

426 Post-test specimen the tension-induced crack commonly

found across the specimen and shear cone usually formed

underneath the loading platens 48

427 Example of P-δ curve for porphyritic andesite specimen The ratio

of ∆P∆δ is used to predict the elastic modulus of MPL

specimen (Empl) 56

428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests 62

429 Uniaxial compressive strength predicted for silicified

tuffaceous sandstone from MPL tests 62

XVI

LIST OF FIGURES (Continued)

Figure Page

430 Uniaxial compressive strength predicted for tuffaceous

sandstone from MPL tests 63

431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and

modified point load test 75

432 Comparisons of triaxial compressive strength criterion of

silicified tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 76

433 Comparisons of triaxial compressive strength criterion of

tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 77

51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm 80

52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm 80

53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm 81

54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm 81

55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm 82

LIST OF SYMBOLS AND ABBREVIATIONS

A = Original cross-section Area

c = cohesive strength

CP = Conventional Point Load

D = Diameter of Rock Specimen

D = Diameter of Loading Point

De = Equivalent Diameter

E = Youngrsquos Modulus

Empl = Elastic Modulus by MPL Test

Et = Tangent Elastic Modulus

IS = Point Load Strength Index

L = Original Specimen Length

LD = Length-to-Diameter Ratio

MPL = Modified Point Load

Pf = Failure Load

Pmpl = Modified Point Load Strength

t = Specimen Thickness

α = Coefficient of Stress

αE = Displacement Function

β = Coefficient of the Shape

∆L = Axial Deformation

XVIII

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

∆P = Change in Applied Stress

∆δ = Change in Vertical of Point Load Platens

εaxial = Axial Strain

ν = Poissonrsquos Ratio

ρ = Rock Density

σ = Normal Stress

σ1 = Maximum Principal Stress (Vertical Stress)

σ3 = Minimum Principal Stress (Horizontal Stress)

σB = Brazilian Tensile Stress

σc = Uniaxial Compressive Strength (UCS)

σm = Mean Stress

τ = Shear Stress

τoct = Octahedral Shear Stress

φi = angle of Internal friction

CHAPTER I

INTRODUCTION

11 Background and rationale

In geological exploration mechanical rock properties are one of the most

important parameters that will be used in the analysis and design of engineering

structures in rock mass To obtain these properties the rock from the site is extracted

normally by mean of core drilling and then transported the cores to the laboratory

where the mechanical testing can be conducted Laboratory testing machine is

normally huge and can not be transported to the site On site testing of the rocks may

be carried out by some techniques but only on a very limited scale This method is

called for point load strength Index testing However this test provides unreliable

results and lacks theoretical supports Its results may imply to other important

properties (eg compressive and tensile strength) but only based on an empirical

formula which usually poses a high degree of uncertainty

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strength and elastic modulus of intact rock

specimens in the laboratory (Tepnarong 2001) This method was invented and

patented by Suranaree University of Technology The test apparatus and procedure

are intended to be in expensive and easy compared to the relevant conventional

methods of determining the mechanical properties of intact rock eg those given by

the International Society for Rock Mechanics (ISRM) and the American Society for

2

Testing and Materials (ASTM) In the past much of the MPL testing practices has

been concentrated on circular and disk specimens While it has been claimed that

MPL method is applicable to all rock shapes the test results from irregular lumps of

rock have been rare and hence are not sufficient to confirm that the MPL testing

technique is truly valid or even adequate to determine the basic rock mechanical

properties in the field where rock drilling and cutting devices are not available

12 Research objectives

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine are used as

rock samples A minimum of 150 rock samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone are collected from the site The

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure are used to calculate the elastic modulus and strengths of rocks Uniaxial and

triaxial compression tests Brazilian tension test and conventional point load test are

conducted on the three rock types to obtain data basis for comparing with those from

MPL testing Finite difference analysis is performed to obtain stress distribution

within the MPL samples under different td and Dd ratios The effect of the

irregularity is quantitatively assessed Similarity and discrepancy of the test results

from the MPL method and from the conventional method are examined

Modification of the MPL calculation scheme may be made to enhance its predictive

capability for the mechanical properties of irregular shaped specimens

3

13 Research concept

A modified point load (MPL) testing technique was proposed by Fuenkajorn

and Tepnarong (2001) and Fuenkajorn (2002) The objectives of this testing are to

determine the elastic modulus uniaxial compressive strength and tensile strength of

intact rocks The application of testing apparatus is modified from the loading

platens of the conventional point load (CPL) testing to the cylindrical shapes that

have the circular cross-section while they are half-spherical shapes in CPL

The modes of failure for the MPL specimens are governed by the ratio of

specimen diameter to loading platen diameter (Dd) and the ratio of specimen

thickness to loading platen diameter (td) This research involves using the MPL

results to estimate the triaxial compressive strength of specimens which various Dd

and td ratios and compare to the conventional compressive strength test

14 Research methodology

This research consists of six main tasks literature review sample collection

and preparation laboratory testing finite difference analysis comparison discussions

and conclusions The work plan is illustrated in the Figure 11

141 Literature review

Literature review is carried out to study the state-of-the-art of CPL and MPL

techniques including theories test procedure results analysis and applications The

sources of information are from journals technical reports and conference papers A

summary of literature review is given in this thesis Discussions have been also been

made on the advantages and disadvantages of the testing the validity of the test results

4

Preparation

Literature Review

Sample Collection and Preparation

Theoretical Study

Laboratory Ex

Figure 11 Research methodology

periments

MPL Tests Characterization Tests

Comparisons

Discussions

Laboratory Testing

Various Dd UCS Tests

Various td Brazilian Tension Tests

Triaxial Compressive Strength Tests

CPL Tests

Conclusions

5

when correlating with the uniaxial compressive strength of rocks and on the failure

mechanism the specimens

142 Sample collection and preparation

Rock samples are collected from the north pit-wall of Khao

Moh at Chatree gold mine Three rock types are tested with a minimum of 50

samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable Sample preparation is carried out in the laboratory at Suranaree

University of Technology

143 Theoretical study of the rock failure mechanism

The theoretical work primarily involves numerical analyses on

the MPL specimens under various shapes Failure mechanism of the modified point

load test specimens is analyzed in terms of stress distributions along loaded axis The

finite difference code FLAC is used in the simulation The mathematical solutions

are derived to correlate the MPL strengths of irregular-shaped samples with the

uniaxial and traiaxial compressive strengths tensile strength and elastic modulus of

rock specimens

144 Laboratory testing

Three prepared rock type samples are tested in laboratory

which are divided into two main groups as follows

1441 Characterization tests

The characterization tests include uniaxial compressive

strength tests (ASTM D7012-07) Brazilian tensile strength tests (ASTM D3967

1981) triaxial compressive strength tests (ASTM D7012-07) and conventional point

6

load index tests (ASTM D5731 1995) The characterization testing results are used

in verifications of the proposed MPL concept

1442 Modified point load tests

Three rock types of rock from the north pit-wall of

Khao Moh at Chatree gold mine are used as rock samples A minimum of 150 rock

samples of porphyritic andesite silicified-tuffaceous sandstone and tuffaceous

sandstone are used in the MPL testing The sample thickness-to-loading diameter

ratio (td) is varied from 2 to 3 and the sample diameter-to-loading diameter ratio

(Dd) from 5 to 10 The sample deformation and failure are used to calculate the

elastic modulus and strengths of rocks The MPL testing results are compared with

the standard tests and correlated the relations in terms of mathematic formulas

145 Analysis

Finite difference analysis is performed to obtain stress

distribution within the MPL samples under various shapes with different td and Dd

ratios The effect of the irregularity is quantitatively assessed Similarity and

discrepancy of the test results from the MPL method and from the conventional

method are examined Modification of the MPL calculation scheme may be made to

enhance its predictive capability for the mechanical properties of irregular shaped

specimens

146 Thesis writing and presentation

All aspects of the theoretical and experimental studies

mentioned are documented and incorporated into the thesis The thesis discusses the

validity and potential applications of the results

7

15 Scope and limitations

The scope and limitations of the research include as follows

1 Three rock types of rock from the pit wall of Chatree gold mine are

selected as a prime candidate for use in the experiment

2 The analytical and experimental work assumes linearly elastic

homogeneous and isotropic conditions

3 The effects of loading rate and temperature are not considered All tests

are conducted at room temperature

4 MPL tests are conducted on a minimum of 50 samples

5 The investigation of failure mode is on macroscopic scale Macroscopic

phenomena during failure are not considered

6 The finite difference analysis is made in axis symmetric and assumed

elastic homogeneous and isotropic conditions

7 Comparison of the results from MPL tests and conventional method is

made

16 Thesis contents

The first chapter includes six sections It introduces the thesis by briefly

describing the background and rationale and identifying the research objectives that

are describes in the first and second section The third section describes the proposed

concept of the new testing technique The fourth section describes the research

methodology The fifth section identifies the scope and limitation of the research and

the description of the overview of contents in this thesis are in the sixth section

CHAPTER II

LITERATURE REVIEW

21 Introduction

This chapter summarizes the results of literature review carried out to improve an

understanding of the applications of modified point load testing to predict the strengths and

elastic modulus of the intact rock The topics reviewed here include conventional point

load test modified point load test characterization tests and size effects

22 Conventional point load tests

Conventional point load (CPL) testing is intended as an index test for the strength

classification of rock material It has long been practiced to obtain an indicator of the

uniaxial compressive strength (UCS) of intact rocks The testing equipment (Figure 21)

is essentially a loading system comprising a loading flame hydraulic oil pump ram and

loading platens The geometry of the loading platen is standardized (Figure 22) having

60 degrees angle of the cone with 5 mm radius of curvature at the cone tip It is made of

hardened steel The CPL test method has been widely employed because the test

procedure and sample preparation are simple quick and inexpensive as compared with

conventional tests as the unconfined compressive strength test Starting with a simple

method to obtain a rock properties index the International Society for Rock Mechanics

(ISRM) commissions on testing methods have issued a recommended procedure for the

point load testing (ISRM 1985) the test has also been established as a standard test

method by the American Society for Testing and Materials in 1995 (ASTM 1995)

9

Although the point load test has been studied extensively (eg Broch and Franklin

1972 Bieniawski 1974 and 1975 Wijk 1980 Brook 1985) the theoretical solutions

for the test result remain rare Several attempts have been made to truly understand

the failure mechanism and the impact of the specimen size on the point load strength

results It is commonly agreed that tensile failure is induced along the axis between

loading points (Evans 1961 Hiramutsu 1976 Wijk 1978 1980) The most

commonly accepted formula relating the CPL index and the UCS is proposed by

Broch and Franklin (1972) The UCS (or σc) can be estimated as about 24 times of

the point load strength index (Is) of rock specimens with the diameter-to-length ratio

of 05 The IS value should also be corrected to a value equivalent to the specimen

diameter of 50 mm The factor of 24 can sometimes load to an error in the prediction

of the UCS Most previous studied have been done experimentally but rare

theoretical attempt has been made to study the validity of Broch and Franklin

formula

The CPL testing has been performed using a variety of sizes and shapes of

rock specimen (Wijk 1980 Foster 1983 Panek and Fannon 1992 Chau and Wong

1996 Butenuth 1997) This is to determine the most suitable specimen sizes These

investigations have proposed empirical relations between the IS and σc to be

universally applicable to various rock types However some uncertainly of these

relations remains

Panek and Fannon (1992) show the results of the CPL tests UCS tests and

Brazilian tension tests that are performed on three hard rocks (iron-formation

metadiabase and ophitic basalt) The CPL strength is analyzed in terms of the

10

Figure 21 Loading system of the conventional point load (CPL) (Tepnarong 2001)

Figure 22 Standard loading platen shape for the conventional point load testing

(ISRM suggested method and ASTM D5731-95)

11

size and shape effects More than 500 an irregular lumps were tested in the field

The shape effect exponents for compression have been found to be varied with rock

types The shape effect exponents in CPL tests are constant for the three rocks

Panek and Fannon (1992) recommended that the monitoring of the compressive and

tensile strengths should have various sizes and shapes of specimen to obtain the

certain properties

Chau and Wong (1996) study analytically the conversion factor relating

between σc and IS A wide range of the ratios of the uniaxial compressive strength to

the point load index has been observed among various rock types It has been found

that the uniaxial compressive strength of rocks can vary from 62 (Nevada test site

tuff) to 105 (Flaming Gorge shale) times the IS depending on rock type The

conversion factor relating σc to be Is depends on compressive and tensile strengths

the Poissonrsquos ratio and the length and diameter of specimen The conversion factor

of 24 (Broch and Franklin 1972) falls within this range but it is no by meaning

universal

23 Modified point load tests

Tepnarong (2001) proposed a modified point load testing method to correlate

the results with the uniaxial compressive strength (UCS) and tensile strength of intact

rocks The primary objective of the research is to develop the inexpensive and

reliable rock testing method for use in field and laboratory The test apparatus is

similar to the conventional point load (CPL) except that the loading points are cut

flat to have a circular cross-section area instead of using a half-spherical shape To

derive a new solution finite element analyses and laboratory experiments were

12

carried out The simulation results suggested that the applied stress required failing

the MPL specimen increased logarithmically as the specimen thickness or diameter

increased The MPL tests CPL tests UCS tests and Brazilian tension tests were

performed on Saraburi marble under a variety of sizes and shapes The UCS test

results indicated that the strengths decreased with increased the length-to-diameter

ratio The test results can be postulated that the MPL strength can be correlated with

the compressive strength when the MPL specimens are relatively thin and should be

an indicator of the tensile strength when the specimens are significantly larger than

the diameter of the loading points Predictive capability of the MPL and CPL

techniques were assessed Extrapolation of the test results suggested that the MPL

results predicted the UCS of the rock specimens better than the CPL testing The

tensile strength predicted by the MPL also agreed reasonably well with the Brazilian

tensile strength of the rock

Tepnarong (2006) proposed the modified point load testing technique to

determine the elastic modulus and triaxial compressive strength of intact rocks The

loading platens are made of harden steel and have diameter (d) varying from 5 10

15 20 25 to 30 mm The rock specimens tested were marble basalt sandstone

granite and rock salt Basic characterization tests were first performed to obtain

elastic and strength properties of the rock specimen under standard testing methods

(ASTM) The MPL specimens were prepared to have nominal diameters (D) ranging

from 38 mm to 100 mm with thickness varying from 18 mm to 63 mm Testing on

these circular disk specimens was a precursory step to the application on irregular-

shaped specimens The load was applied along the specimen axis while monitoring

the increased of the load and vertical displacement until failure Finite element

13

analyses were performed to determine the stress and deformation of the MPL

specimens under various Dd and td ratios The numerical results were also used to

develop the relationship between the load increases (∆P) and the rock deformation

(∆δ) between the loading platens The MPL testing predicts the intact rock elastic

modulus (Empl) by using an equation Empl = (tαE) (∆P∆δ) where t represents the

specimen thickness and αE is the displacement function derived from numerical

simulation The elastic modulus predicted by MPL testing agrees reasonably well

with those obtained from the standard uniaxial compressive tests The predicted Empl

values show significantly high standard deviation caused by high intrinsic variability

of the rock fabric This effect is enhanced by the small size of the loading area of the

MPL specimens as compared to the specimen size used in standard test methods

The results of the numerical simulation were used to determine the minimum

principal stress (σ3) at failure corresponding to the maximum applied principal stress

(σ1) A simple relation can therefore be developed between σ1 σ3 ratio Poissonrsquos ratio

(ν) and diameter ratio (Dd) to estimate the triaxial compressive strengths of the rock

specimens σ1 σ3 = 2[(ν(1-ν))(1-(dD)2)]-1 The MPL test results from specimens with

various Dd ratios can provide σ1 and σ3 at failure by assuming that ν = 025 and that

failure mode follows Coulomb criterion The MPL predicted triaxial strengths agree

very well with the triaxial strength obtained from the standard triaxial testing (ASTM)

The discrepancy is about 2-3 which may be due to the assumed Poissonrsquos ratio of 25

and due to the assumption used in the determination of σ3 at failure In summary even

through slight discrepancies remain in the application of MPL results to determine the

elastic modulus and triaxial compressive strength of intact rocks this approach of

14

predicting the rock properties shows a good potential and seems promising considering

the low cost of testing technique and ease of sample preparation

24 Characterization tests

241 Uniaxial compressive strength tests

The uniaxial compressive strength test is the most common laboratory

test undertaken for rock mechanics studies In 1972 the International Society of Rock

Mechanics (ISRM) published a suggested method for performing UCS tests (Brown

1981) Bieniawski and Bernede (1979) proposed the procedures in American Society

for Testing and Materials (ASTM) designation D2938

The tests are also the most used tests for estimating the elastic

modulus of rock (ASTM D7012) The axial strain can be measured with strain gages

mounted on the specimen or with the Linear Variable Differential Tranformers

(LVDTs) attached parallel to the length of the specimen The lateral strain can be

measured using strain gages around the circumference or using the LVDTs across

the specimen diameter

The UCS (σc) is expressed as the ratio of the peak load (P) to the

initial cross-section area (A)

σc= PA (21)

And the Youngrsquos modulus (E) can be calculated by

E= ΔσΔε (22)

Where Δσ is the change in stress and Δε is the change in strain

15

The ratio of lateral strain and axial strain magnitudes (εlatεax) determines the value of

Poissonrsquo ratio (ν)

ν = - (εlatεax) (23)

242 Triaxial compressive strength tests

Hoek and Brown (1980b) and Elliott and Brown (1986) used the

triaxaial compressive strength tests to gain an understanding of rock behavior under a

three-dimensions state of stress and to verify and even validate mathematical

expressions that have been derived to represent rock behavior in analytical and

numerical models

The common procedures are described in ASTM designation D7012 to

determine the triaxial strengths and D7012 to determine the elastic moduli and in

ISRM suggested methods (Brown 1981)

The axial strain can be measured with strain gages mounted on the

specimen or with the LVTDs attached parallel to the length of the specimen The

lateral strain can be measured using strain gages around the circumstance within the

jacket rubber

At the peak load the stress conditions are σ1 = PA σ3=p where P is

the maximum load parallel to the cylinder axis A is the initial cross-section area and

p is the pressure in the confining medium

The Youngrsquos modulus (E) and Poissonrsquos ratio (ν) can be calculated by

E = Δ(σ1-σ3)Δ εax (24)

and

16

ν = (slope of axial curve) (slope of lateral curve) (25)

where Δ(σ1-σ3) is the change in differential stress and Δ εax is the change in axial strain

243 Brazilian tensile strength tests

Caneiro (1974) and Akazawa (1953) proposed the Brazilian tensile

strength test of intact rocks Specifications of Brazilian tensile strength test have been

established by ASTM D3967 and suggested approach is provided by ISRM (Brown 1981)

Jaeger and Cook (1979) proposed the equation for calculate the

Brazilian tensile strength as

σB = (2P) ( πDt) (26)

where P is the failure load D is the disk diameter and t is the disk thickness

25 Size effects on compressive strength

The uniaxial compressive strength normally tested on cylindrical-shaped

specimens The length-to-diameter (LD) ratio of the specimen influences the

measured strength Typically the strength decreases with increasing the LD ratio

but it tends to become constant or ratios in the order of 21 to 31 (Hudson et al 1971

Obert and Duvall 1967) For higher ratios the specimen strength may be influenced

by bulking

The size of specimen may influence the strength of rock Weibull (1951)

proposed that a large specimen contains more flaws than a small one The large

specimen therefore also has flaws with critical orientation relative to the applied

shear stresses than the small specimen A large specimen with a given shape is

17

therefore likely to fail and exhibit lower strength than a small specimen with the same

shape (Bieniawski 1968 Jaeker and Cook 1979 Kaczynski 1986)

Tepnarong (2001) investigated the results of uniaxial compressive strength

test on Saraburi marble and found that the strengths decrease with increase the

length-to-diameter (LD) ratio And this relationship can be described by the power

law The size effects on uniaxial compressive strength are obscured by the intrinsic

variability of the marble The Brazilian tensile strengths also decreased as the

specimen diameter increased

CHAPTER III

SAMPLE COLLECTION AND PREAPATION

This chapter describes the sample collection and sample preparation

procedure to be used in the characterization and modified point load testing The

rock types to be used including porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone Locations of sample collection rock description are

described

31 Sample collection

Three rock types include porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone collected from Chatree Gold Mine Akara Mining Company

Limited Phichit Thailand are used in this research The rock samples are collected

from the north pit-wall of Khao Moh Three rock types are tested with a minimum of

50 samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable The collected location is shown in Figure 31

32 Rock descriptions

Three rock types are used in this research there are porphyritic andesite

silicified tuffaceous sandstone and tuffaceous sandstone Tuffaceous sandstone is

medium brownish grey the clasts are andesite rhyolite andesitic tuff and quartz

fragments and sub-rounded to sub-angular matrix sand andesitic tuff rock fragment

19

19

Figure 31 The location of rock samples collected area

lt 10 quartz 3 pyrite and litho-facies massive ungraded clast supported

moderately sorted Silicified tuffaceous sandstone is medium brown clasts are fine to

medium sand and silt sub-rounded shape quartz rich with siliceous matrix massive

non-graded well sorted moderately Silicified Porphyritic andesite is grayish green

medium-coarse euhedral evenly distributed phenocrysts are abundant most

conspicuous are hornblende phenocrysts fine-grained groundmass Those samples

are collected from Chatree Gold Mine Akara mining Co Ltd Phichit Thailand

20

33 Sample preparation

Sample preparation has been carried out to obtain different sizes and shapes

for testing It is conducted in the laboratory facility at Suranaree University of

Technology For characterization testing the process includes coring and grinding

Preparation of rock samples for characterization test follows the ASTM standard

(ASTM D4543-85) The nominal sizes of specimen that following the ASTM

standard practices for the characterization tests are shown in table 31 And grinding

surface at the top and bottom of specimens at the position of loading platens for

unsure that the loading platens are attach to the specimen surfaces and perpendicular

each others as shown in Figure 32 The shapes of specimens are irregularity-shaped

The ratio of specimen thickness to platen diameter (td) is around 20-30 and the

specimen diameter to platen diameter (Dd) varies from 5 to 10

Table 31 The nominal sizes of specimens following the ASTM standard practices

for the characterization tests

Testing Methods

LD Ratio

Nominal Diameter

(mm)

Nominal Length (mm)

Number of Specimens

1UniaxialCompressive Strength Test and Elastic Modulus Measurement (ASTM D7012)

25 54 135 10

2 Triaxial Compressive Strength Test (ASTM D7012) 20 54 108 10

3 Brazilian Tensile Strength Test (ASTM D3967) 05 54 27 10

4 Point Load Strength Index Test (ASTM D 5731) 10 54 54 10

21

Figure 32 Some prepared rock specimens of porphyritic andesite for MPL Tests

td asymp20 to 30

Figure 33 The concept of specimen preparation for MPL testing

CHAPTER IV

LABORATORY TESTS

Laboratory testing is divided into two main tasks including the

characterization tests and the modified point load tests Three rock types porphyritic

andesite silicified-tuffaceous sandstone and tuffaceous sandstone are used in this

research

41 Literature reviews

411 Displacement function

Tepnarong (2006) proposed a method to compute the vertical

displacement of the loading point as affected by the specimen diameter and thickness

(Dd and td ratios) by used the series of finite element analyses To accomplish this

a displacement function (αE) is introduced as (∆P∆δ)middot(tE) where ∆P is the change in

applied stress ∆δ is the change in vertical displacement of point load platens t is the

specimen thickness and E is elastic modulus of rock specimen The displacement

function is plotted as a function of Dd And found that the αE is dimensionless and

independent of rock elastic modulus αE trend to be independent of Dd when Dd is

beyond 15 The αE is sensitive to ν particularly when υ is between 025 and 05 This

agrees with the assumption that as the Poissonrsquos ratio increases the αE value will

increase because under higher ν the ∆δ will be reduced This is due to the large

confinement resulting from the higher Poissonrsquos ratio Nevertheless most rocks have

Poissonrsquos ratio within a range between 020 and 030 particularly for moderate to

23

hard rocks As a result the Poissonrsquos ratio of 025 will provide a reasonable

prediction of the value of αE values

Figure 51 plots αE or (∆P∆δ)middot(tE) as a function of td for the ratios of Dd ge

10 The displacement function increase as the td increases which can be expressed

by a power equation

αE = (∆P∆δ)middot(tE) = 150 (td)064 (51)

by using the least square fitting The curve fit gives good correlation (R2=0998)

These curves can be used to estimate the elastic modulus of rock from MPL results

By measuring the MPL specimen thickness t and the increment of applied stress (∆P)

and displacement (∆δ)

42 Basic characterization tests

The objectives of the basic characterization tests are to determine the

mechanical properties of each rock type to compare their results with those from the

modified point load tests (MPL) The basic characterization tests include uniaxial

compressive strength (UCS) tests with elastic modulus measurements triaxial

compressive strength tests Brazilian tensile strength tests and conventional point load

strength index tests

421 Uniaxial compressive strength tests and elastic modulus

measurements

The uniaxial compressive strength tests are conducted on the three

rock types Sample preparation and test procedure are followed the ASTM standards

(ASTM D7012) and the ISRM suggested methods (Brown 1981) The core size is

24

54 mm in diameter (NX size) and the ratio of the length to diameter is 25 A total of

10 specimens are tested for each rock type

A constant loading rate of 05 to 10 MPas is applied to the specimens

until failure occurs Tangent elastic modulus is measured at stress level equal to 50

of the uniaxial compressive strength Post-failure characteristics are observed

The uniaxial compressive strength (σc) is calculated by dividing the

maximum load by the original cross-section area of loading platen

σc= pf A (41)

where pf is the maximum failure load and A is the original cross-section area of

loading platen The tangent elastic modulus (Et) is calculated by the following

equation

Et = (Δσaxial) (Δε axial) (42)

And the axial strain can be calculated from

ε axial = ΔLL (43)

where the ΔL is the axial deformation and L is the original length of specimen

The average uniaxial compressive strength and tangent elastic

modulus of each rock types are shown in Tables 41 through 44

25

Figure 41 Pre-test samples of porphyritic andesite for UCS test

Figure 42 Pre-test samples of tuffaceous sandstone for UCS test

26

Figure 43 Pre-test samples of silicified tuffaceous sandstone for UCS test

Figure 44 Preparation of testing apparatus for UCS test

27

Figure 45 Post-test rock samples of porphyritic andesite from UCS test

Figure 46 Post-test rock samples of tuffaceous sandstone from UCS test

28

Figure 47 Post-test rock samples of silicified-tuffaceous sandstone from UCS

0

50

100

150

0 0001 0002 0003 0004 0005Axial Strain

Axi

al S

tres

s (M

Pa)

Andesite04

03

01

05

02

Andesite

Figure 48 Results of uniaxial compressive strength test and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted as

a function of axial strain

29

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Strain

Axi

al S

tres

s (M

Pa)

Pebbly Tuffacious Sandstone

04

03

05

01

02

Tuffaceous Sandstone

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Stain

Axi

al S

tres

s (M

Pa)

Silicified Tuffacious Sandstone

0103

05

0402

Silicified Tuffaceous Sandstone

Figure 49 Results of uniaxial compressive strength test and elastic modulus

measurements of tuffaceous sandstone (top) and silicified tuffaceous

sandstone (bottom) The axial stresses are plotted as a function of axial

strain

30

Table 41 Testing results of porphyritic andesite

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 5366 13486 282 1327 451 And-06-03-UCS-02 5366 13494 283 1106 397 And-02-01-UCS-03 5366 13485 280 1061 470 And-08-03-UCS-04 5366 13417 284 1282 392 And-04-04-UCS-05 5366 13564 285 973 438

Average 1150 plusmn 150 430 34 plusmn

Table 42 Testing results of tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 5366 13810 266 1017 538 TST-01-02-UCS-02 5366 13236 268 1238 545 TST-02-04-UCS-03 5366 13558 264 973 441 TST-06-09-UCS-04 5366 13515 267 1459 475 TST-02-02-UCS-05 5366 13745 263 884 566

Average 1114 plusmn 233 513 53 plusmn

Table 43 Testing results of silicified tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 5366 13309 271 1194 656 SST-07-01-UCS-02 5366 13547 267 930 632 SST-07-03-UCS-03 5366 13095 268 1194 503 SST-02-06-UCS-04 5366 13475 269 1614 661 SST-06-02-UCS-05 5366 13577 270 1106 713

Average 1207 plusmn 252 633 80 plusmn

31

Table 44 Uniaxial compressive strength and tangent elastic modulus measurement

results of three rock types

Rock Type

Number of Test

Samples

Uniaxial Compressive Strength σc (MPa)

Tangential Elastic Modulus

Et (GPa)

Porphyritic andesite 50 1150plusmn150 430plusmn34 Silicified-tuffaceous sandstone 50 1207plusmn252 633plusmn80

Tuffaceous sandstone 50 1114plusmn233 513plusmn53

422 Triaxial compressive strength tests

The objective of the triaxial compressive strength test is to determine

the compressive strength of rock specimens under various confining pressures The

sample preparation and test procedure are followed the ASTM standard (ASTM

D7012-07) and the ISRM suggested method (Brown 1981) A total of 16 rock

specimens are tested under various confining pressures 6 specimens of porphyritic

andesite 5 specimens of silicified-tuffaceous sandstone and 5 specimens of

tuffaceous sandstone The applied load onto the specimens is at constant rate until

failure occurred within 5 to 10 minutes of loading under each confining pressure

The constant confining pressures used in this experiment are ranged from 0345 067

138 276 and 414 MPa (50 100 200 400 and 600 psi) in andesite 0345 069

276 414 and 552 MPa (50 100 400 600 and 800 psi) in silicified-tuffaceous

sandstone and 0345 069 138 207 and 276 MPa (50 100 200 300 and 400 psi)

in pebbly tuffaceous sandstone Post-failure characteristics are observed

32

Figure 410 Pre-test samples for triaxial compressive strength test the top is

porphyritic andesite and the bottom is tuffaceous sandstone

33

Figure 411 Pre-test samples of silicified tuffaceous sandstone for triaxial

compressive strength test

Hook cell

Figure 412 Triaxial testing apparatus

34

Figure 413 Post-test rock samples from triaxial compressive strength tests The top

is porphyritic andesite and the bottom is tuffaceous sandstone

35

Figure 414 Post-test rock samples of silicified tuffaceous sandstone from triaxial

compressive strength test

Table 45 Triaxial compressive strength testing results of porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

And-04-02-TR-01 10803 5366 285 04 1459 And-06-04-TR-03 10806 5366 284 07 1526 And-06-02-TR-02 10806 5366 283 14 1636 And-08-01-TR-04 10665 5366 284 28 2034 And-08-02-TR-05 10948 5366 283 41 2520

Table 46 Triaxial compressive strength testing results of tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

TST-01-01-TR-04 10989 5366 266 04 1061 TST 02-01-TR-01 10852 5366 262 07 1238 TST-06-01-TR-02 10889 5366 264 138 1415 TST-06-03-TR-03 10755 5366 264 201 1813 TST-06-08-TR-05 11025 5366 267 28 2056

36

Table 47 Triaxial compressive strength testing results of silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

SST-05-01-TR-01 10875 5366 266 04 1305 SST-07-02-TR-02 10790 5366 266 14 1371 SST-01-04-TR-03 11022 5366 267 28 1592 SST-01-03-TR-04 10713 5366 267 41 1901 SST-01-01-TR-05 10530 5366 265 55 2255

The results of triaxial tests are shown in Table 42 Figures 413 and 414

show the shear failure by triaxial loading at various confining pressures (σ3) for the

three rock types The relationship between σ1 and σ3 can be represented by the

Coulomb criterion (Hoek 1990)

τ = c + σ tan φi (44)

where τ is the shear stress c is the cohesion σ is the normal stress and φi is the

internal friction angle The parameters c and φi are determined by Mohr-Coulomb

diagram as shown in Figures 415 through 417

37

φi =54˚ Andesite

Figure 415 Mohr-Coulomb diagram for andesite

φi = 55˚

Tuffaceous Sandstone

Figure 416 Mohr-Coulomb diagram for pebbly tuffaceous sandstone

38

Silicified tuffaceous sandstone

φi = 49˚

Figure 417 Mohr-Coulomb diagram for silicified tuffaceous sandstone

Table 48 Results of triaxial compressive strength tests on three rock types

Rock Type

Number of

Samples

Average Density (gcc)

Cohesion c (MPa)

Internal Friction Angle φi (degrees)

Porphyritic Andesite 5 283 33 54

Tuffaceous Sandstone 5 265 28 55 Silicified Tuffaceous Sandstone 5 267 36 49

423 Brazilian Tensile Strength Tests

The objectives of the Brazilian tensile strength test are to determine

the tensile strength of rock The Brazilian tensile strength tests are performed on all

rock types Sample preparation and test procedure are followed the ASTM standard

(ASTM D3967-81) and the

39

ISRM suggested method (Brown 1981) Ten specimens for each rock

type have been tested The specimens have the diameter of 55 mm with 25 mm thick

The Brazilian tensile strength of rock can be calculated by the following

equation (Jaeger and Cook 1979)

σB = (2pf) (πDt) (45)

where σB is the Brazilian tensile strength pf is the failure load D is the diameter

of disk specimen and t is the thickness of disk specimen All of specimens failed

along the loading diameter (Figure 420) The results of Brazilian tensile strengths

are shown in Table 49 The tensile strength trends to decrease as the specimen size

(diameter) increase and can be expressed by a power equation (Evans 1961)

σB = A (D)-B (46)

where A and B are constants depending upon the nature of rock

424 Conventional point load index (CPL) tests

The objectives of CPL tests are to determine the point load strength index for

use in the estimation of the compressive strength of the rocks The sample

preparation test procedure and calculation are followed the standard practices

(ASTM D 5731-02) and the ISRM suggested method (Brown 1981) Twenty

specimens of each rock types are tested The length-to-diameter (LD) ratio of the

specimen is constant at 10 The specimen diameter and thickness are maintained

constant at 54 mm (Figure 421) The core specimen is loaded along its axis as

shown in Figure 422 Each specimen is loaded to failure at a constant rate such that

40

(a)

(b)

(c)

Figure 418 Pre-test samples for Brazilian tensile strength test (a) porphyritic

andesite (b) tuffaceous sandstone and (c) silicified tuffaceous

sandstone

41

Figure 419 Brazilian tensile strength test arrangement

Table 49 Results of Brazilian tensile strength tests of three rock types

Rock Type

Average Diameter

(mm)

Average Length (mm)

Average Density (gcc)

Number of

Samples

Brazilian Tensile

Strength σB (MPa)

Porphyritic andesite 5366 2672 283 10 170plusmn16

Tuffaceous sandstone 5366 2737 265 10 131plusmn33

Silicified tuffaceous sandstone

5366 2670 267 10 191plusmn32

42

(a)

(b)

(c)

Figure 420 Post-test specimens (a) porphyritic andesite (b) tuffaceous sandstone

and (c) silicified tuffaceous sandstone

43

Figure 421 Pre-test samples of porphyritic andesite for conventional point load

strength index test

Figure 422 Conventional point load strength index test arrangement

44

failures occur within 5-10 minutes Post-failure characteristics are observed

The point load strength index for axial loading (Is) is calculated by the

equation

Is = pf De2 (47)

where pf is the load at failure De is the equivalent core diameter (for axial loading

De2 = 4Aπ and A=WD) A is the minimum cross-sectional area of a plane through

the platen contact points W is the specimen width (thickness of core) and D is the

specimen diameter The post-test specimens are shown in Figure 423

The testing results of all three rock types are shown in Table 410 The

point load strength index of andesite pebbly tuffaceous sandstone and silicified

tuffaceous sandstone are average as 81 plusmn 12 102 plusmn 20 and 108 plusmn 22 MPa

Table 410 Results of conventional point load strength index tests of three rock types

Rock Types Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index

Is (MPa) Porphyritic Andesite 5493 5366 283 81plusmn12 Tuffaceous Sandstone 5545 5366 265 102plusmn20 Silicified Tuffaceous Sandstone 5491 5366 268 108plusmn22

45

Figure 423 Post-Test rock specimens from conventional point load strength index

tests (a) porphyritic andesite (b) tuffaceous sandstone and (c)

silicified tuffaceous sandstone

46

43 Modified point load (MPL) tests

The objectives of the modified point load (MPL) tests are to measure the

strength of rock between the loading points and to produce failure stress results for

various specimen sizes and shapes The results are complied and evaluated to

determine the mathematical relationship between the strengths and specimen

dimensions which are used to predict the elastic modulus and uniaxial and triaxial

compressive strengths and Brazilian tensile strength of the rocks

The testing apparatus for the proposed MPL testing are similar to those of the

conventional point load (CPL) test except that the loading points are cylindrical

shape and cut flat with the circular cross-sectional area instead of using half-spherical

shape (Tepnarong 2001) The loading platens used in this research are 7 10 and 15

mm in diameter and the thickness-to-loading point diameter ratio (td) of about 25

The specimen diameter-to-loading point diameter is varying from 5 to 100 The load

is applied at the rate of 200 Ns Fifty specimens are prepared and tested for each

rock type The vertical deformations (δ) are monitored One cycle of unloading and

reloading is made at about 40 failure load Then the load is increased to failure

The MPL strength (PMPL) is calculated by

PMPL = pf ((π4)(d2)) (48)

where pf is the applied load at failure and d is the diameter of loading point Figure

26 shows the example of post-test specimen shear cone are usually formed

underneath the loading points and two or three tension-induced cracks are commonly

found across the specimens

47

The MPL testing method is divided into 4 schemes based on its objective

elastic modulus uniaxial and triaxial compressive strengths and Brazilian tensile

strength determination

Figure 424 Conventional and modified loading points(Tepnarong 2006)

Figure 425 MPL testing arrangement

48

Tension-induced crack Shear cone

Shear cone

Tension-induced crack

Figure 426 Post-test specimen the tension-induced crack commonly found across

the specimen and shear cone usually formed underneath the loading

platens

49

Table 411 Results of modified point load tests on porphyritic andesite

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-01 246 543 280 125 159 And-MPL-02 351 632 370 180 471 And-MPL-03 236 634 150 170 191 And-MPL-04 266 960 250 234 319 And-MPL-05 284 903 370 369 471 And-MPL-06 245 793 280 182 357 And-MPL-07 263 874 260 234 331 And-MPL-08 261 980 210 171 268 And-MPL-09 280 777 270 056 344 And-MPL-10 244 569 280 124 159 And-MPL-11 251 613 650 138 368 And-MPL-12 226 631 600 189 340 And-MPL-13 233 1126 180 151 468 And-MPL-14 279 1203 220 165 572 And-MPL-15 239 503 400 011 227 And-MPL-16 281 474 300 012 170 And-MPL-17 305 861 390 021 497 And-MPL-18 233 653 500 008 283 And-MPL-19 294 1386 380 200 484 And-MPL-20 265 860 410 017 522 And-MPL-21 238 425 550 087 311 And-MPL-22 230 417 450 087 255 And-MPL-23 223 557 500 231 283 And-MPL-24 250 760 550 112 311 And-MPL-25 259 1243 180 585 468 And-MPL-26 303 560 310 143 395 And-MPL-27 273 1640 390 156 497 And-MPL-28 282 906 220 200 280 And-MPL-29 311 934 290 156 369 And-MPL-30 246 1314 250 650 650 And-MPL-31 262 982 200 175 255 And-MPL-32 260 1147 180 156 468 And-MPL-33 240 700 450 101 255 And-MPL-34 304 800 240 135 306 And-MPL-35 250 455 220 127 280 And-MPL-36 243 1697 120 292 312 And-MPL-37 333 1520 310 156 395 And-MPL-38 238 661 170 260 442

50

Table 411 Results of modified point load tests on porphyritic andesite (Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-39 318 347 130 186 338 And-MPL-40 245 551 150 260 390 And-MPL-41 207 561 150 325 390 And-MPL-42 223 425 500 231 283 And-MPL-43 207 561 150 346 390 And-MPL-44 324 340 310 234 395 And-MPL-45 275 426 240 169 306 And-MPL-46 302 397 130 175 166 And-MPL-47 255 314 100 170 127 And-MPL-48 257 220 250 094 142 And-MPL-49 256 214 130 057 74 And-MPL-50 243 166 180 078 102

51

Table 412 Results of modified point load tests on tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-01 270 546 220 212 293 TST -MPL-02 258 787 230 326 293 TST -MPL-03 275 730 200 143 255 TST -MPL-04 282 715 400 143 510 TST -MPL-05 254 1345 220 264 280 TST -MPL-06 292 893 200 143 255 TST -MPL-07 243 853 550 112 311 TST -MPL-08 287 1047 210 319 268 TST -MPL-09 230 787 370 212 471 TST -MPL-10 230 427 260 132 147 TST -MPL-11 282 1243 450 319 573 TST -MPL-12 254 604 200 127 255 TST -MPL-13 288 1180 290 159 369 TST -MPL-14 251 631 410 170 232 TST -MPL-15 214 1104 120 260 312 TST -MPL-16 229 486 380 102 215 TST -MPL-17 259 715 110 650 286 TST -MPL-18 243 285 180 073 102 TST -MPL-19 285 316 130 128 130 TST -MPL-20 241 295 180 170 102 TST -MPL-21 298 417 300 100 170 TST -MPL-22 265 642 300 088 170 TST -MPL-23 314 611 450 101 255 TST -MPL-24 303 481 650 124 368 TST -MPL-25 223 223 260 126 331 TST -MPL-26 273 652 260 178 331 TST -MPL-27 216 887 420 170 535 TST -MPL-28 319 718 290 164 369 TST -MPL-29 231 516 200 128 255 TST -MPL-30 260 641 380 280 484 TST -MPL-31 287 496 330 158 420 TST -MPL-32 264 368 230 170 293 TST -MPL-33 238 415 230 130 293 TST -MPL-34 271 824 140 260 364 TST -MPL-35 283 800 220 325 572 TST -MPL-36 242 1013 180 325 468 TST -MPL-37 254 715 90 217 234 TST -MPL-38 210 755 150 520 390

52

Table 412 Results of modified point load tests on tuffaceous sandstone

(Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-39 293 508 110 260 286 TST -MPL-40 273 410 100 347 260 TST -MPL-41 234 628 80 260 208 TST -MPL-42 259 433 130 260 338 TST -MPL-43 265 546 220 435 280 TST -MPL-44 255 829 260 222 147 TST -MPL-45 254 368 240 315 306 TST -MPL-46 293 695 370 222 210 TST -MPL-47 247 297 180 128 102 TST -MPL-48 310 611 300 237 170 TST -MPL-49 225 337 160 371 416 TST -MPL-50 259 410 120 394 312

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-01 300 782 170 280 442 SST-MPL-02 250 480 220 307 572 SST-MPL-03 314 424 340 356 433 SST-MPL-04 292 809 220 450 572 SST-MPL-05 275 1142 300 532 780 SST -MPL-06 308 490 190 273 494 SST -MPL-07 317 611 280 418 728 SST -MPL-08 233 684 240 414 624 SST -MPL-09 255 480 230 371 598 SST -MPL-10 217 772 120 958 312 SST -MPL-11 312 903 270 400 702 SST -MPL-12 255 1094 150 272 390 SST -MPL-13 286 742 400 408 510 SST -MPL-14 248 615 350 296 198 SST -MPL-15 253 805 210 282 546 SST -MPL-16 243 1094 150 260 390

53

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

(Continued)

Specimen Number td Dd Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-17 234 1090 250 416 650 SST -MPL-18 253 1371 240 473 624 SST -MPL-19 327 434 320 330 408 SST -MPL-20 270 310 390 278 497 SST -MPL-21 269 691 410 185 522 SST -MPL-22 312 504 380 182 484 SST -MPL-23 319 627 260 150 331 SST -MPL-24 281 689 330 295 420 SST -MPL-25 210 720 390 259 497 SST -MPL-26 303 775 370 221 471 SST -MPL-27 272 714 310 274 395 SST -MPL-28 292 855 600 209 764 SST -MPL-29 310 742 400 176 510 SST -MPL-30 284 847 410 158 522 SST -MPL-31 320 891 650 464 828 SST -MPL-32 261 256 400 178 226 SST -MPL-33 224 405 550 131 311 SST -MPL-34 231 379 450 215 255 SST -MPL-35 290 442 1050 190 594 SST -MPL-36 241 521 500 102 283 SST -MPL-37 275 605 600 067 340 SST -MPL-38 263 616 650 127 368 SST -MPL-39 227 615 350 229 198 SST -MPL-40 236 508 550 090 311 SST -MPL-41 318 1142 300 498 780 SST -MPL-42 303 809 210 392 546 SST -MPL-43 228 805 210 244 546 SST -MPL-44 283 1142 300 571 780 SST -MPL-45 277 772 120 780 312 SST -MPL-46 288 1206 280 411 728 SST -MPL-47 250 508 570 309 323 SST -MPL-48 275 442 1050 338 594 SST -MPL-49 272 605 650 254 368 SST -MPL-50 260 805 200 360 520

54

431 Modified point load tests for elastic modulus measurement

The MPL tests are carried out with the measurement of axial

deformation for use in elastic modulus estimation Fifty irregular specimens for each

rock type are tested The specimen thickness-to-loading diameter (td) is about 25

and the specimen diameter -to-loading diameter (Dd) is varied from 25 to 50 Cyclic

loading is performed while monitoring displacement (δ)

The testing apparatus used in this experiment includes the point load

tester model SBEL PLT-75 and the modified point load platens The displacement

digital gages with a precision up to 0001 mm are used to monitor the axial

deformation of rock between the loading points as loading decreases The cyclic

load is applied along the specimen axis and is performed by systematically increasing

and decreasing loads on the test specimen After unloading the axial load is

increased until the failure occurs Cyclic loading is performed on the specimens in

an attempt at determining the elastic deformation The ratio of change of stress to

displacement (∆P∆δ) is measured from unloading curve Post-failure characteristics

are observed and recorded Photographs are taken of the failed specimens

The results of the deformation measurement by MPL tests are shown

in Tables411 through 413 The stresses (P) are plotted as a function of axial

displacement (δ) and shown in Figures B1 through B150 (Appendix B) The results

of ∆P∆δ are used to estimate the elastic modulus of the specimen

The elastic modulus predictions from MPL results can be made by

using the value of αE plotted as a function of Ded for various td ratios as shown in

Figure 427 and the MPL elastic modulus can be expressed as

55

⎟⎠⎞

⎜⎝⎛

ΔΔ

⎟⎟⎠

⎞⎜⎜⎝

⎛=

δαPtE

Empl (Tepnarong 2006) (49)

where Empl is the elastic modulus predicted from MPL results αE is displacement

function value from numerical analysis and ∆P∆δ is the ratio of change of stress to

displacement which is measured from unloading curve of MPL tests and t is the

specimen thickness The value of αE used in the calculation is 260 for td ratio equal

to 25-30 (Tepnarong 2006) The results of elastic modulus predictions from MPL

tests are tabulated in Tables 414 through 416 Table 417 compares the elastic

modulus obtained from standard uniaxial compressive strength test (ASTM D3148-

96) with those predicted by MPL test

The values of Empl for each specimen with P-δ curve are shown in

Appendix B The MPL method under-estimates the elastic modulus of all tested

rocks This is the primarily because the actual loaded area may be smaller than that

used in the calculation due to the roughness of the specimen surfaces As a result the

contact area used to calculate PMPL is larger than the actual In addition the EMPL

tends to show a high intrinsic variation (high standard deviation) This is because the

loading areas of MPL specimens are small This phenomenon conforms by the test

results obtained by Fuenkajorn and Deamen (1992) They conclude that smaller test

specimens not only exhibit a higher strength than larger one (size effect) but also

show a high intrinsic variability due to the heterogeneity of rock fabric particularly at

small sizes This implied that to obtain a good prediction (accurate result) of the rock

elasticity a large amount of MPL specimens are desirable This drawback may be

compensated by the ease of testing and the low cost of sample preparation

56

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (MPa)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure 427 Example of P-δ curve for porphyritic andesite specimen The ratio of

∆P∆δ is used to predict the elastic modulus of MPL specimen (Empl)

57

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-01 246 543 125 260 1776 And-MPL-02 351 632 180 260 2430 And-MPL-03 236 634 170 260 1546 And-MPL-04 266 960 234 260 2390 And-MPL-05 284 903 369 260 4031 And-MPL-06 245 793 182 260 1712 And-MPL-07 263 874 234 260 2367 And-MPL-08 261 980 171 260 1717 And-MPL-09 280 777 056 260 603 And-MPL-10 244 569 124 260 1748 And-MPL-11 251 613 138 260 2001 And-MPL-12 226 631 189 260 2464 And-MPL-13 233 1126 151 260 947 And-MPL-14 279 1203 165 260 1239 And-MPL-15 239 503 011 260 151 And-MPL-16 281 474 012 260 195 And-MPL-17 305 861 021 260 247 And-MPL-18 233 653 008 260 108 And-MPL-19 294 1386 200 260 2263 And-MPL-20 265 860 017 260 173 And-MPL-21 238 425 087 260 1195 And-MPL-22 230 417 087 260 1154 And-MPL-23 223 557 231 260 2976 And-MPL-24 250 760 112 260 1615 And-MPL-25 259 1243 585 260 4073 And-MPL-26 303 560 143 260 1667 And-MPL-27 273 1640 156 260 1639 And-MPL-28 282 906 200 260 2172 And-MPL-29 311 934 156 260 1868 And-MPL-30 246 1314 650 260 4310 And-MPL-31 262 982 175 260 1766 And-MPL-32 260 1147 156 260 1093 And-MPL-33 240 700 101 260 1398 And-MPL-34 304 800 135 260 1576 And-MPL-35 250 455 127 260 1221 And-MPL-36 243 1697 292 260 1909 And-MPL-37 333 1520 156 260 2000 And-MPL-38 238 661 260 260 1665 And-MPL-39 318 347 186 260 1592 And-MPL-40 245 551 260 260 1712

58

And-MPL-41 207 561 325 260 1815

59

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-42 223 425 231 260 2976 And-MPL-43 207 561 346 260 1932 And-MPL-44 324 340 234 260 2912 And-MPL-45 275 426 169 260 1785 And-MPL-46 302 397 175 260 2033 And-MPL-47 255 314 170 260 1667 And-MPL-48 257 220 094 260 1393 And-MPL-49 256 214 057 260 843 And-MPL-50 243 166 078 260 1094 Average 1743 Standard Deviation 910

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-01 300 782 280 260 2262 SST -MPL-02 250 480 307 260 2066 SST -MPL-03 314 424 356 260 4302 SST -MPL-04 292 809 450 260 3533 SST -MPL-05 275 1142 532 260 3939 SST -MPL-06 308 490 273 260 2266 SST -MPL-07 317 611 418 260 3572 SST -MPL-08 233 684 414 260 2595 SST -MPL-09 255 480 371 260 2546 SST -MPL-10 217 772 958 260 5593 SST -MPL-11 312 903 400 260 3360 SST -MPL-12 255 1094 272 260 1864 SST -MPL-13 286 742 408 260 4435 SST -MPL-14 248 615 296 260 4235 SST -MPL-15 253 805 282 260 1918 SST -MPL-16 243 1094 260 260 1698 SST -MPL-17 234 1090 416 260 2621 SST -MPL-18 253 1371 473 260 3224 SST -MPL-19 327 434 330 260 4153 SST -MPL-20 270 310 278 260 2863

60

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-21 269 691 185 260 1914 SST -MPL-22 312 504 182 260 2183 SST -MPL-23 319 627 150 260 1839 SST -MPL-24 281 689 295 260 3193 SST -MPL-25 210 720 259 260 2090 SST -MPL-26 303 775 221 260 2577 SST -MPL-27 272 714 274 260 2862 SST -MPL-28 292 855 209 260 2350 SST -MPL-29 310 742 176 260 2097 SST -MPL-30 284 847 158 260 1728 SST -MPL-31 320 891 464 260 5707 SST -MPL-32 261 256 178 260 2678 SST -MPL-33 224 405 131 260 1690 SST -MPL-34 231 379 215 260 2863 SST -MPL-35 290 442 190 260 3174 SST -MPL-36 241 521 102 260 1416 SST -MPL-37 275 605 067 260 1064 SST -MPL-38 263 616 127 260 1926 SST -MPL-39 227 615 229 260 3005 SST -MPL-40 236 508 090 260 1226 SST -MPL-41 318 1142 498 260 4264 SST -MPL-42 303 809 392 260 3196 SST -MPL-43 228 805 244 260 1500 SST -MPL-44 283 1142 571 260 4348 SST -MPL-45 277 772 780 260 5826 SST -MPL-46 288 1206 411 260 3184 SST -MPL-47 250 508 309 260 4464 SST -MPL-48 275 442 338 260 5364 SST -MPL-49 272 605 254 260 3981 SST -MPL-50 260 805 360 260 2523 Average 2986 Standard Deviation 1190

61

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-01 270 546 212 260 2202 TST -MPL-02 258 787 326 260 3232 TST -MPL-03 275 730 143 260 1513 TST -MPL-04 282 715 143 260 1551 TST -MPL-05 254 1345 264 260 2579 TST -MPL-06 292 893 143 260 1606 TST -MPL-07 243 853 112 260 2273 TST -MPL-08 287 1047 319 260 3521 TST -MPL-09 230 787 212 260 1875 TST -MPL-10 230 427 132 260 1752 TST -MPL-11 282 1243 319 260 3455 TST -MPL-12 254 604 127 260 1241 TST -MPL-13 288 1180 159 260 1764 TST -MPL-14 251 631 170 260 2465 TST -MPL-15 214 1104 260 260 1500 TST -MPL-16 229 486 102 260 1345 TST -MPL-17 259 715 650 260 4530 TST -MPL-18 243 285 073 260 1025 TST -MPL-19 285 316 128 260 2105 TST -MPL-20 241 295 170 260 2360 TST -MPL-21 298 417 100 260 1722 TST -MPL-22 265 642 088 260 896 TST -MPL-23 314 611 101 260 1830 TST -MPL-24 303 481 124 260 2166 TST -MPL-25 223 223 126 260 1083 TST -MPL-26 273 652 178 260 1869 TST -MPL-27 216 887 170 260 2065 TST -MPL-28 319 718 164 260 2011 TST -MPL-29 310 742 128 260 1136 TST -MPL-30 260 641 280 260 2800 TST -MPL-31 287 496 158 260 1742 TST -MPL-32 264 368 170 260 1725 TST -MPL-33 238 415 130 260 1192 TST -MPL-34 271 824 260 260 1942 TST -MPL-35 283 800 325 260 2478 TST -MPL-36 242 1013 325 260 2115 TST -MPL-37 254 715 217 260 1484 TST -MPL-38 210 755 520 260 2944 TST -MPL-39 293 508 260 260 2052 TST -MPL-40 273 410 347 260 2552

62

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-41 234 628 260 260 1638 TST -MPL-42 259 433 260 260 1814 TST -MPL-43 265 546 435 260 4440 TST -MPL-44 255 829 222 260 3265 TST -MPL-45 254 368 315 260 3075 TST -MPL-46 293 695 222 260 2502 TST -MPL-47 247 297 128 260 1827 TST -MPL-48 310 611 237 260 4240 TST -MPL-49 225 337 371 260 2252 TST -MPL-50 259 410 394 260 2746 Average 2190 Standard Deviation 830

Table 417 Comparisons of elastic modulus results obtained from uniaxial

compressive strength tests and those from modified point load tests

Rock Type Tangential Elastic Modulus from UCS

tests Et (GPa)

Elastic Modulus from MPL tests

Empl (GPa) Porphyritic andesite 430plusmn34 174plusmn91

Silicified tuffaceous sandstone 633plusmn80 299plusmn119

tuffaceous sandstone 513plusmn53 219plusmn83

432 Modified point load tests predicting uniaxial compressive strength

The uniaxial compressive strength of MPL specimens can be predicted

by plotting Pmpl as a function of diameter ratio Ded as shown in Figures 428 through

430 At diameter ratio equal to unity the Pmpl represents the uniaxial compressive

strength of rock The uniaxial compressive strength predicted from MPL tests

compared with those from CPL test and UCS standard test is shown in Table 418

63

UCS PREDICTION OF PORPHYRITIC ANDESITE FROM MPL TESTS

Pmpl = 11844(Ded)05489

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ded Ratio

MPL

Stre

ngth

(MPa

)

Figure 428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests

64

UCS PREDICTION OF SILICIFIED TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 11463(Ded)07447

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ded Ratio

MPL

-Str

engt

h (M

Pa)

Figure 429 Uniaxial compressive strength predicted for silicified tuffaceous

sandstone from MPL tests

65

UCS PREDICTION OF TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 10222(Ded)05457

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ded Ratio

MPL

-Stre

ngth

(MPa

)

Figure 430 Uniaxial compressive strength predicted for tuffaceous sandstone from

MPL tests

Table 418 Comparison the test results between UCS CPL Brazilian tensile

strength and MPL tests

Uniaxial Compressive Strength (MPa)

Tensile Strength (MPa) Rock Type UCS

Testing CPL

Prediction MPL

PredictionBrazilian Testing

MPL Prediction

And 1150 1944 plusmn12 1005 170plusmn16 139plusmn43 TST 1114 2448plusmn20 1308 131plusmn33 121plusmn73 SST 1207 2592plusmn22 1022 191plusmn32 171plusmn126

433 Modified Point Load Tests for Tensile Strength Predictions

The MPL results determine the rock tensile strength by using the

relationship of the failure stresses (Pmpl) as a function of specimen thickness to

66

loading diameter ratio (td) The tensile strength from MPL prediction can be

expressed as an empirical equation (Tepnarong 2001)

σt mpl = Pmpl (αT ln (td)+βT) (410)

where αT = 133 ln (Ded)-756 and βT= -70 ln (Ded)+ 1952

The results of tensile strengths of all rock types are shown in Tables

419through 421 The predicted tensile strengths are compared with the Brazilian

tensile strengths for the three rock types in Table 418 A close agreement of the

results obtained between two methods The discrepancies of the results are less than

the standard deviation of the results

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa)

And-MPL-01 246 543 159 1495 767 750 And-MPL-02 351 632 471 1697 661 1688 And-MPL-03 236 634 191 1701 659 900 And-MPL-04 266 960 319 2252 369 1240 And-MPL-05 284 903 471 2170 412 1761 And-MPL-06 245 793 357 1999 502 1558 And-MPL-07 263 874 331 2127 435 1330 And-MPL-08 261 980 268 2279 355 1053 And-MPL-09 280 777 344 1971 517 1351 And-MPL-10 244 569 159 1557 734 746 And-MPL-11 251 613 368 1656 683 1666 And-MPL-12 226 631 340 1695 662 1662 And-MPL-13 233 1126 468 2464 257 2000 And-MPL-14 279 1203 572 2552 211 2022 And-MPL-15 239 503 227 1392 822 1114 And-MPL-16 281 474 170 1314 863 765 And-MPL-17 305 861 497 2108 445 1776 And-MPL-18 233 653 283 1740 638 1340 And-MPL-19 294 1386 484 2741 112 1577 And-MPL-20 265 860 522 2106 446 2091

67

And-MPL-21 238 425 311 1169 939 1595 And-MPL-22 230 417 255 1142 953 1338 And-MPL-23 223 557 283 1529 749 1431 And-MPL-24 250 760 311 1941 532 1347 And-MPL-25 259 1243 468 2596 188 1763 And-MPL-26 303 560 395 1535 746 1613

68

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) And-MPL-27 273 1640 497 2964 -006 1671 And-MPL-28 282 906 280 2252 369 1035 And-MPL-29 311 934 369 2216 388 1272 And-MPL-30 246 1314 650 2670 149 2543 And-MPL-31 262 982 255 2282 353 997 And-MPL-32 260 1147 468 2488 244 1783 And-MPL-33 240 700 255 1832 590 1161 And-MPL-34 304 800 306 2010 496 1121 And-MPL-35 250 455 280 1259 891 1370 And-MPL-36 243 1697 312 3010 -030 1181 And-MPL-37 333 1520 395 2863 047 1130 And-MPL-38 238 661 442 1755 630 2054 And-MPL-39 318 347 338 897 1082 1594 And-MPL-40 245 551 390 1513 758 1847 And-MPL-41 207 561 390 1537 745 2089 And-MPL-42 223 425 283 1169 939 1507 And-MPL-43 207 561 390 1537 745 2089 And-MPL-44 324 340 395 871 1096 1864 And-MPL-45 275 426 306 1172 937 1441 And-MPL-46 302 397 166 1079 986 760 And-MPL-47 255 314 127 766 1151 1159 And-MPL-48 257 220 142 291 1401 845 And-MPL-49 256 214 74 257 1419 443 And-MPL-50 243 166 102 -078 1595 928 Average 1427 Standard Deviation 44

69

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) SST -MPL-01 300 782 442 1336 851 2018 SST -MPL-02 250 480 572 1331 853 2759 SST -MPL-03 314 424 433 1196 924 1888 SST -MPL-04 292 809 572 2024 489 2155 SST -MPL-05 275 1142 780 2483 247 2827 SST -MPL-06 308 490 494 1357 840 2086 SST -MPL-07 317 611 728 1651 685 2808 SST -MPL-08 233 684 624 1800 606 2932 SST -MPL-09 255 480 598 1331 853 2849 SST -MPL-10 217 772 312 1962 522 1529 SST -MPL-11 312 903 702 2170 412 2436 SST -MPL-12 255 1094 390 2426 277 1533 SST -MPL-13 286 742 510 1910 549 2011 SST -MPL-14 248 615 198 1661 680 905 SST -MPL-15 253 805 546 2017 492 2312 SST -MPL-16 243 1094 390 2426 277 1607 SST -MPL-17 234 1090 650 2421 280 2780 SST -MPL-18 253 1371 624 2726 120 2354 SST -MPL-19 327 434 408 1196 924 1740 SST -MPL-20 270 310 497 748 1160 2618 SST -MPL-21 269 691 522 1816 599 2181 SST -MPL-22 312 504 484 1394 821 2012 SST -MPL-23 319 627 331 1686 667 1263 SST -MPL-24 281 689 420 1812 601 1699 SST -MPL-25 210 720 497 1869 570 2541 SST -MPL-26 303 775 471 1968 519 1745 SST -MPL-27 272 714 395 1859 576 1623 SST -MPL-28 292 855 764 2098 450 2830 SST -MPL-29 310 742 510 1910 549 1881 SST -MPL-30 284 847 522 2087 456 1981 SST -MPL-31 320 891 828 2153 421 2832 SST -MPL-32 261 256 226 492 1295 1282 SST -MPL-33 224 405 311 1106 972 1672 SST -MPL-34 231 379 255 1017 1019 1363 SST -MPL-35 290 442 594 1221 912 2690 SST -MPL-36 241 521 283 1439 797 1374 SST -MPL-37 275 605 340 1639 692 1445 SST -MPL-38 263 616 368 1661 680 1611

70

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded Pmpl (MPa)

αT βT σt mpl (MPa)

SST -MPL-39 227 615 198 1661 680 969 SST -MPL-40 236 508 311 1406 814 1540 SST -MPL-41 318 1142 780 2483 247 2500 SST -MPL-42 303 809 546 2024 489 1999 SST -MPL-43 228 805 546 2017 492 2530 SST -MPL-44 283 1142 780 2483 247 2757 SST -MPL-45 277 772 312 1962 522 1236 SST -MPL-46 288 1206 728 2555 209 2502 SST -MPL-47 250 508 323 1406 814 1533 SST -MPL-48 275 442 594 1221 912 2769 SST -MPL-49 272 605 368 1639 692 1580 SST -MPL-50 260 805 520 2017 492 2147 Average 2045 Standard Deviation 56

71

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-01 270 546 293 1502 763 1299 TST -MPL-02 258 787 293 1988 508 1226 TST -MPL-03 275 730 255 1888 560 1031 TST -MPL-04 282 715 510 1860 575 2035 TST -MPL-05 254 1345 280 2701 133 1058 TST -MPL-06 292 893 255 2156 420 933 TST -MPL-07 243 853 311 2095 451 1346 TST -MPL-08 287 1047 268 2279 355 970 TST -MPL-09 230 787 471 1988 508 2179 TST -MPL-10 230 427 147 1176 935 769 TST -MPL-11 282 1243 573 2596 188 1994 TST -MPL-12 254 604 255 1636 693 1149 TST -MPL-13 288 1180 369 2527 224 1274 TST -MPL-14 251 631 232 1695 662 1044 TST -MPL-15 214 1104 312 2438 271 1465 TST -MPL-16 229 486 215 1347 845 1098 TST -MPL-17 259 715 286 1861 575 1220 TST -MPL-18 243 285 102 637 1219 571 TST -MPL-19 285 316 130 776 1146 665 TST -MPL-20 241 295 102 685 1194 568 TST -MPL-21 298 417 170 1143 952 771 TST -MPL-22 265 642 170 1178 934 1059 TST -MPL-23 314 611 255 1652 685 989 TST -MPL-24 303 481 368 1423 805 1545 TST -MPL-25 223 223 331 313 1389 2018 TST -MPL-26 273 652 331 1738 640 1389 TST -MPL-27 216 887 535 2146 424 1850 TST -MPL-28 319 718 369 1866 572 1350 TST -MPL-29 231 516 255 1425 804 1276 TST -MPL-30 260 641 484 1715 651 2114 TST -MPL-31 287 496 420 1373 832 1846 TST -MPL-32 264 368 293 976 1041 1475 TST -MPL-33 238 415 293 1151 948 1504 TST -MPL-34 271 824 364 2049 476 1418 TST -MPL-35 283 800 572 2010 496 2210 TST -MPL-36 242 1013 468 2324 331 1965 TST -MPL-37 254 715 234 1861 575 1013 TST -MPL-38 210 755 390 1932 537 1976

72

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-39 293 508 286 1406 814 1229 TST -MPL-40 273 410 260 1124 963 1243 TST -MPL-41 234 628 208 1688 666 990 TST -MPL-42 259 433 338 1194 926 1639 TST -MPL-43 265 546 280 1502 763 1257 TST -MPL-44 255 829 147 2057 472 614 TST -MPL-45 254 368 306 976 1041 1568 TST -MPL-46 293 695 210 1822 595 1846 TST -MPL-47 247 297 102 691 1190 561 TST -MPL-48 310 611 170 1652 685 665 TST -MPL-49 225 337 416 1939 533 1972 TST -MPL-50 259 410 312 1120 965 1537 Average 1336 Standard Deviation 56

434 Modified point load tests for triaxial compressive strength predictions

The objective of this section is to predict the triaxial compressive strength

of intact rock specimens by using the MPL results (modified point load strength Pmpl) It

is speculated that increase of applied load (σ1) will invoke a confining pressure (σ3) on

the imaginary cylindrical profile between the two loading points This is due to the

effect of Poissonrsquos ratio (ν) which causing a potential expansion of rock in this cylinder

The greater the σ1 the greater the σ3 in addition Poissonrsquos ratios also affect the

magnitude of σ3 The magnitude of σ3 also depends on the specimen shape particularly

the Ded ratio In principle σ3 will equal zero for Ded ratio equal to unity But when

Ded ratio is very large approaching infinity σ3 will reach its maximum This maximum

value of σ3 will also depend on the rock Poissonrsquos ratio From computer simulation of

td =25 the variation of σ1 σ3 ratio can be simply expressed by Tepnarong (2006) as

73

(σ1 σ3) = 2 ((ν (1ndashν) (1-(dDe) 2)) (411)

where ν is the Poissonrsquos ratio of rock specimen d is the modified point load diameter

and De is the equivalent diameter of the specimen The Poissonrsquos ratio of rock

specimen used in equation 411 can be assumed to be 25 The σ1 σ3 ratio tends to be

independent of Ded for Ded greater than 10 This implies that when MPL specimen

diameter is more than 10 times of the loading point diameter the magnitude of σ3 is

approaching its maximum value (Tepnarong 2006)

It should be pointed out that approach used here to determine σ3

assumes that there is no shear stress (τrz) along the imagination cylinder As a result

the magnitude of σ3 determined here would be higher than the actual σ3 applied in the

true triaxial test specimen This mean that the σ1 σ3 ratios at failure obtained from

MPL tests will be lower than the actual failure stress ratio from the true triaxial tests

From the concept of σ1 σ3-Ded relation proposed the major and

minor principal stresses at failure (σ1 σ3) can be predicted from the measured MPL

failure stress Pmpl and Ded ratio The Poissonrsquos ratio used here is equal to 025

Comparison between the failure stress (σ1 σ3) obtained from the

standard triaxial compressive strength testing (ASTM D7012-07) and those predicted

from MPL test results are made graphically in Figures 431 through 433 for ν =025

The figures are plotted the maximum shear stress (frac12(σ1-σ3)) as a function of mean

shear stress (frac12(σ1+σ3)) indicating that the predicted failure stresses under-estimate

the value obtained from the standard testing This is because of the assumption of no

shear stresses developed on the surface of the imaginary cylinder The under

prediction may be due to the intrinsic variability of the rocks The predictions are

also sensitive to assumed Poissonrsquos ratio The Poissonrsquos ratio of the tested specimens

74

may be lower than the assumed value of 025 This comparison implies that the

triaxial strength predicted from MPL test will be more conservative than those from

the standard testing method

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests

Specimen Number

td Ded σ1

(MPa)σ3

(MPa)Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-01 246 543 159 2527 6663 9190 And-MPL-02 351 632 471 7583 19776 27358 And-MPL-03 236 634 191 3075 8017 11091 And-MPL-04 266 960 319 5198 13325 18522 And-MPL-05 284 903 471 7682 19726 27408 And-MPL-06 245 793 357 5792 14938 20730 And-MPL-07 263 874 331 5393 13864 19257 And-MPL-08 261 980 268 4368 11192 15560 And-MPL-09 280 777 344 5581 14407 19988 And-MPL-10 244 569 159 2535 6659 9194 And-MPL-11 251 613 368 5911 15445 21356 And-MPL-12 226 631 340 5465 14253 19717 And-MPL-13 233 1126 468 7660 19568 27228 And-MPL-14 279 1203 572 9372 23911 33283 And-MPL-15 239 503 227 3589 9529 13118 And-MPL-16 281 474 170 2678 7154 9831 And-MPL-17 305 861 497 8087 20797 28884 And-MPL-18 233 653 283 4561 11874 16435 And-MPL-19 294 1386 484 7946 20231 28177 And-MPL-20 265 860 522 8501 21864 30365 And-MPL-21 238 425 311 4854 13143 17997 And-MPL-22 230 417 255 3962 10758 14720 And-MPL-23 223 557 283 4521 11894 16415 And-MPL-24 250 760 311 5049 13045 18094 And-MPL-25 259 1243 468 7671 19562 27234 And-MPL-26 303 560 395 6308 16591 22899 And-MPL-27 273 1640 497 8167 20757 28924 And-MPL-28 282 906 280 4574 11726 16300 And-MPL-29 311 934 369 6026 15459 21484 And-MPL-30 246 1314 650 1066 27166 37828 And-MPL-31 262 982 255 4160 10659 14819 And-MPL-32 260 1147 468 7663 19567 27229

75

And-MPL-33 240 700 255 4118 10680 14798 And-MPL-34 304 800 306 4966 12804 17770

76

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-35 250 455 280 4401 11812 16213 And-MPL-36 243 1697 312 5130 13034 18163 And-MPL-37 333 1520 395 6488 16501 22989 And-MPL-38 238 661 442 7125 18535 25661 And-MPL-39 318 347 338 5112 14342 19455 And-MPL-40 245 551 390 6222 16387 22609 And-MPL-41 207 561 390 6230 16383 22613 And-MPL-42 223 425 283 4413 11948 16361 And-MPL-43 207 561 390 6230 16383 22613 And-MPL-44 324 340 395 5952 16769 22721 And-MPL-45 275 426 306 4767 12903 17670 And-MPL-46 302 397 166 2559 7001 9560 And-MPL-47 255 314 127 3211 9223 12433 And-MPL-48 257 220 142 1852 6151 8003 And-MPL-49 256 214 74 950 3205 4155 And-MPL-50 243 166 102 1493 6331 7823

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-01 300 782 442 7389 19703 27092 SST -MPL-02 250 480 572 9028 24083 33112 SST -MPL-03 314 424 433 6767 18273 25040 SST -MPL-04 292 809 572 9293 23951 33244 SST -MPL-05 275 1142 780 1277 32611 45382 SST -MPL-06 308 490 494 7811 20792 28603 SST -MPL-07 317 611 728 1169 30552 42241 SST -MPL-08 233 684 624 1008 26160 36235 SST -MPL-09 255 480 598 9439 25178 34617 SST -MPL-10 217 772 312 5061 13068 18129 SST -MPL-11 312 903 702 1144 29377 40817 SST -MPL-12 255 1094 390 6381 16308 22689 SST -MPL-13 286 742 510 8255 21350 29605 SST -MPL-14 248 615 198 3183 8316 11500

77

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-15 253 805 546 8869 22863 31732 SST -MPL-16 243 1094 390 6381 16308 22689 SST -MPL-17 234 1090 650 1063 27180 37814 SST -MPL-18 253 1371 624 1024 26077 36317 SST -MPL-19 327 434 408 6369 17198 23567 SST -MPL-20 270 310 497 7344 21169 28513 SST -MPL-21 269 691 522 8438 21896 30333 SST -MPL-22 312 504 484 7672 20368 28040 SST -MPL-23 319 627 331 5626 13897 19224 SST -MPL-24 281 689 420 6790 17624 24414 SST -MPL-25 210 720 497 8039 20821 28860 SST -MPL-26 303 775 471 7648 19743 27391 SST -MPL-27 272 714 395 6388 16551 22939 SST -MPL-28 292 855 764 1244 31997 44436 SST -MPL-29 310 742 510 8255 21350 29605 SST -MPL-30 284 847 522 8498 21866 30364 SST -MPL-31 320 891 828 1349 34656 48146 SST -MPL-32 261 256 226 3165 9741 12906 SST -MPL-33 224 405 311 4825 13157 17982 SST -MPL-34 231 379 255 3912 10783 14695 SST -MPL-35 290 442 594 9307 25071 34377 SST -MPL-36 241 521 283 4499 11905 16404 SST -MPL-37 275 605 340 5452 14259 19711 SST -MPL-38 263 616 368 5912 15445 21357 SST -MPL-39 227 615 198 3183 8316 11500 SST -MPL-40 236 508 311 4939 13100 18039 SST -MPL-41 318 1142 780 1277 32611 45382 SST -MPL-42 303 809 546 8870 22862 31733 SST -MPL-43 228 805 546 8869 22863 31732 SST -MPL-44 283 1142 780 1277 32611 45382 SST -MPL-45 277 772 312 5061 13068 18129 SST -MPL-46 288 1206 728 1193 30433 42361 SST -MPL-47 250 508 323 5119 13577 18695 SST -MPL-48 275 442 594 9307 25071 34377 SST -MPL-49 272 605 368 5906 15447 21354 SST -MPL-50 260 805 520 8447 21774 30221

78

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-01 270 546 293 4672 12313 16986 TST -MPL-02 258 787 293 4756 12272 17028 TST -MPL-03 275 730 255 4125 10676 14801 TST -MPL-04 282 715 510 8243 21356 29599 TST -MPL-05 254 1345 280 4599 11713 16312 TST -MPL-06 292 893 255 4151 10663 14814 TST -MPL-07 243 853 311 5067 13036 18103 TST -MPL-08 287 1047 268 4368 11192 15560 TST -MPL-09 230 787 471 7651 19741 27393 TST -MPL-10 230 427 147 2296 6212 8508 TST -MPL-11 282 1243 573 9397 23964 33361 TST -MPL-12 254 604 255 4089 10695 14783 TST -MPL-13 288 1180 369 6052 15445 21497 TST -MPL-14 251 631 232 3734 9739 13474 TST -MPL-15 214 1104 312 5105 13046 18151 TST -MPL-16 229 486 215 3400 9057 12457 TST -MPL-17 259 715 286 4626 11986 16612 TST -MPL-18 243 285 102 1474 4358 5833 TST -MPL-19 285 316 130 1934 5544 7478 TST -MPL-20 241 295 102 1489 4351 5840 TST -MPL-21 298 417 170 2641 7172 9813 TST -MPL-22 265 642 170 2650 7168 9817 TST -MPL-23 314 611 255 4091 10693 14784 TST -MPL-24 303 481 368 5843 15476 21322 TST -MPL-25 223 223 331 4370 14376 18745 TST -MPL-26 273 652 331 5336 13892 19229 TST -MPL-27 216 887 535 8716 22394 31109 TST -MPL-28 319 718 369 5977 15483 21460 TST -MPL-29 231 516 255 4046 10716 14762 TST -MPL-30 260 641 484 7793 20307 28100 TST -MPL-31 287 496 420 6654 17692 24346 TST -MPL-32 264 368 293 4477 12411 16888 TST -MPL-33 238 415 293 4560 12370 16930 TST -MPL-34 271 824 364 5917 15240 21157 TST -MPL-35 283 800 572 9290 23953 33242 TST -MPL-36 242 1013 468 7646 19575 27221 TST -MPL-37 254 715 234 3785 9806 13592 TST -MPL-38 210 755 390 6321 16338 22659

79

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-39 293 508 286 4536 12031 16567 TST -MPL-40 273 410 260 4036 10981 15017 TST -MPL-41 234 628 208 3345 8727 12071 TST -MPL-42 259 433 338 5279 14259 19538 TST -MPL-43 265 546 280 4469 11778 16247 TST -MPL-44 255 829 147 2394 6163 8557 TST -MPL-45 254 368 306 4671 12951 17622 TST -MPL-46 293 695 210 7616 19759 27375 TST -MPL-47 247 297 102 1491 4359 5841 TST -MPL-48 310 611 170 2728 7129 9870 TST -MPL-49 225 337 416 6744 17426 24170 TST -MPL-50 259 410 312 4841 13178 18019

ANDESITE

τm= 07103σm + 26

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=

((σ

1-σ

3)2

) (M

Pa)

MPL PredictionTriaxial Compressive

Figure 431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and MPL test

80

SILICIFIED TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=(

( σ1minus

σ3)

2)

(MPa

)MPL Prediction

Triaxial Compressive Strength test

Figure 432 Comparisons of triaxial compressive strength criterion of silicified

tuffaceous sandstone between the triaxial compressive strength test

and MPL test

81

TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stress σm=((σ1+σ3)2) (MPa)

Max

imum

shea

r st

res

τ m=(

( σ1-

σ3)

2)

(MPa

)

MPL Prediction

Triaxial Compressive Strength test

Figure 433 Comparisons of triaxial compressive strength criterion of tuffaceous

sandstone between the triaxial compressive strength test and MPL

test

Table 425 compares the triaxial test results in terms of the cohesion c

and internal friction angle φi by assuming the failure mode follows the Coulombrsquos

criterion The c and φi values are calculated from the test results and the predicted

results by the assumption of Coulombrsquos criterion (Jaeger and Cook 1978) Table

425 shows that the strengths predicted by MPL testing of all rock types under-

estimate those obtained from the standard triaxial testing This is probably the actual

Poissonrsquos ratio of the rock specimens are probably lower than those assumed in the

model simulation which is assumed the Poissonrsquos ratio as 025

82

Table 425 Comparisons of the internal friction angle and cohesion between MPL

predictions and triaxial compressive strength tests

Triaxial Compressive Strength Test

MPL Predictions (ν=025) Rock Type

c (MPa) φi (degrees) c (MPa) φi (degrees)

Porphyritic Andesite 12 69 4 45

Silicified Tuffaceous Sandstone 13 65 3 46

Tuffaceous Sandstone 7 73 2 46

CHAPTER V

FINITE DIFFERENCE ANALYSES

51 Objectives

The objective of the finite difference analyses is to verify that the equivalent

diameter of rock specimens used in the MPL strength prediction is appropriate The

finite difference analyses using FLAC software is made to determine the MPL

strength for various specimen diameters (D) with a constant cross-sectional area

52 Model characteristics

The analyses are made in axis symmetry Four specimen models with the

constant thickness of 318 cm are loaded with 10 cm diameter loading point The

diameter of the specimen (D) models is varied from 508 cm to 762 cm Each

specimen has a constant cross-sectional area of 1613 cm2 as shown in Figure 51

through 55 The load is applied to the specimens until failure occurs and then the

failure loads (P) are recorded

53 Results of finite difference analyses

The results of numerical simulation are shown in Table 51 The results

suggest that the MPL strength remains roughly constant when the same equivalent

diameter (De) is used It can be concluded that the equivalent diameter used in this

research is appropriate to predict the MPL strength

80

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm

81

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm

82

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm

Table 51 Summary of the results from numerical simulations

Model Number

Specimen Thickness

t (cm)

Specimen Diameter

D (cm)

Cross-Sectional

Are of Specimen

A (cm2)

Equivalent Diameter

De (cm)

Failure Load P

(kN)

1 318 508 1613 508 4485 2 318 572 1613 508 4630 3 318 635 1613 508 4614 4 318 698 1613 508 4627 5 318 762 1613 508 4590

CHAPTER VI

DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS

This chapter discusses various aspects of the proposed MPL testing technique

for determining the elastic modulus uniaxial and triaxial compressive strengths and

tensile strength of intact rock specimens The discussed issues include reliability of

the testing results validity scope and limitations of the proposed method of

calculations and accuracy of the predicted rock properties

61 Discussions

1) For selection of rock specimens for MPL testing in this research an

attempt has been made to select the specimens particularly in obtaining a high degree

of uniformity of rock matrix so as to reduce the intrinsic variability of the mechanical

test results and hence clearly reveals of the relation between the standard test results

with the MPL test results Nevertheless a high degree of intrinsic variability

remains as evidenced from the results of the characterization testing For all tested

rock types here the igneous rocks are normally heterogeneous The high intrinsic

variability is caused by the degree of weathering among specimens and the

distribution of rock fragments in the groundmass which promotes the different

orientations of cleavage planes and pore spaces to become a weak plane in rock

specimens Silicified tuffaceous sandstone the high standard deviation may be

caused by the silicified degree in rock specimens

84

2) For prediction of elastic modulus of rock specimens the effects of the

heterogeneity that cause the selective weak planes are enhanced during the MPL

testing This is because the applied loading areas are much smaller than those under

standard uniaxial compressive strength testing This load condition yields a high

degree of intrinsic variability of the MPL testing results The standard deviation of

the elastic modulus predicted from MPL results are in the range between 35-50

This means that in order to obtain the accurate prediction a large number of rock

specimens is necessary for each rock types and that the MPL testing is more

applicable in fine-grained rocks than coarse-grained rocks Another factor is the

uneven contacts between the loading platens and the rock surfaces which caused the

elastic modulus of all rock types that predicted from MPL testing to be lower

compared with those from the uniaxial compressive strength

3) Equivalent diameter used to define the rock specimen width (perpendicular

to the loading direction) seems adequate for use in MPL predictions of rock

compressive and tensile strengths

4) Determination of σ3 at failure for the MPL testing is the empirical In fact

results from the numerical simulation indicate that σ3 distribution along the imaginary

cylinder between the loading points is not uniform particularly for low td ratio

(lower than 25) Along this cylinder σ3 is tension near the loading point and

becomes compression in the mid-length of the MPL specimen There are also shear

stresses along the imaginary cylinder The induced stress states along the assume

cylinder in MPL specimen are therefore different from those the actual triaxial

strength testing specimen The MPL method can not satisfactorily predict the triaxial

compressive strength of all tested rock types primarily due to the heterogeneity of

85

rock specimens that is the different sizes of phenocrysts in igneous rock in lateral and

horizontal directions This promotes the different failure formations

62 Conclusions

The objective of this research is to determine the elastic modulus uniaxial

compressive strength tensile strength and triaxial compressive strength of rock

specimens by using the modified point load (MPL) test method Three rock types

used in this research are porphyritic andesite silicified tuffaceous sandstone and

tuffaceous sandstone Prior to performing the modified point load testing the

standard characterization testing is carried out on these rock types to obtain the data

basis for use to compare the results from MPL testing The MPL specimens are

irregular-shaped with the specimen thickness to loading platen diameter (td) varies

from 25-35 and the equivalent diameter of specimen to loading platen diameter

(Ded) varies from 15 to 20 Loading platen diameters used in this research are 7 10

and 15 mm Finite different analysis is used to verify the equivalent diameter that use

to calculate rock properties from MPL tests

The research results illustrate that the elastic modulus estimated from MPL tests

under-estimates those obtained from the ASTM standard test with the standard

deviation of 40 for porphyritic andesite 48 for silicified tuffaceous sandstone and

43 for tuffaceous sandstone The MPL test method can satisfactorily predict the

uniaxial compressive strength and tensile strength of all rock types tested here The

conventional point load test method over-predicts the actual strength results by much as

100 The MPL method however can not predict the triaxial compressive strengths

for three rock types tested here primarily due to heterogeneous and different

86

weathering degree of rock specimens and uneven surface of rock specimens This

suggests that the smooth and parallel contact surfaces on opposite side of the loading

points are important for determining the strength of rock specimens for MPL method

63 Recommendations

The assessment of predictive capability of the proposed MPL testing technique

has been limited to three rock types More testing is needed to confirm the applicability

and limitations of the proposed method Some obvious future research needs are

summarized as follows

1) More testing is required for elastic modulus and triaxial compressive strength

on different rock types Smooth and parallel of rock specimen surfaces in the opposite

sides should be prepared for all rock types The results may also reveal the impacts of

grain size on elasticity and strength of obtained under different loading areas And the

effects of size of the areas underneath the applied load should be further investigated

2) To truly confirm the validity of MPL predictions for the elastic modulus and

strength of rocks may be desirable to obtain the actual Poissonrsquos ratio of all rock types

The results could reveal the accuracy of the predicted elastic modulus under the assumed

Poissonrsquos ratio of 025 Comparison between the elastic modulus obtained from the

actual Poissonrsquos ratio may show the validity of assumption of the Poissonrsquos ratio posed

here

3) All tests made in this research are on dry specimens the results of pore

pressure and degree of saturation have not been investigated It is desirable to learn also

the proposed MPL testing technique can yield the intact rock properties under

different degree of saturation

88

REFERENCES

ASTM D2664-86 Standard test method for triaxial compressive strength of

undrained rock core specimens without pore pressure measurements In

Annual Book of ASTM Standards (Vol 0408) Philadelphia American

Society for Testing and Materials

ASTM D7012-07 Standard test method for compressive strength and elastic moduli

of intact rock core specimens under varying states of stress and

temperatures In Annual Book of ASTM Standards (Vol 0408) West

Conshohocken American Society for Testing and Materials

ASTM D3967-81 Standard test method for splitting tensile strength of intact rock

core specimens In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

ASTM D4543-85 Standard test method for preparing rock core specimens and

determining dimensional and shape tolerances In Annual Book of ASTM

Standards (Vol 0408) Philadelphia American Society for Testing and

Materials

ASTM D5731-95 Standard test method for determination of point load strength

index of rock In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

Bieniawski Z T (1974) Estimating of the strength of rock materials J Inst

Min Metall 7 123-137

Bieniawski Z T (1975) The point-load test in geotechnical practice Engng

Geol 9 1-11

89

Bieniawski Z T and Bernede M J (1979) Suggested methods for determining the

uniaxial compressive strength and deferability of rock material for ISRM

Commission on Standardization of Laboratory and Field test Int J Rock

Mech Min Sci 16 (2)xxxx (page no)

Bray J W (1987) Some applications of elastic theory In E T Brown (ed)

Analytical and Computational Methods in Engineering Rock

Mechanics (pp 32-94) Allen amp Unwin London

Broch E and Franklin J A (1972) The point-load test Int J Rock Mech Min

Sci 9 669-697

Book N (1977) The use of irregular specimens for rock strength tests Int J

Rock Mech Min Sci amp Geomech Abstr 14 193-202

Book N (1979) Estimating the triaxial strength of rocks Int J Rock Mech Min

Sci amp Geomech Abstr 16 261-264

Book N (1980) Size correction for point load testing Int J Rock Mech Min

Sci 17231-235 [Technical note]

Book N (1985) The equivalent core diameter method of size and shape correction

in point load testing Int J Rock Mech Min Sci amp Geomech Abstr

22 61-70

Brown E T (1981) Rock characterization Testing and Monitoring ISRM

Suggestion Methods New York International Society for Rock

Mechanics Pergamon Press

Butenuth C (1997) Comparison of tensile strength values of rocks determined by

point load and direct tensile tests Rock Mech Rock Engng 30 65-72

90

Cargill J S and Shakoor A (1992) Evaluation of empirical methods for measuring

the uniaxial compressive strength Int J Rock Mech Min Sci 27 495-503

Chau KT (1997) Youngrsquos modulus interpreted from compression tests with end

friction J Engng Mech January 1-7 plat Ann Inst Tech Trav Publics

58 967-971

Chau KT and Wei X X (1999) A new analytic solution for the diametral point

load strength test on finite solid circular cylinders Int J Solids and

Structures 38(9) 1459-1481

Chau KT and Wong R HC (1996) Uniaxial compressive strength and point

load strength Int J Rock Mech Min Sci 33183-188

Davis R O and Selvadurai APS (1996) Elasticity and Geomechanics New

York Cambridge University Press 198 p

Deere DU and Miller R P (1966) Engineering Classification and Index

Properties for Intact Rock US Air Force Weapons Lab Rep AFWL-

TR-65-116

Durelli A J and Parks V (1962) Relationship of size and stress gradient to brittle

failure stress In Proceeding of the 4th US National Cong Of Appl

Mech (pp 931-938)

Evans I (1961) The tensile strength of coal Colliery Eng 38 428-434

Fairhurst C (1961) Laboratory measurement of some physical properties of rock

In Proceeding of the 4th Symp Rock Mech (pp 105-118) Penn State

University

Farmer I (1983) Engineering Behavior of Rocks New York Chapman and Hall

208 p

91

Forster I R (1983) The influence of core sample geometry on axial load test Int

J Rock Mech Min Sci 20 291-295

Fuenkajorn K (2002) Modified point load test determining uniaxial compressive

strength of intact rock In Proceeding of 5th North American Rock

Mechanics Symposium and the 17th Tunneling Association of Canada

Conference (NARMS-TAC 2002) (pp ) Toronto

Fuenkajorn K and Daemen J J K (1986) Shape effect on ring test tensile

strength In Key to Energy Production Proceeding of the 27th US

Symposium on Rock Mechanics (pp 155-163) Tuscaloosa University of

Alabama

Fuenkajorn K and Daemen J J K (1991b) An empirical strength criterion for

heterogeneous welded tuff In ASME Applied Mechanics and

Biomechanics Summer Conference Columbus Ohio University

Fuenkajorn K and Daemen J J K (1992) An empirical strength criterion for

heterogeneous tuff Int J Engineering Geology 32 209-223

Fuenkajorn K and Tepnarong P (2001) Size and stress gradient effects on the

modified point load strength of Saraburi Marble In the 6th Mining

Metallurgical and Petroleum Engineering Conference Bangkok

Thailand(pp)

Ghosh A Fuenkajorn K and Daemen J J K (1995) Tensile strength of welded

Apache Leap tuff investigation for scale effects In Proceeding of the 35th

US Rock Mech Symposium (pp 459-646) University of Navada Reno

Goodman R E (1980) Methods of Geological Engineering in Discontinuous

Rock New York Wiley and Sons

92

Greminger M (1982) Experimental studies of the influence of rock anisotropy on

size and shape effects in point-load testing Int J Rock Mech Min Sci

19 241-246

Gunsallus K L and Kulhawy F H (1984) A comparative evaluation of rock

strength measures Int J Rock Mech Min Sci 21 233-248

Hassani F P Scoble M J and Whittaker B N (1980) Application of point load

index test to strength determination of rock and proposals for new size-

correction chart (pp 543-564) Rolla

Hiramatsu Y and Oka Y (1966) Determination of tensile strength of rock by a

compression test of irregular test piece Int J Rock Mech Min Sci 3

89-99

Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the

Hoek-Brown falure criterion-Technical note Int J Rock Mech Min Sci

amp Geomech Abstr 27 227-229

Hoek E and Brown E T (1980a) Empirical strength criterion for rock masses J

Geotech Eng Div 106 (GT9) 1013-1035

Hondros G (1959) The evaluation of Poissonrsquos ratio and modulus of material of a

low tensile resistance by the Brazilian (indirect tensile) test with particular

reference to concrete Aust J Appl Sci 10 243-264

Horii H and Nemat-Nasser S (1985) Compression-induced microcrack growth in

brittle solids axial splitting and shear failure J Geophts Res 90 3105-

3125

93

Hudson J A Brown E T and Fairhurst C (1971) Shape of the complete stress-

strain curve for rock In Proceeding of the 13th US Symp Rock Mech (pp

773-795) Urbana

ISRM (1985) Suggested method for determining point load strength Int J Rock

Mech Min Sci amp Geomech Abstr 22 53-60

ISRM (1985) Suggested methods for deformability determination using a flexible

dilatometer Int J Rock Mech Min Sci amp Geomech Abstr 24 123-134

Jaeger J C and Cook N G W (1979) Fundamentals of Rock Mechanics

London Chapman and Hall 593 p

Kaczynski R R (1986) Scale effect during compressive strength of rocks In

Proceeding of 5th Int Assoc Eng Geol Congr p 371-373

Lama R D and Vutukuri V S (1978) Testing techniques and results In

Handbook on Mechanical Properties of Rock Vol III No 2 Trans

Tech Publications (International Standard Book Number 0-87849-022-1

Clausthal Germany)

Lonborg N (1967) The strength-size relation of granite Int J Rock Mech Min

Sci 4 269-272

Miller R P (1965) Engineering Classification and Index Properties for Intact

Rock PhD Dissertation Univ Of Illinois Urbana III 92 p

Nimick F B (1988) Empirical relations between porosity and the mechanical

properties of tuff In Key Questions in Rock Mechanics (pp 741-742)

Balkema Rotterdam

Obert L and Stephenson D E (1965) Stress conditions under which core disking

occurs Trans Soc Min Eng AIME 232 227-235

94

Panek L A and Fannon T A (1992) Size and shape effects in point load tests

of irregular rock fragments J Rock Mechanics and Rock Engineering

25 109-140

Pells P J N (1975) The use of point load test in predicting the compressive

strength of rock material Aust Geotech (pp 54-56) G5(N1)

Reichmuth D R (1968) Point-load testing of brittle materials to determine the

tensile strength and relative brittleness In Proceeding of the 9th US Symp

Rock Mech (pp 134-159) University of Colorado

Sammis C G and Ashby M F (1986) The failure of brittle porous solid under

compressive stress state Acta Metall 34 511-526

Serata S and Fuenkajorn K (1992a) Finite element progam lsquoGEOrsquo for modeling

brittle-ductile deterioration of aging earth structures In SMRI Paper

Presented at the Solution Mining Research Institute Fall Meeting

October 19-22 Houston Texas 24p

Sheorey P R Biswas A K and Choubey V D (1989) An empirical failure

criterion of rocks and jointed rock masses Eng Geol 26 141-159

Stowe R L (1969) Strength and deformation properties of granite basalt

limestone and tuff US Army Corps of Engineers WES Misc Paper C-69-1

Taliercio A and Sacchi Landrianni G (1988) Failure criterion for layered rock

Int J Rock Mech Min Sci amp Geomech Abstr 25 299-305

Tepnarong P (2001) Theoretical and experimental studies to determine

compressive and tensile strengths of rocks using modified point load

testing M Eng Thesis Suranaree University of Technology Thailand

95

Tepnarong P (2006) Theoretical and experimental studies to determine elastic

modulus and triaxial compressive strength of intact rocks by modified

point load testing PhD Eng Thesis Suranaree University of

Technology Thailand

Tepnarong P and Fuenkajorn K (2004) Determining of elasticity and strengths

of intact rocks using modified point load test In Proceeding of the ISRM

International Symposium 3rd ASRM Vol 2 (pp 397-392)

Timoshenko S (1958) Strength of materials I Element Theory and Problems

(3rd ed) Princeton N J D Van Nostard

Timoshenko S and Goodier J N (1951) Theory of Elasticity (2nd ed) New

York McGraw-Hill

Truk N and Dearman W R (1985) Improvements in the determination of point

load strength Bull Int Assoc Eng Geol 31 137-142

Truk N and Dearman W R (1986) A correction equation on the influence of

length-to-diameter ratio on uniaxial compressive strength of rocks J Eng

Geol 22 293-300

Wei X X and Chau K T (2002) Analytic solution for finite transversely

isotropic circular cylinder under the axial point load test J Eng Mech

(pp 209-219)Vol

Wei X X and Chau K T and Wong R H C (1999) Analytic solution for

axial point load strength test on solid circular cylinders J Eng Mech (pp

1349-1357) Vol

96

Wijk G (1978) Some new theoretical aspects of indirect measurements of the

tensile strength of rocks Int J Rock Mech Min Sci amp Geomech

Abstr 15 149-160

Wijk G (1980) The point load test for the tensile strength of rock Geotech Test

ASTM 3 49-54

APPENDIX A

CHARACTERIZATION TEST RESULTS

97

Table A-1 Results of conventional point load strength index test on porphyritic

andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

And-06-05-CPL-01 5397 5366 284 52 And-06-05-CPL-02 5332 5366 283 78 And-08-04-CPL-03 5432 5366 284 90 And-08-04-CPL-04 5482 5366 286 87 And-06-01-CPL-05 5330 5366 285 76 And-06-01-CPL-06 5613 5366 284 76 And-04-04-CPL-07 5617 5366 281 75 And-04-05-CPL-08 5525 5366 282 75 And-03-02-CPL-09 5595 5366 280 85 And-03-02-CPL-10 5535 5366 283 85 And-06-06-CPL-11 5475 5366 283 75 And-09-01-CPL-12 5552 5366 286 90 And-09-01-CPL-13 5503 5366 283 90 And-02-04-CPL-14 5542 5366 282 85 And-09-03-CPL-15 5607 5366 282 85 And-09-03-CPL-16 5452 5366 285 96 And-01-03-CPL-17 5530 5366 283 87 And-01-03-CPL-18 5313 5366 283 90 And-01-04-CPL-19 5465 5366 284 56 And-01-04-CPL-20 5572 5366 283 97

Average 81plusmn12

98

Table A-2 Results of conventional point load strength index test on silicified

tuffaceous sand stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

SST-02-03-CPL-01 5373 5366 268 125 SST-06-04-CPL-02 5469 5366 268 70 SST-02-07-CPL-03 5505 5366 269 70 SST-02-06-CPL-04 5518 5366 267 130 SST-02-04-CPL-05 5626 5366 267 125 SST-02-03-CPL-06 5139 5366 270 132 SST-02-03-CPL-07 5483 5366 271 71 SST-02-05-CPL-08 5340 5366 266 125 SST-02-05-CPL-09 5399 5366 265 70 SST-07-05-CPL-10 5643 5366 263 99 SST-07-05-CPL-11 5381 5366 266 106 SST-05-02-CPL-12 5439 5366 274 104 SST-05-02-CPL-13 5491 5366 271 104 SST-03-04-CPL-14 5430 5366 263 113 SST-03-04-CPL-15 5556 5366 263 106 SST-09-03-CPL-16 5491 5366 272 125 SST-09-03-CPL-17 5703 5366 271 125 SST-01-01-CPL-18 5705 5366 267 132 SST-02-07-CPL-19 5596 5366 269 111 SST-02-07-CPL-20 5527 5366 271 118

Average 108plusmn22

99

Table A-3 Results of conventional point load strength index test on tuffaceous sand

stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

TST-06-05-CPL-01 5657 5366 263 125 TST-06-05-CPL-02 5781 5366 264 109 TST-02-05-CPL-03 5686 5366 263 106 TST-02-05-CPL-04 5747 5366 264 80 TST-08-03-CPL-05 5606 5366 268 115 TST-08-03-CPL-06 5574 5366 266 118 TST-08-01-CPL-07 5491 5366 268 111 TST-08-01-CPL-08 5478 5366 268 115 TST-04-02-CPL-09 5422 5366 263 103 TST-04-02-CPL-10 5387 5366 264 111 TST-08-04-CPL-11 5371 5366 267 115 TST-08-04-CPL-12 5463 5366 267 113 TST-06-07-CPL-13 5545 5366 267 108 TST-04-01-CPL-14 5729 5366 261 59 TST-06-06-CPL-15 5457 5366 261 99 TST-06-06-CPL-16 5469 5366 263 109 TST-06-06-CPL-17 5497 5366 266 122 TST-04-03-CPL-18 5550 5366 261 87 TST-04-03-CPL-19 5521 5366 262 52 TST-04-05-CPL-20 5477 5366 264 87

Average 102plusmn20

100

Table A-4 Results of uniaxial compressive strength tests and elastic modulus

measurements on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-5 Results of uniaxial compressive strength tests and elastic modulus

measurements on silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

Table A-6 Results of uniaxial compressive strength tests and elastic modulus

measurements on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

101

Table A-7 Results of Brazilian tensile strength tests on porphyritic andesite

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

And-04-03-BZ-01 2628 5366 281 395 178 And-04-03-BZ-02 2551 5366 279 350 163 And-04-03-BZ-03 2755 5366 285 380 164 And-04-03-BZ-04 2669 5366 279 415 184 And-04-06-BZ-05 2686 5366 280 320 141 And-04-06-BZ-06 2699 5366 286 415 182 And-04-06-BZ-07 2649 5366 282 395 177 And-04-06-BZ-08 2642 5366 286 340 153 And-06-01-BZ-09 2678 5366 286 435 193 And-06-01-BZ-10 2758 5366 285 385 166

Average 170plusmn16

Table A-8 Results of Brazilian tensile strength tests on silicified tuffaceous

sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

SST-02-02-BZ-01 2507 5366 265 450 213 SST-01-06-BZ-02 2664 5366 264 520 232 SST-01-02-BZ-03 2595 5366 262 400 183 SST-01-02-BZ-04 2593 5366 261 320 146 SST-01-02-BZ-05 2608 5366 266 500 228 SST-02-01-BZ-06 2710 5366 266 500 220 SST-02-01-BZ-07 2654 5366 262 450 201 SST-01-05-BZ-08 2778 5366 268 350 150 SST-01-05-BZ-09 2793 5366 266 400 170 SST-01-05-BZ-10 2795 5366 266 400 170

Average 191plusmn32

102

Table A-9 esults of Brazilian tensile strength tests on tuffaceous sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

TST-02-03-BZ-01 2811 5366 260 360 152 TST-02-03-BZ-02 2757 5366 260 255 110 TST-02-03-BZ-03 2739 5366 262 325 141 TST-02-03-BZ-04 2688 5366 263 175 77 TST-06-04-BZ-05 2765 5366 266 450 193 TST-06-04-BZ-06 2729 5366 264 280 122 TST-06-04-BZ-07 2730 5366 260 230 100 TST-06-02-BZ-08 2748 5366 264 285 123 TST-06-02-BZ-09 2743 5366 261 290 125 TST-06-02-BZ-10 2658 5366 265 370 165

Average 131plusmn33

Table A-10 esults of triaxial compressive strength tests on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-11 Results of triaxial compressive strength tests on silicified tuffaceous

sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

103

Table A-12 Results of triaxial compressive strength tests on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

APPENDIX B

MODIFIED POINT LOAD TEST RESULTS FOR ELASTIC

MODULUS PREDICTION

116

AND-MPL-01

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 125 GPamm

Figure B1 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-01

And-MPL-02

00500

100015002000250030003500400045005000

0 005 01 015 02 025 03 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 180 GPamm

Figure B2 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-02

117

And-MPL-03

00200400600800

100012001400160018002000

000 002 004 006 008 010 012 014

Diplacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B3 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-03

And-MPL-04

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B4 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-04

118

And-MPL-05

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 369 GPamm

Figure B5 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-05

And-MPL-06

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B6 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-06

119

And-MPL-07

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss (

MPa

)

ΔPΔδ = 234 GPamm

Figure B7 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-07

And-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 171 GPamm

Figure B8 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-08

120

And-MPL-09

00

500

1000

1500

2000

2500

3000

3500

000 020 040 060 080 100 120 140Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 056 GPamm

Figure B9 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-09

And-MPL-10

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 124 GPamm

Figure B10 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-10

121

And-MPL-11

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030 035 040Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 138 GPamm

Figure B11 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-11

And-MPL-12

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 189 GPamm

Figure B12 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-12

122

And-MPL-13

00500

100015002000250030003500400045005000

000 010 020 030 040 050 060

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 151 GPamm

Figure B13 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-13

And-MPL-14

00

1000

2000

3000

4000

5000

6000

7000

000 010 020 030 040 050 060Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 165 GPamm

Figure B14 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-14

123

And-MPL-15

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120 140 160Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 011 GPamm

Figure B15 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-15

And-MPL-16

00

200

400

600

800

1000

1200

1400

1600

1800

000 050 100 150 200Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 012 GPamm

Figure B16 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-16

124

And-MPL-17

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120

Displacement (mm)

Stre

ss P

(MPa

) ΔPΔδ = 021 GPamm

Figure B17 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-17

And-MPL-18

00

500

1000

1500

2000

2500

3000

000 050 100 150 200 250 300 350Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 008 GPamm

Figure B18 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-18

125

And-MPL-19

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B19 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-19

And-MPL-20

00

1000

2000

3000

4000

5000

6000

000 050 100 150 200 250 300

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 017 GPamm

Figure B20 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-20

126

And-MPL-21

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B21 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-21

And-MPL-22

00

500

1000

1500

2000

2500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B22 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-22

127

And-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B23 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-23

And-MPL-24

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =112 GPamm

Figure B24 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-24

128

And-MPL-25

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 585 GPamm

Figure B25 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-25

And-MPL-26

00500

10001500200025003000350040004500

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 143 GPamm

Figure B26 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-26

129

And-MPL-27

00500

10001500200025003000350040004500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B27 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-27

And-MPL-28

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B28 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-28

130

And-MPL-29

00500

1000150020002500300035004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B29 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-29

And-MPL-30

00

1000

2000

3000

4000

5000

6000

7000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B30 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-30

131

And-MPL-31

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B31 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-31

And-MPL-32

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B32 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-32

132

And-MPL-33

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 101 GPamm

Figure B33 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-33

And-MPL-34

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 135 GPamm

Figure B34 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-34

133

And-MPL-35

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 127 GPamm

Figure B35 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-35

And-MPL-36

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 292 GPamm

Figure B36 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-36

134

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B37 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-37

And-MPL-38

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B38 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-38

135

And-MPL-39

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 186 GPamm

Figure B39 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-39

And-MPL-40

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 20 GPamm

Figure B40 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-40

136

And-MPL-41

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B41 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-41

And-MPL-42

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B42 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-42

137

And-MPL-43

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 346 GPamm

Figure B43 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-43

And-MPL-44

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B44 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-44

138

And-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 169 GPamm

Figure B45 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-45

And-MPL-46

00

200

400

600

800

1000

1200

1400

1600

1800

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B46 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-46

139

And-MPL-47

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B47 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-47

And-MPL-48

00

200

400

600

800

1000

1200

1400

1600

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 094 GPamm

Figure B48 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-48

140

And-MPL-49

00

100

200

300

400

500

600

700

800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 057 GPamm

Figure B49 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-49

And-MPL-50

00

200

400

600

800

1000

1200

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 078 GPamm

Figure B50 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-50

141

SST-MPL-01

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 280 GPamm

Figure B51 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-01

SST-MPL-02

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 307 GPamm

Figure B52 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-02

142

SST-MPL-03

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 356 GPamm

Figure B53 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-03

SST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 450 GPamm

Figure B54 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-04

143

SST-MPL-05

00100020003000400050006000700080009000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 532 GPamm

Figure B55 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-05

SST-MPL-06

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 273 GPamm

Figure B56 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-06

144

SST-MPL-07

0010002000300040005000600070008000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 418 GPamm

Figure B57 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-07

SST-MPL-08

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 414 GPamm

Figure B58 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-08

145

SST-MPL-09

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B59 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-09

SST-MPL-10

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 958 GPamm

Figure B60 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-10

146

SST-MPL-11

00

10002000

300040005000

60007000

8000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 400 GPamm

Figure B61 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-11

SST-MPL-12

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 272 GPamm

Figure B62 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-12

147

SST-MPL-13

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 408 GPamm

Figure B63 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-13

SST-MPL-14

00

500

1000

1500

2000

2500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 296 GPamm

Figure B64 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-14

148

SST-MPL-15

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 282 GPamm

Figure B65 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-15

SST-MPL-16

00500

1000150020002500300035004000

000 005 010 015 020

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 26 GPamm

Figure B66 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-16

149

SST-MPL-17

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 416 GPamm

Figure B67 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-17

SST-MPL-18

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 473 GPamm

Figure B68 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-18

150

SST-MPL-19

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 330 GPamm

Figure B69 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-19

SST-MPL-20

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 278 GPamm

Figure B70 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-20

151

SST-MPL-21

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 185 GPamm

Figure B71 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-21

SST-MPL-22

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B72 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-22

152

SST-MPL-23

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 15 GPamm

Figure B73 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-23

SST-MPL-24

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 295 GPamm

Figure B74 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-24

153

SST-MPL-25

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 259 GPamm

Figure B75 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-25

SST-MPL-26

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 221 GPamm

Figure B76 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-26

154

SST-MPL-27

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 274 GPamm

Figure B77 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-27

SST-MPL-28

0010002000300040005000600070008000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 209 GPamm

Figure B78 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-28

155

SST-MPL-29

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 176 GPamm

Figure B79 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-29

SST-MPL-30

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B80 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-30

156

SST-MPL-31

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 464 GPamm

Figure B81 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-31

SST-MPL-32

00

500

1000

1500

2000

2500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 178 GPamm

Figure B82 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-32

157

SST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 131 GPamm

Figure B83 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-33

SST-MPL-34

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 215 GPamm

Figure B84 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-34

158

SST-MPL-35

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 190 GPamm

Figure B85 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-35

SST-MPL-36

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B86 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-36

159

SST-MPL-37

00500

1000150020002500300035004000

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 067 GPamm

Figure B87 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-37

AND-MPL-38

00

500

10001500

2000

2500

3000

35004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 127 GPamm

Figure B88 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-38

160

SST-MPL-39

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 229 GPamm

Figure B89 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-39

SST-MPL-40

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 090 GPamm

Figure B90 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-40

161

SST-MPL-41

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 498 GPamm

Figure B91 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-41

SST-MPL-42

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 392 GPamm

Figure B92 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-42

162

SST-MPL-43

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 244 GPamm

Figure B93 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-43

SST-MPL-44

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 571 GPamm

Figure B94 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-44

163

SST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 001 002 003 004 005 006 007 008

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 780 GPamm

Figure B95 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-45

SST-MPL-46

0010002000300040005000600070008000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 411 GPamm

Figure B96 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-46

164

SST-MPL-47

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 309 GPamm

Figure B97 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-47

SST-MPL-48

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 338 GPamm

Figure B98 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-48

165

SST-MPL-49

00500

1000150020002500300035004000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 254 GPamm

Figure B99 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-49

SST-MPL-50

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 360 GPamm

Figure B100 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-50

166

TST-MPL -01

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 212GPamm

Figure B101 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-01

TST-MPL-02

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=326 GPamm

Figure B102 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-02

167

TST-MPL-03

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacememt (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B103 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-03

TST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B104 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-04

168

TST-MPL-05

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 264 GPamm

Figure B105 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-05

TST-MPL-06

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacment (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B106 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-06

169

TST-MPL-07

00

500

1000

1500

2000

2500

3000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 162 GPamm

Figure B107 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-07

TST-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=319 GPamm

Figure B108 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-08

170

TST-MPL-09

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =212 GPamm

Figure B109 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-09

TST-MPL-10

00200400600800

1000120014001600

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 132GPamm

Figure B110 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-10

171

TST-MPL-11

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =319 GPamm

Figure B111 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-11

TST-MPL-12

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 127 GPamm

Figure B112 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-12

172

TST-MPL-13

00500

1000150020002500300035004000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 159 GPamm

Figure B113 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-13

TST-MPL-14

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =170 GPamm

Figure B114 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-14

173

TST-MPL-15

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 260 GPamm

Figure B115 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-15

TST-MPL-16

00500

100015002000250030003500400045005000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B116 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-16

174

TST-MPL-17

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B117 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-17

TST-MPL-18

00

200

400

600

800

1000

1200

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=073 GPamm

Figure B118 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-18

175

TST-MPL-19

00

200

400

600

800

1000

1200

1400

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B119 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-19

TST-MPL-20

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=170 GPamm

Figure B120 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-20

176

TST-MPL-21

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=100 GPamm

Figure B121 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-21

TST-MPL-22

00200400600800

10001200140016001800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 088 GPamm

Figure B122 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-22

177

TST-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 101 GPamm

Figure B123 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-23

TST-MPL-24

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 124 GPamm

Figure B124 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-24

178

TST-MPL-25

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 126 GPamm

Figure B125 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-25

TST-MPL-26

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 178 GPamm

Figure B126 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-26

179

TST-MPL-27

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B127 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-27

TST-MPL-28

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 164 GPamm

Figure B128 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-28

180

TST-MPL-29

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B129 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-29

TST-MPL-30

00500

100015002000250030003500400045005000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =280 GPamm

Figure B130 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-30

181

TST-MPL-31

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B131 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-31

TST-MPL-32

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B132 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-32

182

TST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 130 GPa mm

Figure B133 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-33

TST-MPL-34

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B134 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-34

183

TST-MPL-35

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B135 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-35

TST-MPL-36

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B136 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-36

184

TST-MPL-37

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 217 GPamm

Figure B137 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-37

TST-MPL-38

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 52 GPamm

Figure B138 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-38

185

TST-MPL-39

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B139 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-39

TST-MPL-40

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 347 GPamm

Figure B140 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-40

186

TST-MPL-41

00

500

1000

1500

2000

2500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B141 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-41

TST-MPL-42

00

500

1000

1500

2000

2500

3000

3500

4000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B142 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-42

187

TST-MPL -43

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 435 GPamm

Figure B143 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-43

TST-MPL-44

00

200

400

600

800

1000

1200

1400

1600

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B144 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-44

188

TST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 315 GPamm

Figure B145 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-45

TST-MPL-46

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B146 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-46

189

TST-MPL-47

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=128 GPamm

Figure B147 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-47

TST-MPL-48

00200400600800

10001200140016001800

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 237GPamm

Figure B148 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-48

190

TST-MPL-49

00

500

1000

1500

2000

2500

3000

3500

4000

4500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B149 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-49

TST-MPL-50

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 394 GPamm

Figure B150 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-50

BIOGRAPHY

Mr Chatchai Intaraprasit was born on July 30 1973 in Khon Kaen province

Thailand He received his Bachelorrsquos Degree in Science (Geotechnology) from Khon

Kaen University in 1996 He worked with the construction company for ten years

after graduated the Bachelorrsquos Degree For his post-graduate he continued to study

with a Masterrsquos Degree in the Geological Engineering Program Institute of

Engineering Suranaree University of Technology He has published a technical

papers related to rock mechanics as in 2009 ldquoModified point load testing of volcanic

rocks from Chatree gold minerdquo in the proceeding of the second Thailand symposium

on rock mechanics Chonburi Thailand For his work he is working as a

geotechnical engineer at Akara mining company limited Phichit province Thailand

  • cover
  • abstractpdf
  • CHAPTER I
  • CHAPTER II
  • CHAPTER III
  • CHAPTER IV
  • CHAPTER V
  • CHAPTER VI
  • REFERENCES
  • APPENDIX A
  • APPENDIX B
  • BIOGRAPHY
Page 8: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·

ACKNOWLEDGMENTS

I wish to acknowledge the funding support of Suranaree University of

Technology (SUT) and Akara Mining Company Limited

I would like to express my sincere thanks to Assoc Prof Dr Kittitep

Fuenkajorn thesis advisor who gave a critical review and constant encouragement

throughout the course of this research Further appreciation is extended to Asst Prof

Thara Lekuthai chairman school of Geotechnology and Dr Prachya Tepnarong

Suranaree University of Technology who are member of my examination committee

Grateful thanks are given to all staffs of Geomechanics Research Unit Institute of

Engineering who supported my work

Chatchai Intaraprasit

TABLE OF CONTENTS

Page

ABSTRACT (THAI) I

ABSTRACT (ENGLISH) III

ACKNOWLEDGEMENTS V

TABLE OF CONTENTS VI

LIST OF TABLES IX

LIST OF FIGURES XIII

LIST OF SYMBOLS AND ABBREVIATIONS XVII

CHAPTER

I INTRODUCTION 1

11 Background and rationale 1

12 Research objectives 2

13 Research concept 3

14 Research methodology 3

141 Literature review 3

142 Sample collection and preparation 5

143 Theoretical study of the rock failure

mechanism 5

144 Laboratory testing 5

1441 Characterization tests 5

VII

TABLE OF CONTENTS (Continued)

Page

1442 Modified point load tests 6

145 Analysis 6

146 Thesis Writing and Presentation 6

15 Scope and Limitations 7

16 Thesis Contents 7

II LITERATURE REVIEW 8

21 Introduction 8

22 Conventional point load tests 8

23 Modified point load tests 11

24 Characterization tests 14

241 Uniaxial compressive strength tests 14

242 Triaxial compressive strength tests 15

243 Brazilian tensile strength tests 16

25 Size effects on compressive strength 16

III SAMPLE COLLECTION AND PREPARATION 17

31 Sample collection 17

32 Rock descriptions 17

33 Sample preparation 20

IV LABORATORY TESTS 22

41 Literature reviews 22

VIII

TABLE OF CONTENTS (Continued)

Page

411 Displacement Function 22

42 Basic Characterization Tests 23

421 Uniaxial Compressive Strength Tests

and Elastic Modulus Measurements 23

422 Triaxial Compressive Strength Tests 31

423 Brazilian Tensile Strength Tests 38

424 Conventional Point Load Index (CPL) Tests 39

43 Modified Point Load (MPL) Tests 46

431 Modified Point Load Tests for Elastic

Modulus Measurement 54

432 Modified Point Load Tests predicting

Uniaxial Compressive Strength 61

433 Modified Point Load Tests for Tensile

Strength Predictions 63

434 Modified Point Load Tests for Triaxial

Compressive Strength Predictions 69

V FINITE DIFFERENCE ANALYSIS 79

51 Objectives 79

52 Model Characteristics 79

53 Results of finite difference analyses 79

IX

TABLE OF CONTENTS (Continued)

Page

VI DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS 83

61 Discussions 83

62 Conclusions 85

63 Recommendations 86

REFERENCES 87

APPENDICES

APPENDIX A CHARACTERIZATION TEST RESULTS 96

APPENDIX B MODIFIED POINT LOAD TEST RESULTS FOR

ELASTIC MODULUS PREDICTION 104

BIOGRAPHY 180

LIST OF TABLES

Table Page

31 The nominal sizes of specimens following the ASTM standard

practices for the characterization tests 20

41 Testing results of porphyritic andesite 30

42 Testing results of tuffaceous sandstone 30

43 Testing results of silicified tuffaceous sandstone 30

44 Uniaxial compressive strength and tangent elastic modulus

measurement results of three rock types 31

45 Triaxial compressive strength testing results of porphyritic andesite 35

46 Triaxial compressive strength testing results of

tuffaceous sandstone 35

47 Triaxial compressive strength testing results of silicified

tuffaceous sandstone 36

48 Results of triaxial compressive strength tests on three rock types 38

49 The results of Brazilian tensile strength tests of three rock types 41

410 Results of conventional point load strength index tests of

three rock types 44

411 Results of modified point load tests on porphyritic andesite 49

412 Results of modified point load tests on tuffaceous sandstone 51

413 Results of modified point load tests on silicified tuffaceous sandstone 52

X

LIST OF TABLE (Continued)

Table Page

414 Results of elastic modulus calculation from MPL tests on porphyritic andesite57

415 Results of elastic modulus calculation from MPL tests on

silicified tuffaceous sandstone 58

416 Results of elastic modulus calculation from MPL tests on

tuffaceous sandstone 60

417 Comparisons of elastic modulus results obtained from

uniaxial compressive strength tests and those from modified

point load tests 61

418 Comparison the test results between UCS CPL Brazilian

tensile strength and MPL tests 63

419 Results of tensile strengths of porphyritic andesite predicted from MPL tests 64

420 Results of tensile strengths of silicified tuffaceous sandstone

predicted from MPL tests 66

421 Results of tensile strengths of tuffaceous sandstone

predicted from MPL tests 68

422 Results of triaxial strengths of porphyritic andesite predicted from MPL tests 71

423 Results of triaxial strengths of silicified tuffaceous sandstone

predicted from MPL tests 72

424 Results of triaxial strengths of tuffaceous sandstone

predicted from MPL tests 74

XI

LIST OF TABLE (Continued)

Table Page

425 Comparisons of the internal friction angle and cohesion

between MPL predictions and triaxial compressive strength tests 78

51 Summary of the results from numerical simulations 82

A1 Results of conventional point load strength index test on porphyritic andesite 97

A2 Results of conventional point load strength index test on

silicified tuffaceous sandstone 98

A3 Results of conventional point load strength index test on

tuffaceous sandstone 99

A4 Results of uniaxial compressive strength tests and elastic

modulus measurement on porphyritic andesite 100

A5 Results of uniaxial compressive strength tests and elastic

modulus measurement on silicified tuffaceous sandstone 100

A6 Results of uniaxial compressive strength tests and elastic

modulus measurement on tuffaceous sandstone 100

A7 Results of Brazilian tensile strength tests on porphyritic andesite 101

A8 Results of Brazilian tensile strength tests on silicified

tuffaceous sandstone 101

A9 Results of Brazilian tensile strength tests on

tuffaceous sandstone 102

A10 Results of triaxial compressive strength tests on porphyritic andesite 102

XII

LIST OF TABLE (Continued)

Table Page

A11 Results of triaxial compressive strength tests on

silicified tuffaceous Sandstone 102

A12 Results of Brazilian tensile strength tests on

tuffaceous sandstone 103

LIST OF FIGURES

Figure Page

11 Research plan 4

21 Loading system of the conventional point load (CPL) 10

22 Standard loading platen shape for the conventional point

load testing 10

31 The location of rock samples collected area 19

32 Some prepared rock specimens of porphyritic andesite for MPL Tests 21

33 The concept of specimen preparation for MPL testing 21

41 Pre-test samples of porphyritic andesite for UCS test 25

42 Pre-test samples of tuffaceous sandstone for UCS test 25

43 Pre-test samples of silicified tuffaceous sandstone for UCS test 26

44 Preparation of testing apparatus of porphyritic andesite for UCS test 26

45 Post-test rock samples of porphyritic andesite from UCS test 27

46 Post-test rock samples of tuffaceous sandstone

from UCS test 27

47 Post-test rock samples of tuffaceous sandstone from UCS 28

48 Results of uniaxial compressive strength tests and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted

as a function of axial strains 28

XIV

LIST OF FIGURES (Continued)

Figure Page

49 Results of uniaxial compressive strength tests and elastic

modulus measurements of tuffaceous sandstone (Top)

and silicified tuffaceous sandstone (Bottom) The axial

stresses are plotted as a function of axial strains 29

410 Pre-test samples for triaxial compressive strength test the

top is porphyritic andesite and the bottom is tuffaceous sandstone 32

411 Pre-test sample of silicified tuffaceous sandstone for triaxial

compressive strength test 33

412 Triaxial testing apparatus 33

413 Post-test rock samples from triaxial compressive strength tests

The top is porphyritic andesite and the bottom is tuffaceous sandstone 34

414 Post-test rock samples of silicified tuffaceous sandstone from

triaxial compressive strength test 35

415 Mohr-Coulomb diagram for porphyritic andesite 37

416 Mohr-Coulomb diagram for tuffaceous sandstone 37

417 Mohr-Coulomb diagram for silicified tuffaceous sandstone 38

418 Pre-test samples for Brazilian tensile strength test (a) porphyritic andesite

(b) tuffaceous sandstone and

(c) silicified tuffaceous sandstone 40

419 Brazilian tensile strength test arrangement 41

XV

LIST OF FIGURES (Continued)

Figure Page

420 Post-test specimens (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 42

421 Pre-test samples of porphyritic andesite for conventional point load

strength index test 43

422 Conventional point load strength index test arrangement 43

423 Post-test specimens from conventional point load

strength index tests (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 45

424 Conventional and modified loading points 47

425 MPL testing arrangement 47

426 Post-test specimen the tension-induced crack commonly

found across the specimen and shear cone usually formed

underneath the loading platens 48

427 Example of P-δ curve for porphyritic andesite specimen The ratio

of ∆P∆δ is used to predict the elastic modulus of MPL

specimen (Empl) 56

428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests 62

429 Uniaxial compressive strength predicted for silicified

tuffaceous sandstone from MPL tests 62

XVI

LIST OF FIGURES (Continued)

Figure Page

430 Uniaxial compressive strength predicted for tuffaceous

sandstone from MPL tests 63

431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and

modified point load test 75

432 Comparisons of triaxial compressive strength criterion of

silicified tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 76

433 Comparisons of triaxial compressive strength criterion of

tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 77

51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm 80

52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm 80

53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm 81

54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm 81

55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm 82

LIST OF SYMBOLS AND ABBREVIATIONS

A = Original cross-section Area

c = cohesive strength

CP = Conventional Point Load

D = Diameter of Rock Specimen

D = Diameter of Loading Point

De = Equivalent Diameter

E = Youngrsquos Modulus

Empl = Elastic Modulus by MPL Test

Et = Tangent Elastic Modulus

IS = Point Load Strength Index

L = Original Specimen Length

LD = Length-to-Diameter Ratio

MPL = Modified Point Load

Pf = Failure Load

Pmpl = Modified Point Load Strength

t = Specimen Thickness

α = Coefficient of Stress

αE = Displacement Function

β = Coefficient of the Shape

∆L = Axial Deformation

XVIII

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

∆P = Change in Applied Stress

∆δ = Change in Vertical of Point Load Platens

εaxial = Axial Strain

ν = Poissonrsquos Ratio

ρ = Rock Density

σ = Normal Stress

σ1 = Maximum Principal Stress (Vertical Stress)

σ3 = Minimum Principal Stress (Horizontal Stress)

σB = Brazilian Tensile Stress

σc = Uniaxial Compressive Strength (UCS)

σm = Mean Stress

τ = Shear Stress

τoct = Octahedral Shear Stress

φi = angle of Internal friction

CHAPTER I

INTRODUCTION

11 Background and rationale

In geological exploration mechanical rock properties are one of the most

important parameters that will be used in the analysis and design of engineering

structures in rock mass To obtain these properties the rock from the site is extracted

normally by mean of core drilling and then transported the cores to the laboratory

where the mechanical testing can be conducted Laboratory testing machine is

normally huge and can not be transported to the site On site testing of the rocks may

be carried out by some techniques but only on a very limited scale This method is

called for point load strength Index testing However this test provides unreliable

results and lacks theoretical supports Its results may imply to other important

properties (eg compressive and tensile strength) but only based on an empirical

formula which usually poses a high degree of uncertainty

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strength and elastic modulus of intact rock

specimens in the laboratory (Tepnarong 2001) This method was invented and

patented by Suranaree University of Technology The test apparatus and procedure

are intended to be in expensive and easy compared to the relevant conventional

methods of determining the mechanical properties of intact rock eg those given by

the International Society for Rock Mechanics (ISRM) and the American Society for

2

Testing and Materials (ASTM) In the past much of the MPL testing practices has

been concentrated on circular and disk specimens While it has been claimed that

MPL method is applicable to all rock shapes the test results from irregular lumps of

rock have been rare and hence are not sufficient to confirm that the MPL testing

technique is truly valid or even adequate to determine the basic rock mechanical

properties in the field where rock drilling and cutting devices are not available

12 Research objectives

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine are used as

rock samples A minimum of 150 rock samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone are collected from the site The

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure are used to calculate the elastic modulus and strengths of rocks Uniaxial and

triaxial compression tests Brazilian tension test and conventional point load test are

conducted on the three rock types to obtain data basis for comparing with those from

MPL testing Finite difference analysis is performed to obtain stress distribution

within the MPL samples under different td and Dd ratios The effect of the

irregularity is quantitatively assessed Similarity and discrepancy of the test results

from the MPL method and from the conventional method are examined

Modification of the MPL calculation scheme may be made to enhance its predictive

capability for the mechanical properties of irregular shaped specimens

3

13 Research concept

A modified point load (MPL) testing technique was proposed by Fuenkajorn

and Tepnarong (2001) and Fuenkajorn (2002) The objectives of this testing are to

determine the elastic modulus uniaxial compressive strength and tensile strength of

intact rocks The application of testing apparatus is modified from the loading

platens of the conventional point load (CPL) testing to the cylindrical shapes that

have the circular cross-section while they are half-spherical shapes in CPL

The modes of failure for the MPL specimens are governed by the ratio of

specimen diameter to loading platen diameter (Dd) and the ratio of specimen

thickness to loading platen diameter (td) This research involves using the MPL

results to estimate the triaxial compressive strength of specimens which various Dd

and td ratios and compare to the conventional compressive strength test

14 Research methodology

This research consists of six main tasks literature review sample collection

and preparation laboratory testing finite difference analysis comparison discussions

and conclusions The work plan is illustrated in the Figure 11

141 Literature review

Literature review is carried out to study the state-of-the-art of CPL and MPL

techniques including theories test procedure results analysis and applications The

sources of information are from journals technical reports and conference papers A

summary of literature review is given in this thesis Discussions have been also been

made on the advantages and disadvantages of the testing the validity of the test results

4

Preparation

Literature Review

Sample Collection and Preparation

Theoretical Study

Laboratory Ex

Figure 11 Research methodology

periments

MPL Tests Characterization Tests

Comparisons

Discussions

Laboratory Testing

Various Dd UCS Tests

Various td Brazilian Tension Tests

Triaxial Compressive Strength Tests

CPL Tests

Conclusions

5

when correlating with the uniaxial compressive strength of rocks and on the failure

mechanism the specimens

142 Sample collection and preparation

Rock samples are collected from the north pit-wall of Khao

Moh at Chatree gold mine Three rock types are tested with a minimum of 50

samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable Sample preparation is carried out in the laboratory at Suranaree

University of Technology

143 Theoretical study of the rock failure mechanism

The theoretical work primarily involves numerical analyses on

the MPL specimens under various shapes Failure mechanism of the modified point

load test specimens is analyzed in terms of stress distributions along loaded axis The

finite difference code FLAC is used in the simulation The mathematical solutions

are derived to correlate the MPL strengths of irregular-shaped samples with the

uniaxial and traiaxial compressive strengths tensile strength and elastic modulus of

rock specimens

144 Laboratory testing

Three prepared rock type samples are tested in laboratory

which are divided into two main groups as follows

1441 Characterization tests

The characterization tests include uniaxial compressive

strength tests (ASTM D7012-07) Brazilian tensile strength tests (ASTM D3967

1981) triaxial compressive strength tests (ASTM D7012-07) and conventional point

6

load index tests (ASTM D5731 1995) The characterization testing results are used

in verifications of the proposed MPL concept

1442 Modified point load tests

Three rock types of rock from the north pit-wall of

Khao Moh at Chatree gold mine are used as rock samples A minimum of 150 rock

samples of porphyritic andesite silicified-tuffaceous sandstone and tuffaceous

sandstone are used in the MPL testing The sample thickness-to-loading diameter

ratio (td) is varied from 2 to 3 and the sample diameter-to-loading diameter ratio

(Dd) from 5 to 10 The sample deformation and failure are used to calculate the

elastic modulus and strengths of rocks The MPL testing results are compared with

the standard tests and correlated the relations in terms of mathematic formulas

145 Analysis

Finite difference analysis is performed to obtain stress

distribution within the MPL samples under various shapes with different td and Dd

ratios The effect of the irregularity is quantitatively assessed Similarity and

discrepancy of the test results from the MPL method and from the conventional

method are examined Modification of the MPL calculation scheme may be made to

enhance its predictive capability for the mechanical properties of irregular shaped

specimens

146 Thesis writing and presentation

All aspects of the theoretical and experimental studies

mentioned are documented and incorporated into the thesis The thesis discusses the

validity and potential applications of the results

7

15 Scope and limitations

The scope and limitations of the research include as follows

1 Three rock types of rock from the pit wall of Chatree gold mine are

selected as a prime candidate for use in the experiment

2 The analytical and experimental work assumes linearly elastic

homogeneous and isotropic conditions

3 The effects of loading rate and temperature are not considered All tests

are conducted at room temperature

4 MPL tests are conducted on a minimum of 50 samples

5 The investigation of failure mode is on macroscopic scale Macroscopic

phenomena during failure are not considered

6 The finite difference analysis is made in axis symmetric and assumed

elastic homogeneous and isotropic conditions

7 Comparison of the results from MPL tests and conventional method is

made

16 Thesis contents

The first chapter includes six sections It introduces the thesis by briefly

describing the background and rationale and identifying the research objectives that

are describes in the first and second section The third section describes the proposed

concept of the new testing technique The fourth section describes the research

methodology The fifth section identifies the scope and limitation of the research and

the description of the overview of contents in this thesis are in the sixth section

CHAPTER II

LITERATURE REVIEW

21 Introduction

This chapter summarizes the results of literature review carried out to improve an

understanding of the applications of modified point load testing to predict the strengths and

elastic modulus of the intact rock The topics reviewed here include conventional point

load test modified point load test characterization tests and size effects

22 Conventional point load tests

Conventional point load (CPL) testing is intended as an index test for the strength

classification of rock material It has long been practiced to obtain an indicator of the

uniaxial compressive strength (UCS) of intact rocks The testing equipment (Figure 21)

is essentially a loading system comprising a loading flame hydraulic oil pump ram and

loading platens The geometry of the loading platen is standardized (Figure 22) having

60 degrees angle of the cone with 5 mm radius of curvature at the cone tip It is made of

hardened steel The CPL test method has been widely employed because the test

procedure and sample preparation are simple quick and inexpensive as compared with

conventional tests as the unconfined compressive strength test Starting with a simple

method to obtain a rock properties index the International Society for Rock Mechanics

(ISRM) commissions on testing methods have issued a recommended procedure for the

point load testing (ISRM 1985) the test has also been established as a standard test

method by the American Society for Testing and Materials in 1995 (ASTM 1995)

9

Although the point load test has been studied extensively (eg Broch and Franklin

1972 Bieniawski 1974 and 1975 Wijk 1980 Brook 1985) the theoretical solutions

for the test result remain rare Several attempts have been made to truly understand

the failure mechanism and the impact of the specimen size on the point load strength

results It is commonly agreed that tensile failure is induced along the axis between

loading points (Evans 1961 Hiramutsu 1976 Wijk 1978 1980) The most

commonly accepted formula relating the CPL index and the UCS is proposed by

Broch and Franklin (1972) The UCS (or σc) can be estimated as about 24 times of

the point load strength index (Is) of rock specimens with the diameter-to-length ratio

of 05 The IS value should also be corrected to a value equivalent to the specimen

diameter of 50 mm The factor of 24 can sometimes load to an error in the prediction

of the UCS Most previous studied have been done experimentally but rare

theoretical attempt has been made to study the validity of Broch and Franklin

formula

The CPL testing has been performed using a variety of sizes and shapes of

rock specimen (Wijk 1980 Foster 1983 Panek and Fannon 1992 Chau and Wong

1996 Butenuth 1997) This is to determine the most suitable specimen sizes These

investigations have proposed empirical relations between the IS and σc to be

universally applicable to various rock types However some uncertainly of these

relations remains

Panek and Fannon (1992) show the results of the CPL tests UCS tests and

Brazilian tension tests that are performed on three hard rocks (iron-formation

metadiabase and ophitic basalt) The CPL strength is analyzed in terms of the

10

Figure 21 Loading system of the conventional point load (CPL) (Tepnarong 2001)

Figure 22 Standard loading platen shape for the conventional point load testing

(ISRM suggested method and ASTM D5731-95)

11

size and shape effects More than 500 an irregular lumps were tested in the field

The shape effect exponents for compression have been found to be varied with rock

types The shape effect exponents in CPL tests are constant for the three rocks

Panek and Fannon (1992) recommended that the monitoring of the compressive and

tensile strengths should have various sizes and shapes of specimen to obtain the

certain properties

Chau and Wong (1996) study analytically the conversion factor relating

between σc and IS A wide range of the ratios of the uniaxial compressive strength to

the point load index has been observed among various rock types It has been found

that the uniaxial compressive strength of rocks can vary from 62 (Nevada test site

tuff) to 105 (Flaming Gorge shale) times the IS depending on rock type The

conversion factor relating σc to be Is depends on compressive and tensile strengths

the Poissonrsquos ratio and the length and diameter of specimen The conversion factor

of 24 (Broch and Franklin 1972) falls within this range but it is no by meaning

universal

23 Modified point load tests

Tepnarong (2001) proposed a modified point load testing method to correlate

the results with the uniaxial compressive strength (UCS) and tensile strength of intact

rocks The primary objective of the research is to develop the inexpensive and

reliable rock testing method for use in field and laboratory The test apparatus is

similar to the conventional point load (CPL) except that the loading points are cut

flat to have a circular cross-section area instead of using a half-spherical shape To

derive a new solution finite element analyses and laboratory experiments were

12

carried out The simulation results suggested that the applied stress required failing

the MPL specimen increased logarithmically as the specimen thickness or diameter

increased The MPL tests CPL tests UCS tests and Brazilian tension tests were

performed on Saraburi marble under a variety of sizes and shapes The UCS test

results indicated that the strengths decreased with increased the length-to-diameter

ratio The test results can be postulated that the MPL strength can be correlated with

the compressive strength when the MPL specimens are relatively thin and should be

an indicator of the tensile strength when the specimens are significantly larger than

the diameter of the loading points Predictive capability of the MPL and CPL

techniques were assessed Extrapolation of the test results suggested that the MPL

results predicted the UCS of the rock specimens better than the CPL testing The

tensile strength predicted by the MPL also agreed reasonably well with the Brazilian

tensile strength of the rock

Tepnarong (2006) proposed the modified point load testing technique to

determine the elastic modulus and triaxial compressive strength of intact rocks The

loading platens are made of harden steel and have diameter (d) varying from 5 10

15 20 25 to 30 mm The rock specimens tested were marble basalt sandstone

granite and rock salt Basic characterization tests were first performed to obtain

elastic and strength properties of the rock specimen under standard testing methods

(ASTM) The MPL specimens were prepared to have nominal diameters (D) ranging

from 38 mm to 100 mm with thickness varying from 18 mm to 63 mm Testing on

these circular disk specimens was a precursory step to the application on irregular-

shaped specimens The load was applied along the specimen axis while monitoring

the increased of the load and vertical displacement until failure Finite element

13

analyses were performed to determine the stress and deformation of the MPL

specimens under various Dd and td ratios The numerical results were also used to

develop the relationship between the load increases (∆P) and the rock deformation

(∆δ) between the loading platens The MPL testing predicts the intact rock elastic

modulus (Empl) by using an equation Empl = (tαE) (∆P∆δ) where t represents the

specimen thickness and αE is the displacement function derived from numerical

simulation The elastic modulus predicted by MPL testing agrees reasonably well

with those obtained from the standard uniaxial compressive tests The predicted Empl

values show significantly high standard deviation caused by high intrinsic variability

of the rock fabric This effect is enhanced by the small size of the loading area of the

MPL specimens as compared to the specimen size used in standard test methods

The results of the numerical simulation were used to determine the minimum

principal stress (σ3) at failure corresponding to the maximum applied principal stress

(σ1) A simple relation can therefore be developed between σ1 σ3 ratio Poissonrsquos ratio

(ν) and diameter ratio (Dd) to estimate the triaxial compressive strengths of the rock

specimens σ1 σ3 = 2[(ν(1-ν))(1-(dD)2)]-1 The MPL test results from specimens with

various Dd ratios can provide σ1 and σ3 at failure by assuming that ν = 025 and that

failure mode follows Coulomb criterion The MPL predicted triaxial strengths agree

very well with the triaxial strength obtained from the standard triaxial testing (ASTM)

The discrepancy is about 2-3 which may be due to the assumed Poissonrsquos ratio of 25

and due to the assumption used in the determination of σ3 at failure In summary even

through slight discrepancies remain in the application of MPL results to determine the

elastic modulus and triaxial compressive strength of intact rocks this approach of

14

predicting the rock properties shows a good potential and seems promising considering

the low cost of testing technique and ease of sample preparation

24 Characterization tests

241 Uniaxial compressive strength tests

The uniaxial compressive strength test is the most common laboratory

test undertaken for rock mechanics studies In 1972 the International Society of Rock

Mechanics (ISRM) published a suggested method for performing UCS tests (Brown

1981) Bieniawski and Bernede (1979) proposed the procedures in American Society

for Testing and Materials (ASTM) designation D2938

The tests are also the most used tests for estimating the elastic

modulus of rock (ASTM D7012) The axial strain can be measured with strain gages

mounted on the specimen or with the Linear Variable Differential Tranformers

(LVDTs) attached parallel to the length of the specimen The lateral strain can be

measured using strain gages around the circumference or using the LVDTs across

the specimen diameter

The UCS (σc) is expressed as the ratio of the peak load (P) to the

initial cross-section area (A)

σc= PA (21)

And the Youngrsquos modulus (E) can be calculated by

E= ΔσΔε (22)

Where Δσ is the change in stress and Δε is the change in strain

15

The ratio of lateral strain and axial strain magnitudes (εlatεax) determines the value of

Poissonrsquo ratio (ν)

ν = - (εlatεax) (23)

242 Triaxial compressive strength tests

Hoek and Brown (1980b) and Elliott and Brown (1986) used the

triaxaial compressive strength tests to gain an understanding of rock behavior under a

three-dimensions state of stress and to verify and even validate mathematical

expressions that have been derived to represent rock behavior in analytical and

numerical models

The common procedures are described in ASTM designation D7012 to

determine the triaxial strengths and D7012 to determine the elastic moduli and in

ISRM suggested methods (Brown 1981)

The axial strain can be measured with strain gages mounted on the

specimen or with the LVTDs attached parallel to the length of the specimen The

lateral strain can be measured using strain gages around the circumstance within the

jacket rubber

At the peak load the stress conditions are σ1 = PA σ3=p where P is

the maximum load parallel to the cylinder axis A is the initial cross-section area and

p is the pressure in the confining medium

The Youngrsquos modulus (E) and Poissonrsquos ratio (ν) can be calculated by

E = Δ(σ1-σ3)Δ εax (24)

and

16

ν = (slope of axial curve) (slope of lateral curve) (25)

where Δ(σ1-σ3) is the change in differential stress and Δ εax is the change in axial strain

243 Brazilian tensile strength tests

Caneiro (1974) and Akazawa (1953) proposed the Brazilian tensile

strength test of intact rocks Specifications of Brazilian tensile strength test have been

established by ASTM D3967 and suggested approach is provided by ISRM (Brown 1981)

Jaeger and Cook (1979) proposed the equation for calculate the

Brazilian tensile strength as

σB = (2P) ( πDt) (26)

where P is the failure load D is the disk diameter and t is the disk thickness

25 Size effects on compressive strength

The uniaxial compressive strength normally tested on cylindrical-shaped

specimens The length-to-diameter (LD) ratio of the specimen influences the

measured strength Typically the strength decreases with increasing the LD ratio

but it tends to become constant or ratios in the order of 21 to 31 (Hudson et al 1971

Obert and Duvall 1967) For higher ratios the specimen strength may be influenced

by bulking

The size of specimen may influence the strength of rock Weibull (1951)

proposed that a large specimen contains more flaws than a small one The large

specimen therefore also has flaws with critical orientation relative to the applied

shear stresses than the small specimen A large specimen with a given shape is

17

therefore likely to fail and exhibit lower strength than a small specimen with the same

shape (Bieniawski 1968 Jaeker and Cook 1979 Kaczynski 1986)

Tepnarong (2001) investigated the results of uniaxial compressive strength

test on Saraburi marble and found that the strengths decrease with increase the

length-to-diameter (LD) ratio And this relationship can be described by the power

law The size effects on uniaxial compressive strength are obscured by the intrinsic

variability of the marble The Brazilian tensile strengths also decreased as the

specimen diameter increased

CHAPTER III

SAMPLE COLLECTION AND PREAPATION

This chapter describes the sample collection and sample preparation

procedure to be used in the characterization and modified point load testing The

rock types to be used including porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone Locations of sample collection rock description are

described

31 Sample collection

Three rock types include porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone collected from Chatree Gold Mine Akara Mining Company

Limited Phichit Thailand are used in this research The rock samples are collected

from the north pit-wall of Khao Moh Three rock types are tested with a minimum of

50 samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable The collected location is shown in Figure 31

32 Rock descriptions

Three rock types are used in this research there are porphyritic andesite

silicified tuffaceous sandstone and tuffaceous sandstone Tuffaceous sandstone is

medium brownish grey the clasts are andesite rhyolite andesitic tuff and quartz

fragments and sub-rounded to sub-angular matrix sand andesitic tuff rock fragment

19

19

Figure 31 The location of rock samples collected area

lt 10 quartz 3 pyrite and litho-facies massive ungraded clast supported

moderately sorted Silicified tuffaceous sandstone is medium brown clasts are fine to

medium sand and silt sub-rounded shape quartz rich with siliceous matrix massive

non-graded well sorted moderately Silicified Porphyritic andesite is grayish green

medium-coarse euhedral evenly distributed phenocrysts are abundant most

conspicuous are hornblende phenocrysts fine-grained groundmass Those samples

are collected from Chatree Gold Mine Akara mining Co Ltd Phichit Thailand

20

33 Sample preparation

Sample preparation has been carried out to obtain different sizes and shapes

for testing It is conducted in the laboratory facility at Suranaree University of

Technology For characterization testing the process includes coring and grinding

Preparation of rock samples for characterization test follows the ASTM standard

(ASTM D4543-85) The nominal sizes of specimen that following the ASTM

standard practices for the characterization tests are shown in table 31 And grinding

surface at the top and bottom of specimens at the position of loading platens for

unsure that the loading platens are attach to the specimen surfaces and perpendicular

each others as shown in Figure 32 The shapes of specimens are irregularity-shaped

The ratio of specimen thickness to platen diameter (td) is around 20-30 and the

specimen diameter to platen diameter (Dd) varies from 5 to 10

Table 31 The nominal sizes of specimens following the ASTM standard practices

for the characterization tests

Testing Methods

LD Ratio

Nominal Diameter

(mm)

Nominal Length (mm)

Number of Specimens

1UniaxialCompressive Strength Test and Elastic Modulus Measurement (ASTM D7012)

25 54 135 10

2 Triaxial Compressive Strength Test (ASTM D7012) 20 54 108 10

3 Brazilian Tensile Strength Test (ASTM D3967) 05 54 27 10

4 Point Load Strength Index Test (ASTM D 5731) 10 54 54 10

21

Figure 32 Some prepared rock specimens of porphyritic andesite for MPL Tests

td asymp20 to 30

Figure 33 The concept of specimen preparation for MPL testing

CHAPTER IV

LABORATORY TESTS

Laboratory testing is divided into two main tasks including the

characterization tests and the modified point load tests Three rock types porphyritic

andesite silicified-tuffaceous sandstone and tuffaceous sandstone are used in this

research

41 Literature reviews

411 Displacement function

Tepnarong (2006) proposed a method to compute the vertical

displacement of the loading point as affected by the specimen diameter and thickness

(Dd and td ratios) by used the series of finite element analyses To accomplish this

a displacement function (αE) is introduced as (∆P∆δ)middot(tE) where ∆P is the change in

applied stress ∆δ is the change in vertical displacement of point load platens t is the

specimen thickness and E is elastic modulus of rock specimen The displacement

function is plotted as a function of Dd And found that the αE is dimensionless and

independent of rock elastic modulus αE trend to be independent of Dd when Dd is

beyond 15 The αE is sensitive to ν particularly when υ is between 025 and 05 This

agrees with the assumption that as the Poissonrsquos ratio increases the αE value will

increase because under higher ν the ∆δ will be reduced This is due to the large

confinement resulting from the higher Poissonrsquos ratio Nevertheless most rocks have

Poissonrsquos ratio within a range between 020 and 030 particularly for moderate to

23

hard rocks As a result the Poissonrsquos ratio of 025 will provide a reasonable

prediction of the value of αE values

Figure 51 plots αE or (∆P∆δ)middot(tE) as a function of td for the ratios of Dd ge

10 The displacement function increase as the td increases which can be expressed

by a power equation

αE = (∆P∆δ)middot(tE) = 150 (td)064 (51)

by using the least square fitting The curve fit gives good correlation (R2=0998)

These curves can be used to estimate the elastic modulus of rock from MPL results

By measuring the MPL specimen thickness t and the increment of applied stress (∆P)

and displacement (∆δ)

42 Basic characterization tests

The objectives of the basic characterization tests are to determine the

mechanical properties of each rock type to compare their results with those from the

modified point load tests (MPL) The basic characterization tests include uniaxial

compressive strength (UCS) tests with elastic modulus measurements triaxial

compressive strength tests Brazilian tensile strength tests and conventional point load

strength index tests

421 Uniaxial compressive strength tests and elastic modulus

measurements

The uniaxial compressive strength tests are conducted on the three

rock types Sample preparation and test procedure are followed the ASTM standards

(ASTM D7012) and the ISRM suggested methods (Brown 1981) The core size is

24

54 mm in diameter (NX size) and the ratio of the length to diameter is 25 A total of

10 specimens are tested for each rock type

A constant loading rate of 05 to 10 MPas is applied to the specimens

until failure occurs Tangent elastic modulus is measured at stress level equal to 50

of the uniaxial compressive strength Post-failure characteristics are observed

The uniaxial compressive strength (σc) is calculated by dividing the

maximum load by the original cross-section area of loading platen

σc= pf A (41)

where pf is the maximum failure load and A is the original cross-section area of

loading platen The tangent elastic modulus (Et) is calculated by the following

equation

Et = (Δσaxial) (Δε axial) (42)

And the axial strain can be calculated from

ε axial = ΔLL (43)

where the ΔL is the axial deformation and L is the original length of specimen

The average uniaxial compressive strength and tangent elastic

modulus of each rock types are shown in Tables 41 through 44

25

Figure 41 Pre-test samples of porphyritic andesite for UCS test

Figure 42 Pre-test samples of tuffaceous sandstone for UCS test

26

Figure 43 Pre-test samples of silicified tuffaceous sandstone for UCS test

Figure 44 Preparation of testing apparatus for UCS test

27

Figure 45 Post-test rock samples of porphyritic andesite from UCS test

Figure 46 Post-test rock samples of tuffaceous sandstone from UCS test

28

Figure 47 Post-test rock samples of silicified-tuffaceous sandstone from UCS

0

50

100

150

0 0001 0002 0003 0004 0005Axial Strain

Axi

al S

tres

s (M

Pa)

Andesite04

03

01

05

02

Andesite

Figure 48 Results of uniaxial compressive strength test and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted as

a function of axial strain

29

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Strain

Axi

al S

tres

s (M

Pa)

Pebbly Tuffacious Sandstone

04

03

05

01

02

Tuffaceous Sandstone

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Stain

Axi

al S

tres

s (M

Pa)

Silicified Tuffacious Sandstone

0103

05

0402

Silicified Tuffaceous Sandstone

Figure 49 Results of uniaxial compressive strength test and elastic modulus

measurements of tuffaceous sandstone (top) and silicified tuffaceous

sandstone (bottom) The axial stresses are plotted as a function of axial

strain

30

Table 41 Testing results of porphyritic andesite

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 5366 13486 282 1327 451 And-06-03-UCS-02 5366 13494 283 1106 397 And-02-01-UCS-03 5366 13485 280 1061 470 And-08-03-UCS-04 5366 13417 284 1282 392 And-04-04-UCS-05 5366 13564 285 973 438

Average 1150 plusmn 150 430 34 plusmn

Table 42 Testing results of tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 5366 13810 266 1017 538 TST-01-02-UCS-02 5366 13236 268 1238 545 TST-02-04-UCS-03 5366 13558 264 973 441 TST-06-09-UCS-04 5366 13515 267 1459 475 TST-02-02-UCS-05 5366 13745 263 884 566

Average 1114 plusmn 233 513 53 plusmn

Table 43 Testing results of silicified tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 5366 13309 271 1194 656 SST-07-01-UCS-02 5366 13547 267 930 632 SST-07-03-UCS-03 5366 13095 268 1194 503 SST-02-06-UCS-04 5366 13475 269 1614 661 SST-06-02-UCS-05 5366 13577 270 1106 713

Average 1207 plusmn 252 633 80 plusmn

31

Table 44 Uniaxial compressive strength and tangent elastic modulus measurement

results of three rock types

Rock Type

Number of Test

Samples

Uniaxial Compressive Strength σc (MPa)

Tangential Elastic Modulus

Et (GPa)

Porphyritic andesite 50 1150plusmn150 430plusmn34 Silicified-tuffaceous sandstone 50 1207plusmn252 633plusmn80

Tuffaceous sandstone 50 1114plusmn233 513plusmn53

422 Triaxial compressive strength tests

The objective of the triaxial compressive strength test is to determine

the compressive strength of rock specimens under various confining pressures The

sample preparation and test procedure are followed the ASTM standard (ASTM

D7012-07) and the ISRM suggested method (Brown 1981) A total of 16 rock

specimens are tested under various confining pressures 6 specimens of porphyritic

andesite 5 specimens of silicified-tuffaceous sandstone and 5 specimens of

tuffaceous sandstone The applied load onto the specimens is at constant rate until

failure occurred within 5 to 10 minutes of loading under each confining pressure

The constant confining pressures used in this experiment are ranged from 0345 067

138 276 and 414 MPa (50 100 200 400 and 600 psi) in andesite 0345 069

276 414 and 552 MPa (50 100 400 600 and 800 psi) in silicified-tuffaceous

sandstone and 0345 069 138 207 and 276 MPa (50 100 200 300 and 400 psi)

in pebbly tuffaceous sandstone Post-failure characteristics are observed

32

Figure 410 Pre-test samples for triaxial compressive strength test the top is

porphyritic andesite and the bottom is tuffaceous sandstone

33

Figure 411 Pre-test samples of silicified tuffaceous sandstone for triaxial

compressive strength test

Hook cell

Figure 412 Triaxial testing apparatus

34

Figure 413 Post-test rock samples from triaxial compressive strength tests The top

is porphyritic andesite and the bottom is tuffaceous sandstone

35

Figure 414 Post-test rock samples of silicified tuffaceous sandstone from triaxial

compressive strength test

Table 45 Triaxial compressive strength testing results of porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

And-04-02-TR-01 10803 5366 285 04 1459 And-06-04-TR-03 10806 5366 284 07 1526 And-06-02-TR-02 10806 5366 283 14 1636 And-08-01-TR-04 10665 5366 284 28 2034 And-08-02-TR-05 10948 5366 283 41 2520

Table 46 Triaxial compressive strength testing results of tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

TST-01-01-TR-04 10989 5366 266 04 1061 TST 02-01-TR-01 10852 5366 262 07 1238 TST-06-01-TR-02 10889 5366 264 138 1415 TST-06-03-TR-03 10755 5366 264 201 1813 TST-06-08-TR-05 11025 5366 267 28 2056

36

Table 47 Triaxial compressive strength testing results of silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

SST-05-01-TR-01 10875 5366 266 04 1305 SST-07-02-TR-02 10790 5366 266 14 1371 SST-01-04-TR-03 11022 5366 267 28 1592 SST-01-03-TR-04 10713 5366 267 41 1901 SST-01-01-TR-05 10530 5366 265 55 2255

The results of triaxial tests are shown in Table 42 Figures 413 and 414

show the shear failure by triaxial loading at various confining pressures (σ3) for the

three rock types The relationship between σ1 and σ3 can be represented by the

Coulomb criterion (Hoek 1990)

τ = c + σ tan φi (44)

where τ is the shear stress c is the cohesion σ is the normal stress and φi is the

internal friction angle The parameters c and φi are determined by Mohr-Coulomb

diagram as shown in Figures 415 through 417

37

φi =54˚ Andesite

Figure 415 Mohr-Coulomb diagram for andesite

φi = 55˚

Tuffaceous Sandstone

Figure 416 Mohr-Coulomb diagram for pebbly tuffaceous sandstone

38

Silicified tuffaceous sandstone

φi = 49˚

Figure 417 Mohr-Coulomb diagram for silicified tuffaceous sandstone

Table 48 Results of triaxial compressive strength tests on three rock types

Rock Type

Number of

Samples

Average Density (gcc)

Cohesion c (MPa)

Internal Friction Angle φi (degrees)

Porphyritic Andesite 5 283 33 54

Tuffaceous Sandstone 5 265 28 55 Silicified Tuffaceous Sandstone 5 267 36 49

423 Brazilian Tensile Strength Tests

The objectives of the Brazilian tensile strength test are to determine

the tensile strength of rock The Brazilian tensile strength tests are performed on all

rock types Sample preparation and test procedure are followed the ASTM standard

(ASTM D3967-81) and the

39

ISRM suggested method (Brown 1981) Ten specimens for each rock

type have been tested The specimens have the diameter of 55 mm with 25 mm thick

The Brazilian tensile strength of rock can be calculated by the following

equation (Jaeger and Cook 1979)

σB = (2pf) (πDt) (45)

where σB is the Brazilian tensile strength pf is the failure load D is the diameter

of disk specimen and t is the thickness of disk specimen All of specimens failed

along the loading diameter (Figure 420) The results of Brazilian tensile strengths

are shown in Table 49 The tensile strength trends to decrease as the specimen size

(diameter) increase and can be expressed by a power equation (Evans 1961)

σB = A (D)-B (46)

where A and B are constants depending upon the nature of rock

424 Conventional point load index (CPL) tests

The objectives of CPL tests are to determine the point load strength index for

use in the estimation of the compressive strength of the rocks The sample

preparation test procedure and calculation are followed the standard practices

(ASTM D 5731-02) and the ISRM suggested method (Brown 1981) Twenty

specimens of each rock types are tested The length-to-diameter (LD) ratio of the

specimen is constant at 10 The specimen diameter and thickness are maintained

constant at 54 mm (Figure 421) The core specimen is loaded along its axis as

shown in Figure 422 Each specimen is loaded to failure at a constant rate such that

40

(a)

(b)

(c)

Figure 418 Pre-test samples for Brazilian tensile strength test (a) porphyritic

andesite (b) tuffaceous sandstone and (c) silicified tuffaceous

sandstone

41

Figure 419 Brazilian tensile strength test arrangement

Table 49 Results of Brazilian tensile strength tests of three rock types

Rock Type

Average Diameter

(mm)

Average Length (mm)

Average Density (gcc)

Number of

Samples

Brazilian Tensile

Strength σB (MPa)

Porphyritic andesite 5366 2672 283 10 170plusmn16

Tuffaceous sandstone 5366 2737 265 10 131plusmn33

Silicified tuffaceous sandstone

5366 2670 267 10 191plusmn32

42

(a)

(b)

(c)

Figure 420 Post-test specimens (a) porphyritic andesite (b) tuffaceous sandstone

and (c) silicified tuffaceous sandstone

43

Figure 421 Pre-test samples of porphyritic andesite for conventional point load

strength index test

Figure 422 Conventional point load strength index test arrangement

44

failures occur within 5-10 minutes Post-failure characteristics are observed

The point load strength index for axial loading (Is) is calculated by the

equation

Is = pf De2 (47)

where pf is the load at failure De is the equivalent core diameter (for axial loading

De2 = 4Aπ and A=WD) A is the minimum cross-sectional area of a plane through

the platen contact points W is the specimen width (thickness of core) and D is the

specimen diameter The post-test specimens are shown in Figure 423

The testing results of all three rock types are shown in Table 410 The

point load strength index of andesite pebbly tuffaceous sandstone and silicified

tuffaceous sandstone are average as 81 plusmn 12 102 plusmn 20 and 108 plusmn 22 MPa

Table 410 Results of conventional point load strength index tests of three rock types

Rock Types Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index

Is (MPa) Porphyritic Andesite 5493 5366 283 81plusmn12 Tuffaceous Sandstone 5545 5366 265 102plusmn20 Silicified Tuffaceous Sandstone 5491 5366 268 108plusmn22

45

Figure 423 Post-Test rock specimens from conventional point load strength index

tests (a) porphyritic andesite (b) tuffaceous sandstone and (c)

silicified tuffaceous sandstone

46

43 Modified point load (MPL) tests

The objectives of the modified point load (MPL) tests are to measure the

strength of rock between the loading points and to produce failure stress results for

various specimen sizes and shapes The results are complied and evaluated to

determine the mathematical relationship between the strengths and specimen

dimensions which are used to predict the elastic modulus and uniaxial and triaxial

compressive strengths and Brazilian tensile strength of the rocks

The testing apparatus for the proposed MPL testing are similar to those of the

conventional point load (CPL) test except that the loading points are cylindrical

shape and cut flat with the circular cross-sectional area instead of using half-spherical

shape (Tepnarong 2001) The loading platens used in this research are 7 10 and 15

mm in diameter and the thickness-to-loading point diameter ratio (td) of about 25

The specimen diameter-to-loading point diameter is varying from 5 to 100 The load

is applied at the rate of 200 Ns Fifty specimens are prepared and tested for each

rock type The vertical deformations (δ) are monitored One cycle of unloading and

reloading is made at about 40 failure load Then the load is increased to failure

The MPL strength (PMPL) is calculated by

PMPL = pf ((π4)(d2)) (48)

where pf is the applied load at failure and d is the diameter of loading point Figure

26 shows the example of post-test specimen shear cone are usually formed

underneath the loading points and two or three tension-induced cracks are commonly

found across the specimens

47

The MPL testing method is divided into 4 schemes based on its objective

elastic modulus uniaxial and triaxial compressive strengths and Brazilian tensile

strength determination

Figure 424 Conventional and modified loading points(Tepnarong 2006)

Figure 425 MPL testing arrangement

48

Tension-induced crack Shear cone

Shear cone

Tension-induced crack

Figure 426 Post-test specimen the tension-induced crack commonly found across

the specimen and shear cone usually formed underneath the loading

platens

49

Table 411 Results of modified point load tests on porphyritic andesite

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-01 246 543 280 125 159 And-MPL-02 351 632 370 180 471 And-MPL-03 236 634 150 170 191 And-MPL-04 266 960 250 234 319 And-MPL-05 284 903 370 369 471 And-MPL-06 245 793 280 182 357 And-MPL-07 263 874 260 234 331 And-MPL-08 261 980 210 171 268 And-MPL-09 280 777 270 056 344 And-MPL-10 244 569 280 124 159 And-MPL-11 251 613 650 138 368 And-MPL-12 226 631 600 189 340 And-MPL-13 233 1126 180 151 468 And-MPL-14 279 1203 220 165 572 And-MPL-15 239 503 400 011 227 And-MPL-16 281 474 300 012 170 And-MPL-17 305 861 390 021 497 And-MPL-18 233 653 500 008 283 And-MPL-19 294 1386 380 200 484 And-MPL-20 265 860 410 017 522 And-MPL-21 238 425 550 087 311 And-MPL-22 230 417 450 087 255 And-MPL-23 223 557 500 231 283 And-MPL-24 250 760 550 112 311 And-MPL-25 259 1243 180 585 468 And-MPL-26 303 560 310 143 395 And-MPL-27 273 1640 390 156 497 And-MPL-28 282 906 220 200 280 And-MPL-29 311 934 290 156 369 And-MPL-30 246 1314 250 650 650 And-MPL-31 262 982 200 175 255 And-MPL-32 260 1147 180 156 468 And-MPL-33 240 700 450 101 255 And-MPL-34 304 800 240 135 306 And-MPL-35 250 455 220 127 280 And-MPL-36 243 1697 120 292 312 And-MPL-37 333 1520 310 156 395 And-MPL-38 238 661 170 260 442

50

Table 411 Results of modified point load tests on porphyritic andesite (Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-39 318 347 130 186 338 And-MPL-40 245 551 150 260 390 And-MPL-41 207 561 150 325 390 And-MPL-42 223 425 500 231 283 And-MPL-43 207 561 150 346 390 And-MPL-44 324 340 310 234 395 And-MPL-45 275 426 240 169 306 And-MPL-46 302 397 130 175 166 And-MPL-47 255 314 100 170 127 And-MPL-48 257 220 250 094 142 And-MPL-49 256 214 130 057 74 And-MPL-50 243 166 180 078 102

51

Table 412 Results of modified point load tests on tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-01 270 546 220 212 293 TST -MPL-02 258 787 230 326 293 TST -MPL-03 275 730 200 143 255 TST -MPL-04 282 715 400 143 510 TST -MPL-05 254 1345 220 264 280 TST -MPL-06 292 893 200 143 255 TST -MPL-07 243 853 550 112 311 TST -MPL-08 287 1047 210 319 268 TST -MPL-09 230 787 370 212 471 TST -MPL-10 230 427 260 132 147 TST -MPL-11 282 1243 450 319 573 TST -MPL-12 254 604 200 127 255 TST -MPL-13 288 1180 290 159 369 TST -MPL-14 251 631 410 170 232 TST -MPL-15 214 1104 120 260 312 TST -MPL-16 229 486 380 102 215 TST -MPL-17 259 715 110 650 286 TST -MPL-18 243 285 180 073 102 TST -MPL-19 285 316 130 128 130 TST -MPL-20 241 295 180 170 102 TST -MPL-21 298 417 300 100 170 TST -MPL-22 265 642 300 088 170 TST -MPL-23 314 611 450 101 255 TST -MPL-24 303 481 650 124 368 TST -MPL-25 223 223 260 126 331 TST -MPL-26 273 652 260 178 331 TST -MPL-27 216 887 420 170 535 TST -MPL-28 319 718 290 164 369 TST -MPL-29 231 516 200 128 255 TST -MPL-30 260 641 380 280 484 TST -MPL-31 287 496 330 158 420 TST -MPL-32 264 368 230 170 293 TST -MPL-33 238 415 230 130 293 TST -MPL-34 271 824 140 260 364 TST -MPL-35 283 800 220 325 572 TST -MPL-36 242 1013 180 325 468 TST -MPL-37 254 715 90 217 234 TST -MPL-38 210 755 150 520 390

52

Table 412 Results of modified point load tests on tuffaceous sandstone

(Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-39 293 508 110 260 286 TST -MPL-40 273 410 100 347 260 TST -MPL-41 234 628 80 260 208 TST -MPL-42 259 433 130 260 338 TST -MPL-43 265 546 220 435 280 TST -MPL-44 255 829 260 222 147 TST -MPL-45 254 368 240 315 306 TST -MPL-46 293 695 370 222 210 TST -MPL-47 247 297 180 128 102 TST -MPL-48 310 611 300 237 170 TST -MPL-49 225 337 160 371 416 TST -MPL-50 259 410 120 394 312

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-01 300 782 170 280 442 SST-MPL-02 250 480 220 307 572 SST-MPL-03 314 424 340 356 433 SST-MPL-04 292 809 220 450 572 SST-MPL-05 275 1142 300 532 780 SST -MPL-06 308 490 190 273 494 SST -MPL-07 317 611 280 418 728 SST -MPL-08 233 684 240 414 624 SST -MPL-09 255 480 230 371 598 SST -MPL-10 217 772 120 958 312 SST -MPL-11 312 903 270 400 702 SST -MPL-12 255 1094 150 272 390 SST -MPL-13 286 742 400 408 510 SST -MPL-14 248 615 350 296 198 SST -MPL-15 253 805 210 282 546 SST -MPL-16 243 1094 150 260 390

53

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

(Continued)

Specimen Number td Dd Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-17 234 1090 250 416 650 SST -MPL-18 253 1371 240 473 624 SST -MPL-19 327 434 320 330 408 SST -MPL-20 270 310 390 278 497 SST -MPL-21 269 691 410 185 522 SST -MPL-22 312 504 380 182 484 SST -MPL-23 319 627 260 150 331 SST -MPL-24 281 689 330 295 420 SST -MPL-25 210 720 390 259 497 SST -MPL-26 303 775 370 221 471 SST -MPL-27 272 714 310 274 395 SST -MPL-28 292 855 600 209 764 SST -MPL-29 310 742 400 176 510 SST -MPL-30 284 847 410 158 522 SST -MPL-31 320 891 650 464 828 SST -MPL-32 261 256 400 178 226 SST -MPL-33 224 405 550 131 311 SST -MPL-34 231 379 450 215 255 SST -MPL-35 290 442 1050 190 594 SST -MPL-36 241 521 500 102 283 SST -MPL-37 275 605 600 067 340 SST -MPL-38 263 616 650 127 368 SST -MPL-39 227 615 350 229 198 SST -MPL-40 236 508 550 090 311 SST -MPL-41 318 1142 300 498 780 SST -MPL-42 303 809 210 392 546 SST -MPL-43 228 805 210 244 546 SST -MPL-44 283 1142 300 571 780 SST -MPL-45 277 772 120 780 312 SST -MPL-46 288 1206 280 411 728 SST -MPL-47 250 508 570 309 323 SST -MPL-48 275 442 1050 338 594 SST -MPL-49 272 605 650 254 368 SST -MPL-50 260 805 200 360 520

54

431 Modified point load tests for elastic modulus measurement

The MPL tests are carried out with the measurement of axial

deformation for use in elastic modulus estimation Fifty irregular specimens for each

rock type are tested The specimen thickness-to-loading diameter (td) is about 25

and the specimen diameter -to-loading diameter (Dd) is varied from 25 to 50 Cyclic

loading is performed while monitoring displacement (δ)

The testing apparatus used in this experiment includes the point load

tester model SBEL PLT-75 and the modified point load platens The displacement

digital gages with a precision up to 0001 mm are used to monitor the axial

deformation of rock between the loading points as loading decreases The cyclic

load is applied along the specimen axis and is performed by systematically increasing

and decreasing loads on the test specimen After unloading the axial load is

increased until the failure occurs Cyclic loading is performed on the specimens in

an attempt at determining the elastic deformation The ratio of change of stress to

displacement (∆P∆δ) is measured from unloading curve Post-failure characteristics

are observed and recorded Photographs are taken of the failed specimens

The results of the deformation measurement by MPL tests are shown

in Tables411 through 413 The stresses (P) are plotted as a function of axial

displacement (δ) and shown in Figures B1 through B150 (Appendix B) The results

of ∆P∆δ are used to estimate the elastic modulus of the specimen

The elastic modulus predictions from MPL results can be made by

using the value of αE plotted as a function of Ded for various td ratios as shown in

Figure 427 and the MPL elastic modulus can be expressed as

55

⎟⎠⎞

⎜⎝⎛

ΔΔ

⎟⎟⎠

⎞⎜⎜⎝

⎛=

δαPtE

Empl (Tepnarong 2006) (49)

where Empl is the elastic modulus predicted from MPL results αE is displacement

function value from numerical analysis and ∆P∆δ is the ratio of change of stress to

displacement which is measured from unloading curve of MPL tests and t is the

specimen thickness The value of αE used in the calculation is 260 for td ratio equal

to 25-30 (Tepnarong 2006) The results of elastic modulus predictions from MPL

tests are tabulated in Tables 414 through 416 Table 417 compares the elastic

modulus obtained from standard uniaxial compressive strength test (ASTM D3148-

96) with those predicted by MPL test

The values of Empl for each specimen with P-δ curve are shown in

Appendix B The MPL method under-estimates the elastic modulus of all tested

rocks This is the primarily because the actual loaded area may be smaller than that

used in the calculation due to the roughness of the specimen surfaces As a result the

contact area used to calculate PMPL is larger than the actual In addition the EMPL

tends to show a high intrinsic variation (high standard deviation) This is because the

loading areas of MPL specimens are small This phenomenon conforms by the test

results obtained by Fuenkajorn and Deamen (1992) They conclude that smaller test

specimens not only exhibit a higher strength than larger one (size effect) but also

show a high intrinsic variability due to the heterogeneity of rock fabric particularly at

small sizes This implied that to obtain a good prediction (accurate result) of the rock

elasticity a large amount of MPL specimens are desirable This drawback may be

compensated by the ease of testing and the low cost of sample preparation

56

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (MPa)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure 427 Example of P-δ curve for porphyritic andesite specimen The ratio of

∆P∆δ is used to predict the elastic modulus of MPL specimen (Empl)

57

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-01 246 543 125 260 1776 And-MPL-02 351 632 180 260 2430 And-MPL-03 236 634 170 260 1546 And-MPL-04 266 960 234 260 2390 And-MPL-05 284 903 369 260 4031 And-MPL-06 245 793 182 260 1712 And-MPL-07 263 874 234 260 2367 And-MPL-08 261 980 171 260 1717 And-MPL-09 280 777 056 260 603 And-MPL-10 244 569 124 260 1748 And-MPL-11 251 613 138 260 2001 And-MPL-12 226 631 189 260 2464 And-MPL-13 233 1126 151 260 947 And-MPL-14 279 1203 165 260 1239 And-MPL-15 239 503 011 260 151 And-MPL-16 281 474 012 260 195 And-MPL-17 305 861 021 260 247 And-MPL-18 233 653 008 260 108 And-MPL-19 294 1386 200 260 2263 And-MPL-20 265 860 017 260 173 And-MPL-21 238 425 087 260 1195 And-MPL-22 230 417 087 260 1154 And-MPL-23 223 557 231 260 2976 And-MPL-24 250 760 112 260 1615 And-MPL-25 259 1243 585 260 4073 And-MPL-26 303 560 143 260 1667 And-MPL-27 273 1640 156 260 1639 And-MPL-28 282 906 200 260 2172 And-MPL-29 311 934 156 260 1868 And-MPL-30 246 1314 650 260 4310 And-MPL-31 262 982 175 260 1766 And-MPL-32 260 1147 156 260 1093 And-MPL-33 240 700 101 260 1398 And-MPL-34 304 800 135 260 1576 And-MPL-35 250 455 127 260 1221 And-MPL-36 243 1697 292 260 1909 And-MPL-37 333 1520 156 260 2000 And-MPL-38 238 661 260 260 1665 And-MPL-39 318 347 186 260 1592 And-MPL-40 245 551 260 260 1712

58

And-MPL-41 207 561 325 260 1815

59

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-42 223 425 231 260 2976 And-MPL-43 207 561 346 260 1932 And-MPL-44 324 340 234 260 2912 And-MPL-45 275 426 169 260 1785 And-MPL-46 302 397 175 260 2033 And-MPL-47 255 314 170 260 1667 And-MPL-48 257 220 094 260 1393 And-MPL-49 256 214 057 260 843 And-MPL-50 243 166 078 260 1094 Average 1743 Standard Deviation 910

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-01 300 782 280 260 2262 SST -MPL-02 250 480 307 260 2066 SST -MPL-03 314 424 356 260 4302 SST -MPL-04 292 809 450 260 3533 SST -MPL-05 275 1142 532 260 3939 SST -MPL-06 308 490 273 260 2266 SST -MPL-07 317 611 418 260 3572 SST -MPL-08 233 684 414 260 2595 SST -MPL-09 255 480 371 260 2546 SST -MPL-10 217 772 958 260 5593 SST -MPL-11 312 903 400 260 3360 SST -MPL-12 255 1094 272 260 1864 SST -MPL-13 286 742 408 260 4435 SST -MPL-14 248 615 296 260 4235 SST -MPL-15 253 805 282 260 1918 SST -MPL-16 243 1094 260 260 1698 SST -MPL-17 234 1090 416 260 2621 SST -MPL-18 253 1371 473 260 3224 SST -MPL-19 327 434 330 260 4153 SST -MPL-20 270 310 278 260 2863

60

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-21 269 691 185 260 1914 SST -MPL-22 312 504 182 260 2183 SST -MPL-23 319 627 150 260 1839 SST -MPL-24 281 689 295 260 3193 SST -MPL-25 210 720 259 260 2090 SST -MPL-26 303 775 221 260 2577 SST -MPL-27 272 714 274 260 2862 SST -MPL-28 292 855 209 260 2350 SST -MPL-29 310 742 176 260 2097 SST -MPL-30 284 847 158 260 1728 SST -MPL-31 320 891 464 260 5707 SST -MPL-32 261 256 178 260 2678 SST -MPL-33 224 405 131 260 1690 SST -MPL-34 231 379 215 260 2863 SST -MPL-35 290 442 190 260 3174 SST -MPL-36 241 521 102 260 1416 SST -MPL-37 275 605 067 260 1064 SST -MPL-38 263 616 127 260 1926 SST -MPL-39 227 615 229 260 3005 SST -MPL-40 236 508 090 260 1226 SST -MPL-41 318 1142 498 260 4264 SST -MPL-42 303 809 392 260 3196 SST -MPL-43 228 805 244 260 1500 SST -MPL-44 283 1142 571 260 4348 SST -MPL-45 277 772 780 260 5826 SST -MPL-46 288 1206 411 260 3184 SST -MPL-47 250 508 309 260 4464 SST -MPL-48 275 442 338 260 5364 SST -MPL-49 272 605 254 260 3981 SST -MPL-50 260 805 360 260 2523 Average 2986 Standard Deviation 1190

61

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-01 270 546 212 260 2202 TST -MPL-02 258 787 326 260 3232 TST -MPL-03 275 730 143 260 1513 TST -MPL-04 282 715 143 260 1551 TST -MPL-05 254 1345 264 260 2579 TST -MPL-06 292 893 143 260 1606 TST -MPL-07 243 853 112 260 2273 TST -MPL-08 287 1047 319 260 3521 TST -MPL-09 230 787 212 260 1875 TST -MPL-10 230 427 132 260 1752 TST -MPL-11 282 1243 319 260 3455 TST -MPL-12 254 604 127 260 1241 TST -MPL-13 288 1180 159 260 1764 TST -MPL-14 251 631 170 260 2465 TST -MPL-15 214 1104 260 260 1500 TST -MPL-16 229 486 102 260 1345 TST -MPL-17 259 715 650 260 4530 TST -MPL-18 243 285 073 260 1025 TST -MPL-19 285 316 128 260 2105 TST -MPL-20 241 295 170 260 2360 TST -MPL-21 298 417 100 260 1722 TST -MPL-22 265 642 088 260 896 TST -MPL-23 314 611 101 260 1830 TST -MPL-24 303 481 124 260 2166 TST -MPL-25 223 223 126 260 1083 TST -MPL-26 273 652 178 260 1869 TST -MPL-27 216 887 170 260 2065 TST -MPL-28 319 718 164 260 2011 TST -MPL-29 310 742 128 260 1136 TST -MPL-30 260 641 280 260 2800 TST -MPL-31 287 496 158 260 1742 TST -MPL-32 264 368 170 260 1725 TST -MPL-33 238 415 130 260 1192 TST -MPL-34 271 824 260 260 1942 TST -MPL-35 283 800 325 260 2478 TST -MPL-36 242 1013 325 260 2115 TST -MPL-37 254 715 217 260 1484 TST -MPL-38 210 755 520 260 2944 TST -MPL-39 293 508 260 260 2052 TST -MPL-40 273 410 347 260 2552

62

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-41 234 628 260 260 1638 TST -MPL-42 259 433 260 260 1814 TST -MPL-43 265 546 435 260 4440 TST -MPL-44 255 829 222 260 3265 TST -MPL-45 254 368 315 260 3075 TST -MPL-46 293 695 222 260 2502 TST -MPL-47 247 297 128 260 1827 TST -MPL-48 310 611 237 260 4240 TST -MPL-49 225 337 371 260 2252 TST -MPL-50 259 410 394 260 2746 Average 2190 Standard Deviation 830

Table 417 Comparisons of elastic modulus results obtained from uniaxial

compressive strength tests and those from modified point load tests

Rock Type Tangential Elastic Modulus from UCS

tests Et (GPa)

Elastic Modulus from MPL tests

Empl (GPa) Porphyritic andesite 430plusmn34 174plusmn91

Silicified tuffaceous sandstone 633plusmn80 299plusmn119

tuffaceous sandstone 513plusmn53 219plusmn83

432 Modified point load tests predicting uniaxial compressive strength

The uniaxial compressive strength of MPL specimens can be predicted

by plotting Pmpl as a function of diameter ratio Ded as shown in Figures 428 through

430 At diameter ratio equal to unity the Pmpl represents the uniaxial compressive

strength of rock The uniaxial compressive strength predicted from MPL tests

compared with those from CPL test and UCS standard test is shown in Table 418

63

UCS PREDICTION OF PORPHYRITIC ANDESITE FROM MPL TESTS

Pmpl = 11844(Ded)05489

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ded Ratio

MPL

Stre

ngth

(MPa

)

Figure 428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests

64

UCS PREDICTION OF SILICIFIED TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 11463(Ded)07447

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ded Ratio

MPL

-Str

engt

h (M

Pa)

Figure 429 Uniaxial compressive strength predicted for silicified tuffaceous

sandstone from MPL tests

65

UCS PREDICTION OF TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 10222(Ded)05457

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ded Ratio

MPL

-Stre

ngth

(MPa

)

Figure 430 Uniaxial compressive strength predicted for tuffaceous sandstone from

MPL tests

Table 418 Comparison the test results between UCS CPL Brazilian tensile

strength and MPL tests

Uniaxial Compressive Strength (MPa)

Tensile Strength (MPa) Rock Type UCS

Testing CPL

Prediction MPL

PredictionBrazilian Testing

MPL Prediction

And 1150 1944 plusmn12 1005 170plusmn16 139plusmn43 TST 1114 2448plusmn20 1308 131plusmn33 121plusmn73 SST 1207 2592plusmn22 1022 191plusmn32 171plusmn126

433 Modified Point Load Tests for Tensile Strength Predictions

The MPL results determine the rock tensile strength by using the

relationship of the failure stresses (Pmpl) as a function of specimen thickness to

66

loading diameter ratio (td) The tensile strength from MPL prediction can be

expressed as an empirical equation (Tepnarong 2001)

σt mpl = Pmpl (αT ln (td)+βT) (410)

where αT = 133 ln (Ded)-756 and βT= -70 ln (Ded)+ 1952

The results of tensile strengths of all rock types are shown in Tables

419through 421 The predicted tensile strengths are compared with the Brazilian

tensile strengths for the three rock types in Table 418 A close agreement of the

results obtained between two methods The discrepancies of the results are less than

the standard deviation of the results

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa)

And-MPL-01 246 543 159 1495 767 750 And-MPL-02 351 632 471 1697 661 1688 And-MPL-03 236 634 191 1701 659 900 And-MPL-04 266 960 319 2252 369 1240 And-MPL-05 284 903 471 2170 412 1761 And-MPL-06 245 793 357 1999 502 1558 And-MPL-07 263 874 331 2127 435 1330 And-MPL-08 261 980 268 2279 355 1053 And-MPL-09 280 777 344 1971 517 1351 And-MPL-10 244 569 159 1557 734 746 And-MPL-11 251 613 368 1656 683 1666 And-MPL-12 226 631 340 1695 662 1662 And-MPL-13 233 1126 468 2464 257 2000 And-MPL-14 279 1203 572 2552 211 2022 And-MPL-15 239 503 227 1392 822 1114 And-MPL-16 281 474 170 1314 863 765 And-MPL-17 305 861 497 2108 445 1776 And-MPL-18 233 653 283 1740 638 1340 And-MPL-19 294 1386 484 2741 112 1577 And-MPL-20 265 860 522 2106 446 2091

67

And-MPL-21 238 425 311 1169 939 1595 And-MPL-22 230 417 255 1142 953 1338 And-MPL-23 223 557 283 1529 749 1431 And-MPL-24 250 760 311 1941 532 1347 And-MPL-25 259 1243 468 2596 188 1763 And-MPL-26 303 560 395 1535 746 1613

68

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) And-MPL-27 273 1640 497 2964 -006 1671 And-MPL-28 282 906 280 2252 369 1035 And-MPL-29 311 934 369 2216 388 1272 And-MPL-30 246 1314 650 2670 149 2543 And-MPL-31 262 982 255 2282 353 997 And-MPL-32 260 1147 468 2488 244 1783 And-MPL-33 240 700 255 1832 590 1161 And-MPL-34 304 800 306 2010 496 1121 And-MPL-35 250 455 280 1259 891 1370 And-MPL-36 243 1697 312 3010 -030 1181 And-MPL-37 333 1520 395 2863 047 1130 And-MPL-38 238 661 442 1755 630 2054 And-MPL-39 318 347 338 897 1082 1594 And-MPL-40 245 551 390 1513 758 1847 And-MPL-41 207 561 390 1537 745 2089 And-MPL-42 223 425 283 1169 939 1507 And-MPL-43 207 561 390 1537 745 2089 And-MPL-44 324 340 395 871 1096 1864 And-MPL-45 275 426 306 1172 937 1441 And-MPL-46 302 397 166 1079 986 760 And-MPL-47 255 314 127 766 1151 1159 And-MPL-48 257 220 142 291 1401 845 And-MPL-49 256 214 74 257 1419 443 And-MPL-50 243 166 102 -078 1595 928 Average 1427 Standard Deviation 44

69

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) SST -MPL-01 300 782 442 1336 851 2018 SST -MPL-02 250 480 572 1331 853 2759 SST -MPL-03 314 424 433 1196 924 1888 SST -MPL-04 292 809 572 2024 489 2155 SST -MPL-05 275 1142 780 2483 247 2827 SST -MPL-06 308 490 494 1357 840 2086 SST -MPL-07 317 611 728 1651 685 2808 SST -MPL-08 233 684 624 1800 606 2932 SST -MPL-09 255 480 598 1331 853 2849 SST -MPL-10 217 772 312 1962 522 1529 SST -MPL-11 312 903 702 2170 412 2436 SST -MPL-12 255 1094 390 2426 277 1533 SST -MPL-13 286 742 510 1910 549 2011 SST -MPL-14 248 615 198 1661 680 905 SST -MPL-15 253 805 546 2017 492 2312 SST -MPL-16 243 1094 390 2426 277 1607 SST -MPL-17 234 1090 650 2421 280 2780 SST -MPL-18 253 1371 624 2726 120 2354 SST -MPL-19 327 434 408 1196 924 1740 SST -MPL-20 270 310 497 748 1160 2618 SST -MPL-21 269 691 522 1816 599 2181 SST -MPL-22 312 504 484 1394 821 2012 SST -MPL-23 319 627 331 1686 667 1263 SST -MPL-24 281 689 420 1812 601 1699 SST -MPL-25 210 720 497 1869 570 2541 SST -MPL-26 303 775 471 1968 519 1745 SST -MPL-27 272 714 395 1859 576 1623 SST -MPL-28 292 855 764 2098 450 2830 SST -MPL-29 310 742 510 1910 549 1881 SST -MPL-30 284 847 522 2087 456 1981 SST -MPL-31 320 891 828 2153 421 2832 SST -MPL-32 261 256 226 492 1295 1282 SST -MPL-33 224 405 311 1106 972 1672 SST -MPL-34 231 379 255 1017 1019 1363 SST -MPL-35 290 442 594 1221 912 2690 SST -MPL-36 241 521 283 1439 797 1374 SST -MPL-37 275 605 340 1639 692 1445 SST -MPL-38 263 616 368 1661 680 1611

70

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded Pmpl (MPa)

αT βT σt mpl (MPa)

SST -MPL-39 227 615 198 1661 680 969 SST -MPL-40 236 508 311 1406 814 1540 SST -MPL-41 318 1142 780 2483 247 2500 SST -MPL-42 303 809 546 2024 489 1999 SST -MPL-43 228 805 546 2017 492 2530 SST -MPL-44 283 1142 780 2483 247 2757 SST -MPL-45 277 772 312 1962 522 1236 SST -MPL-46 288 1206 728 2555 209 2502 SST -MPL-47 250 508 323 1406 814 1533 SST -MPL-48 275 442 594 1221 912 2769 SST -MPL-49 272 605 368 1639 692 1580 SST -MPL-50 260 805 520 2017 492 2147 Average 2045 Standard Deviation 56

71

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-01 270 546 293 1502 763 1299 TST -MPL-02 258 787 293 1988 508 1226 TST -MPL-03 275 730 255 1888 560 1031 TST -MPL-04 282 715 510 1860 575 2035 TST -MPL-05 254 1345 280 2701 133 1058 TST -MPL-06 292 893 255 2156 420 933 TST -MPL-07 243 853 311 2095 451 1346 TST -MPL-08 287 1047 268 2279 355 970 TST -MPL-09 230 787 471 1988 508 2179 TST -MPL-10 230 427 147 1176 935 769 TST -MPL-11 282 1243 573 2596 188 1994 TST -MPL-12 254 604 255 1636 693 1149 TST -MPL-13 288 1180 369 2527 224 1274 TST -MPL-14 251 631 232 1695 662 1044 TST -MPL-15 214 1104 312 2438 271 1465 TST -MPL-16 229 486 215 1347 845 1098 TST -MPL-17 259 715 286 1861 575 1220 TST -MPL-18 243 285 102 637 1219 571 TST -MPL-19 285 316 130 776 1146 665 TST -MPL-20 241 295 102 685 1194 568 TST -MPL-21 298 417 170 1143 952 771 TST -MPL-22 265 642 170 1178 934 1059 TST -MPL-23 314 611 255 1652 685 989 TST -MPL-24 303 481 368 1423 805 1545 TST -MPL-25 223 223 331 313 1389 2018 TST -MPL-26 273 652 331 1738 640 1389 TST -MPL-27 216 887 535 2146 424 1850 TST -MPL-28 319 718 369 1866 572 1350 TST -MPL-29 231 516 255 1425 804 1276 TST -MPL-30 260 641 484 1715 651 2114 TST -MPL-31 287 496 420 1373 832 1846 TST -MPL-32 264 368 293 976 1041 1475 TST -MPL-33 238 415 293 1151 948 1504 TST -MPL-34 271 824 364 2049 476 1418 TST -MPL-35 283 800 572 2010 496 2210 TST -MPL-36 242 1013 468 2324 331 1965 TST -MPL-37 254 715 234 1861 575 1013 TST -MPL-38 210 755 390 1932 537 1976

72

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-39 293 508 286 1406 814 1229 TST -MPL-40 273 410 260 1124 963 1243 TST -MPL-41 234 628 208 1688 666 990 TST -MPL-42 259 433 338 1194 926 1639 TST -MPL-43 265 546 280 1502 763 1257 TST -MPL-44 255 829 147 2057 472 614 TST -MPL-45 254 368 306 976 1041 1568 TST -MPL-46 293 695 210 1822 595 1846 TST -MPL-47 247 297 102 691 1190 561 TST -MPL-48 310 611 170 1652 685 665 TST -MPL-49 225 337 416 1939 533 1972 TST -MPL-50 259 410 312 1120 965 1537 Average 1336 Standard Deviation 56

434 Modified point load tests for triaxial compressive strength predictions

The objective of this section is to predict the triaxial compressive strength

of intact rock specimens by using the MPL results (modified point load strength Pmpl) It

is speculated that increase of applied load (σ1) will invoke a confining pressure (σ3) on

the imaginary cylindrical profile between the two loading points This is due to the

effect of Poissonrsquos ratio (ν) which causing a potential expansion of rock in this cylinder

The greater the σ1 the greater the σ3 in addition Poissonrsquos ratios also affect the

magnitude of σ3 The magnitude of σ3 also depends on the specimen shape particularly

the Ded ratio In principle σ3 will equal zero for Ded ratio equal to unity But when

Ded ratio is very large approaching infinity σ3 will reach its maximum This maximum

value of σ3 will also depend on the rock Poissonrsquos ratio From computer simulation of

td =25 the variation of σ1 σ3 ratio can be simply expressed by Tepnarong (2006) as

73

(σ1 σ3) = 2 ((ν (1ndashν) (1-(dDe) 2)) (411)

where ν is the Poissonrsquos ratio of rock specimen d is the modified point load diameter

and De is the equivalent diameter of the specimen The Poissonrsquos ratio of rock

specimen used in equation 411 can be assumed to be 25 The σ1 σ3 ratio tends to be

independent of Ded for Ded greater than 10 This implies that when MPL specimen

diameter is more than 10 times of the loading point diameter the magnitude of σ3 is

approaching its maximum value (Tepnarong 2006)

It should be pointed out that approach used here to determine σ3

assumes that there is no shear stress (τrz) along the imagination cylinder As a result

the magnitude of σ3 determined here would be higher than the actual σ3 applied in the

true triaxial test specimen This mean that the σ1 σ3 ratios at failure obtained from

MPL tests will be lower than the actual failure stress ratio from the true triaxial tests

From the concept of σ1 σ3-Ded relation proposed the major and

minor principal stresses at failure (σ1 σ3) can be predicted from the measured MPL

failure stress Pmpl and Ded ratio The Poissonrsquos ratio used here is equal to 025

Comparison between the failure stress (σ1 σ3) obtained from the

standard triaxial compressive strength testing (ASTM D7012-07) and those predicted

from MPL test results are made graphically in Figures 431 through 433 for ν =025

The figures are plotted the maximum shear stress (frac12(σ1-σ3)) as a function of mean

shear stress (frac12(σ1+σ3)) indicating that the predicted failure stresses under-estimate

the value obtained from the standard testing This is because of the assumption of no

shear stresses developed on the surface of the imaginary cylinder The under

prediction may be due to the intrinsic variability of the rocks The predictions are

also sensitive to assumed Poissonrsquos ratio The Poissonrsquos ratio of the tested specimens

74

may be lower than the assumed value of 025 This comparison implies that the

triaxial strength predicted from MPL test will be more conservative than those from

the standard testing method

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests

Specimen Number

td Ded σ1

(MPa)σ3

(MPa)Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-01 246 543 159 2527 6663 9190 And-MPL-02 351 632 471 7583 19776 27358 And-MPL-03 236 634 191 3075 8017 11091 And-MPL-04 266 960 319 5198 13325 18522 And-MPL-05 284 903 471 7682 19726 27408 And-MPL-06 245 793 357 5792 14938 20730 And-MPL-07 263 874 331 5393 13864 19257 And-MPL-08 261 980 268 4368 11192 15560 And-MPL-09 280 777 344 5581 14407 19988 And-MPL-10 244 569 159 2535 6659 9194 And-MPL-11 251 613 368 5911 15445 21356 And-MPL-12 226 631 340 5465 14253 19717 And-MPL-13 233 1126 468 7660 19568 27228 And-MPL-14 279 1203 572 9372 23911 33283 And-MPL-15 239 503 227 3589 9529 13118 And-MPL-16 281 474 170 2678 7154 9831 And-MPL-17 305 861 497 8087 20797 28884 And-MPL-18 233 653 283 4561 11874 16435 And-MPL-19 294 1386 484 7946 20231 28177 And-MPL-20 265 860 522 8501 21864 30365 And-MPL-21 238 425 311 4854 13143 17997 And-MPL-22 230 417 255 3962 10758 14720 And-MPL-23 223 557 283 4521 11894 16415 And-MPL-24 250 760 311 5049 13045 18094 And-MPL-25 259 1243 468 7671 19562 27234 And-MPL-26 303 560 395 6308 16591 22899 And-MPL-27 273 1640 497 8167 20757 28924 And-MPL-28 282 906 280 4574 11726 16300 And-MPL-29 311 934 369 6026 15459 21484 And-MPL-30 246 1314 650 1066 27166 37828 And-MPL-31 262 982 255 4160 10659 14819 And-MPL-32 260 1147 468 7663 19567 27229

75

And-MPL-33 240 700 255 4118 10680 14798 And-MPL-34 304 800 306 4966 12804 17770

76

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-35 250 455 280 4401 11812 16213 And-MPL-36 243 1697 312 5130 13034 18163 And-MPL-37 333 1520 395 6488 16501 22989 And-MPL-38 238 661 442 7125 18535 25661 And-MPL-39 318 347 338 5112 14342 19455 And-MPL-40 245 551 390 6222 16387 22609 And-MPL-41 207 561 390 6230 16383 22613 And-MPL-42 223 425 283 4413 11948 16361 And-MPL-43 207 561 390 6230 16383 22613 And-MPL-44 324 340 395 5952 16769 22721 And-MPL-45 275 426 306 4767 12903 17670 And-MPL-46 302 397 166 2559 7001 9560 And-MPL-47 255 314 127 3211 9223 12433 And-MPL-48 257 220 142 1852 6151 8003 And-MPL-49 256 214 74 950 3205 4155 And-MPL-50 243 166 102 1493 6331 7823

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-01 300 782 442 7389 19703 27092 SST -MPL-02 250 480 572 9028 24083 33112 SST -MPL-03 314 424 433 6767 18273 25040 SST -MPL-04 292 809 572 9293 23951 33244 SST -MPL-05 275 1142 780 1277 32611 45382 SST -MPL-06 308 490 494 7811 20792 28603 SST -MPL-07 317 611 728 1169 30552 42241 SST -MPL-08 233 684 624 1008 26160 36235 SST -MPL-09 255 480 598 9439 25178 34617 SST -MPL-10 217 772 312 5061 13068 18129 SST -MPL-11 312 903 702 1144 29377 40817 SST -MPL-12 255 1094 390 6381 16308 22689 SST -MPL-13 286 742 510 8255 21350 29605 SST -MPL-14 248 615 198 3183 8316 11500

77

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-15 253 805 546 8869 22863 31732 SST -MPL-16 243 1094 390 6381 16308 22689 SST -MPL-17 234 1090 650 1063 27180 37814 SST -MPL-18 253 1371 624 1024 26077 36317 SST -MPL-19 327 434 408 6369 17198 23567 SST -MPL-20 270 310 497 7344 21169 28513 SST -MPL-21 269 691 522 8438 21896 30333 SST -MPL-22 312 504 484 7672 20368 28040 SST -MPL-23 319 627 331 5626 13897 19224 SST -MPL-24 281 689 420 6790 17624 24414 SST -MPL-25 210 720 497 8039 20821 28860 SST -MPL-26 303 775 471 7648 19743 27391 SST -MPL-27 272 714 395 6388 16551 22939 SST -MPL-28 292 855 764 1244 31997 44436 SST -MPL-29 310 742 510 8255 21350 29605 SST -MPL-30 284 847 522 8498 21866 30364 SST -MPL-31 320 891 828 1349 34656 48146 SST -MPL-32 261 256 226 3165 9741 12906 SST -MPL-33 224 405 311 4825 13157 17982 SST -MPL-34 231 379 255 3912 10783 14695 SST -MPL-35 290 442 594 9307 25071 34377 SST -MPL-36 241 521 283 4499 11905 16404 SST -MPL-37 275 605 340 5452 14259 19711 SST -MPL-38 263 616 368 5912 15445 21357 SST -MPL-39 227 615 198 3183 8316 11500 SST -MPL-40 236 508 311 4939 13100 18039 SST -MPL-41 318 1142 780 1277 32611 45382 SST -MPL-42 303 809 546 8870 22862 31733 SST -MPL-43 228 805 546 8869 22863 31732 SST -MPL-44 283 1142 780 1277 32611 45382 SST -MPL-45 277 772 312 5061 13068 18129 SST -MPL-46 288 1206 728 1193 30433 42361 SST -MPL-47 250 508 323 5119 13577 18695 SST -MPL-48 275 442 594 9307 25071 34377 SST -MPL-49 272 605 368 5906 15447 21354 SST -MPL-50 260 805 520 8447 21774 30221

78

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-01 270 546 293 4672 12313 16986 TST -MPL-02 258 787 293 4756 12272 17028 TST -MPL-03 275 730 255 4125 10676 14801 TST -MPL-04 282 715 510 8243 21356 29599 TST -MPL-05 254 1345 280 4599 11713 16312 TST -MPL-06 292 893 255 4151 10663 14814 TST -MPL-07 243 853 311 5067 13036 18103 TST -MPL-08 287 1047 268 4368 11192 15560 TST -MPL-09 230 787 471 7651 19741 27393 TST -MPL-10 230 427 147 2296 6212 8508 TST -MPL-11 282 1243 573 9397 23964 33361 TST -MPL-12 254 604 255 4089 10695 14783 TST -MPL-13 288 1180 369 6052 15445 21497 TST -MPL-14 251 631 232 3734 9739 13474 TST -MPL-15 214 1104 312 5105 13046 18151 TST -MPL-16 229 486 215 3400 9057 12457 TST -MPL-17 259 715 286 4626 11986 16612 TST -MPL-18 243 285 102 1474 4358 5833 TST -MPL-19 285 316 130 1934 5544 7478 TST -MPL-20 241 295 102 1489 4351 5840 TST -MPL-21 298 417 170 2641 7172 9813 TST -MPL-22 265 642 170 2650 7168 9817 TST -MPL-23 314 611 255 4091 10693 14784 TST -MPL-24 303 481 368 5843 15476 21322 TST -MPL-25 223 223 331 4370 14376 18745 TST -MPL-26 273 652 331 5336 13892 19229 TST -MPL-27 216 887 535 8716 22394 31109 TST -MPL-28 319 718 369 5977 15483 21460 TST -MPL-29 231 516 255 4046 10716 14762 TST -MPL-30 260 641 484 7793 20307 28100 TST -MPL-31 287 496 420 6654 17692 24346 TST -MPL-32 264 368 293 4477 12411 16888 TST -MPL-33 238 415 293 4560 12370 16930 TST -MPL-34 271 824 364 5917 15240 21157 TST -MPL-35 283 800 572 9290 23953 33242 TST -MPL-36 242 1013 468 7646 19575 27221 TST -MPL-37 254 715 234 3785 9806 13592 TST -MPL-38 210 755 390 6321 16338 22659

79

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-39 293 508 286 4536 12031 16567 TST -MPL-40 273 410 260 4036 10981 15017 TST -MPL-41 234 628 208 3345 8727 12071 TST -MPL-42 259 433 338 5279 14259 19538 TST -MPL-43 265 546 280 4469 11778 16247 TST -MPL-44 255 829 147 2394 6163 8557 TST -MPL-45 254 368 306 4671 12951 17622 TST -MPL-46 293 695 210 7616 19759 27375 TST -MPL-47 247 297 102 1491 4359 5841 TST -MPL-48 310 611 170 2728 7129 9870 TST -MPL-49 225 337 416 6744 17426 24170 TST -MPL-50 259 410 312 4841 13178 18019

ANDESITE

τm= 07103σm + 26

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=

((σ

1-σ

3)2

) (M

Pa)

MPL PredictionTriaxial Compressive

Figure 431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and MPL test

80

SILICIFIED TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=(

( σ1minus

σ3)

2)

(MPa

)MPL Prediction

Triaxial Compressive Strength test

Figure 432 Comparisons of triaxial compressive strength criterion of silicified

tuffaceous sandstone between the triaxial compressive strength test

and MPL test

81

TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stress σm=((σ1+σ3)2) (MPa)

Max

imum

shea

r st

res

τ m=(

( σ1-

σ3)

2)

(MPa

)

MPL Prediction

Triaxial Compressive Strength test

Figure 433 Comparisons of triaxial compressive strength criterion of tuffaceous

sandstone between the triaxial compressive strength test and MPL

test

Table 425 compares the triaxial test results in terms of the cohesion c

and internal friction angle φi by assuming the failure mode follows the Coulombrsquos

criterion The c and φi values are calculated from the test results and the predicted

results by the assumption of Coulombrsquos criterion (Jaeger and Cook 1978) Table

425 shows that the strengths predicted by MPL testing of all rock types under-

estimate those obtained from the standard triaxial testing This is probably the actual

Poissonrsquos ratio of the rock specimens are probably lower than those assumed in the

model simulation which is assumed the Poissonrsquos ratio as 025

82

Table 425 Comparisons of the internal friction angle and cohesion between MPL

predictions and triaxial compressive strength tests

Triaxial Compressive Strength Test

MPL Predictions (ν=025) Rock Type

c (MPa) φi (degrees) c (MPa) φi (degrees)

Porphyritic Andesite 12 69 4 45

Silicified Tuffaceous Sandstone 13 65 3 46

Tuffaceous Sandstone 7 73 2 46

CHAPTER V

FINITE DIFFERENCE ANALYSES

51 Objectives

The objective of the finite difference analyses is to verify that the equivalent

diameter of rock specimens used in the MPL strength prediction is appropriate The

finite difference analyses using FLAC software is made to determine the MPL

strength for various specimen diameters (D) with a constant cross-sectional area

52 Model characteristics

The analyses are made in axis symmetry Four specimen models with the

constant thickness of 318 cm are loaded with 10 cm diameter loading point The

diameter of the specimen (D) models is varied from 508 cm to 762 cm Each

specimen has a constant cross-sectional area of 1613 cm2 as shown in Figure 51

through 55 The load is applied to the specimens until failure occurs and then the

failure loads (P) are recorded

53 Results of finite difference analyses

The results of numerical simulation are shown in Table 51 The results

suggest that the MPL strength remains roughly constant when the same equivalent

diameter (De) is used It can be concluded that the equivalent diameter used in this

research is appropriate to predict the MPL strength

80

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm

81

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm

82

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm

Table 51 Summary of the results from numerical simulations

Model Number

Specimen Thickness

t (cm)

Specimen Diameter

D (cm)

Cross-Sectional

Are of Specimen

A (cm2)

Equivalent Diameter

De (cm)

Failure Load P

(kN)

1 318 508 1613 508 4485 2 318 572 1613 508 4630 3 318 635 1613 508 4614 4 318 698 1613 508 4627 5 318 762 1613 508 4590

CHAPTER VI

DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS

This chapter discusses various aspects of the proposed MPL testing technique

for determining the elastic modulus uniaxial and triaxial compressive strengths and

tensile strength of intact rock specimens The discussed issues include reliability of

the testing results validity scope and limitations of the proposed method of

calculations and accuracy of the predicted rock properties

61 Discussions

1) For selection of rock specimens for MPL testing in this research an

attempt has been made to select the specimens particularly in obtaining a high degree

of uniformity of rock matrix so as to reduce the intrinsic variability of the mechanical

test results and hence clearly reveals of the relation between the standard test results

with the MPL test results Nevertheless a high degree of intrinsic variability

remains as evidenced from the results of the characterization testing For all tested

rock types here the igneous rocks are normally heterogeneous The high intrinsic

variability is caused by the degree of weathering among specimens and the

distribution of rock fragments in the groundmass which promotes the different

orientations of cleavage planes and pore spaces to become a weak plane in rock

specimens Silicified tuffaceous sandstone the high standard deviation may be

caused by the silicified degree in rock specimens

84

2) For prediction of elastic modulus of rock specimens the effects of the

heterogeneity that cause the selective weak planes are enhanced during the MPL

testing This is because the applied loading areas are much smaller than those under

standard uniaxial compressive strength testing This load condition yields a high

degree of intrinsic variability of the MPL testing results The standard deviation of

the elastic modulus predicted from MPL results are in the range between 35-50

This means that in order to obtain the accurate prediction a large number of rock

specimens is necessary for each rock types and that the MPL testing is more

applicable in fine-grained rocks than coarse-grained rocks Another factor is the

uneven contacts between the loading platens and the rock surfaces which caused the

elastic modulus of all rock types that predicted from MPL testing to be lower

compared with those from the uniaxial compressive strength

3) Equivalent diameter used to define the rock specimen width (perpendicular

to the loading direction) seems adequate for use in MPL predictions of rock

compressive and tensile strengths

4) Determination of σ3 at failure for the MPL testing is the empirical In fact

results from the numerical simulation indicate that σ3 distribution along the imaginary

cylinder between the loading points is not uniform particularly for low td ratio

(lower than 25) Along this cylinder σ3 is tension near the loading point and

becomes compression in the mid-length of the MPL specimen There are also shear

stresses along the imaginary cylinder The induced stress states along the assume

cylinder in MPL specimen are therefore different from those the actual triaxial

strength testing specimen The MPL method can not satisfactorily predict the triaxial

compressive strength of all tested rock types primarily due to the heterogeneity of

85

rock specimens that is the different sizes of phenocrysts in igneous rock in lateral and

horizontal directions This promotes the different failure formations

62 Conclusions

The objective of this research is to determine the elastic modulus uniaxial

compressive strength tensile strength and triaxial compressive strength of rock

specimens by using the modified point load (MPL) test method Three rock types

used in this research are porphyritic andesite silicified tuffaceous sandstone and

tuffaceous sandstone Prior to performing the modified point load testing the

standard characterization testing is carried out on these rock types to obtain the data

basis for use to compare the results from MPL testing The MPL specimens are

irregular-shaped with the specimen thickness to loading platen diameter (td) varies

from 25-35 and the equivalent diameter of specimen to loading platen diameter

(Ded) varies from 15 to 20 Loading platen diameters used in this research are 7 10

and 15 mm Finite different analysis is used to verify the equivalent diameter that use

to calculate rock properties from MPL tests

The research results illustrate that the elastic modulus estimated from MPL tests

under-estimates those obtained from the ASTM standard test with the standard

deviation of 40 for porphyritic andesite 48 for silicified tuffaceous sandstone and

43 for tuffaceous sandstone The MPL test method can satisfactorily predict the

uniaxial compressive strength and tensile strength of all rock types tested here The

conventional point load test method over-predicts the actual strength results by much as

100 The MPL method however can not predict the triaxial compressive strengths

for three rock types tested here primarily due to heterogeneous and different

86

weathering degree of rock specimens and uneven surface of rock specimens This

suggests that the smooth and parallel contact surfaces on opposite side of the loading

points are important for determining the strength of rock specimens for MPL method

63 Recommendations

The assessment of predictive capability of the proposed MPL testing technique

has been limited to three rock types More testing is needed to confirm the applicability

and limitations of the proposed method Some obvious future research needs are

summarized as follows

1) More testing is required for elastic modulus and triaxial compressive strength

on different rock types Smooth and parallel of rock specimen surfaces in the opposite

sides should be prepared for all rock types The results may also reveal the impacts of

grain size on elasticity and strength of obtained under different loading areas And the

effects of size of the areas underneath the applied load should be further investigated

2) To truly confirm the validity of MPL predictions for the elastic modulus and

strength of rocks may be desirable to obtain the actual Poissonrsquos ratio of all rock types

The results could reveal the accuracy of the predicted elastic modulus under the assumed

Poissonrsquos ratio of 025 Comparison between the elastic modulus obtained from the

actual Poissonrsquos ratio may show the validity of assumption of the Poissonrsquos ratio posed

here

3) All tests made in this research are on dry specimens the results of pore

pressure and degree of saturation have not been investigated It is desirable to learn also

the proposed MPL testing technique can yield the intact rock properties under

different degree of saturation

88

REFERENCES

ASTM D2664-86 Standard test method for triaxial compressive strength of

undrained rock core specimens without pore pressure measurements In

Annual Book of ASTM Standards (Vol 0408) Philadelphia American

Society for Testing and Materials

ASTM D7012-07 Standard test method for compressive strength and elastic moduli

of intact rock core specimens under varying states of stress and

temperatures In Annual Book of ASTM Standards (Vol 0408) West

Conshohocken American Society for Testing and Materials

ASTM D3967-81 Standard test method for splitting tensile strength of intact rock

core specimens In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

ASTM D4543-85 Standard test method for preparing rock core specimens and

determining dimensional and shape tolerances In Annual Book of ASTM

Standards (Vol 0408) Philadelphia American Society for Testing and

Materials

ASTM D5731-95 Standard test method for determination of point load strength

index of rock In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

Bieniawski Z T (1974) Estimating of the strength of rock materials J Inst

Min Metall 7 123-137

Bieniawski Z T (1975) The point-load test in geotechnical practice Engng

Geol 9 1-11

89

Bieniawski Z T and Bernede M J (1979) Suggested methods for determining the

uniaxial compressive strength and deferability of rock material for ISRM

Commission on Standardization of Laboratory and Field test Int J Rock

Mech Min Sci 16 (2)xxxx (page no)

Bray J W (1987) Some applications of elastic theory In E T Brown (ed)

Analytical and Computational Methods in Engineering Rock

Mechanics (pp 32-94) Allen amp Unwin London

Broch E and Franklin J A (1972) The point-load test Int J Rock Mech Min

Sci 9 669-697

Book N (1977) The use of irregular specimens for rock strength tests Int J

Rock Mech Min Sci amp Geomech Abstr 14 193-202

Book N (1979) Estimating the triaxial strength of rocks Int J Rock Mech Min

Sci amp Geomech Abstr 16 261-264

Book N (1980) Size correction for point load testing Int J Rock Mech Min

Sci 17231-235 [Technical note]

Book N (1985) The equivalent core diameter method of size and shape correction

in point load testing Int J Rock Mech Min Sci amp Geomech Abstr

22 61-70

Brown E T (1981) Rock characterization Testing and Monitoring ISRM

Suggestion Methods New York International Society for Rock

Mechanics Pergamon Press

Butenuth C (1997) Comparison of tensile strength values of rocks determined by

point load and direct tensile tests Rock Mech Rock Engng 30 65-72

90

Cargill J S and Shakoor A (1992) Evaluation of empirical methods for measuring

the uniaxial compressive strength Int J Rock Mech Min Sci 27 495-503

Chau KT (1997) Youngrsquos modulus interpreted from compression tests with end

friction J Engng Mech January 1-7 plat Ann Inst Tech Trav Publics

58 967-971

Chau KT and Wei X X (1999) A new analytic solution for the diametral point

load strength test on finite solid circular cylinders Int J Solids and

Structures 38(9) 1459-1481

Chau KT and Wong R HC (1996) Uniaxial compressive strength and point

load strength Int J Rock Mech Min Sci 33183-188

Davis R O and Selvadurai APS (1996) Elasticity and Geomechanics New

York Cambridge University Press 198 p

Deere DU and Miller R P (1966) Engineering Classification and Index

Properties for Intact Rock US Air Force Weapons Lab Rep AFWL-

TR-65-116

Durelli A J and Parks V (1962) Relationship of size and stress gradient to brittle

failure stress In Proceeding of the 4th US National Cong Of Appl

Mech (pp 931-938)

Evans I (1961) The tensile strength of coal Colliery Eng 38 428-434

Fairhurst C (1961) Laboratory measurement of some physical properties of rock

In Proceeding of the 4th Symp Rock Mech (pp 105-118) Penn State

University

Farmer I (1983) Engineering Behavior of Rocks New York Chapman and Hall

208 p

91

Forster I R (1983) The influence of core sample geometry on axial load test Int

J Rock Mech Min Sci 20 291-295

Fuenkajorn K (2002) Modified point load test determining uniaxial compressive

strength of intact rock In Proceeding of 5th North American Rock

Mechanics Symposium and the 17th Tunneling Association of Canada

Conference (NARMS-TAC 2002) (pp ) Toronto

Fuenkajorn K and Daemen J J K (1986) Shape effect on ring test tensile

strength In Key to Energy Production Proceeding of the 27th US

Symposium on Rock Mechanics (pp 155-163) Tuscaloosa University of

Alabama

Fuenkajorn K and Daemen J J K (1991b) An empirical strength criterion for

heterogeneous welded tuff In ASME Applied Mechanics and

Biomechanics Summer Conference Columbus Ohio University

Fuenkajorn K and Daemen J J K (1992) An empirical strength criterion for

heterogeneous tuff Int J Engineering Geology 32 209-223

Fuenkajorn K and Tepnarong P (2001) Size and stress gradient effects on the

modified point load strength of Saraburi Marble In the 6th Mining

Metallurgical and Petroleum Engineering Conference Bangkok

Thailand(pp)

Ghosh A Fuenkajorn K and Daemen J J K (1995) Tensile strength of welded

Apache Leap tuff investigation for scale effects In Proceeding of the 35th

US Rock Mech Symposium (pp 459-646) University of Navada Reno

Goodman R E (1980) Methods of Geological Engineering in Discontinuous

Rock New York Wiley and Sons

92

Greminger M (1982) Experimental studies of the influence of rock anisotropy on

size and shape effects in point-load testing Int J Rock Mech Min Sci

19 241-246

Gunsallus K L and Kulhawy F H (1984) A comparative evaluation of rock

strength measures Int J Rock Mech Min Sci 21 233-248

Hassani F P Scoble M J and Whittaker B N (1980) Application of point load

index test to strength determination of rock and proposals for new size-

correction chart (pp 543-564) Rolla

Hiramatsu Y and Oka Y (1966) Determination of tensile strength of rock by a

compression test of irregular test piece Int J Rock Mech Min Sci 3

89-99

Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the

Hoek-Brown falure criterion-Technical note Int J Rock Mech Min Sci

amp Geomech Abstr 27 227-229

Hoek E and Brown E T (1980a) Empirical strength criterion for rock masses J

Geotech Eng Div 106 (GT9) 1013-1035

Hondros G (1959) The evaluation of Poissonrsquos ratio and modulus of material of a

low tensile resistance by the Brazilian (indirect tensile) test with particular

reference to concrete Aust J Appl Sci 10 243-264

Horii H and Nemat-Nasser S (1985) Compression-induced microcrack growth in

brittle solids axial splitting and shear failure J Geophts Res 90 3105-

3125

93

Hudson J A Brown E T and Fairhurst C (1971) Shape of the complete stress-

strain curve for rock In Proceeding of the 13th US Symp Rock Mech (pp

773-795) Urbana

ISRM (1985) Suggested method for determining point load strength Int J Rock

Mech Min Sci amp Geomech Abstr 22 53-60

ISRM (1985) Suggested methods for deformability determination using a flexible

dilatometer Int J Rock Mech Min Sci amp Geomech Abstr 24 123-134

Jaeger J C and Cook N G W (1979) Fundamentals of Rock Mechanics

London Chapman and Hall 593 p

Kaczynski R R (1986) Scale effect during compressive strength of rocks In

Proceeding of 5th Int Assoc Eng Geol Congr p 371-373

Lama R D and Vutukuri V S (1978) Testing techniques and results In

Handbook on Mechanical Properties of Rock Vol III No 2 Trans

Tech Publications (International Standard Book Number 0-87849-022-1

Clausthal Germany)

Lonborg N (1967) The strength-size relation of granite Int J Rock Mech Min

Sci 4 269-272

Miller R P (1965) Engineering Classification and Index Properties for Intact

Rock PhD Dissertation Univ Of Illinois Urbana III 92 p

Nimick F B (1988) Empirical relations between porosity and the mechanical

properties of tuff In Key Questions in Rock Mechanics (pp 741-742)

Balkema Rotterdam

Obert L and Stephenson D E (1965) Stress conditions under which core disking

occurs Trans Soc Min Eng AIME 232 227-235

94

Panek L A and Fannon T A (1992) Size and shape effects in point load tests

of irregular rock fragments J Rock Mechanics and Rock Engineering

25 109-140

Pells P J N (1975) The use of point load test in predicting the compressive

strength of rock material Aust Geotech (pp 54-56) G5(N1)

Reichmuth D R (1968) Point-load testing of brittle materials to determine the

tensile strength and relative brittleness In Proceeding of the 9th US Symp

Rock Mech (pp 134-159) University of Colorado

Sammis C G and Ashby M F (1986) The failure of brittle porous solid under

compressive stress state Acta Metall 34 511-526

Serata S and Fuenkajorn K (1992a) Finite element progam lsquoGEOrsquo for modeling

brittle-ductile deterioration of aging earth structures In SMRI Paper

Presented at the Solution Mining Research Institute Fall Meeting

October 19-22 Houston Texas 24p

Sheorey P R Biswas A K and Choubey V D (1989) An empirical failure

criterion of rocks and jointed rock masses Eng Geol 26 141-159

Stowe R L (1969) Strength and deformation properties of granite basalt

limestone and tuff US Army Corps of Engineers WES Misc Paper C-69-1

Taliercio A and Sacchi Landrianni G (1988) Failure criterion for layered rock

Int J Rock Mech Min Sci amp Geomech Abstr 25 299-305

Tepnarong P (2001) Theoretical and experimental studies to determine

compressive and tensile strengths of rocks using modified point load

testing M Eng Thesis Suranaree University of Technology Thailand

95

Tepnarong P (2006) Theoretical and experimental studies to determine elastic

modulus and triaxial compressive strength of intact rocks by modified

point load testing PhD Eng Thesis Suranaree University of

Technology Thailand

Tepnarong P and Fuenkajorn K (2004) Determining of elasticity and strengths

of intact rocks using modified point load test In Proceeding of the ISRM

International Symposium 3rd ASRM Vol 2 (pp 397-392)

Timoshenko S (1958) Strength of materials I Element Theory and Problems

(3rd ed) Princeton N J D Van Nostard

Timoshenko S and Goodier J N (1951) Theory of Elasticity (2nd ed) New

York McGraw-Hill

Truk N and Dearman W R (1985) Improvements in the determination of point

load strength Bull Int Assoc Eng Geol 31 137-142

Truk N and Dearman W R (1986) A correction equation on the influence of

length-to-diameter ratio on uniaxial compressive strength of rocks J Eng

Geol 22 293-300

Wei X X and Chau K T (2002) Analytic solution for finite transversely

isotropic circular cylinder under the axial point load test J Eng Mech

(pp 209-219)Vol

Wei X X and Chau K T and Wong R H C (1999) Analytic solution for

axial point load strength test on solid circular cylinders J Eng Mech (pp

1349-1357) Vol

96

Wijk G (1978) Some new theoretical aspects of indirect measurements of the

tensile strength of rocks Int J Rock Mech Min Sci amp Geomech

Abstr 15 149-160

Wijk G (1980) The point load test for the tensile strength of rock Geotech Test

ASTM 3 49-54

APPENDIX A

CHARACTERIZATION TEST RESULTS

97

Table A-1 Results of conventional point load strength index test on porphyritic

andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

And-06-05-CPL-01 5397 5366 284 52 And-06-05-CPL-02 5332 5366 283 78 And-08-04-CPL-03 5432 5366 284 90 And-08-04-CPL-04 5482 5366 286 87 And-06-01-CPL-05 5330 5366 285 76 And-06-01-CPL-06 5613 5366 284 76 And-04-04-CPL-07 5617 5366 281 75 And-04-05-CPL-08 5525 5366 282 75 And-03-02-CPL-09 5595 5366 280 85 And-03-02-CPL-10 5535 5366 283 85 And-06-06-CPL-11 5475 5366 283 75 And-09-01-CPL-12 5552 5366 286 90 And-09-01-CPL-13 5503 5366 283 90 And-02-04-CPL-14 5542 5366 282 85 And-09-03-CPL-15 5607 5366 282 85 And-09-03-CPL-16 5452 5366 285 96 And-01-03-CPL-17 5530 5366 283 87 And-01-03-CPL-18 5313 5366 283 90 And-01-04-CPL-19 5465 5366 284 56 And-01-04-CPL-20 5572 5366 283 97

Average 81plusmn12

98

Table A-2 Results of conventional point load strength index test on silicified

tuffaceous sand stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

SST-02-03-CPL-01 5373 5366 268 125 SST-06-04-CPL-02 5469 5366 268 70 SST-02-07-CPL-03 5505 5366 269 70 SST-02-06-CPL-04 5518 5366 267 130 SST-02-04-CPL-05 5626 5366 267 125 SST-02-03-CPL-06 5139 5366 270 132 SST-02-03-CPL-07 5483 5366 271 71 SST-02-05-CPL-08 5340 5366 266 125 SST-02-05-CPL-09 5399 5366 265 70 SST-07-05-CPL-10 5643 5366 263 99 SST-07-05-CPL-11 5381 5366 266 106 SST-05-02-CPL-12 5439 5366 274 104 SST-05-02-CPL-13 5491 5366 271 104 SST-03-04-CPL-14 5430 5366 263 113 SST-03-04-CPL-15 5556 5366 263 106 SST-09-03-CPL-16 5491 5366 272 125 SST-09-03-CPL-17 5703 5366 271 125 SST-01-01-CPL-18 5705 5366 267 132 SST-02-07-CPL-19 5596 5366 269 111 SST-02-07-CPL-20 5527 5366 271 118

Average 108plusmn22

99

Table A-3 Results of conventional point load strength index test on tuffaceous sand

stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

TST-06-05-CPL-01 5657 5366 263 125 TST-06-05-CPL-02 5781 5366 264 109 TST-02-05-CPL-03 5686 5366 263 106 TST-02-05-CPL-04 5747 5366 264 80 TST-08-03-CPL-05 5606 5366 268 115 TST-08-03-CPL-06 5574 5366 266 118 TST-08-01-CPL-07 5491 5366 268 111 TST-08-01-CPL-08 5478 5366 268 115 TST-04-02-CPL-09 5422 5366 263 103 TST-04-02-CPL-10 5387 5366 264 111 TST-08-04-CPL-11 5371 5366 267 115 TST-08-04-CPL-12 5463 5366 267 113 TST-06-07-CPL-13 5545 5366 267 108 TST-04-01-CPL-14 5729 5366 261 59 TST-06-06-CPL-15 5457 5366 261 99 TST-06-06-CPL-16 5469 5366 263 109 TST-06-06-CPL-17 5497 5366 266 122 TST-04-03-CPL-18 5550 5366 261 87 TST-04-03-CPL-19 5521 5366 262 52 TST-04-05-CPL-20 5477 5366 264 87

Average 102plusmn20

100

Table A-4 Results of uniaxial compressive strength tests and elastic modulus

measurements on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-5 Results of uniaxial compressive strength tests and elastic modulus

measurements on silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

Table A-6 Results of uniaxial compressive strength tests and elastic modulus

measurements on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

101

Table A-7 Results of Brazilian tensile strength tests on porphyritic andesite

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

And-04-03-BZ-01 2628 5366 281 395 178 And-04-03-BZ-02 2551 5366 279 350 163 And-04-03-BZ-03 2755 5366 285 380 164 And-04-03-BZ-04 2669 5366 279 415 184 And-04-06-BZ-05 2686 5366 280 320 141 And-04-06-BZ-06 2699 5366 286 415 182 And-04-06-BZ-07 2649 5366 282 395 177 And-04-06-BZ-08 2642 5366 286 340 153 And-06-01-BZ-09 2678 5366 286 435 193 And-06-01-BZ-10 2758 5366 285 385 166

Average 170plusmn16

Table A-8 Results of Brazilian tensile strength tests on silicified tuffaceous

sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

SST-02-02-BZ-01 2507 5366 265 450 213 SST-01-06-BZ-02 2664 5366 264 520 232 SST-01-02-BZ-03 2595 5366 262 400 183 SST-01-02-BZ-04 2593 5366 261 320 146 SST-01-02-BZ-05 2608 5366 266 500 228 SST-02-01-BZ-06 2710 5366 266 500 220 SST-02-01-BZ-07 2654 5366 262 450 201 SST-01-05-BZ-08 2778 5366 268 350 150 SST-01-05-BZ-09 2793 5366 266 400 170 SST-01-05-BZ-10 2795 5366 266 400 170

Average 191plusmn32

102

Table A-9 esults of Brazilian tensile strength tests on tuffaceous sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

TST-02-03-BZ-01 2811 5366 260 360 152 TST-02-03-BZ-02 2757 5366 260 255 110 TST-02-03-BZ-03 2739 5366 262 325 141 TST-02-03-BZ-04 2688 5366 263 175 77 TST-06-04-BZ-05 2765 5366 266 450 193 TST-06-04-BZ-06 2729 5366 264 280 122 TST-06-04-BZ-07 2730 5366 260 230 100 TST-06-02-BZ-08 2748 5366 264 285 123 TST-06-02-BZ-09 2743 5366 261 290 125 TST-06-02-BZ-10 2658 5366 265 370 165

Average 131plusmn33

Table A-10 esults of triaxial compressive strength tests on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-11 Results of triaxial compressive strength tests on silicified tuffaceous

sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

103

Table A-12 Results of triaxial compressive strength tests on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

APPENDIX B

MODIFIED POINT LOAD TEST RESULTS FOR ELASTIC

MODULUS PREDICTION

116

AND-MPL-01

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 125 GPamm

Figure B1 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-01

And-MPL-02

00500

100015002000250030003500400045005000

0 005 01 015 02 025 03 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 180 GPamm

Figure B2 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-02

117

And-MPL-03

00200400600800

100012001400160018002000

000 002 004 006 008 010 012 014

Diplacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B3 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-03

And-MPL-04

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B4 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-04

118

And-MPL-05

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 369 GPamm

Figure B5 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-05

And-MPL-06

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B6 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-06

119

And-MPL-07

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss (

MPa

)

ΔPΔδ = 234 GPamm

Figure B7 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-07

And-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 171 GPamm

Figure B8 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-08

120

And-MPL-09

00

500

1000

1500

2000

2500

3000

3500

000 020 040 060 080 100 120 140Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 056 GPamm

Figure B9 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-09

And-MPL-10

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 124 GPamm

Figure B10 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-10

121

And-MPL-11

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030 035 040Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 138 GPamm

Figure B11 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-11

And-MPL-12

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 189 GPamm

Figure B12 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-12

122

And-MPL-13

00500

100015002000250030003500400045005000

000 010 020 030 040 050 060

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 151 GPamm

Figure B13 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-13

And-MPL-14

00

1000

2000

3000

4000

5000

6000

7000

000 010 020 030 040 050 060Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 165 GPamm

Figure B14 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-14

123

And-MPL-15

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120 140 160Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 011 GPamm

Figure B15 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-15

And-MPL-16

00

200

400

600

800

1000

1200

1400

1600

1800

000 050 100 150 200Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 012 GPamm

Figure B16 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-16

124

And-MPL-17

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120

Displacement (mm)

Stre

ss P

(MPa

) ΔPΔδ = 021 GPamm

Figure B17 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-17

And-MPL-18

00

500

1000

1500

2000

2500

3000

000 050 100 150 200 250 300 350Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 008 GPamm

Figure B18 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-18

125

And-MPL-19

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B19 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-19

And-MPL-20

00

1000

2000

3000

4000

5000

6000

000 050 100 150 200 250 300

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 017 GPamm

Figure B20 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-20

126

And-MPL-21

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B21 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-21

And-MPL-22

00

500

1000

1500

2000

2500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B22 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-22

127

And-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B23 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-23

And-MPL-24

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =112 GPamm

Figure B24 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-24

128

And-MPL-25

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 585 GPamm

Figure B25 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-25

And-MPL-26

00500

10001500200025003000350040004500

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 143 GPamm

Figure B26 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-26

129

And-MPL-27

00500

10001500200025003000350040004500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B27 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-27

And-MPL-28

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B28 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-28

130

And-MPL-29

00500

1000150020002500300035004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B29 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-29

And-MPL-30

00

1000

2000

3000

4000

5000

6000

7000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B30 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-30

131

And-MPL-31

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B31 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-31

And-MPL-32

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B32 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-32

132

And-MPL-33

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 101 GPamm

Figure B33 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-33

And-MPL-34

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 135 GPamm

Figure B34 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-34

133

And-MPL-35

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 127 GPamm

Figure B35 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-35

And-MPL-36

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 292 GPamm

Figure B36 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-36

134

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B37 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-37

And-MPL-38

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B38 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-38

135

And-MPL-39

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 186 GPamm

Figure B39 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-39

And-MPL-40

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 20 GPamm

Figure B40 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-40

136

And-MPL-41

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B41 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-41

And-MPL-42

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B42 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-42

137

And-MPL-43

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 346 GPamm

Figure B43 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-43

And-MPL-44

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B44 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-44

138

And-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 169 GPamm

Figure B45 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-45

And-MPL-46

00

200

400

600

800

1000

1200

1400

1600

1800

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B46 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-46

139

And-MPL-47

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B47 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-47

And-MPL-48

00

200

400

600

800

1000

1200

1400

1600

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 094 GPamm

Figure B48 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-48

140

And-MPL-49

00

100

200

300

400

500

600

700

800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 057 GPamm

Figure B49 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-49

And-MPL-50

00

200

400

600

800

1000

1200

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 078 GPamm

Figure B50 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-50

141

SST-MPL-01

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 280 GPamm

Figure B51 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-01

SST-MPL-02

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 307 GPamm

Figure B52 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-02

142

SST-MPL-03

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 356 GPamm

Figure B53 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-03

SST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 450 GPamm

Figure B54 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-04

143

SST-MPL-05

00100020003000400050006000700080009000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 532 GPamm

Figure B55 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-05

SST-MPL-06

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 273 GPamm

Figure B56 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-06

144

SST-MPL-07

0010002000300040005000600070008000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 418 GPamm

Figure B57 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-07

SST-MPL-08

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 414 GPamm

Figure B58 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-08

145

SST-MPL-09

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B59 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-09

SST-MPL-10

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 958 GPamm

Figure B60 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-10

146

SST-MPL-11

00

10002000

300040005000

60007000

8000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 400 GPamm

Figure B61 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-11

SST-MPL-12

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 272 GPamm

Figure B62 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-12

147

SST-MPL-13

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 408 GPamm

Figure B63 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-13

SST-MPL-14

00

500

1000

1500

2000

2500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 296 GPamm

Figure B64 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-14

148

SST-MPL-15

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 282 GPamm

Figure B65 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-15

SST-MPL-16

00500

1000150020002500300035004000

000 005 010 015 020

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 26 GPamm

Figure B66 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-16

149

SST-MPL-17

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 416 GPamm

Figure B67 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-17

SST-MPL-18

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 473 GPamm

Figure B68 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-18

150

SST-MPL-19

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 330 GPamm

Figure B69 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-19

SST-MPL-20

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 278 GPamm

Figure B70 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-20

151

SST-MPL-21

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 185 GPamm

Figure B71 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-21

SST-MPL-22

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B72 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-22

152

SST-MPL-23

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 15 GPamm

Figure B73 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-23

SST-MPL-24

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 295 GPamm

Figure B74 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-24

153

SST-MPL-25

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 259 GPamm

Figure B75 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-25

SST-MPL-26

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 221 GPamm

Figure B76 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-26

154

SST-MPL-27

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 274 GPamm

Figure B77 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-27

SST-MPL-28

0010002000300040005000600070008000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 209 GPamm

Figure B78 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-28

155

SST-MPL-29

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 176 GPamm

Figure B79 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-29

SST-MPL-30

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B80 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-30

156

SST-MPL-31

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 464 GPamm

Figure B81 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-31

SST-MPL-32

00

500

1000

1500

2000

2500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 178 GPamm

Figure B82 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-32

157

SST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 131 GPamm

Figure B83 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-33

SST-MPL-34

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 215 GPamm

Figure B84 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-34

158

SST-MPL-35

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 190 GPamm

Figure B85 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-35

SST-MPL-36

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B86 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-36

159

SST-MPL-37

00500

1000150020002500300035004000

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 067 GPamm

Figure B87 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-37

AND-MPL-38

00

500

10001500

2000

2500

3000

35004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 127 GPamm

Figure B88 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-38

160

SST-MPL-39

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 229 GPamm

Figure B89 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-39

SST-MPL-40

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 090 GPamm

Figure B90 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-40

161

SST-MPL-41

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 498 GPamm

Figure B91 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-41

SST-MPL-42

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 392 GPamm

Figure B92 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-42

162

SST-MPL-43

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 244 GPamm

Figure B93 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-43

SST-MPL-44

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 571 GPamm

Figure B94 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-44

163

SST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 001 002 003 004 005 006 007 008

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 780 GPamm

Figure B95 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-45

SST-MPL-46

0010002000300040005000600070008000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 411 GPamm

Figure B96 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-46

164

SST-MPL-47

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 309 GPamm

Figure B97 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-47

SST-MPL-48

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 338 GPamm

Figure B98 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-48

165

SST-MPL-49

00500

1000150020002500300035004000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 254 GPamm

Figure B99 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-49

SST-MPL-50

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 360 GPamm

Figure B100 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-50

166

TST-MPL -01

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 212GPamm

Figure B101 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-01

TST-MPL-02

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=326 GPamm

Figure B102 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-02

167

TST-MPL-03

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacememt (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B103 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-03

TST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B104 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-04

168

TST-MPL-05

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 264 GPamm

Figure B105 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-05

TST-MPL-06

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacment (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B106 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-06

169

TST-MPL-07

00

500

1000

1500

2000

2500

3000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 162 GPamm

Figure B107 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-07

TST-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=319 GPamm

Figure B108 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-08

170

TST-MPL-09

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =212 GPamm

Figure B109 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-09

TST-MPL-10

00200400600800

1000120014001600

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 132GPamm

Figure B110 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-10

171

TST-MPL-11

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =319 GPamm

Figure B111 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-11

TST-MPL-12

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 127 GPamm

Figure B112 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-12

172

TST-MPL-13

00500

1000150020002500300035004000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 159 GPamm

Figure B113 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-13

TST-MPL-14

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =170 GPamm

Figure B114 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-14

173

TST-MPL-15

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 260 GPamm

Figure B115 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-15

TST-MPL-16

00500

100015002000250030003500400045005000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B116 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-16

174

TST-MPL-17

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B117 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-17

TST-MPL-18

00

200

400

600

800

1000

1200

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=073 GPamm

Figure B118 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-18

175

TST-MPL-19

00

200

400

600

800

1000

1200

1400

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B119 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-19

TST-MPL-20

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=170 GPamm

Figure B120 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-20

176

TST-MPL-21

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=100 GPamm

Figure B121 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-21

TST-MPL-22

00200400600800

10001200140016001800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 088 GPamm

Figure B122 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-22

177

TST-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 101 GPamm

Figure B123 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-23

TST-MPL-24

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 124 GPamm

Figure B124 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-24

178

TST-MPL-25

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 126 GPamm

Figure B125 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-25

TST-MPL-26

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 178 GPamm

Figure B126 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-26

179

TST-MPL-27

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B127 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-27

TST-MPL-28

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 164 GPamm

Figure B128 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-28

180

TST-MPL-29

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B129 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-29

TST-MPL-30

00500

100015002000250030003500400045005000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =280 GPamm

Figure B130 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-30

181

TST-MPL-31

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B131 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-31

TST-MPL-32

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B132 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-32

182

TST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 130 GPa mm

Figure B133 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-33

TST-MPL-34

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B134 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-34

183

TST-MPL-35

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B135 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-35

TST-MPL-36

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B136 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-36

184

TST-MPL-37

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 217 GPamm

Figure B137 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-37

TST-MPL-38

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 52 GPamm

Figure B138 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-38

185

TST-MPL-39

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B139 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-39

TST-MPL-40

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 347 GPamm

Figure B140 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-40

186

TST-MPL-41

00

500

1000

1500

2000

2500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B141 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-41

TST-MPL-42

00

500

1000

1500

2000

2500

3000

3500

4000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B142 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-42

187

TST-MPL -43

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 435 GPamm

Figure B143 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-43

TST-MPL-44

00

200

400

600

800

1000

1200

1400

1600

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B144 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-44

188

TST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 315 GPamm

Figure B145 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-45

TST-MPL-46

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B146 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-46

189

TST-MPL-47

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=128 GPamm

Figure B147 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-47

TST-MPL-48

00200400600800

10001200140016001800

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 237GPamm

Figure B148 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-48

190

TST-MPL-49

00

500

1000

1500

2000

2500

3000

3500

4000

4500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B149 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-49

TST-MPL-50

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 394 GPamm

Figure B150 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-50

BIOGRAPHY

Mr Chatchai Intaraprasit was born on July 30 1973 in Khon Kaen province

Thailand He received his Bachelorrsquos Degree in Science (Geotechnology) from Khon

Kaen University in 1996 He worked with the construction company for ten years

after graduated the Bachelorrsquos Degree For his post-graduate he continued to study

with a Masterrsquos Degree in the Geological Engineering Program Institute of

Engineering Suranaree University of Technology He has published a technical

papers related to rock mechanics as in 2009 ldquoModified point load testing of volcanic

rocks from Chatree gold minerdquo in the proceeding of the second Thailand symposium

on rock mechanics Chonburi Thailand For his work he is working as a

geotechnical engineer at Akara mining company limited Phichit province Thailand

  • cover
  • abstractpdf
  • CHAPTER I
  • CHAPTER II
  • CHAPTER III
  • CHAPTER IV
  • CHAPTER V
  • CHAPTER VI
  • REFERENCES
  • APPENDIX A
  • APPENDIX B
  • BIOGRAPHY
Page 9: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·

TABLE OF CONTENTS

Page

ABSTRACT (THAI) I

ABSTRACT (ENGLISH) III

ACKNOWLEDGEMENTS V

TABLE OF CONTENTS VI

LIST OF TABLES IX

LIST OF FIGURES XIII

LIST OF SYMBOLS AND ABBREVIATIONS XVII

CHAPTER

I INTRODUCTION 1

11 Background and rationale 1

12 Research objectives 2

13 Research concept 3

14 Research methodology 3

141 Literature review 3

142 Sample collection and preparation 5

143 Theoretical study of the rock failure

mechanism 5

144 Laboratory testing 5

1441 Characterization tests 5

VII

TABLE OF CONTENTS (Continued)

Page

1442 Modified point load tests 6

145 Analysis 6

146 Thesis Writing and Presentation 6

15 Scope and Limitations 7

16 Thesis Contents 7

II LITERATURE REVIEW 8

21 Introduction 8

22 Conventional point load tests 8

23 Modified point load tests 11

24 Characterization tests 14

241 Uniaxial compressive strength tests 14

242 Triaxial compressive strength tests 15

243 Brazilian tensile strength tests 16

25 Size effects on compressive strength 16

III SAMPLE COLLECTION AND PREPARATION 17

31 Sample collection 17

32 Rock descriptions 17

33 Sample preparation 20

IV LABORATORY TESTS 22

41 Literature reviews 22

VIII

TABLE OF CONTENTS (Continued)

Page

411 Displacement Function 22

42 Basic Characterization Tests 23

421 Uniaxial Compressive Strength Tests

and Elastic Modulus Measurements 23

422 Triaxial Compressive Strength Tests 31

423 Brazilian Tensile Strength Tests 38

424 Conventional Point Load Index (CPL) Tests 39

43 Modified Point Load (MPL) Tests 46

431 Modified Point Load Tests for Elastic

Modulus Measurement 54

432 Modified Point Load Tests predicting

Uniaxial Compressive Strength 61

433 Modified Point Load Tests for Tensile

Strength Predictions 63

434 Modified Point Load Tests for Triaxial

Compressive Strength Predictions 69

V FINITE DIFFERENCE ANALYSIS 79

51 Objectives 79

52 Model Characteristics 79

53 Results of finite difference analyses 79

IX

TABLE OF CONTENTS (Continued)

Page

VI DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS 83

61 Discussions 83

62 Conclusions 85

63 Recommendations 86

REFERENCES 87

APPENDICES

APPENDIX A CHARACTERIZATION TEST RESULTS 96

APPENDIX B MODIFIED POINT LOAD TEST RESULTS FOR

ELASTIC MODULUS PREDICTION 104

BIOGRAPHY 180

LIST OF TABLES

Table Page

31 The nominal sizes of specimens following the ASTM standard

practices for the characterization tests 20

41 Testing results of porphyritic andesite 30

42 Testing results of tuffaceous sandstone 30

43 Testing results of silicified tuffaceous sandstone 30

44 Uniaxial compressive strength and tangent elastic modulus

measurement results of three rock types 31

45 Triaxial compressive strength testing results of porphyritic andesite 35

46 Triaxial compressive strength testing results of

tuffaceous sandstone 35

47 Triaxial compressive strength testing results of silicified

tuffaceous sandstone 36

48 Results of triaxial compressive strength tests on three rock types 38

49 The results of Brazilian tensile strength tests of three rock types 41

410 Results of conventional point load strength index tests of

three rock types 44

411 Results of modified point load tests on porphyritic andesite 49

412 Results of modified point load tests on tuffaceous sandstone 51

413 Results of modified point load tests on silicified tuffaceous sandstone 52

X

LIST OF TABLE (Continued)

Table Page

414 Results of elastic modulus calculation from MPL tests on porphyritic andesite57

415 Results of elastic modulus calculation from MPL tests on

silicified tuffaceous sandstone 58

416 Results of elastic modulus calculation from MPL tests on

tuffaceous sandstone 60

417 Comparisons of elastic modulus results obtained from

uniaxial compressive strength tests and those from modified

point load tests 61

418 Comparison the test results between UCS CPL Brazilian

tensile strength and MPL tests 63

419 Results of tensile strengths of porphyritic andesite predicted from MPL tests 64

420 Results of tensile strengths of silicified tuffaceous sandstone

predicted from MPL tests 66

421 Results of tensile strengths of tuffaceous sandstone

predicted from MPL tests 68

422 Results of triaxial strengths of porphyritic andesite predicted from MPL tests 71

423 Results of triaxial strengths of silicified tuffaceous sandstone

predicted from MPL tests 72

424 Results of triaxial strengths of tuffaceous sandstone

predicted from MPL tests 74

XI

LIST OF TABLE (Continued)

Table Page

425 Comparisons of the internal friction angle and cohesion

between MPL predictions and triaxial compressive strength tests 78

51 Summary of the results from numerical simulations 82

A1 Results of conventional point load strength index test on porphyritic andesite 97

A2 Results of conventional point load strength index test on

silicified tuffaceous sandstone 98

A3 Results of conventional point load strength index test on

tuffaceous sandstone 99

A4 Results of uniaxial compressive strength tests and elastic

modulus measurement on porphyritic andesite 100

A5 Results of uniaxial compressive strength tests and elastic

modulus measurement on silicified tuffaceous sandstone 100

A6 Results of uniaxial compressive strength tests and elastic

modulus measurement on tuffaceous sandstone 100

A7 Results of Brazilian tensile strength tests on porphyritic andesite 101

A8 Results of Brazilian tensile strength tests on silicified

tuffaceous sandstone 101

A9 Results of Brazilian tensile strength tests on

tuffaceous sandstone 102

A10 Results of triaxial compressive strength tests on porphyritic andesite 102

XII

LIST OF TABLE (Continued)

Table Page

A11 Results of triaxial compressive strength tests on

silicified tuffaceous Sandstone 102

A12 Results of Brazilian tensile strength tests on

tuffaceous sandstone 103

LIST OF FIGURES

Figure Page

11 Research plan 4

21 Loading system of the conventional point load (CPL) 10

22 Standard loading platen shape for the conventional point

load testing 10

31 The location of rock samples collected area 19

32 Some prepared rock specimens of porphyritic andesite for MPL Tests 21

33 The concept of specimen preparation for MPL testing 21

41 Pre-test samples of porphyritic andesite for UCS test 25

42 Pre-test samples of tuffaceous sandstone for UCS test 25

43 Pre-test samples of silicified tuffaceous sandstone for UCS test 26

44 Preparation of testing apparatus of porphyritic andesite for UCS test 26

45 Post-test rock samples of porphyritic andesite from UCS test 27

46 Post-test rock samples of tuffaceous sandstone

from UCS test 27

47 Post-test rock samples of tuffaceous sandstone from UCS 28

48 Results of uniaxial compressive strength tests and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted

as a function of axial strains 28

XIV

LIST OF FIGURES (Continued)

Figure Page

49 Results of uniaxial compressive strength tests and elastic

modulus measurements of tuffaceous sandstone (Top)

and silicified tuffaceous sandstone (Bottom) The axial

stresses are plotted as a function of axial strains 29

410 Pre-test samples for triaxial compressive strength test the

top is porphyritic andesite and the bottom is tuffaceous sandstone 32

411 Pre-test sample of silicified tuffaceous sandstone for triaxial

compressive strength test 33

412 Triaxial testing apparatus 33

413 Post-test rock samples from triaxial compressive strength tests

The top is porphyritic andesite and the bottom is tuffaceous sandstone 34

414 Post-test rock samples of silicified tuffaceous sandstone from

triaxial compressive strength test 35

415 Mohr-Coulomb diagram for porphyritic andesite 37

416 Mohr-Coulomb diagram for tuffaceous sandstone 37

417 Mohr-Coulomb diagram for silicified tuffaceous sandstone 38

418 Pre-test samples for Brazilian tensile strength test (a) porphyritic andesite

(b) tuffaceous sandstone and

(c) silicified tuffaceous sandstone 40

419 Brazilian tensile strength test arrangement 41

XV

LIST OF FIGURES (Continued)

Figure Page

420 Post-test specimens (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 42

421 Pre-test samples of porphyritic andesite for conventional point load

strength index test 43

422 Conventional point load strength index test arrangement 43

423 Post-test specimens from conventional point load

strength index tests (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 45

424 Conventional and modified loading points 47

425 MPL testing arrangement 47

426 Post-test specimen the tension-induced crack commonly

found across the specimen and shear cone usually formed

underneath the loading platens 48

427 Example of P-δ curve for porphyritic andesite specimen The ratio

of ∆P∆δ is used to predict the elastic modulus of MPL

specimen (Empl) 56

428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests 62

429 Uniaxial compressive strength predicted for silicified

tuffaceous sandstone from MPL tests 62

XVI

LIST OF FIGURES (Continued)

Figure Page

430 Uniaxial compressive strength predicted for tuffaceous

sandstone from MPL tests 63

431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and

modified point load test 75

432 Comparisons of triaxial compressive strength criterion of

silicified tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 76

433 Comparisons of triaxial compressive strength criterion of

tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 77

51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm 80

52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm 80

53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm 81

54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm 81

55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm 82

LIST OF SYMBOLS AND ABBREVIATIONS

A = Original cross-section Area

c = cohesive strength

CP = Conventional Point Load

D = Diameter of Rock Specimen

D = Diameter of Loading Point

De = Equivalent Diameter

E = Youngrsquos Modulus

Empl = Elastic Modulus by MPL Test

Et = Tangent Elastic Modulus

IS = Point Load Strength Index

L = Original Specimen Length

LD = Length-to-Diameter Ratio

MPL = Modified Point Load

Pf = Failure Load

Pmpl = Modified Point Load Strength

t = Specimen Thickness

α = Coefficient of Stress

αE = Displacement Function

β = Coefficient of the Shape

∆L = Axial Deformation

XVIII

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

∆P = Change in Applied Stress

∆δ = Change in Vertical of Point Load Platens

εaxial = Axial Strain

ν = Poissonrsquos Ratio

ρ = Rock Density

σ = Normal Stress

σ1 = Maximum Principal Stress (Vertical Stress)

σ3 = Minimum Principal Stress (Horizontal Stress)

σB = Brazilian Tensile Stress

σc = Uniaxial Compressive Strength (UCS)

σm = Mean Stress

τ = Shear Stress

τoct = Octahedral Shear Stress

φi = angle of Internal friction

CHAPTER I

INTRODUCTION

11 Background and rationale

In geological exploration mechanical rock properties are one of the most

important parameters that will be used in the analysis and design of engineering

structures in rock mass To obtain these properties the rock from the site is extracted

normally by mean of core drilling and then transported the cores to the laboratory

where the mechanical testing can be conducted Laboratory testing machine is

normally huge and can not be transported to the site On site testing of the rocks may

be carried out by some techniques but only on a very limited scale This method is

called for point load strength Index testing However this test provides unreliable

results and lacks theoretical supports Its results may imply to other important

properties (eg compressive and tensile strength) but only based on an empirical

formula which usually poses a high degree of uncertainty

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strength and elastic modulus of intact rock

specimens in the laboratory (Tepnarong 2001) This method was invented and

patented by Suranaree University of Technology The test apparatus and procedure

are intended to be in expensive and easy compared to the relevant conventional

methods of determining the mechanical properties of intact rock eg those given by

the International Society for Rock Mechanics (ISRM) and the American Society for

2

Testing and Materials (ASTM) In the past much of the MPL testing practices has

been concentrated on circular and disk specimens While it has been claimed that

MPL method is applicable to all rock shapes the test results from irregular lumps of

rock have been rare and hence are not sufficient to confirm that the MPL testing

technique is truly valid or even adequate to determine the basic rock mechanical

properties in the field where rock drilling and cutting devices are not available

12 Research objectives

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine are used as

rock samples A minimum of 150 rock samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone are collected from the site The

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure are used to calculate the elastic modulus and strengths of rocks Uniaxial and

triaxial compression tests Brazilian tension test and conventional point load test are

conducted on the three rock types to obtain data basis for comparing with those from

MPL testing Finite difference analysis is performed to obtain stress distribution

within the MPL samples under different td and Dd ratios The effect of the

irregularity is quantitatively assessed Similarity and discrepancy of the test results

from the MPL method and from the conventional method are examined

Modification of the MPL calculation scheme may be made to enhance its predictive

capability for the mechanical properties of irregular shaped specimens

3

13 Research concept

A modified point load (MPL) testing technique was proposed by Fuenkajorn

and Tepnarong (2001) and Fuenkajorn (2002) The objectives of this testing are to

determine the elastic modulus uniaxial compressive strength and tensile strength of

intact rocks The application of testing apparatus is modified from the loading

platens of the conventional point load (CPL) testing to the cylindrical shapes that

have the circular cross-section while they are half-spherical shapes in CPL

The modes of failure for the MPL specimens are governed by the ratio of

specimen diameter to loading platen diameter (Dd) and the ratio of specimen

thickness to loading platen diameter (td) This research involves using the MPL

results to estimate the triaxial compressive strength of specimens which various Dd

and td ratios and compare to the conventional compressive strength test

14 Research methodology

This research consists of six main tasks literature review sample collection

and preparation laboratory testing finite difference analysis comparison discussions

and conclusions The work plan is illustrated in the Figure 11

141 Literature review

Literature review is carried out to study the state-of-the-art of CPL and MPL

techniques including theories test procedure results analysis and applications The

sources of information are from journals technical reports and conference papers A

summary of literature review is given in this thesis Discussions have been also been

made on the advantages and disadvantages of the testing the validity of the test results

4

Preparation

Literature Review

Sample Collection and Preparation

Theoretical Study

Laboratory Ex

Figure 11 Research methodology

periments

MPL Tests Characterization Tests

Comparisons

Discussions

Laboratory Testing

Various Dd UCS Tests

Various td Brazilian Tension Tests

Triaxial Compressive Strength Tests

CPL Tests

Conclusions

5

when correlating with the uniaxial compressive strength of rocks and on the failure

mechanism the specimens

142 Sample collection and preparation

Rock samples are collected from the north pit-wall of Khao

Moh at Chatree gold mine Three rock types are tested with a minimum of 50

samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable Sample preparation is carried out in the laboratory at Suranaree

University of Technology

143 Theoretical study of the rock failure mechanism

The theoretical work primarily involves numerical analyses on

the MPL specimens under various shapes Failure mechanism of the modified point

load test specimens is analyzed in terms of stress distributions along loaded axis The

finite difference code FLAC is used in the simulation The mathematical solutions

are derived to correlate the MPL strengths of irregular-shaped samples with the

uniaxial and traiaxial compressive strengths tensile strength and elastic modulus of

rock specimens

144 Laboratory testing

Three prepared rock type samples are tested in laboratory

which are divided into two main groups as follows

1441 Characterization tests

The characterization tests include uniaxial compressive

strength tests (ASTM D7012-07) Brazilian tensile strength tests (ASTM D3967

1981) triaxial compressive strength tests (ASTM D7012-07) and conventional point

6

load index tests (ASTM D5731 1995) The characterization testing results are used

in verifications of the proposed MPL concept

1442 Modified point load tests

Three rock types of rock from the north pit-wall of

Khao Moh at Chatree gold mine are used as rock samples A minimum of 150 rock

samples of porphyritic andesite silicified-tuffaceous sandstone and tuffaceous

sandstone are used in the MPL testing The sample thickness-to-loading diameter

ratio (td) is varied from 2 to 3 and the sample diameter-to-loading diameter ratio

(Dd) from 5 to 10 The sample deformation and failure are used to calculate the

elastic modulus and strengths of rocks The MPL testing results are compared with

the standard tests and correlated the relations in terms of mathematic formulas

145 Analysis

Finite difference analysis is performed to obtain stress

distribution within the MPL samples under various shapes with different td and Dd

ratios The effect of the irregularity is quantitatively assessed Similarity and

discrepancy of the test results from the MPL method and from the conventional

method are examined Modification of the MPL calculation scheme may be made to

enhance its predictive capability for the mechanical properties of irregular shaped

specimens

146 Thesis writing and presentation

All aspects of the theoretical and experimental studies

mentioned are documented and incorporated into the thesis The thesis discusses the

validity and potential applications of the results

7

15 Scope and limitations

The scope and limitations of the research include as follows

1 Three rock types of rock from the pit wall of Chatree gold mine are

selected as a prime candidate for use in the experiment

2 The analytical and experimental work assumes linearly elastic

homogeneous and isotropic conditions

3 The effects of loading rate and temperature are not considered All tests

are conducted at room temperature

4 MPL tests are conducted on a minimum of 50 samples

5 The investigation of failure mode is on macroscopic scale Macroscopic

phenomena during failure are not considered

6 The finite difference analysis is made in axis symmetric and assumed

elastic homogeneous and isotropic conditions

7 Comparison of the results from MPL tests and conventional method is

made

16 Thesis contents

The first chapter includes six sections It introduces the thesis by briefly

describing the background and rationale and identifying the research objectives that

are describes in the first and second section The third section describes the proposed

concept of the new testing technique The fourth section describes the research

methodology The fifth section identifies the scope and limitation of the research and

the description of the overview of contents in this thesis are in the sixth section

CHAPTER II

LITERATURE REVIEW

21 Introduction

This chapter summarizes the results of literature review carried out to improve an

understanding of the applications of modified point load testing to predict the strengths and

elastic modulus of the intact rock The topics reviewed here include conventional point

load test modified point load test characterization tests and size effects

22 Conventional point load tests

Conventional point load (CPL) testing is intended as an index test for the strength

classification of rock material It has long been practiced to obtain an indicator of the

uniaxial compressive strength (UCS) of intact rocks The testing equipment (Figure 21)

is essentially a loading system comprising a loading flame hydraulic oil pump ram and

loading platens The geometry of the loading platen is standardized (Figure 22) having

60 degrees angle of the cone with 5 mm radius of curvature at the cone tip It is made of

hardened steel The CPL test method has been widely employed because the test

procedure and sample preparation are simple quick and inexpensive as compared with

conventional tests as the unconfined compressive strength test Starting with a simple

method to obtain a rock properties index the International Society for Rock Mechanics

(ISRM) commissions on testing methods have issued a recommended procedure for the

point load testing (ISRM 1985) the test has also been established as a standard test

method by the American Society for Testing and Materials in 1995 (ASTM 1995)

9

Although the point load test has been studied extensively (eg Broch and Franklin

1972 Bieniawski 1974 and 1975 Wijk 1980 Brook 1985) the theoretical solutions

for the test result remain rare Several attempts have been made to truly understand

the failure mechanism and the impact of the specimen size on the point load strength

results It is commonly agreed that tensile failure is induced along the axis between

loading points (Evans 1961 Hiramutsu 1976 Wijk 1978 1980) The most

commonly accepted formula relating the CPL index and the UCS is proposed by

Broch and Franklin (1972) The UCS (or σc) can be estimated as about 24 times of

the point load strength index (Is) of rock specimens with the diameter-to-length ratio

of 05 The IS value should also be corrected to a value equivalent to the specimen

diameter of 50 mm The factor of 24 can sometimes load to an error in the prediction

of the UCS Most previous studied have been done experimentally but rare

theoretical attempt has been made to study the validity of Broch and Franklin

formula

The CPL testing has been performed using a variety of sizes and shapes of

rock specimen (Wijk 1980 Foster 1983 Panek and Fannon 1992 Chau and Wong

1996 Butenuth 1997) This is to determine the most suitable specimen sizes These

investigations have proposed empirical relations between the IS and σc to be

universally applicable to various rock types However some uncertainly of these

relations remains

Panek and Fannon (1992) show the results of the CPL tests UCS tests and

Brazilian tension tests that are performed on three hard rocks (iron-formation

metadiabase and ophitic basalt) The CPL strength is analyzed in terms of the

10

Figure 21 Loading system of the conventional point load (CPL) (Tepnarong 2001)

Figure 22 Standard loading platen shape for the conventional point load testing

(ISRM suggested method and ASTM D5731-95)

11

size and shape effects More than 500 an irregular lumps were tested in the field

The shape effect exponents for compression have been found to be varied with rock

types The shape effect exponents in CPL tests are constant for the three rocks

Panek and Fannon (1992) recommended that the monitoring of the compressive and

tensile strengths should have various sizes and shapes of specimen to obtain the

certain properties

Chau and Wong (1996) study analytically the conversion factor relating

between σc and IS A wide range of the ratios of the uniaxial compressive strength to

the point load index has been observed among various rock types It has been found

that the uniaxial compressive strength of rocks can vary from 62 (Nevada test site

tuff) to 105 (Flaming Gorge shale) times the IS depending on rock type The

conversion factor relating σc to be Is depends on compressive and tensile strengths

the Poissonrsquos ratio and the length and diameter of specimen The conversion factor

of 24 (Broch and Franklin 1972) falls within this range but it is no by meaning

universal

23 Modified point load tests

Tepnarong (2001) proposed a modified point load testing method to correlate

the results with the uniaxial compressive strength (UCS) and tensile strength of intact

rocks The primary objective of the research is to develop the inexpensive and

reliable rock testing method for use in field and laboratory The test apparatus is

similar to the conventional point load (CPL) except that the loading points are cut

flat to have a circular cross-section area instead of using a half-spherical shape To

derive a new solution finite element analyses and laboratory experiments were

12

carried out The simulation results suggested that the applied stress required failing

the MPL specimen increased logarithmically as the specimen thickness or diameter

increased The MPL tests CPL tests UCS tests and Brazilian tension tests were

performed on Saraburi marble under a variety of sizes and shapes The UCS test

results indicated that the strengths decreased with increased the length-to-diameter

ratio The test results can be postulated that the MPL strength can be correlated with

the compressive strength when the MPL specimens are relatively thin and should be

an indicator of the tensile strength when the specimens are significantly larger than

the diameter of the loading points Predictive capability of the MPL and CPL

techniques were assessed Extrapolation of the test results suggested that the MPL

results predicted the UCS of the rock specimens better than the CPL testing The

tensile strength predicted by the MPL also agreed reasonably well with the Brazilian

tensile strength of the rock

Tepnarong (2006) proposed the modified point load testing technique to

determine the elastic modulus and triaxial compressive strength of intact rocks The

loading platens are made of harden steel and have diameter (d) varying from 5 10

15 20 25 to 30 mm The rock specimens tested were marble basalt sandstone

granite and rock salt Basic characterization tests were first performed to obtain

elastic and strength properties of the rock specimen under standard testing methods

(ASTM) The MPL specimens were prepared to have nominal diameters (D) ranging

from 38 mm to 100 mm with thickness varying from 18 mm to 63 mm Testing on

these circular disk specimens was a precursory step to the application on irregular-

shaped specimens The load was applied along the specimen axis while monitoring

the increased of the load and vertical displacement until failure Finite element

13

analyses were performed to determine the stress and deformation of the MPL

specimens under various Dd and td ratios The numerical results were also used to

develop the relationship between the load increases (∆P) and the rock deformation

(∆δ) between the loading platens The MPL testing predicts the intact rock elastic

modulus (Empl) by using an equation Empl = (tαE) (∆P∆δ) where t represents the

specimen thickness and αE is the displacement function derived from numerical

simulation The elastic modulus predicted by MPL testing agrees reasonably well

with those obtained from the standard uniaxial compressive tests The predicted Empl

values show significantly high standard deviation caused by high intrinsic variability

of the rock fabric This effect is enhanced by the small size of the loading area of the

MPL specimens as compared to the specimen size used in standard test methods

The results of the numerical simulation were used to determine the minimum

principal stress (σ3) at failure corresponding to the maximum applied principal stress

(σ1) A simple relation can therefore be developed between σ1 σ3 ratio Poissonrsquos ratio

(ν) and diameter ratio (Dd) to estimate the triaxial compressive strengths of the rock

specimens σ1 σ3 = 2[(ν(1-ν))(1-(dD)2)]-1 The MPL test results from specimens with

various Dd ratios can provide σ1 and σ3 at failure by assuming that ν = 025 and that

failure mode follows Coulomb criterion The MPL predicted triaxial strengths agree

very well with the triaxial strength obtained from the standard triaxial testing (ASTM)

The discrepancy is about 2-3 which may be due to the assumed Poissonrsquos ratio of 25

and due to the assumption used in the determination of σ3 at failure In summary even

through slight discrepancies remain in the application of MPL results to determine the

elastic modulus and triaxial compressive strength of intact rocks this approach of

14

predicting the rock properties shows a good potential and seems promising considering

the low cost of testing technique and ease of sample preparation

24 Characterization tests

241 Uniaxial compressive strength tests

The uniaxial compressive strength test is the most common laboratory

test undertaken for rock mechanics studies In 1972 the International Society of Rock

Mechanics (ISRM) published a suggested method for performing UCS tests (Brown

1981) Bieniawski and Bernede (1979) proposed the procedures in American Society

for Testing and Materials (ASTM) designation D2938

The tests are also the most used tests for estimating the elastic

modulus of rock (ASTM D7012) The axial strain can be measured with strain gages

mounted on the specimen or with the Linear Variable Differential Tranformers

(LVDTs) attached parallel to the length of the specimen The lateral strain can be

measured using strain gages around the circumference or using the LVDTs across

the specimen diameter

The UCS (σc) is expressed as the ratio of the peak load (P) to the

initial cross-section area (A)

σc= PA (21)

And the Youngrsquos modulus (E) can be calculated by

E= ΔσΔε (22)

Where Δσ is the change in stress and Δε is the change in strain

15

The ratio of lateral strain and axial strain magnitudes (εlatεax) determines the value of

Poissonrsquo ratio (ν)

ν = - (εlatεax) (23)

242 Triaxial compressive strength tests

Hoek and Brown (1980b) and Elliott and Brown (1986) used the

triaxaial compressive strength tests to gain an understanding of rock behavior under a

three-dimensions state of stress and to verify and even validate mathematical

expressions that have been derived to represent rock behavior in analytical and

numerical models

The common procedures are described in ASTM designation D7012 to

determine the triaxial strengths and D7012 to determine the elastic moduli and in

ISRM suggested methods (Brown 1981)

The axial strain can be measured with strain gages mounted on the

specimen or with the LVTDs attached parallel to the length of the specimen The

lateral strain can be measured using strain gages around the circumstance within the

jacket rubber

At the peak load the stress conditions are σ1 = PA σ3=p where P is

the maximum load parallel to the cylinder axis A is the initial cross-section area and

p is the pressure in the confining medium

The Youngrsquos modulus (E) and Poissonrsquos ratio (ν) can be calculated by

E = Δ(σ1-σ3)Δ εax (24)

and

16

ν = (slope of axial curve) (slope of lateral curve) (25)

where Δ(σ1-σ3) is the change in differential stress and Δ εax is the change in axial strain

243 Brazilian tensile strength tests

Caneiro (1974) and Akazawa (1953) proposed the Brazilian tensile

strength test of intact rocks Specifications of Brazilian tensile strength test have been

established by ASTM D3967 and suggested approach is provided by ISRM (Brown 1981)

Jaeger and Cook (1979) proposed the equation for calculate the

Brazilian tensile strength as

σB = (2P) ( πDt) (26)

where P is the failure load D is the disk diameter and t is the disk thickness

25 Size effects on compressive strength

The uniaxial compressive strength normally tested on cylindrical-shaped

specimens The length-to-diameter (LD) ratio of the specimen influences the

measured strength Typically the strength decreases with increasing the LD ratio

but it tends to become constant or ratios in the order of 21 to 31 (Hudson et al 1971

Obert and Duvall 1967) For higher ratios the specimen strength may be influenced

by bulking

The size of specimen may influence the strength of rock Weibull (1951)

proposed that a large specimen contains more flaws than a small one The large

specimen therefore also has flaws with critical orientation relative to the applied

shear stresses than the small specimen A large specimen with a given shape is

17

therefore likely to fail and exhibit lower strength than a small specimen with the same

shape (Bieniawski 1968 Jaeker and Cook 1979 Kaczynski 1986)

Tepnarong (2001) investigated the results of uniaxial compressive strength

test on Saraburi marble and found that the strengths decrease with increase the

length-to-diameter (LD) ratio And this relationship can be described by the power

law The size effects on uniaxial compressive strength are obscured by the intrinsic

variability of the marble The Brazilian tensile strengths also decreased as the

specimen diameter increased

CHAPTER III

SAMPLE COLLECTION AND PREAPATION

This chapter describes the sample collection and sample preparation

procedure to be used in the characterization and modified point load testing The

rock types to be used including porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone Locations of sample collection rock description are

described

31 Sample collection

Three rock types include porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone collected from Chatree Gold Mine Akara Mining Company

Limited Phichit Thailand are used in this research The rock samples are collected

from the north pit-wall of Khao Moh Three rock types are tested with a minimum of

50 samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable The collected location is shown in Figure 31

32 Rock descriptions

Three rock types are used in this research there are porphyritic andesite

silicified tuffaceous sandstone and tuffaceous sandstone Tuffaceous sandstone is

medium brownish grey the clasts are andesite rhyolite andesitic tuff and quartz

fragments and sub-rounded to sub-angular matrix sand andesitic tuff rock fragment

19

19

Figure 31 The location of rock samples collected area

lt 10 quartz 3 pyrite and litho-facies massive ungraded clast supported

moderately sorted Silicified tuffaceous sandstone is medium brown clasts are fine to

medium sand and silt sub-rounded shape quartz rich with siliceous matrix massive

non-graded well sorted moderately Silicified Porphyritic andesite is grayish green

medium-coarse euhedral evenly distributed phenocrysts are abundant most

conspicuous are hornblende phenocrysts fine-grained groundmass Those samples

are collected from Chatree Gold Mine Akara mining Co Ltd Phichit Thailand

20

33 Sample preparation

Sample preparation has been carried out to obtain different sizes and shapes

for testing It is conducted in the laboratory facility at Suranaree University of

Technology For characterization testing the process includes coring and grinding

Preparation of rock samples for characterization test follows the ASTM standard

(ASTM D4543-85) The nominal sizes of specimen that following the ASTM

standard practices for the characterization tests are shown in table 31 And grinding

surface at the top and bottom of specimens at the position of loading platens for

unsure that the loading platens are attach to the specimen surfaces and perpendicular

each others as shown in Figure 32 The shapes of specimens are irregularity-shaped

The ratio of specimen thickness to platen diameter (td) is around 20-30 and the

specimen diameter to platen diameter (Dd) varies from 5 to 10

Table 31 The nominal sizes of specimens following the ASTM standard practices

for the characterization tests

Testing Methods

LD Ratio

Nominal Diameter

(mm)

Nominal Length (mm)

Number of Specimens

1UniaxialCompressive Strength Test and Elastic Modulus Measurement (ASTM D7012)

25 54 135 10

2 Triaxial Compressive Strength Test (ASTM D7012) 20 54 108 10

3 Brazilian Tensile Strength Test (ASTM D3967) 05 54 27 10

4 Point Load Strength Index Test (ASTM D 5731) 10 54 54 10

21

Figure 32 Some prepared rock specimens of porphyritic andesite for MPL Tests

td asymp20 to 30

Figure 33 The concept of specimen preparation for MPL testing

CHAPTER IV

LABORATORY TESTS

Laboratory testing is divided into two main tasks including the

characterization tests and the modified point load tests Three rock types porphyritic

andesite silicified-tuffaceous sandstone and tuffaceous sandstone are used in this

research

41 Literature reviews

411 Displacement function

Tepnarong (2006) proposed a method to compute the vertical

displacement of the loading point as affected by the specimen diameter and thickness

(Dd and td ratios) by used the series of finite element analyses To accomplish this

a displacement function (αE) is introduced as (∆P∆δ)middot(tE) where ∆P is the change in

applied stress ∆δ is the change in vertical displacement of point load platens t is the

specimen thickness and E is elastic modulus of rock specimen The displacement

function is plotted as a function of Dd And found that the αE is dimensionless and

independent of rock elastic modulus αE trend to be independent of Dd when Dd is

beyond 15 The αE is sensitive to ν particularly when υ is between 025 and 05 This

agrees with the assumption that as the Poissonrsquos ratio increases the αE value will

increase because under higher ν the ∆δ will be reduced This is due to the large

confinement resulting from the higher Poissonrsquos ratio Nevertheless most rocks have

Poissonrsquos ratio within a range between 020 and 030 particularly for moderate to

23

hard rocks As a result the Poissonrsquos ratio of 025 will provide a reasonable

prediction of the value of αE values

Figure 51 plots αE or (∆P∆δ)middot(tE) as a function of td for the ratios of Dd ge

10 The displacement function increase as the td increases which can be expressed

by a power equation

αE = (∆P∆δ)middot(tE) = 150 (td)064 (51)

by using the least square fitting The curve fit gives good correlation (R2=0998)

These curves can be used to estimate the elastic modulus of rock from MPL results

By measuring the MPL specimen thickness t and the increment of applied stress (∆P)

and displacement (∆δ)

42 Basic characterization tests

The objectives of the basic characterization tests are to determine the

mechanical properties of each rock type to compare their results with those from the

modified point load tests (MPL) The basic characterization tests include uniaxial

compressive strength (UCS) tests with elastic modulus measurements triaxial

compressive strength tests Brazilian tensile strength tests and conventional point load

strength index tests

421 Uniaxial compressive strength tests and elastic modulus

measurements

The uniaxial compressive strength tests are conducted on the three

rock types Sample preparation and test procedure are followed the ASTM standards

(ASTM D7012) and the ISRM suggested methods (Brown 1981) The core size is

24

54 mm in diameter (NX size) and the ratio of the length to diameter is 25 A total of

10 specimens are tested for each rock type

A constant loading rate of 05 to 10 MPas is applied to the specimens

until failure occurs Tangent elastic modulus is measured at stress level equal to 50

of the uniaxial compressive strength Post-failure characteristics are observed

The uniaxial compressive strength (σc) is calculated by dividing the

maximum load by the original cross-section area of loading platen

σc= pf A (41)

where pf is the maximum failure load and A is the original cross-section area of

loading platen The tangent elastic modulus (Et) is calculated by the following

equation

Et = (Δσaxial) (Δε axial) (42)

And the axial strain can be calculated from

ε axial = ΔLL (43)

where the ΔL is the axial deformation and L is the original length of specimen

The average uniaxial compressive strength and tangent elastic

modulus of each rock types are shown in Tables 41 through 44

25

Figure 41 Pre-test samples of porphyritic andesite for UCS test

Figure 42 Pre-test samples of tuffaceous sandstone for UCS test

26

Figure 43 Pre-test samples of silicified tuffaceous sandstone for UCS test

Figure 44 Preparation of testing apparatus for UCS test

27

Figure 45 Post-test rock samples of porphyritic andesite from UCS test

Figure 46 Post-test rock samples of tuffaceous sandstone from UCS test

28

Figure 47 Post-test rock samples of silicified-tuffaceous sandstone from UCS

0

50

100

150

0 0001 0002 0003 0004 0005Axial Strain

Axi

al S

tres

s (M

Pa)

Andesite04

03

01

05

02

Andesite

Figure 48 Results of uniaxial compressive strength test and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted as

a function of axial strain

29

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Strain

Axi

al S

tres

s (M

Pa)

Pebbly Tuffacious Sandstone

04

03

05

01

02

Tuffaceous Sandstone

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Stain

Axi

al S

tres

s (M

Pa)

Silicified Tuffacious Sandstone

0103

05

0402

Silicified Tuffaceous Sandstone

Figure 49 Results of uniaxial compressive strength test and elastic modulus

measurements of tuffaceous sandstone (top) and silicified tuffaceous

sandstone (bottom) The axial stresses are plotted as a function of axial

strain

30

Table 41 Testing results of porphyritic andesite

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 5366 13486 282 1327 451 And-06-03-UCS-02 5366 13494 283 1106 397 And-02-01-UCS-03 5366 13485 280 1061 470 And-08-03-UCS-04 5366 13417 284 1282 392 And-04-04-UCS-05 5366 13564 285 973 438

Average 1150 plusmn 150 430 34 plusmn

Table 42 Testing results of tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 5366 13810 266 1017 538 TST-01-02-UCS-02 5366 13236 268 1238 545 TST-02-04-UCS-03 5366 13558 264 973 441 TST-06-09-UCS-04 5366 13515 267 1459 475 TST-02-02-UCS-05 5366 13745 263 884 566

Average 1114 plusmn 233 513 53 plusmn

Table 43 Testing results of silicified tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 5366 13309 271 1194 656 SST-07-01-UCS-02 5366 13547 267 930 632 SST-07-03-UCS-03 5366 13095 268 1194 503 SST-02-06-UCS-04 5366 13475 269 1614 661 SST-06-02-UCS-05 5366 13577 270 1106 713

Average 1207 plusmn 252 633 80 plusmn

31

Table 44 Uniaxial compressive strength and tangent elastic modulus measurement

results of three rock types

Rock Type

Number of Test

Samples

Uniaxial Compressive Strength σc (MPa)

Tangential Elastic Modulus

Et (GPa)

Porphyritic andesite 50 1150plusmn150 430plusmn34 Silicified-tuffaceous sandstone 50 1207plusmn252 633plusmn80

Tuffaceous sandstone 50 1114plusmn233 513plusmn53

422 Triaxial compressive strength tests

The objective of the triaxial compressive strength test is to determine

the compressive strength of rock specimens under various confining pressures The

sample preparation and test procedure are followed the ASTM standard (ASTM

D7012-07) and the ISRM suggested method (Brown 1981) A total of 16 rock

specimens are tested under various confining pressures 6 specimens of porphyritic

andesite 5 specimens of silicified-tuffaceous sandstone and 5 specimens of

tuffaceous sandstone The applied load onto the specimens is at constant rate until

failure occurred within 5 to 10 minutes of loading under each confining pressure

The constant confining pressures used in this experiment are ranged from 0345 067

138 276 and 414 MPa (50 100 200 400 and 600 psi) in andesite 0345 069

276 414 and 552 MPa (50 100 400 600 and 800 psi) in silicified-tuffaceous

sandstone and 0345 069 138 207 and 276 MPa (50 100 200 300 and 400 psi)

in pebbly tuffaceous sandstone Post-failure characteristics are observed

32

Figure 410 Pre-test samples for triaxial compressive strength test the top is

porphyritic andesite and the bottom is tuffaceous sandstone

33

Figure 411 Pre-test samples of silicified tuffaceous sandstone for triaxial

compressive strength test

Hook cell

Figure 412 Triaxial testing apparatus

34

Figure 413 Post-test rock samples from triaxial compressive strength tests The top

is porphyritic andesite and the bottom is tuffaceous sandstone

35

Figure 414 Post-test rock samples of silicified tuffaceous sandstone from triaxial

compressive strength test

Table 45 Triaxial compressive strength testing results of porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

And-04-02-TR-01 10803 5366 285 04 1459 And-06-04-TR-03 10806 5366 284 07 1526 And-06-02-TR-02 10806 5366 283 14 1636 And-08-01-TR-04 10665 5366 284 28 2034 And-08-02-TR-05 10948 5366 283 41 2520

Table 46 Triaxial compressive strength testing results of tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

TST-01-01-TR-04 10989 5366 266 04 1061 TST 02-01-TR-01 10852 5366 262 07 1238 TST-06-01-TR-02 10889 5366 264 138 1415 TST-06-03-TR-03 10755 5366 264 201 1813 TST-06-08-TR-05 11025 5366 267 28 2056

36

Table 47 Triaxial compressive strength testing results of silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

SST-05-01-TR-01 10875 5366 266 04 1305 SST-07-02-TR-02 10790 5366 266 14 1371 SST-01-04-TR-03 11022 5366 267 28 1592 SST-01-03-TR-04 10713 5366 267 41 1901 SST-01-01-TR-05 10530 5366 265 55 2255

The results of triaxial tests are shown in Table 42 Figures 413 and 414

show the shear failure by triaxial loading at various confining pressures (σ3) for the

three rock types The relationship between σ1 and σ3 can be represented by the

Coulomb criterion (Hoek 1990)

τ = c + σ tan φi (44)

where τ is the shear stress c is the cohesion σ is the normal stress and φi is the

internal friction angle The parameters c and φi are determined by Mohr-Coulomb

diagram as shown in Figures 415 through 417

37

φi =54˚ Andesite

Figure 415 Mohr-Coulomb diagram for andesite

φi = 55˚

Tuffaceous Sandstone

Figure 416 Mohr-Coulomb diagram for pebbly tuffaceous sandstone

38

Silicified tuffaceous sandstone

φi = 49˚

Figure 417 Mohr-Coulomb diagram for silicified tuffaceous sandstone

Table 48 Results of triaxial compressive strength tests on three rock types

Rock Type

Number of

Samples

Average Density (gcc)

Cohesion c (MPa)

Internal Friction Angle φi (degrees)

Porphyritic Andesite 5 283 33 54

Tuffaceous Sandstone 5 265 28 55 Silicified Tuffaceous Sandstone 5 267 36 49

423 Brazilian Tensile Strength Tests

The objectives of the Brazilian tensile strength test are to determine

the tensile strength of rock The Brazilian tensile strength tests are performed on all

rock types Sample preparation and test procedure are followed the ASTM standard

(ASTM D3967-81) and the

39

ISRM suggested method (Brown 1981) Ten specimens for each rock

type have been tested The specimens have the diameter of 55 mm with 25 mm thick

The Brazilian tensile strength of rock can be calculated by the following

equation (Jaeger and Cook 1979)

σB = (2pf) (πDt) (45)

where σB is the Brazilian tensile strength pf is the failure load D is the diameter

of disk specimen and t is the thickness of disk specimen All of specimens failed

along the loading diameter (Figure 420) The results of Brazilian tensile strengths

are shown in Table 49 The tensile strength trends to decrease as the specimen size

(diameter) increase and can be expressed by a power equation (Evans 1961)

σB = A (D)-B (46)

where A and B are constants depending upon the nature of rock

424 Conventional point load index (CPL) tests

The objectives of CPL tests are to determine the point load strength index for

use in the estimation of the compressive strength of the rocks The sample

preparation test procedure and calculation are followed the standard practices

(ASTM D 5731-02) and the ISRM suggested method (Brown 1981) Twenty

specimens of each rock types are tested The length-to-diameter (LD) ratio of the

specimen is constant at 10 The specimen diameter and thickness are maintained

constant at 54 mm (Figure 421) The core specimen is loaded along its axis as

shown in Figure 422 Each specimen is loaded to failure at a constant rate such that

40

(a)

(b)

(c)

Figure 418 Pre-test samples for Brazilian tensile strength test (a) porphyritic

andesite (b) tuffaceous sandstone and (c) silicified tuffaceous

sandstone

41

Figure 419 Brazilian tensile strength test arrangement

Table 49 Results of Brazilian tensile strength tests of three rock types

Rock Type

Average Diameter

(mm)

Average Length (mm)

Average Density (gcc)

Number of

Samples

Brazilian Tensile

Strength σB (MPa)

Porphyritic andesite 5366 2672 283 10 170plusmn16

Tuffaceous sandstone 5366 2737 265 10 131plusmn33

Silicified tuffaceous sandstone

5366 2670 267 10 191plusmn32

42

(a)

(b)

(c)

Figure 420 Post-test specimens (a) porphyritic andesite (b) tuffaceous sandstone

and (c) silicified tuffaceous sandstone

43

Figure 421 Pre-test samples of porphyritic andesite for conventional point load

strength index test

Figure 422 Conventional point load strength index test arrangement

44

failures occur within 5-10 minutes Post-failure characteristics are observed

The point load strength index for axial loading (Is) is calculated by the

equation

Is = pf De2 (47)

where pf is the load at failure De is the equivalent core diameter (for axial loading

De2 = 4Aπ and A=WD) A is the minimum cross-sectional area of a plane through

the platen contact points W is the specimen width (thickness of core) and D is the

specimen diameter The post-test specimens are shown in Figure 423

The testing results of all three rock types are shown in Table 410 The

point load strength index of andesite pebbly tuffaceous sandstone and silicified

tuffaceous sandstone are average as 81 plusmn 12 102 plusmn 20 and 108 plusmn 22 MPa

Table 410 Results of conventional point load strength index tests of three rock types

Rock Types Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index

Is (MPa) Porphyritic Andesite 5493 5366 283 81plusmn12 Tuffaceous Sandstone 5545 5366 265 102plusmn20 Silicified Tuffaceous Sandstone 5491 5366 268 108plusmn22

45

Figure 423 Post-Test rock specimens from conventional point load strength index

tests (a) porphyritic andesite (b) tuffaceous sandstone and (c)

silicified tuffaceous sandstone

46

43 Modified point load (MPL) tests

The objectives of the modified point load (MPL) tests are to measure the

strength of rock between the loading points and to produce failure stress results for

various specimen sizes and shapes The results are complied and evaluated to

determine the mathematical relationship between the strengths and specimen

dimensions which are used to predict the elastic modulus and uniaxial and triaxial

compressive strengths and Brazilian tensile strength of the rocks

The testing apparatus for the proposed MPL testing are similar to those of the

conventional point load (CPL) test except that the loading points are cylindrical

shape and cut flat with the circular cross-sectional area instead of using half-spherical

shape (Tepnarong 2001) The loading platens used in this research are 7 10 and 15

mm in diameter and the thickness-to-loading point diameter ratio (td) of about 25

The specimen diameter-to-loading point diameter is varying from 5 to 100 The load

is applied at the rate of 200 Ns Fifty specimens are prepared and tested for each

rock type The vertical deformations (δ) are monitored One cycle of unloading and

reloading is made at about 40 failure load Then the load is increased to failure

The MPL strength (PMPL) is calculated by

PMPL = pf ((π4)(d2)) (48)

where pf is the applied load at failure and d is the diameter of loading point Figure

26 shows the example of post-test specimen shear cone are usually formed

underneath the loading points and two or three tension-induced cracks are commonly

found across the specimens

47

The MPL testing method is divided into 4 schemes based on its objective

elastic modulus uniaxial and triaxial compressive strengths and Brazilian tensile

strength determination

Figure 424 Conventional and modified loading points(Tepnarong 2006)

Figure 425 MPL testing arrangement

48

Tension-induced crack Shear cone

Shear cone

Tension-induced crack

Figure 426 Post-test specimen the tension-induced crack commonly found across

the specimen and shear cone usually formed underneath the loading

platens

49

Table 411 Results of modified point load tests on porphyritic andesite

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-01 246 543 280 125 159 And-MPL-02 351 632 370 180 471 And-MPL-03 236 634 150 170 191 And-MPL-04 266 960 250 234 319 And-MPL-05 284 903 370 369 471 And-MPL-06 245 793 280 182 357 And-MPL-07 263 874 260 234 331 And-MPL-08 261 980 210 171 268 And-MPL-09 280 777 270 056 344 And-MPL-10 244 569 280 124 159 And-MPL-11 251 613 650 138 368 And-MPL-12 226 631 600 189 340 And-MPL-13 233 1126 180 151 468 And-MPL-14 279 1203 220 165 572 And-MPL-15 239 503 400 011 227 And-MPL-16 281 474 300 012 170 And-MPL-17 305 861 390 021 497 And-MPL-18 233 653 500 008 283 And-MPL-19 294 1386 380 200 484 And-MPL-20 265 860 410 017 522 And-MPL-21 238 425 550 087 311 And-MPL-22 230 417 450 087 255 And-MPL-23 223 557 500 231 283 And-MPL-24 250 760 550 112 311 And-MPL-25 259 1243 180 585 468 And-MPL-26 303 560 310 143 395 And-MPL-27 273 1640 390 156 497 And-MPL-28 282 906 220 200 280 And-MPL-29 311 934 290 156 369 And-MPL-30 246 1314 250 650 650 And-MPL-31 262 982 200 175 255 And-MPL-32 260 1147 180 156 468 And-MPL-33 240 700 450 101 255 And-MPL-34 304 800 240 135 306 And-MPL-35 250 455 220 127 280 And-MPL-36 243 1697 120 292 312 And-MPL-37 333 1520 310 156 395 And-MPL-38 238 661 170 260 442

50

Table 411 Results of modified point load tests on porphyritic andesite (Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-39 318 347 130 186 338 And-MPL-40 245 551 150 260 390 And-MPL-41 207 561 150 325 390 And-MPL-42 223 425 500 231 283 And-MPL-43 207 561 150 346 390 And-MPL-44 324 340 310 234 395 And-MPL-45 275 426 240 169 306 And-MPL-46 302 397 130 175 166 And-MPL-47 255 314 100 170 127 And-MPL-48 257 220 250 094 142 And-MPL-49 256 214 130 057 74 And-MPL-50 243 166 180 078 102

51

Table 412 Results of modified point load tests on tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-01 270 546 220 212 293 TST -MPL-02 258 787 230 326 293 TST -MPL-03 275 730 200 143 255 TST -MPL-04 282 715 400 143 510 TST -MPL-05 254 1345 220 264 280 TST -MPL-06 292 893 200 143 255 TST -MPL-07 243 853 550 112 311 TST -MPL-08 287 1047 210 319 268 TST -MPL-09 230 787 370 212 471 TST -MPL-10 230 427 260 132 147 TST -MPL-11 282 1243 450 319 573 TST -MPL-12 254 604 200 127 255 TST -MPL-13 288 1180 290 159 369 TST -MPL-14 251 631 410 170 232 TST -MPL-15 214 1104 120 260 312 TST -MPL-16 229 486 380 102 215 TST -MPL-17 259 715 110 650 286 TST -MPL-18 243 285 180 073 102 TST -MPL-19 285 316 130 128 130 TST -MPL-20 241 295 180 170 102 TST -MPL-21 298 417 300 100 170 TST -MPL-22 265 642 300 088 170 TST -MPL-23 314 611 450 101 255 TST -MPL-24 303 481 650 124 368 TST -MPL-25 223 223 260 126 331 TST -MPL-26 273 652 260 178 331 TST -MPL-27 216 887 420 170 535 TST -MPL-28 319 718 290 164 369 TST -MPL-29 231 516 200 128 255 TST -MPL-30 260 641 380 280 484 TST -MPL-31 287 496 330 158 420 TST -MPL-32 264 368 230 170 293 TST -MPL-33 238 415 230 130 293 TST -MPL-34 271 824 140 260 364 TST -MPL-35 283 800 220 325 572 TST -MPL-36 242 1013 180 325 468 TST -MPL-37 254 715 90 217 234 TST -MPL-38 210 755 150 520 390

52

Table 412 Results of modified point load tests on tuffaceous sandstone

(Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-39 293 508 110 260 286 TST -MPL-40 273 410 100 347 260 TST -MPL-41 234 628 80 260 208 TST -MPL-42 259 433 130 260 338 TST -MPL-43 265 546 220 435 280 TST -MPL-44 255 829 260 222 147 TST -MPL-45 254 368 240 315 306 TST -MPL-46 293 695 370 222 210 TST -MPL-47 247 297 180 128 102 TST -MPL-48 310 611 300 237 170 TST -MPL-49 225 337 160 371 416 TST -MPL-50 259 410 120 394 312

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-01 300 782 170 280 442 SST-MPL-02 250 480 220 307 572 SST-MPL-03 314 424 340 356 433 SST-MPL-04 292 809 220 450 572 SST-MPL-05 275 1142 300 532 780 SST -MPL-06 308 490 190 273 494 SST -MPL-07 317 611 280 418 728 SST -MPL-08 233 684 240 414 624 SST -MPL-09 255 480 230 371 598 SST -MPL-10 217 772 120 958 312 SST -MPL-11 312 903 270 400 702 SST -MPL-12 255 1094 150 272 390 SST -MPL-13 286 742 400 408 510 SST -MPL-14 248 615 350 296 198 SST -MPL-15 253 805 210 282 546 SST -MPL-16 243 1094 150 260 390

53

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

(Continued)

Specimen Number td Dd Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-17 234 1090 250 416 650 SST -MPL-18 253 1371 240 473 624 SST -MPL-19 327 434 320 330 408 SST -MPL-20 270 310 390 278 497 SST -MPL-21 269 691 410 185 522 SST -MPL-22 312 504 380 182 484 SST -MPL-23 319 627 260 150 331 SST -MPL-24 281 689 330 295 420 SST -MPL-25 210 720 390 259 497 SST -MPL-26 303 775 370 221 471 SST -MPL-27 272 714 310 274 395 SST -MPL-28 292 855 600 209 764 SST -MPL-29 310 742 400 176 510 SST -MPL-30 284 847 410 158 522 SST -MPL-31 320 891 650 464 828 SST -MPL-32 261 256 400 178 226 SST -MPL-33 224 405 550 131 311 SST -MPL-34 231 379 450 215 255 SST -MPL-35 290 442 1050 190 594 SST -MPL-36 241 521 500 102 283 SST -MPL-37 275 605 600 067 340 SST -MPL-38 263 616 650 127 368 SST -MPL-39 227 615 350 229 198 SST -MPL-40 236 508 550 090 311 SST -MPL-41 318 1142 300 498 780 SST -MPL-42 303 809 210 392 546 SST -MPL-43 228 805 210 244 546 SST -MPL-44 283 1142 300 571 780 SST -MPL-45 277 772 120 780 312 SST -MPL-46 288 1206 280 411 728 SST -MPL-47 250 508 570 309 323 SST -MPL-48 275 442 1050 338 594 SST -MPL-49 272 605 650 254 368 SST -MPL-50 260 805 200 360 520

54

431 Modified point load tests for elastic modulus measurement

The MPL tests are carried out with the measurement of axial

deformation for use in elastic modulus estimation Fifty irregular specimens for each

rock type are tested The specimen thickness-to-loading diameter (td) is about 25

and the specimen diameter -to-loading diameter (Dd) is varied from 25 to 50 Cyclic

loading is performed while monitoring displacement (δ)

The testing apparatus used in this experiment includes the point load

tester model SBEL PLT-75 and the modified point load platens The displacement

digital gages with a precision up to 0001 mm are used to monitor the axial

deformation of rock between the loading points as loading decreases The cyclic

load is applied along the specimen axis and is performed by systematically increasing

and decreasing loads on the test specimen After unloading the axial load is

increased until the failure occurs Cyclic loading is performed on the specimens in

an attempt at determining the elastic deformation The ratio of change of stress to

displacement (∆P∆δ) is measured from unloading curve Post-failure characteristics

are observed and recorded Photographs are taken of the failed specimens

The results of the deformation measurement by MPL tests are shown

in Tables411 through 413 The stresses (P) are plotted as a function of axial

displacement (δ) and shown in Figures B1 through B150 (Appendix B) The results

of ∆P∆δ are used to estimate the elastic modulus of the specimen

The elastic modulus predictions from MPL results can be made by

using the value of αE plotted as a function of Ded for various td ratios as shown in

Figure 427 and the MPL elastic modulus can be expressed as

55

⎟⎠⎞

⎜⎝⎛

ΔΔ

⎟⎟⎠

⎞⎜⎜⎝

⎛=

δαPtE

Empl (Tepnarong 2006) (49)

where Empl is the elastic modulus predicted from MPL results αE is displacement

function value from numerical analysis and ∆P∆δ is the ratio of change of stress to

displacement which is measured from unloading curve of MPL tests and t is the

specimen thickness The value of αE used in the calculation is 260 for td ratio equal

to 25-30 (Tepnarong 2006) The results of elastic modulus predictions from MPL

tests are tabulated in Tables 414 through 416 Table 417 compares the elastic

modulus obtained from standard uniaxial compressive strength test (ASTM D3148-

96) with those predicted by MPL test

The values of Empl for each specimen with P-δ curve are shown in

Appendix B The MPL method under-estimates the elastic modulus of all tested

rocks This is the primarily because the actual loaded area may be smaller than that

used in the calculation due to the roughness of the specimen surfaces As a result the

contact area used to calculate PMPL is larger than the actual In addition the EMPL

tends to show a high intrinsic variation (high standard deviation) This is because the

loading areas of MPL specimens are small This phenomenon conforms by the test

results obtained by Fuenkajorn and Deamen (1992) They conclude that smaller test

specimens not only exhibit a higher strength than larger one (size effect) but also

show a high intrinsic variability due to the heterogeneity of rock fabric particularly at

small sizes This implied that to obtain a good prediction (accurate result) of the rock

elasticity a large amount of MPL specimens are desirable This drawback may be

compensated by the ease of testing and the low cost of sample preparation

56

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (MPa)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure 427 Example of P-δ curve for porphyritic andesite specimen The ratio of

∆P∆δ is used to predict the elastic modulus of MPL specimen (Empl)

57

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-01 246 543 125 260 1776 And-MPL-02 351 632 180 260 2430 And-MPL-03 236 634 170 260 1546 And-MPL-04 266 960 234 260 2390 And-MPL-05 284 903 369 260 4031 And-MPL-06 245 793 182 260 1712 And-MPL-07 263 874 234 260 2367 And-MPL-08 261 980 171 260 1717 And-MPL-09 280 777 056 260 603 And-MPL-10 244 569 124 260 1748 And-MPL-11 251 613 138 260 2001 And-MPL-12 226 631 189 260 2464 And-MPL-13 233 1126 151 260 947 And-MPL-14 279 1203 165 260 1239 And-MPL-15 239 503 011 260 151 And-MPL-16 281 474 012 260 195 And-MPL-17 305 861 021 260 247 And-MPL-18 233 653 008 260 108 And-MPL-19 294 1386 200 260 2263 And-MPL-20 265 860 017 260 173 And-MPL-21 238 425 087 260 1195 And-MPL-22 230 417 087 260 1154 And-MPL-23 223 557 231 260 2976 And-MPL-24 250 760 112 260 1615 And-MPL-25 259 1243 585 260 4073 And-MPL-26 303 560 143 260 1667 And-MPL-27 273 1640 156 260 1639 And-MPL-28 282 906 200 260 2172 And-MPL-29 311 934 156 260 1868 And-MPL-30 246 1314 650 260 4310 And-MPL-31 262 982 175 260 1766 And-MPL-32 260 1147 156 260 1093 And-MPL-33 240 700 101 260 1398 And-MPL-34 304 800 135 260 1576 And-MPL-35 250 455 127 260 1221 And-MPL-36 243 1697 292 260 1909 And-MPL-37 333 1520 156 260 2000 And-MPL-38 238 661 260 260 1665 And-MPL-39 318 347 186 260 1592 And-MPL-40 245 551 260 260 1712

58

And-MPL-41 207 561 325 260 1815

59

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-42 223 425 231 260 2976 And-MPL-43 207 561 346 260 1932 And-MPL-44 324 340 234 260 2912 And-MPL-45 275 426 169 260 1785 And-MPL-46 302 397 175 260 2033 And-MPL-47 255 314 170 260 1667 And-MPL-48 257 220 094 260 1393 And-MPL-49 256 214 057 260 843 And-MPL-50 243 166 078 260 1094 Average 1743 Standard Deviation 910

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-01 300 782 280 260 2262 SST -MPL-02 250 480 307 260 2066 SST -MPL-03 314 424 356 260 4302 SST -MPL-04 292 809 450 260 3533 SST -MPL-05 275 1142 532 260 3939 SST -MPL-06 308 490 273 260 2266 SST -MPL-07 317 611 418 260 3572 SST -MPL-08 233 684 414 260 2595 SST -MPL-09 255 480 371 260 2546 SST -MPL-10 217 772 958 260 5593 SST -MPL-11 312 903 400 260 3360 SST -MPL-12 255 1094 272 260 1864 SST -MPL-13 286 742 408 260 4435 SST -MPL-14 248 615 296 260 4235 SST -MPL-15 253 805 282 260 1918 SST -MPL-16 243 1094 260 260 1698 SST -MPL-17 234 1090 416 260 2621 SST -MPL-18 253 1371 473 260 3224 SST -MPL-19 327 434 330 260 4153 SST -MPL-20 270 310 278 260 2863

60

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-21 269 691 185 260 1914 SST -MPL-22 312 504 182 260 2183 SST -MPL-23 319 627 150 260 1839 SST -MPL-24 281 689 295 260 3193 SST -MPL-25 210 720 259 260 2090 SST -MPL-26 303 775 221 260 2577 SST -MPL-27 272 714 274 260 2862 SST -MPL-28 292 855 209 260 2350 SST -MPL-29 310 742 176 260 2097 SST -MPL-30 284 847 158 260 1728 SST -MPL-31 320 891 464 260 5707 SST -MPL-32 261 256 178 260 2678 SST -MPL-33 224 405 131 260 1690 SST -MPL-34 231 379 215 260 2863 SST -MPL-35 290 442 190 260 3174 SST -MPL-36 241 521 102 260 1416 SST -MPL-37 275 605 067 260 1064 SST -MPL-38 263 616 127 260 1926 SST -MPL-39 227 615 229 260 3005 SST -MPL-40 236 508 090 260 1226 SST -MPL-41 318 1142 498 260 4264 SST -MPL-42 303 809 392 260 3196 SST -MPL-43 228 805 244 260 1500 SST -MPL-44 283 1142 571 260 4348 SST -MPL-45 277 772 780 260 5826 SST -MPL-46 288 1206 411 260 3184 SST -MPL-47 250 508 309 260 4464 SST -MPL-48 275 442 338 260 5364 SST -MPL-49 272 605 254 260 3981 SST -MPL-50 260 805 360 260 2523 Average 2986 Standard Deviation 1190

61

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-01 270 546 212 260 2202 TST -MPL-02 258 787 326 260 3232 TST -MPL-03 275 730 143 260 1513 TST -MPL-04 282 715 143 260 1551 TST -MPL-05 254 1345 264 260 2579 TST -MPL-06 292 893 143 260 1606 TST -MPL-07 243 853 112 260 2273 TST -MPL-08 287 1047 319 260 3521 TST -MPL-09 230 787 212 260 1875 TST -MPL-10 230 427 132 260 1752 TST -MPL-11 282 1243 319 260 3455 TST -MPL-12 254 604 127 260 1241 TST -MPL-13 288 1180 159 260 1764 TST -MPL-14 251 631 170 260 2465 TST -MPL-15 214 1104 260 260 1500 TST -MPL-16 229 486 102 260 1345 TST -MPL-17 259 715 650 260 4530 TST -MPL-18 243 285 073 260 1025 TST -MPL-19 285 316 128 260 2105 TST -MPL-20 241 295 170 260 2360 TST -MPL-21 298 417 100 260 1722 TST -MPL-22 265 642 088 260 896 TST -MPL-23 314 611 101 260 1830 TST -MPL-24 303 481 124 260 2166 TST -MPL-25 223 223 126 260 1083 TST -MPL-26 273 652 178 260 1869 TST -MPL-27 216 887 170 260 2065 TST -MPL-28 319 718 164 260 2011 TST -MPL-29 310 742 128 260 1136 TST -MPL-30 260 641 280 260 2800 TST -MPL-31 287 496 158 260 1742 TST -MPL-32 264 368 170 260 1725 TST -MPL-33 238 415 130 260 1192 TST -MPL-34 271 824 260 260 1942 TST -MPL-35 283 800 325 260 2478 TST -MPL-36 242 1013 325 260 2115 TST -MPL-37 254 715 217 260 1484 TST -MPL-38 210 755 520 260 2944 TST -MPL-39 293 508 260 260 2052 TST -MPL-40 273 410 347 260 2552

62

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-41 234 628 260 260 1638 TST -MPL-42 259 433 260 260 1814 TST -MPL-43 265 546 435 260 4440 TST -MPL-44 255 829 222 260 3265 TST -MPL-45 254 368 315 260 3075 TST -MPL-46 293 695 222 260 2502 TST -MPL-47 247 297 128 260 1827 TST -MPL-48 310 611 237 260 4240 TST -MPL-49 225 337 371 260 2252 TST -MPL-50 259 410 394 260 2746 Average 2190 Standard Deviation 830

Table 417 Comparisons of elastic modulus results obtained from uniaxial

compressive strength tests and those from modified point load tests

Rock Type Tangential Elastic Modulus from UCS

tests Et (GPa)

Elastic Modulus from MPL tests

Empl (GPa) Porphyritic andesite 430plusmn34 174plusmn91

Silicified tuffaceous sandstone 633plusmn80 299plusmn119

tuffaceous sandstone 513plusmn53 219plusmn83

432 Modified point load tests predicting uniaxial compressive strength

The uniaxial compressive strength of MPL specimens can be predicted

by plotting Pmpl as a function of diameter ratio Ded as shown in Figures 428 through

430 At diameter ratio equal to unity the Pmpl represents the uniaxial compressive

strength of rock The uniaxial compressive strength predicted from MPL tests

compared with those from CPL test and UCS standard test is shown in Table 418

63

UCS PREDICTION OF PORPHYRITIC ANDESITE FROM MPL TESTS

Pmpl = 11844(Ded)05489

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ded Ratio

MPL

Stre

ngth

(MPa

)

Figure 428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests

64

UCS PREDICTION OF SILICIFIED TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 11463(Ded)07447

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ded Ratio

MPL

-Str

engt

h (M

Pa)

Figure 429 Uniaxial compressive strength predicted for silicified tuffaceous

sandstone from MPL tests

65

UCS PREDICTION OF TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 10222(Ded)05457

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ded Ratio

MPL

-Stre

ngth

(MPa

)

Figure 430 Uniaxial compressive strength predicted for tuffaceous sandstone from

MPL tests

Table 418 Comparison the test results between UCS CPL Brazilian tensile

strength and MPL tests

Uniaxial Compressive Strength (MPa)

Tensile Strength (MPa) Rock Type UCS

Testing CPL

Prediction MPL

PredictionBrazilian Testing

MPL Prediction

And 1150 1944 plusmn12 1005 170plusmn16 139plusmn43 TST 1114 2448plusmn20 1308 131plusmn33 121plusmn73 SST 1207 2592plusmn22 1022 191plusmn32 171plusmn126

433 Modified Point Load Tests for Tensile Strength Predictions

The MPL results determine the rock tensile strength by using the

relationship of the failure stresses (Pmpl) as a function of specimen thickness to

66

loading diameter ratio (td) The tensile strength from MPL prediction can be

expressed as an empirical equation (Tepnarong 2001)

σt mpl = Pmpl (αT ln (td)+βT) (410)

where αT = 133 ln (Ded)-756 and βT= -70 ln (Ded)+ 1952

The results of tensile strengths of all rock types are shown in Tables

419through 421 The predicted tensile strengths are compared with the Brazilian

tensile strengths for the three rock types in Table 418 A close agreement of the

results obtained between two methods The discrepancies of the results are less than

the standard deviation of the results

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa)

And-MPL-01 246 543 159 1495 767 750 And-MPL-02 351 632 471 1697 661 1688 And-MPL-03 236 634 191 1701 659 900 And-MPL-04 266 960 319 2252 369 1240 And-MPL-05 284 903 471 2170 412 1761 And-MPL-06 245 793 357 1999 502 1558 And-MPL-07 263 874 331 2127 435 1330 And-MPL-08 261 980 268 2279 355 1053 And-MPL-09 280 777 344 1971 517 1351 And-MPL-10 244 569 159 1557 734 746 And-MPL-11 251 613 368 1656 683 1666 And-MPL-12 226 631 340 1695 662 1662 And-MPL-13 233 1126 468 2464 257 2000 And-MPL-14 279 1203 572 2552 211 2022 And-MPL-15 239 503 227 1392 822 1114 And-MPL-16 281 474 170 1314 863 765 And-MPL-17 305 861 497 2108 445 1776 And-MPL-18 233 653 283 1740 638 1340 And-MPL-19 294 1386 484 2741 112 1577 And-MPL-20 265 860 522 2106 446 2091

67

And-MPL-21 238 425 311 1169 939 1595 And-MPL-22 230 417 255 1142 953 1338 And-MPL-23 223 557 283 1529 749 1431 And-MPL-24 250 760 311 1941 532 1347 And-MPL-25 259 1243 468 2596 188 1763 And-MPL-26 303 560 395 1535 746 1613

68

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) And-MPL-27 273 1640 497 2964 -006 1671 And-MPL-28 282 906 280 2252 369 1035 And-MPL-29 311 934 369 2216 388 1272 And-MPL-30 246 1314 650 2670 149 2543 And-MPL-31 262 982 255 2282 353 997 And-MPL-32 260 1147 468 2488 244 1783 And-MPL-33 240 700 255 1832 590 1161 And-MPL-34 304 800 306 2010 496 1121 And-MPL-35 250 455 280 1259 891 1370 And-MPL-36 243 1697 312 3010 -030 1181 And-MPL-37 333 1520 395 2863 047 1130 And-MPL-38 238 661 442 1755 630 2054 And-MPL-39 318 347 338 897 1082 1594 And-MPL-40 245 551 390 1513 758 1847 And-MPL-41 207 561 390 1537 745 2089 And-MPL-42 223 425 283 1169 939 1507 And-MPL-43 207 561 390 1537 745 2089 And-MPL-44 324 340 395 871 1096 1864 And-MPL-45 275 426 306 1172 937 1441 And-MPL-46 302 397 166 1079 986 760 And-MPL-47 255 314 127 766 1151 1159 And-MPL-48 257 220 142 291 1401 845 And-MPL-49 256 214 74 257 1419 443 And-MPL-50 243 166 102 -078 1595 928 Average 1427 Standard Deviation 44

69

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) SST -MPL-01 300 782 442 1336 851 2018 SST -MPL-02 250 480 572 1331 853 2759 SST -MPL-03 314 424 433 1196 924 1888 SST -MPL-04 292 809 572 2024 489 2155 SST -MPL-05 275 1142 780 2483 247 2827 SST -MPL-06 308 490 494 1357 840 2086 SST -MPL-07 317 611 728 1651 685 2808 SST -MPL-08 233 684 624 1800 606 2932 SST -MPL-09 255 480 598 1331 853 2849 SST -MPL-10 217 772 312 1962 522 1529 SST -MPL-11 312 903 702 2170 412 2436 SST -MPL-12 255 1094 390 2426 277 1533 SST -MPL-13 286 742 510 1910 549 2011 SST -MPL-14 248 615 198 1661 680 905 SST -MPL-15 253 805 546 2017 492 2312 SST -MPL-16 243 1094 390 2426 277 1607 SST -MPL-17 234 1090 650 2421 280 2780 SST -MPL-18 253 1371 624 2726 120 2354 SST -MPL-19 327 434 408 1196 924 1740 SST -MPL-20 270 310 497 748 1160 2618 SST -MPL-21 269 691 522 1816 599 2181 SST -MPL-22 312 504 484 1394 821 2012 SST -MPL-23 319 627 331 1686 667 1263 SST -MPL-24 281 689 420 1812 601 1699 SST -MPL-25 210 720 497 1869 570 2541 SST -MPL-26 303 775 471 1968 519 1745 SST -MPL-27 272 714 395 1859 576 1623 SST -MPL-28 292 855 764 2098 450 2830 SST -MPL-29 310 742 510 1910 549 1881 SST -MPL-30 284 847 522 2087 456 1981 SST -MPL-31 320 891 828 2153 421 2832 SST -MPL-32 261 256 226 492 1295 1282 SST -MPL-33 224 405 311 1106 972 1672 SST -MPL-34 231 379 255 1017 1019 1363 SST -MPL-35 290 442 594 1221 912 2690 SST -MPL-36 241 521 283 1439 797 1374 SST -MPL-37 275 605 340 1639 692 1445 SST -MPL-38 263 616 368 1661 680 1611

70

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded Pmpl (MPa)

αT βT σt mpl (MPa)

SST -MPL-39 227 615 198 1661 680 969 SST -MPL-40 236 508 311 1406 814 1540 SST -MPL-41 318 1142 780 2483 247 2500 SST -MPL-42 303 809 546 2024 489 1999 SST -MPL-43 228 805 546 2017 492 2530 SST -MPL-44 283 1142 780 2483 247 2757 SST -MPL-45 277 772 312 1962 522 1236 SST -MPL-46 288 1206 728 2555 209 2502 SST -MPL-47 250 508 323 1406 814 1533 SST -MPL-48 275 442 594 1221 912 2769 SST -MPL-49 272 605 368 1639 692 1580 SST -MPL-50 260 805 520 2017 492 2147 Average 2045 Standard Deviation 56

71

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-01 270 546 293 1502 763 1299 TST -MPL-02 258 787 293 1988 508 1226 TST -MPL-03 275 730 255 1888 560 1031 TST -MPL-04 282 715 510 1860 575 2035 TST -MPL-05 254 1345 280 2701 133 1058 TST -MPL-06 292 893 255 2156 420 933 TST -MPL-07 243 853 311 2095 451 1346 TST -MPL-08 287 1047 268 2279 355 970 TST -MPL-09 230 787 471 1988 508 2179 TST -MPL-10 230 427 147 1176 935 769 TST -MPL-11 282 1243 573 2596 188 1994 TST -MPL-12 254 604 255 1636 693 1149 TST -MPL-13 288 1180 369 2527 224 1274 TST -MPL-14 251 631 232 1695 662 1044 TST -MPL-15 214 1104 312 2438 271 1465 TST -MPL-16 229 486 215 1347 845 1098 TST -MPL-17 259 715 286 1861 575 1220 TST -MPL-18 243 285 102 637 1219 571 TST -MPL-19 285 316 130 776 1146 665 TST -MPL-20 241 295 102 685 1194 568 TST -MPL-21 298 417 170 1143 952 771 TST -MPL-22 265 642 170 1178 934 1059 TST -MPL-23 314 611 255 1652 685 989 TST -MPL-24 303 481 368 1423 805 1545 TST -MPL-25 223 223 331 313 1389 2018 TST -MPL-26 273 652 331 1738 640 1389 TST -MPL-27 216 887 535 2146 424 1850 TST -MPL-28 319 718 369 1866 572 1350 TST -MPL-29 231 516 255 1425 804 1276 TST -MPL-30 260 641 484 1715 651 2114 TST -MPL-31 287 496 420 1373 832 1846 TST -MPL-32 264 368 293 976 1041 1475 TST -MPL-33 238 415 293 1151 948 1504 TST -MPL-34 271 824 364 2049 476 1418 TST -MPL-35 283 800 572 2010 496 2210 TST -MPL-36 242 1013 468 2324 331 1965 TST -MPL-37 254 715 234 1861 575 1013 TST -MPL-38 210 755 390 1932 537 1976

72

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-39 293 508 286 1406 814 1229 TST -MPL-40 273 410 260 1124 963 1243 TST -MPL-41 234 628 208 1688 666 990 TST -MPL-42 259 433 338 1194 926 1639 TST -MPL-43 265 546 280 1502 763 1257 TST -MPL-44 255 829 147 2057 472 614 TST -MPL-45 254 368 306 976 1041 1568 TST -MPL-46 293 695 210 1822 595 1846 TST -MPL-47 247 297 102 691 1190 561 TST -MPL-48 310 611 170 1652 685 665 TST -MPL-49 225 337 416 1939 533 1972 TST -MPL-50 259 410 312 1120 965 1537 Average 1336 Standard Deviation 56

434 Modified point load tests for triaxial compressive strength predictions

The objective of this section is to predict the triaxial compressive strength

of intact rock specimens by using the MPL results (modified point load strength Pmpl) It

is speculated that increase of applied load (σ1) will invoke a confining pressure (σ3) on

the imaginary cylindrical profile between the two loading points This is due to the

effect of Poissonrsquos ratio (ν) which causing a potential expansion of rock in this cylinder

The greater the σ1 the greater the σ3 in addition Poissonrsquos ratios also affect the

magnitude of σ3 The magnitude of σ3 also depends on the specimen shape particularly

the Ded ratio In principle σ3 will equal zero for Ded ratio equal to unity But when

Ded ratio is very large approaching infinity σ3 will reach its maximum This maximum

value of σ3 will also depend on the rock Poissonrsquos ratio From computer simulation of

td =25 the variation of σ1 σ3 ratio can be simply expressed by Tepnarong (2006) as

73

(σ1 σ3) = 2 ((ν (1ndashν) (1-(dDe) 2)) (411)

where ν is the Poissonrsquos ratio of rock specimen d is the modified point load diameter

and De is the equivalent diameter of the specimen The Poissonrsquos ratio of rock

specimen used in equation 411 can be assumed to be 25 The σ1 σ3 ratio tends to be

independent of Ded for Ded greater than 10 This implies that when MPL specimen

diameter is more than 10 times of the loading point diameter the magnitude of σ3 is

approaching its maximum value (Tepnarong 2006)

It should be pointed out that approach used here to determine σ3

assumes that there is no shear stress (τrz) along the imagination cylinder As a result

the magnitude of σ3 determined here would be higher than the actual σ3 applied in the

true triaxial test specimen This mean that the σ1 σ3 ratios at failure obtained from

MPL tests will be lower than the actual failure stress ratio from the true triaxial tests

From the concept of σ1 σ3-Ded relation proposed the major and

minor principal stresses at failure (σ1 σ3) can be predicted from the measured MPL

failure stress Pmpl and Ded ratio The Poissonrsquos ratio used here is equal to 025

Comparison between the failure stress (σ1 σ3) obtained from the

standard triaxial compressive strength testing (ASTM D7012-07) and those predicted

from MPL test results are made graphically in Figures 431 through 433 for ν =025

The figures are plotted the maximum shear stress (frac12(σ1-σ3)) as a function of mean

shear stress (frac12(σ1+σ3)) indicating that the predicted failure stresses under-estimate

the value obtained from the standard testing This is because of the assumption of no

shear stresses developed on the surface of the imaginary cylinder The under

prediction may be due to the intrinsic variability of the rocks The predictions are

also sensitive to assumed Poissonrsquos ratio The Poissonrsquos ratio of the tested specimens

74

may be lower than the assumed value of 025 This comparison implies that the

triaxial strength predicted from MPL test will be more conservative than those from

the standard testing method

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests

Specimen Number

td Ded σ1

(MPa)σ3

(MPa)Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-01 246 543 159 2527 6663 9190 And-MPL-02 351 632 471 7583 19776 27358 And-MPL-03 236 634 191 3075 8017 11091 And-MPL-04 266 960 319 5198 13325 18522 And-MPL-05 284 903 471 7682 19726 27408 And-MPL-06 245 793 357 5792 14938 20730 And-MPL-07 263 874 331 5393 13864 19257 And-MPL-08 261 980 268 4368 11192 15560 And-MPL-09 280 777 344 5581 14407 19988 And-MPL-10 244 569 159 2535 6659 9194 And-MPL-11 251 613 368 5911 15445 21356 And-MPL-12 226 631 340 5465 14253 19717 And-MPL-13 233 1126 468 7660 19568 27228 And-MPL-14 279 1203 572 9372 23911 33283 And-MPL-15 239 503 227 3589 9529 13118 And-MPL-16 281 474 170 2678 7154 9831 And-MPL-17 305 861 497 8087 20797 28884 And-MPL-18 233 653 283 4561 11874 16435 And-MPL-19 294 1386 484 7946 20231 28177 And-MPL-20 265 860 522 8501 21864 30365 And-MPL-21 238 425 311 4854 13143 17997 And-MPL-22 230 417 255 3962 10758 14720 And-MPL-23 223 557 283 4521 11894 16415 And-MPL-24 250 760 311 5049 13045 18094 And-MPL-25 259 1243 468 7671 19562 27234 And-MPL-26 303 560 395 6308 16591 22899 And-MPL-27 273 1640 497 8167 20757 28924 And-MPL-28 282 906 280 4574 11726 16300 And-MPL-29 311 934 369 6026 15459 21484 And-MPL-30 246 1314 650 1066 27166 37828 And-MPL-31 262 982 255 4160 10659 14819 And-MPL-32 260 1147 468 7663 19567 27229

75

And-MPL-33 240 700 255 4118 10680 14798 And-MPL-34 304 800 306 4966 12804 17770

76

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-35 250 455 280 4401 11812 16213 And-MPL-36 243 1697 312 5130 13034 18163 And-MPL-37 333 1520 395 6488 16501 22989 And-MPL-38 238 661 442 7125 18535 25661 And-MPL-39 318 347 338 5112 14342 19455 And-MPL-40 245 551 390 6222 16387 22609 And-MPL-41 207 561 390 6230 16383 22613 And-MPL-42 223 425 283 4413 11948 16361 And-MPL-43 207 561 390 6230 16383 22613 And-MPL-44 324 340 395 5952 16769 22721 And-MPL-45 275 426 306 4767 12903 17670 And-MPL-46 302 397 166 2559 7001 9560 And-MPL-47 255 314 127 3211 9223 12433 And-MPL-48 257 220 142 1852 6151 8003 And-MPL-49 256 214 74 950 3205 4155 And-MPL-50 243 166 102 1493 6331 7823

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-01 300 782 442 7389 19703 27092 SST -MPL-02 250 480 572 9028 24083 33112 SST -MPL-03 314 424 433 6767 18273 25040 SST -MPL-04 292 809 572 9293 23951 33244 SST -MPL-05 275 1142 780 1277 32611 45382 SST -MPL-06 308 490 494 7811 20792 28603 SST -MPL-07 317 611 728 1169 30552 42241 SST -MPL-08 233 684 624 1008 26160 36235 SST -MPL-09 255 480 598 9439 25178 34617 SST -MPL-10 217 772 312 5061 13068 18129 SST -MPL-11 312 903 702 1144 29377 40817 SST -MPL-12 255 1094 390 6381 16308 22689 SST -MPL-13 286 742 510 8255 21350 29605 SST -MPL-14 248 615 198 3183 8316 11500

77

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-15 253 805 546 8869 22863 31732 SST -MPL-16 243 1094 390 6381 16308 22689 SST -MPL-17 234 1090 650 1063 27180 37814 SST -MPL-18 253 1371 624 1024 26077 36317 SST -MPL-19 327 434 408 6369 17198 23567 SST -MPL-20 270 310 497 7344 21169 28513 SST -MPL-21 269 691 522 8438 21896 30333 SST -MPL-22 312 504 484 7672 20368 28040 SST -MPL-23 319 627 331 5626 13897 19224 SST -MPL-24 281 689 420 6790 17624 24414 SST -MPL-25 210 720 497 8039 20821 28860 SST -MPL-26 303 775 471 7648 19743 27391 SST -MPL-27 272 714 395 6388 16551 22939 SST -MPL-28 292 855 764 1244 31997 44436 SST -MPL-29 310 742 510 8255 21350 29605 SST -MPL-30 284 847 522 8498 21866 30364 SST -MPL-31 320 891 828 1349 34656 48146 SST -MPL-32 261 256 226 3165 9741 12906 SST -MPL-33 224 405 311 4825 13157 17982 SST -MPL-34 231 379 255 3912 10783 14695 SST -MPL-35 290 442 594 9307 25071 34377 SST -MPL-36 241 521 283 4499 11905 16404 SST -MPL-37 275 605 340 5452 14259 19711 SST -MPL-38 263 616 368 5912 15445 21357 SST -MPL-39 227 615 198 3183 8316 11500 SST -MPL-40 236 508 311 4939 13100 18039 SST -MPL-41 318 1142 780 1277 32611 45382 SST -MPL-42 303 809 546 8870 22862 31733 SST -MPL-43 228 805 546 8869 22863 31732 SST -MPL-44 283 1142 780 1277 32611 45382 SST -MPL-45 277 772 312 5061 13068 18129 SST -MPL-46 288 1206 728 1193 30433 42361 SST -MPL-47 250 508 323 5119 13577 18695 SST -MPL-48 275 442 594 9307 25071 34377 SST -MPL-49 272 605 368 5906 15447 21354 SST -MPL-50 260 805 520 8447 21774 30221

78

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-01 270 546 293 4672 12313 16986 TST -MPL-02 258 787 293 4756 12272 17028 TST -MPL-03 275 730 255 4125 10676 14801 TST -MPL-04 282 715 510 8243 21356 29599 TST -MPL-05 254 1345 280 4599 11713 16312 TST -MPL-06 292 893 255 4151 10663 14814 TST -MPL-07 243 853 311 5067 13036 18103 TST -MPL-08 287 1047 268 4368 11192 15560 TST -MPL-09 230 787 471 7651 19741 27393 TST -MPL-10 230 427 147 2296 6212 8508 TST -MPL-11 282 1243 573 9397 23964 33361 TST -MPL-12 254 604 255 4089 10695 14783 TST -MPL-13 288 1180 369 6052 15445 21497 TST -MPL-14 251 631 232 3734 9739 13474 TST -MPL-15 214 1104 312 5105 13046 18151 TST -MPL-16 229 486 215 3400 9057 12457 TST -MPL-17 259 715 286 4626 11986 16612 TST -MPL-18 243 285 102 1474 4358 5833 TST -MPL-19 285 316 130 1934 5544 7478 TST -MPL-20 241 295 102 1489 4351 5840 TST -MPL-21 298 417 170 2641 7172 9813 TST -MPL-22 265 642 170 2650 7168 9817 TST -MPL-23 314 611 255 4091 10693 14784 TST -MPL-24 303 481 368 5843 15476 21322 TST -MPL-25 223 223 331 4370 14376 18745 TST -MPL-26 273 652 331 5336 13892 19229 TST -MPL-27 216 887 535 8716 22394 31109 TST -MPL-28 319 718 369 5977 15483 21460 TST -MPL-29 231 516 255 4046 10716 14762 TST -MPL-30 260 641 484 7793 20307 28100 TST -MPL-31 287 496 420 6654 17692 24346 TST -MPL-32 264 368 293 4477 12411 16888 TST -MPL-33 238 415 293 4560 12370 16930 TST -MPL-34 271 824 364 5917 15240 21157 TST -MPL-35 283 800 572 9290 23953 33242 TST -MPL-36 242 1013 468 7646 19575 27221 TST -MPL-37 254 715 234 3785 9806 13592 TST -MPL-38 210 755 390 6321 16338 22659

79

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-39 293 508 286 4536 12031 16567 TST -MPL-40 273 410 260 4036 10981 15017 TST -MPL-41 234 628 208 3345 8727 12071 TST -MPL-42 259 433 338 5279 14259 19538 TST -MPL-43 265 546 280 4469 11778 16247 TST -MPL-44 255 829 147 2394 6163 8557 TST -MPL-45 254 368 306 4671 12951 17622 TST -MPL-46 293 695 210 7616 19759 27375 TST -MPL-47 247 297 102 1491 4359 5841 TST -MPL-48 310 611 170 2728 7129 9870 TST -MPL-49 225 337 416 6744 17426 24170 TST -MPL-50 259 410 312 4841 13178 18019

ANDESITE

τm= 07103σm + 26

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=

((σ

1-σ

3)2

) (M

Pa)

MPL PredictionTriaxial Compressive

Figure 431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and MPL test

80

SILICIFIED TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=(

( σ1minus

σ3)

2)

(MPa

)MPL Prediction

Triaxial Compressive Strength test

Figure 432 Comparisons of triaxial compressive strength criterion of silicified

tuffaceous sandstone between the triaxial compressive strength test

and MPL test

81

TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stress σm=((σ1+σ3)2) (MPa)

Max

imum

shea

r st

res

τ m=(

( σ1-

σ3)

2)

(MPa

)

MPL Prediction

Triaxial Compressive Strength test

Figure 433 Comparisons of triaxial compressive strength criterion of tuffaceous

sandstone between the triaxial compressive strength test and MPL

test

Table 425 compares the triaxial test results in terms of the cohesion c

and internal friction angle φi by assuming the failure mode follows the Coulombrsquos

criterion The c and φi values are calculated from the test results and the predicted

results by the assumption of Coulombrsquos criterion (Jaeger and Cook 1978) Table

425 shows that the strengths predicted by MPL testing of all rock types under-

estimate those obtained from the standard triaxial testing This is probably the actual

Poissonrsquos ratio of the rock specimens are probably lower than those assumed in the

model simulation which is assumed the Poissonrsquos ratio as 025

82

Table 425 Comparisons of the internal friction angle and cohesion between MPL

predictions and triaxial compressive strength tests

Triaxial Compressive Strength Test

MPL Predictions (ν=025) Rock Type

c (MPa) φi (degrees) c (MPa) φi (degrees)

Porphyritic Andesite 12 69 4 45

Silicified Tuffaceous Sandstone 13 65 3 46

Tuffaceous Sandstone 7 73 2 46

CHAPTER V

FINITE DIFFERENCE ANALYSES

51 Objectives

The objective of the finite difference analyses is to verify that the equivalent

diameter of rock specimens used in the MPL strength prediction is appropriate The

finite difference analyses using FLAC software is made to determine the MPL

strength for various specimen diameters (D) with a constant cross-sectional area

52 Model characteristics

The analyses are made in axis symmetry Four specimen models with the

constant thickness of 318 cm are loaded with 10 cm diameter loading point The

diameter of the specimen (D) models is varied from 508 cm to 762 cm Each

specimen has a constant cross-sectional area of 1613 cm2 as shown in Figure 51

through 55 The load is applied to the specimens until failure occurs and then the

failure loads (P) are recorded

53 Results of finite difference analyses

The results of numerical simulation are shown in Table 51 The results

suggest that the MPL strength remains roughly constant when the same equivalent

diameter (De) is used It can be concluded that the equivalent diameter used in this

research is appropriate to predict the MPL strength

80

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm

81

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm

82

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm

Table 51 Summary of the results from numerical simulations

Model Number

Specimen Thickness

t (cm)

Specimen Diameter

D (cm)

Cross-Sectional

Are of Specimen

A (cm2)

Equivalent Diameter

De (cm)

Failure Load P

(kN)

1 318 508 1613 508 4485 2 318 572 1613 508 4630 3 318 635 1613 508 4614 4 318 698 1613 508 4627 5 318 762 1613 508 4590

CHAPTER VI

DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS

This chapter discusses various aspects of the proposed MPL testing technique

for determining the elastic modulus uniaxial and triaxial compressive strengths and

tensile strength of intact rock specimens The discussed issues include reliability of

the testing results validity scope and limitations of the proposed method of

calculations and accuracy of the predicted rock properties

61 Discussions

1) For selection of rock specimens for MPL testing in this research an

attempt has been made to select the specimens particularly in obtaining a high degree

of uniformity of rock matrix so as to reduce the intrinsic variability of the mechanical

test results and hence clearly reveals of the relation between the standard test results

with the MPL test results Nevertheless a high degree of intrinsic variability

remains as evidenced from the results of the characterization testing For all tested

rock types here the igneous rocks are normally heterogeneous The high intrinsic

variability is caused by the degree of weathering among specimens and the

distribution of rock fragments in the groundmass which promotes the different

orientations of cleavage planes and pore spaces to become a weak plane in rock

specimens Silicified tuffaceous sandstone the high standard deviation may be

caused by the silicified degree in rock specimens

84

2) For prediction of elastic modulus of rock specimens the effects of the

heterogeneity that cause the selective weak planes are enhanced during the MPL

testing This is because the applied loading areas are much smaller than those under

standard uniaxial compressive strength testing This load condition yields a high

degree of intrinsic variability of the MPL testing results The standard deviation of

the elastic modulus predicted from MPL results are in the range between 35-50

This means that in order to obtain the accurate prediction a large number of rock

specimens is necessary for each rock types and that the MPL testing is more

applicable in fine-grained rocks than coarse-grained rocks Another factor is the

uneven contacts between the loading platens and the rock surfaces which caused the

elastic modulus of all rock types that predicted from MPL testing to be lower

compared with those from the uniaxial compressive strength

3) Equivalent diameter used to define the rock specimen width (perpendicular

to the loading direction) seems adequate for use in MPL predictions of rock

compressive and tensile strengths

4) Determination of σ3 at failure for the MPL testing is the empirical In fact

results from the numerical simulation indicate that σ3 distribution along the imaginary

cylinder between the loading points is not uniform particularly for low td ratio

(lower than 25) Along this cylinder σ3 is tension near the loading point and

becomes compression in the mid-length of the MPL specimen There are also shear

stresses along the imaginary cylinder The induced stress states along the assume

cylinder in MPL specimen are therefore different from those the actual triaxial

strength testing specimen The MPL method can not satisfactorily predict the triaxial

compressive strength of all tested rock types primarily due to the heterogeneity of

85

rock specimens that is the different sizes of phenocrysts in igneous rock in lateral and

horizontal directions This promotes the different failure formations

62 Conclusions

The objective of this research is to determine the elastic modulus uniaxial

compressive strength tensile strength and triaxial compressive strength of rock

specimens by using the modified point load (MPL) test method Three rock types

used in this research are porphyritic andesite silicified tuffaceous sandstone and

tuffaceous sandstone Prior to performing the modified point load testing the

standard characterization testing is carried out on these rock types to obtain the data

basis for use to compare the results from MPL testing The MPL specimens are

irregular-shaped with the specimen thickness to loading platen diameter (td) varies

from 25-35 and the equivalent diameter of specimen to loading platen diameter

(Ded) varies from 15 to 20 Loading platen diameters used in this research are 7 10

and 15 mm Finite different analysis is used to verify the equivalent diameter that use

to calculate rock properties from MPL tests

The research results illustrate that the elastic modulus estimated from MPL tests

under-estimates those obtained from the ASTM standard test with the standard

deviation of 40 for porphyritic andesite 48 for silicified tuffaceous sandstone and

43 for tuffaceous sandstone The MPL test method can satisfactorily predict the

uniaxial compressive strength and tensile strength of all rock types tested here The

conventional point load test method over-predicts the actual strength results by much as

100 The MPL method however can not predict the triaxial compressive strengths

for three rock types tested here primarily due to heterogeneous and different

86

weathering degree of rock specimens and uneven surface of rock specimens This

suggests that the smooth and parallel contact surfaces on opposite side of the loading

points are important for determining the strength of rock specimens for MPL method

63 Recommendations

The assessment of predictive capability of the proposed MPL testing technique

has been limited to three rock types More testing is needed to confirm the applicability

and limitations of the proposed method Some obvious future research needs are

summarized as follows

1) More testing is required for elastic modulus and triaxial compressive strength

on different rock types Smooth and parallel of rock specimen surfaces in the opposite

sides should be prepared for all rock types The results may also reveal the impacts of

grain size on elasticity and strength of obtained under different loading areas And the

effects of size of the areas underneath the applied load should be further investigated

2) To truly confirm the validity of MPL predictions for the elastic modulus and

strength of rocks may be desirable to obtain the actual Poissonrsquos ratio of all rock types

The results could reveal the accuracy of the predicted elastic modulus under the assumed

Poissonrsquos ratio of 025 Comparison between the elastic modulus obtained from the

actual Poissonrsquos ratio may show the validity of assumption of the Poissonrsquos ratio posed

here

3) All tests made in this research are on dry specimens the results of pore

pressure and degree of saturation have not been investigated It is desirable to learn also

the proposed MPL testing technique can yield the intact rock properties under

different degree of saturation

88

REFERENCES

ASTM D2664-86 Standard test method for triaxial compressive strength of

undrained rock core specimens without pore pressure measurements In

Annual Book of ASTM Standards (Vol 0408) Philadelphia American

Society for Testing and Materials

ASTM D7012-07 Standard test method for compressive strength and elastic moduli

of intact rock core specimens under varying states of stress and

temperatures In Annual Book of ASTM Standards (Vol 0408) West

Conshohocken American Society for Testing and Materials

ASTM D3967-81 Standard test method for splitting tensile strength of intact rock

core specimens In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

ASTM D4543-85 Standard test method for preparing rock core specimens and

determining dimensional and shape tolerances In Annual Book of ASTM

Standards (Vol 0408) Philadelphia American Society for Testing and

Materials

ASTM D5731-95 Standard test method for determination of point load strength

index of rock In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

Bieniawski Z T (1974) Estimating of the strength of rock materials J Inst

Min Metall 7 123-137

Bieniawski Z T (1975) The point-load test in geotechnical practice Engng

Geol 9 1-11

89

Bieniawski Z T and Bernede M J (1979) Suggested methods for determining the

uniaxial compressive strength and deferability of rock material for ISRM

Commission on Standardization of Laboratory and Field test Int J Rock

Mech Min Sci 16 (2)xxxx (page no)

Bray J W (1987) Some applications of elastic theory In E T Brown (ed)

Analytical and Computational Methods in Engineering Rock

Mechanics (pp 32-94) Allen amp Unwin London

Broch E and Franklin J A (1972) The point-load test Int J Rock Mech Min

Sci 9 669-697

Book N (1977) The use of irregular specimens for rock strength tests Int J

Rock Mech Min Sci amp Geomech Abstr 14 193-202

Book N (1979) Estimating the triaxial strength of rocks Int J Rock Mech Min

Sci amp Geomech Abstr 16 261-264

Book N (1980) Size correction for point load testing Int J Rock Mech Min

Sci 17231-235 [Technical note]

Book N (1985) The equivalent core diameter method of size and shape correction

in point load testing Int J Rock Mech Min Sci amp Geomech Abstr

22 61-70

Brown E T (1981) Rock characterization Testing and Monitoring ISRM

Suggestion Methods New York International Society for Rock

Mechanics Pergamon Press

Butenuth C (1997) Comparison of tensile strength values of rocks determined by

point load and direct tensile tests Rock Mech Rock Engng 30 65-72

90

Cargill J S and Shakoor A (1992) Evaluation of empirical methods for measuring

the uniaxial compressive strength Int J Rock Mech Min Sci 27 495-503

Chau KT (1997) Youngrsquos modulus interpreted from compression tests with end

friction J Engng Mech January 1-7 plat Ann Inst Tech Trav Publics

58 967-971

Chau KT and Wei X X (1999) A new analytic solution for the diametral point

load strength test on finite solid circular cylinders Int J Solids and

Structures 38(9) 1459-1481

Chau KT and Wong R HC (1996) Uniaxial compressive strength and point

load strength Int J Rock Mech Min Sci 33183-188

Davis R O and Selvadurai APS (1996) Elasticity and Geomechanics New

York Cambridge University Press 198 p

Deere DU and Miller R P (1966) Engineering Classification and Index

Properties for Intact Rock US Air Force Weapons Lab Rep AFWL-

TR-65-116

Durelli A J and Parks V (1962) Relationship of size and stress gradient to brittle

failure stress In Proceeding of the 4th US National Cong Of Appl

Mech (pp 931-938)

Evans I (1961) The tensile strength of coal Colliery Eng 38 428-434

Fairhurst C (1961) Laboratory measurement of some physical properties of rock

In Proceeding of the 4th Symp Rock Mech (pp 105-118) Penn State

University

Farmer I (1983) Engineering Behavior of Rocks New York Chapman and Hall

208 p

91

Forster I R (1983) The influence of core sample geometry on axial load test Int

J Rock Mech Min Sci 20 291-295

Fuenkajorn K (2002) Modified point load test determining uniaxial compressive

strength of intact rock In Proceeding of 5th North American Rock

Mechanics Symposium and the 17th Tunneling Association of Canada

Conference (NARMS-TAC 2002) (pp ) Toronto

Fuenkajorn K and Daemen J J K (1986) Shape effect on ring test tensile

strength In Key to Energy Production Proceeding of the 27th US

Symposium on Rock Mechanics (pp 155-163) Tuscaloosa University of

Alabama

Fuenkajorn K and Daemen J J K (1991b) An empirical strength criterion for

heterogeneous welded tuff In ASME Applied Mechanics and

Biomechanics Summer Conference Columbus Ohio University

Fuenkajorn K and Daemen J J K (1992) An empirical strength criterion for

heterogeneous tuff Int J Engineering Geology 32 209-223

Fuenkajorn K and Tepnarong P (2001) Size and stress gradient effects on the

modified point load strength of Saraburi Marble In the 6th Mining

Metallurgical and Petroleum Engineering Conference Bangkok

Thailand(pp)

Ghosh A Fuenkajorn K and Daemen J J K (1995) Tensile strength of welded

Apache Leap tuff investigation for scale effects In Proceeding of the 35th

US Rock Mech Symposium (pp 459-646) University of Navada Reno

Goodman R E (1980) Methods of Geological Engineering in Discontinuous

Rock New York Wiley and Sons

92

Greminger M (1982) Experimental studies of the influence of rock anisotropy on

size and shape effects in point-load testing Int J Rock Mech Min Sci

19 241-246

Gunsallus K L and Kulhawy F H (1984) A comparative evaluation of rock

strength measures Int J Rock Mech Min Sci 21 233-248

Hassani F P Scoble M J and Whittaker B N (1980) Application of point load

index test to strength determination of rock and proposals for new size-

correction chart (pp 543-564) Rolla

Hiramatsu Y and Oka Y (1966) Determination of tensile strength of rock by a

compression test of irregular test piece Int J Rock Mech Min Sci 3

89-99

Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the

Hoek-Brown falure criterion-Technical note Int J Rock Mech Min Sci

amp Geomech Abstr 27 227-229

Hoek E and Brown E T (1980a) Empirical strength criterion for rock masses J

Geotech Eng Div 106 (GT9) 1013-1035

Hondros G (1959) The evaluation of Poissonrsquos ratio and modulus of material of a

low tensile resistance by the Brazilian (indirect tensile) test with particular

reference to concrete Aust J Appl Sci 10 243-264

Horii H and Nemat-Nasser S (1985) Compression-induced microcrack growth in

brittle solids axial splitting and shear failure J Geophts Res 90 3105-

3125

93

Hudson J A Brown E T and Fairhurst C (1971) Shape of the complete stress-

strain curve for rock In Proceeding of the 13th US Symp Rock Mech (pp

773-795) Urbana

ISRM (1985) Suggested method for determining point load strength Int J Rock

Mech Min Sci amp Geomech Abstr 22 53-60

ISRM (1985) Suggested methods for deformability determination using a flexible

dilatometer Int J Rock Mech Min Sci amp Geomech Abstr 24 123-134

Jaeger J C and Cook N G W (1979) Fundamentals of Rock Mechanics

London Chapman and Hall 593 p

Kaczynski R R (1986) Scale effect during compressive strength of rocks In

Proceeding of 5th Int Assoc Eng Geol Congr p 371-373

Lama R D and Vutukuri V S (1978) Testing techniques and results In

Handbook on Mechanical Properties of Rock Vol III No 2 Trans

Tech Publications (International Standard Book Number 0-87849-022-1

Clausthal Germany)

Lonborg N (1967) The strength-size relation of granite Int J Rock Mech Min

Sci 4 269-272

Miller R P (1965) Engineering Classification and Index Properties for Intact

Rock PhD Dissertation Univ Of Illinois Urbana III 92 p

Nimick F B (1988) Empirical relations between porosity and the mechanical

properties of tuff In Key Questions in Rock Mechanics (pp 741-742)

Balkema Rotterdam

Obert L and Stephenson D E (1965) Stress conditions under which core disking

occurs Trans Soc Min Eng AIME 232 227-235

94

Panek L A and Fannon T A (1992) Size and shape effects in point load tests

of irregular rock fragments J Rock Mechanics and Rock Engineering

25 109-140

Pells P J N (1975) The use of point load test in predicting the compressive

strength of rock material Aust Geotech (pp 54-56) G5(N1)

Reichmuth D R (1968) Point-load testing of brittle materials to determine the

tensile strength and relative brittleness In Proceeding of the 9th US Symp

Rock Mech (pp 134-159) University of Colorado

Sammis C G and Ashby M F (1986) The failure of brittle porous solid under

compressive stress state Acta Metall 34 511-526

Serata S and Fuenkajorn K (1992a) Finite element progam lsquoGEOrsquo for modeling

brittle-ductile deterioration of aging earth structures In SMRI Paper

Presented at the Solution Mining Research Institute Fall Meeting

October 19-22 Houston Texas 24p

Sheorey P R Biswas A K and Choubey V D (1989) An empirical failure

criterion of rocks and jointed rock masses Eng Geol 26 141-159

Stowe R L (1969) Strength and deformation properties of granite basalt

limestone and tuff US Army Corps of Engineers WES Misc Paper C-69-1

Taliercio A and Sacchi Landrianni G (1988) Failure criterion for layered rock

Int J Rock Mech Min Sci amp Geomech Abstr 25 299-305

Tepnarong P (2001) Theoretical and experimental studies to determine

compressive and tensile strengths of rocks using modified point load

testing M Eng Thesis Suranaree University of Technology Thailand

95

Tepnarong P (2006) Theoretical and experimental studies to determine elastic

modulus and triaxial compressive strength of intact rocks by modified

point load testing PhD Eng Thesis Suranaree University of

Technology Thailand

Tepnarong P and Fuenkajorn K (2004) Determining of elasticity and strengths

of intact rocks using modified point load test In Proceeding of the ISRM

International Symposium 3rd ASRM Vol 2 (pp 397-392)

Timoshenko S (1958) Strength of materials I Element Theory and Problems

(3rd ed) Princeton N J D Van Nostard

Timoshenko S and Goodier J N (1951) Theory of Elasticity (2nd ed) New

York McGraw-Hill

Truk N and Dearman W R (1985) Improvements in the determination of point

load strength Bull Int Assoc Eng Geol 31 137-142

Truk N and Dearman W R (1986) A correction equation on the influence of

length-to-diameter ratio on uniaxial compressive strength of rocks J Eng

Geol 22 293-300

Wei X X and Chau K T (2002) Analytic solution for finite transversely

isotropic circular cylinder under the axial point load test J Eng Mech

(pp 209-219)Vol

Wei X X and Chau K T and Wong R H C (1999) Analytic solution for

axial point load strength test on solid circular cylinders J Eng Mech (pp

1349-1357) Vol

96

Wijk G (1978) Some new theoretical aspects of indirect measurements of the

tensile strength of rocks Int J Rock Mech Min Sci amp Geomech

Abstr 15 149-160

Wijk G (1980) The point load test for the tensile strength of rock Geotech Test

ASTM 3 49-54

APPENDIX A

CHARACTERIZATION TEST RESULTS

97

Table A-1 Results of conventional point load strength index test on porphyritic

andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

And-06-05-CPL-01 5397 5366 284 52 And-06-05-CPL-02 5332 5366 283 78 And-08-04-CPL-03 5432 5366 284 90 And-08-04-CPL-04 5482 5366 286 87 And-06-01-CPL-05 5330 5366 285 76 And-06-01-CPL-06 5613 5366 284 76 And-04-04-CPL-07 5617 5366 281 75 And-04-05-CPL-08 5525 5366 282 75 And-03-02-CPL-09 5595 5366 280 85 And-03-02-CPL-10 5535 5366 283 85 And-06-06-CPL-11 5475 5366 283 75 And-09-01-CPL-12 5552 5366 286 90 And-09-01-CPL-13 5503 5366 283 90 And-02-04-CPL-14 5542 5366 282 85 And-09-03-CPL-15 5607 5366 282 85 And-09-03-CPL-16 5452 5366 285 96 And-01-03-CPL-17 5530 5366 283 87 And-01-03-CPL-18 5313 5366 283 90 And-01-04-CPL-19 5465 5366 284 56 And-01-04-CPL-20 5572 5366 283 97

Average 81plusmn12

98

Table A-2 Results of conventional point load strength index test on silicified

tuffaceous sand stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

SST-02-03-CPL-01 5373 5366 268 125 SST-06-04-CPL-02 5469 5366 268 70 SST-02-07-CPL-03 5505 5366 269 70 SST-02-06-CPL-04 5518 5366 267 130 SST-02-04-CPL-05 5626 5366 267 125 SST-02-03-CPL-06 5139 5366 270 132 SST-02-03-CPL-07 5483 5366 271 71 SST-02-05-CPL-08 5340 5366 266 125 SST-02-05-CPL-09 5399 5366 265 70 SST-07-05-CPL-10 5643 5366 263 99 SST-07-05-CPL-11 5381 5366 266 106 SST-05-02-CPL-12 5439 5366 274 104 SST-05-02-CPL-13 5491 5366 271 104 SST-03-04-CPL-14 5430 5366 263 113 SST-03-04-CPL-15 5556 5366 263 106 SST-09-03-CPL-16 5491 5366 272 125 SST-09-03-CPL-17 5703 5366 271 125 SST-01-01-CPL-18 5705 5366 267 132 SST-02-07-CPL-19 5596 5366 269 111 SST-02-07-CPL-20 5527 5366 271 118

Average 108plusmn22

99

Table A-3 Results of conventional point load strength index test on tuffaceous sand

stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

TST-06-05-CPL-01 5657 5366 263 125 TST-06-05-CPL-02 5781 5366 264 109 TST-02-05-CPL-03 5686 5366 263 106 TST-02-05-CPL-04 5747 5366 264 80 TST-08-03-CPL-05 5606 5366 268 115 TST-08-03-CPL-06 5574 5366 266 118 TST-08-01-CPL-07 5491 5366 268 111 TST-08-01-CPL-08 5478 5366 268 115 TST-04-02-CPL-09 5422 5366 263 103 TST-04-02-CPL-10 5387 5366 264 111 TST-08-04-CPL-11 5371 5366 267 115 TST-08-04-CPL-12 5463 5366 267 113 TST-06-07-CPL-13 5545 5366 267 108 TST-04-01-CPL-14 5729 5366 261 59 TST-06-06-CPL-15 5457 5366 261 99 TST-06-06-CPL-16 5469 5366 263 109 TST-06-06-CPL-17 5497 5366 266 122 TST-04-03-CPL-18 5550 5366 261 87 TST-04-03-CPL-19 5521 5366 262 52 TST-04-05-CPL-20 5477 5366 264 87

Average 102plusmn20

100

Table A-4 Results of uniaxial compressive strength tests and elastic modulus

measurements on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-5 Results of uniaxial compressive strength tests and elastic modulus

measurements on silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

Table A-6 Results of uniaxial compressive strength tests and elastic modulus

measurements on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

101

Table A-7 Results of Brazilian tensile strength tests on porphyritic andesite

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

And-04-03-BZ-01 2628 5366 281 395 178 And-04-03-BZ-02 2551 5366 279 350 163 And-04-03-BZ-03 2755 5366 285 380 164 And-04-03-BZ-04 2669 5366 279 415 184 And-04-06-BZ-05 2686 5366 280 320 141 And-04-06-BZ-06 2699 5366 286 415 182 And-04-06-BZ-07 2649 5366 282 395 177 And-04-06-BZ-08 2642 5366 286 340 153 And-06-01-BZ-09 2678 5366 286 435 193 And-06-01-BZ-10 2758 5366 285 385 166

Average 170plusmn16

Table A-8 Results of Brazilian tensile strength tests on silicified tuffaceous

sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

SST-02-02-BZ-01 2507 5366 265 450 213 SST-01-06-BZ-02 2664 5366 264 520 232 SST-01-02-BZ-03 2595 5366 262 400 183 SST-01-02-BZ-04 2593 5366 261 320 146 SST-01-02-BZ-05 2608 5366 266 500 228 SST-02-01-BZ-06 2710 5366 266 500 220 SST-02-01-BZ-07 2654 5366 262 450 201 SST-01-05-BZ-08 2778 5366 268 350 150 SST-01-05-BZ-09 2793 5366 266 400 170 SST-01-05-BZ-10 2795 5366 266 400 170

Average 191plusmn32

102

Table A-9 esults of Brazilian tensile strength tests on tuffaceous sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

TST-02-03-BZ-01 2811 5366 260 360 152 TST-02-03-BZ-02 2757 5366 260 255 110 TST-02-03-BZ-03 2739 5366 262 325 141 TST-02-03-BZ-04 2688 5366 263 175 77 TST-06-04-BZ-05 2765 5366 266 450 193 TST-06-04-BZ-06 2729 5366 264 280 122 TST-06-04-BZ-07 2730 5366 260 230 100 TST-06-02-BZ-08 2748 5366 264 285 123 TST-06-02-BZ-09 2743 5366 261 290 125 TST-06-02-BZ-10 2658 5366 265 370 165

Average 131plusmn33

Table A-10 esults of triaxial compressive strength tests on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-11 Results of triaxial compressive strength tests on silicified tuffaceous

sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

103

Table A-12 Results of triaxial compressive strength tests on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

APPENDIX B

MODIFIED POINT LOAD TEST RESULTS FOR ELASTIC

MODULUS PREDICTION

116

AND-MPL-01

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 125 GPamm

Figure B1 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-01

And-MPL-02

00500

100015002000250030003500400045005000

0 005 01 015 02 025 03 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 180 GPamm

Figure B2 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-02

117

And-MPL-03

00200400600800

100012001400160018002000

000 002 004 006 008 010 012 014

Diplacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B3 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-03

And-MPL-04

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B4 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-04

118

And-MPL-05

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 369 GPamm

Figure B5 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-05

And-MPL-06

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B6 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-06

119

And-MPL-07

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss (

MPa

)

ΔPΔδ = 234 GPamm

Figure B7 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-07

And-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 171 GPamm

Figure B8 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-08

120

And-MPL-09

00

500

1000

1500

2000

2500

3000

3500

000 020 040 060 080 100 120 140Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 056 GPamm

Figure B9 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-09

And-MPL-10

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 124 GPamm

Figure B10 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-10

121

And-MPL-11

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030 035 040Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 138 GPamm

Figure B11 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-11

And-MPL-12

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 189 GPamm

Figure B12 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-12

122

And-MPL-13

00500

100015002000250030003500400045005000

000 010 020 030 040 050 060

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 151 GPamm

Figure B13 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-13

And-MPL-14

00

1000

2000

3000

4000

5000

6000

7000

000 010 020 030 040 050 060Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 165 GPamm

Figure B14 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-14

123

And-MPL-15

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120 140 160Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 011 GPamm

Figure B15 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-15

And-MPL-16

00

200

400

600

800

1000

1200

1400

1600

1800

000 050 100 150 200Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 012 GPamm

Figure B16 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-16

124

And-MPL-17

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120

Displacement (mm)

Stre

ss P

(MPa

) ΔPΔδ = 021 GPamm

Figure B17 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-17

And-MPL-18

00

500

1000

1500

2000

2500

3000

000 050 100 150 200 250 300 350Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 008 GPamm

Figure B18 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-18

125

And-MPL-19

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B19 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-19

And-MPL-20

00

1000

2000

3000

4000

5000

6000

000 050 100 150 200 250 300

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 017 GPamm

Figure B20 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-20

126

And-MPL-21

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B21 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-21

And-MPL-22

00

500

1000

1500

2000

2500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B22 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-22

127

And-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B23 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-23

And-MPL-24

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =112 GPamm

Figure B24 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-24

128

And-MPL-25

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 585 GPamm

Figure B25 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-25

And-MPL-26

00500

10001500200025003000350040004500

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 143 GPamm

Figure B26 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-26

129

And-MPL-27

00500

10001500200025003000350040004500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B27 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-27

And-MPL-28

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B28 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-28

130

And-MPL-29

00500

1000150020002500300035004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B29 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-29

And-MPL-30

00

1000

2000

3000

4000

5000

6000

7000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B30 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-30

131

And-MPL-31

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B31 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-31

And-MPL-32

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B32 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-32

132

And-MPL-33

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 101 GPamm

Figure B33 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-33

And-MPL-34

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 135 GPamm

Figure B34 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-34

133

And-MPL-35

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 127 GPamm

Figure B35 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-35

And-MPL-36

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 292 GPamm

Figure B36 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-36

134

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B37 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-37

And-MPL-38

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B38 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-38

135

And-MPL-39

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 186 GPamm

Figure B39 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-39

And-MPL-40

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 20 GPamm

Figure B40 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-40

136

And-MPL-41

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B41 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-41

And-MPL-42

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B42 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-42

137

And-MPL-43

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 346 GPamm

Figure B43 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-43

And-MPL-44

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B44 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-44

138

And-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 169 GPamm

Figure B45 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-45

And-MPL-46

00

200

400

600

800

1000

1200

1400

1600

1800

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B46 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-46

139

And-MPL-47

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B47 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-47

And-MPL-48

00

200

400

600

800

1000

1200

1400

1600

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 094 GPamm

Figure B48 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-48

140

And-MPL-49

00

100

200

300

400

500

600

700

800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 057 GPamm

Figure B49 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-49

And-MPL-50

00

200

400

600

800

1000

1200

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 078 GPamm

Figure B50 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-50

141

SST-MPL-01

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 280 GPamm

Figure B51 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-01

SST-MPL-02

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 307 GPamm

Figure B52 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-02

142

SST-MPL-03

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 356 GPamm

Figure B53 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-03

SST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 450 GPamm

Figure B54 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-04

143

SST-MPL-05

00100020003000400050006000700080009000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 532 GPamm

Figure B55 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-05

SST-MPL-06

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 273 GPamm

Figure B56 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-06

144

SST-MPL-07

0010002000300040005000600070008000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 418 GPamm

Figure B57 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-07

SST-MPL-08

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 414 GPamm

Figure B58 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-08

145

SST-MPL-09

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B59 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-09

SST-MPL-10

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 958 GPamm

Figure B60 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-10

146

SST-MPL-11

00

10002000

300040005000

60007000

8000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 400 GPamm

Figure B61 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-11

SST-MPL-12

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 272 GPamm

Figure B62 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-12

147

SST-MPL-13

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 408 GPamm

Figure B63 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-13

SST-MPL-14

00

500

1000

1500

2000

2500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 296 GPamm

Figure B64 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-14

148

SST-MPL-15

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 282 GPamm

Figure B65 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-15

SST-MPL-16

00500

1000150020002500300035004000

000 005 010 015 020

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 26 GPamm

Figure B66 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-16

149

SST-MPL-17

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 416 GPamm

Figure B67 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-17

SST-MPL-18

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 473 GPamm

Figure B68 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-18

150

SST-MPL-19

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 330 GPamm

Figure B69 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-19

SST-MPL-20

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 278 GPamm

Figure B70 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-20

151

SST-MPL-21

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 185 GPamm

Figure B71 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-21

SST-MPL-22

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B72 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-22

152

SST-MPL-23

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 15 GPamm

Figure B73 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-23

SST-MPL-24

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 295 GPamm

Figure B74 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-24

153

SST-MPL-25

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 259 GPamm

Figure B75 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-25

SST-MPL-26

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 221 GPamm

Figure B76 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-26

154

SST-MPL-27

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 274 GPamm

Figure B77 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-27

SST-MPL-28

0010002000300040005000600070008000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 209 GPamm

Figure B78 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-28

155

SST-MPL-29

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 176 GPamm

Figure B79 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-29

SST-MPL-30

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B80 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-30

156

SST-MPL-31

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 464 GPamm

Figure B81 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-31

SST-MPL-32

00

500

1000

1500

2000

2500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 178 GPamm

Figure B82 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-32

157

SST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 131 GPamm

Figure B83 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-33

SST-MPL-34

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 215 GPamm

Figure B84 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-34

158

SST-MPL-35

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 190 GPamm

Figure B85 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-35

SST-MPL-36

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B86 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-36

159

SST-MPL-37

00500

1000150020002500300035004000

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 067 GPamm

Figure B87 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-37

AND-MPL-38

00

500

10001500

2000

2500

3000

35004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 127 GPamm

Figure B88 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-38

160

SST-MPL-39

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 229 GPamm

Figure B89 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-39

SST-MPL-40

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 090 GPamm

Figure B90 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-40

161

SST-MPL-41

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 498 GPamm

Figure B91 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-41

SST-MPL-42

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 392 GPamm

Figure B92 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-42

162

SST-MPL-43

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 244 GPamm

Figure B93 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-43

SST-MPL-44

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 571 GPamm

Figure B94 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-44

163

SST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 001 002 003 004 005 006 007 008

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 780 GPamm

Figure B95 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-45

SST-MPL-46

0010002000300040005000600070008000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 411 GPamm

Figure B96 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-46

164

SST-MPL-47

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 309 GPamm

Figure B97 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-47

SST-MPL-48

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 338 GPamm

Figure B98 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-48

165

SST-MPL-49

00500

1000150020002500300035004000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 254 GPamm

Figure B99 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-49

SST-MPL-50

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 360 GPamm

Figure B100 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-50

166

TST-MPL -01

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 212GPamm

Figure B101 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-01

TST-MPL-02

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=326 GPamm

Figure B102 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-02

167

TST-MPL-03

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacememt (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B103 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-03

TST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B104 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-04

168

TST-MPL-05

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 264 GPamm

Figure B105 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-05

TST-MPL-06

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacment (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B106 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-06

169

TST-MPL-07

00

500

1000

1500

2000

2500

3000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 162 GPamm

Figure B107 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-07

TST-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=319 GPamm

Figure B108 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-08

170

TST-MPL-09

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =212 GPamm

Figure B109 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-09

TST-MPL-10

00200400600800

1000120014001600

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 132GPamm

Figure B110 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-10

171

TST-MPL-11

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =319 GPamm

Figure B111 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-11

TST-MPL-12

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 127 GPamm

Figure B112 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-12

172

TST-MPL-13

00500

1000150020002500300035004000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 159 GPamm

Figure B113 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-13

TST-MPL-14

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =170 GPamm

Figure B114 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-14

173

TST-MPL-15

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 260 GPamm

Figure B115 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-15

TST-MPL-16

00500

100015002000250030003500400045005000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B116 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-16

174

TST-MPL-17

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B117 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-17

TST-MPL-18

00

200

400

600

800

1000

1200

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=073 GPamm

Figure B118 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-18

175

TST-MPL-19

00

200

400

600

800

1000

1200

1400

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B119 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-19

TST-MPL-20

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=170 GPamm

Figure B120 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-20

176

TST-MPL-21

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=100 GPamm

Figure B121 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-21

TST-MPL-22

00200400600800

10001200140016001800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 088 GPamm

Figure B122 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-22

177

TST-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 101 GPamm

Figure B123 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-23

TST-MPL-24

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 124 GPamm

Figure B124 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-24

178

TST-MPL-25

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 126 GPamm

Figure B125 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-25

TST-MPL-26

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 178 GPamm

Figure B126 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-26

179

TST-MPL-27

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B127 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-27

TST-MPL-28

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 164 GPamm

Figure B128 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-28

180

TST-MPL-29

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B129 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-29

TST-MPL-30

00500

100015002000250030003500400045005000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =280 GPamm

Figure B130 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-30

181

TST-MPL-31

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B131 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-31

TST-MPL-32

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B132 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-32

182

TST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 130 GPa mm

Figure B133 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-33

TST-MPL-34

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B134 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-34

183

TST-MPL-35

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B135 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-35

TST-MPL-36

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B136 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-36

184

TST-MPL-37

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 217 GPamm

Figure B137 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-37

TST-MPL-38

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 52 GPamm

Figure B138 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-38

185

TST-MPL-39

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B139 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-39

TST-MPL-40

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 347 GPamm

Figure B140 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-40

186

TST-MPL-41

00

500

1000

1500

2000

2500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B141 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-41

TST-MPL-42

00

500

1000

1500

2000

2500

3000

3500

4000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B142 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-42

187

TST-MPL -43

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 435 GPamm

Figure B143 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-43

TST-MPL-44

00

200

400

600

800

1000

1200

1400

1600

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B144 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-44

188

TST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 315 GPamm

Figure B145 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-45

TST-MPL-46

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B146 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-46

189

TST-MPL-47

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=128 GPamm

Figure B147 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-47

TST-MPL-48

00200400600800

10001200140016001800

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 237GPamm

Figure B148 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-48

190

TST-MPL-49

00

500

1000

1500

2000

2500

3000

3500

4000

4500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B149 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-49

TST-MPL-50

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 394 GPamm

Figure B150 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-50

BIOGRAPHY

Mr Chatchai Intaraprasit was born on July 30 1973 in Khon Kaen province

Thailand He received his Bachelorrsquos Degree in Science (Geotechnology) from Khon

Kaen University in 1996 He worked with the construction company for ten years

after graduated the Bachelorrsquos Degree For his post-graduate he continued to study

with a Masterrsquos Degree in the Geological Engineering Program Institute of

Engineering Suranaree University of Technology He has published a technical

papers related to rock mechanics as in 2009 ldquoModified point load testing of volcanic

rocks from Chatree gold minerdquo in the proceeding of the second Thailand symposium

on rock mechanics Chonburi Thailand For his work he is working as a

geotechnical engineer at Akara mining company limited Phichit province Thailand

  • cover
  • abstractpdf
  • CHAPTER I
  • CHAPTER II
  • CHAPTER III
  • CHAPTER IV
  • CHAPTER V
  • CHAPTER VI
  • REFERENCES
  • APPENDIX A
  • APPENDIX B
  • BIOGRAPHY
Page 10: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·

VII

TABLE OF CONTENTS (Continued)

Page

1442 Modified point load tests 6

145 Analysis 6

146 Thesis Writing and Presentation 6

15 Scope and Limitations 7

16 Thesis Contents 7

II LITERATURE REVIEW 8

21 Introduction 8

22 Conventional point load tests 8

23 Modified point load tests 11

24 Characterization tests 14

241 Uniaxial compressive strength tests 14

242 Triaxial compressive strength tests 15

243 Brazilian tensile strength tests 16

25 Size effects on compressive strength 16

III SAMPLE COLLECTION AND PREPARATION 17

31 Sample collection 17

32 Rock descriptions 17

33 Sample preparation 20

IV LABORATORY TESTS 22

41 Literature reviews 22

VIII

TABLE OF CONTENTS (Continued)

Page

411 Displacement Function 22

42 Basic Characterization Tests 23

421 Uniaxial Compressive Strength Tests

and Elastic Modulus Measurements 23

422 Triaxial Compressive Strength Tests 31

423 Brazilian Tensile Strength Tests 38

424 Conventional Point Load Index (CPL) Tests 39

43 Modified Point Load (MPL) Tests 46

431 Modified Point Load Tests for Elastic

Modulus Measurement 54

432 Modified Point Load Tests predicting

Uniaxial Compressive Strength 61

433 Modified Point Load Tests for Tensile

Strength Predictions 63

434 Modified Point Load Tests for Triaxial

Compressive Strength Predictions 69

V FINITE DIFFERENCE ANALYSIS 79

51 Objectives 79

52 Model Characteristics 79

53 Results of finite difference analyses 79

IX

TABLE OF CONTENTS (Continued)

Page

VI DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS 83

61 Discussions 83

62 Conclusions 85

63 Recommendations 86

REFERENCES 87

APPENDICES

APPENDIX A CHARACTERIZATION TEST RESULTS 96

APPENDIX B MODIFIED POINT LOAD TEST RESULTS FOR

ELASTIC MODULUS PREDICTION 104

BIOGRAPHY 180

LIST OF TABLES

Table Page

31 The nominal sizes of specimens following the ASTM standard

practices for the characterization tests 20

41 Testing results of porphyritic andesite 30

42 Testing results of tuffaceous sandstone 30

43 Testing results of silicified tuffaceous sandstone 30

44 Uniaxial compressive strength and tangent elastic modulus

measurement results of three rock types 31

45 Triaxial compressive strength testing results of porphyritic andesite 35

46 Triaxial compressive strength testing results of

tuffaceous sandstone 35

47 Triaxial compressive strength testing results of silicified

tuffaceous sandstone 36

48 Results of triaxial compressive strength tests on three rock types 38

49 The results of Brazilian tensile strength tests of three rock types 41

410 Results of conventional point load strength index tests of

three rock types 44

411 Results of modified point load tests on porphyritic andesite 49

412 Results of modified point load tests on tuffaceous sandstone 51

413 Results of modified point load tests on silicified tuffaceous sandstone 52

X

LIST OF TABLE (Continued)

Table Page

414 Results of elastic modulus calculation from MPL tests on porphyritic andesite57

415 Results of elastic modulus calculation from MPL tests on

silicified tuffaceous sandstone 58

416 Results of elastic modulus calculation from MPL tests on

tuffaceous sandstone 60

417 Comparisons of elastic modulus results obtained from

uniaxial compressive strength tests and those from modified

point load tests 61

418 Comparison the test results between UCS CPL Brazilian

tensile strength and MPL tests 63

419 Results of tensile strengths of porphyritic andesite predicted from MPL tests 64

420 Results of tensile strengths of silicified tuffaceous sandstone

predicted from MPL tests 66

421 Results of tensile strengths of tuffaceous sandstone

predicted from MPL tests 68

422 Results of triaxial strengths of porphyritic andesite predicted from MPL tests 71

423 Results of triaxial strengths of silicified tuffaceous sandstone

predicted from MPL tests 72

424 Results of triaxial strengths of tuffaceous sandstone

predicted from MPL tests 74

XI

LIST OF TABLE (Continued)

Table Page

425 Comparisons of the internal friction angle and cohesion

between MPL predictions and triaxial compressive strength tests 78

51 Summary of the results from numerical simulations 82

A1 Results of conventional point load strength index test on porphyritic andesite 97

A2 Results of conventional point load strength index test on

silicified tuffaceous sandstone 98

A3 Results of conventional point load strength index test on

tuffaceous sandstone 99

A4 Results of uniaxial compressive strength tests and elastic

modulus measurement on porphyritic andesite 100

A5 Results of uniaxial compressive strength tests and elastic

modulus measurement on silicified tuffaceous sandstone 100

A6 Results of uniaxial compressive strength tests and elastic

modulus measurement on tuffaceous sandstone 100

A7 Results of Brazilian tensile strength tests on porphyritic andesite 101

A8 Results of Brazilian tensile strength tests on silicified

tuffaceous sandstone 101

A9 Results of Brazilian tensile strength tests on

tuffaceous sandstone 102

A10 Results of triaxial compressive strength tests on porphyritic andesite 102

XII

LIST OF TABLE (Continued)

Table Page

A11 Results of triaxial compressive strength tests on

silicified tuffaceous Sandstone 102

A12 Results of Brazilian tensile strength tests on

tuffaceous sandstone 103

LIST OF FIGURES

Figure Page

11 Research plan 4

21 Loading system of the conventional point load (CPL) 10

22 Standard loading platen shape for the conventional point

load testing 10

31 The location of rock samples collected area 19

32 Some prepared rock specimens of porphyritic andesite for MPL Tests 21

33 The concept of specimen preparation for MPL testing 21

41 Pre-test samples of porphyritic andesite for UCS test 25

42 Pre-test samples of tuffaceous sandstone for UCS test 25

43 Pre-test samples of silicified tuffaceous sandstone for UCS test 26

44 Preparation of testing apparatus of porphyritic andesite for UCS test 26

45 Post-test rock samples of porphyritic andesite from UCS test 27

46 Post-test rock samples of tuffaceous sandstone

from UCS test 27

47 Post-test rock samples of tuffaceous sandstone from UCS 28

48 Results of uniaxial compressive strength tests and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted

as a function of axial strains 28

XIV

LIST OF FIGURES (Continued)

Figure Page

49 Results of uniaxial compressive strength tests and elastic

modulus measurements of tuffaceous sandstone (Top)

and silicified tuffaceous sandstone (Bottom) The axial

stresses are plotted as a function of axial strains 29

410 Pre-test samples for triaxial compressive strength test the

top is porphyritic andesite and the bottom is tuffaceous sandstone 32

411 Pre-test sample of silicified tuffaceous sandstone for triaxial

compressive strength test 33

412 Triaxial testing apparatus 33

413 Post-test rock samples from triaxial compressive strength tests

The top is porphyritic andesite and the bottom is tuffaceous sandstone 34

414 Post-test rock samples of silicified tuffaceous sandstone from

triaxial compressive strength test 35

415 Mohr-Coulomb diagram for porphyritic andesite 37

416 Mohr-Coulomb diagram for tuffaceous sandstone 37

417 Mohr-Coulomb diagram for silicified tuffaceous sandstone 38

418 Pre-test samples for Brazilian tensile strength test (a) porphyritic andesite

(b) tuffaceous sandstone and

(c) silicified tuffaceous sandstone 40

419 Brazilian tensile strength test arrangement 41

XV

LIST OF FIGURES (Continued)

Figure Page

420 Post-test specimens (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 42

421 Pre-test samples of porphyritic andesite for conventional point load

strength index test 43

422 Conventional point load strength index test arrangement 43

423 Post-test specimens from conventional point load

strength index tests (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 45

424 Conventional and modified loading points 47

425 MPL testing arrangement 47

426 Post-test specimen the tension-induced crack commonly

found across the specimen and shear cone usually formed

underneath the loading platens 48

427 Example of P-δ curve for porphyritic andesite specimen The ratio

of ∆P∆δ is used to predict the elastic modulus of MPL

specimen (Empl) 56

428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests 62

429 Uniaxial compressive strength predicted for silicified

tuffaceous sandstone from MPL tests 62

XVI

LIST OF FIGURES (Continued)

Figure Page

430 Uniaxial compressive strength predicted for tuffaceous

sandstone from MPL tests 63

431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and

modified point load test 75

432 Comparisons of triaxial compressive strength criterion of

silicified tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 76

433 Comparisons of triaxial compressive strength criterion of

tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 77

51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm 80

52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm 80

53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm 81

54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm 81

55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm 82

LIST OF SYMBOLS AND ABBREVIATIONS

A = Original cross-section Area

c = cohesive strength

CP = Conventional Point Load

D = Diameter of Rock Specimen

D = Diameter of Loading Point

De = Equivalent Diameter

E = Youngrsquos Modulus

Empl = Elastic Modulus by MPL Test

Et = Tangent Elastic Modulus

IS = Point Load Strength Index

L = Original Specimen Length

LD = Length-to-Diameter Ratio

MPL = Modified Point Load

Pf = Failure Load

Pmpl = Modified Point Load Strength

t = Specimen Thickness

α = Coefficient of Stress

αE = Displacement Function

β = Coefficient of the Shape

∆L = Axial Deformation

XVIII

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

∆P = Change in Applied Stress

∆δ = Change in Vertical of Point Load Platens

εaxial = Axial Strain

ν = Poissonrsquos Ratio

ρ = Rock Density

σ = Normal Stress

σ1 = Maximum Principal Stress (Vertical Stress)

σ3 = Minimum Principal Stress (Horizontal Stress)

σB = Brazilian Tensile Stress

σc = Uniaxial Compressive Strength (UCS)

σm = Mean Stress

τ = Shear Stress

τoct = Octahedral Shear Stress

φi = angle of Internal friction

CHAPTER I

INTRODUCTION

11 Background and rationale

In geological exploration mechanical rock properties are one of the most

important parameters that will be used in the analysis and design of engineering

structures in rock mass To obtain these properties the rock from the site is extracted

normally by mean of core drilling and then transported the cores to the laboratory

where the mechanical testing can be conducted Laboratory testing machine is

normally huge and can not be transported to the site On site testing of the rocks may

be carried out by some techniques but only on a very limited scale This method is

called for point load strength Index testing However this test provides unreliable

results and lacks theoretical supports Its results may imply to other important

properties (eg compressive and tensile strength) but only based on an empirical

formula which usually poses a high degree of uncertainty

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strength and elastic modulus of intact rock

specimens in the laboratory (Tepnarong 2001) This method was invented and

patented by Suranaree University of Technology The test apparatus and procedure

are intended to be in expensive and easy compared to the relevant conventional

methods of determining the mechanical properties of intact rock eg those given by

the International Society for Rock Mechanics (ISRM) and the American Society for

2

Testing and Materials (ASTM) In the past much of the MPL testing practices has

been concentrated on circular and disk specimens While it has been claimed that

MPL method is applicable to all rock shapes the test results from irregular lumps of

rock have been rare and hence are not sufficient to confirm that the MPL testing

technique is truly valid or even adequate to determine the basic rock mechanical

properties in the field where rock drilling and cutting devices are not available

12 Research objectives

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine are used as

rock samples A minimum of 150 rock samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone are collected from the site The

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure are used to calculate the elastic modulus and strengths of rocks Uniaxial and

triaxial compression tests Brazilian tension test and conventional point load test are

conducted on the three rock types to obtain data basis for comparing with those from

MPL testing Finite difference analysis is performed to obtain stress distribution

within the MPL samples under different td and Dd ratios The effect of the

irregularity is quantitatively assessed Similarity and discrepancy of the test results

from the MPL method and from the conventional method are examined

Modification of the MPL calculation scheme may be made to enhance its predictive

capability for the mechanical properties of irregular shaped specimens

3

13 Research concept

A modified point load (MPL) testing technique was proposed by Fuenkajorn

and Tepnarong (2001) and Fuenkajorn (2002) The objectives of this testing are to

determine the elastic modulus uniaxial compressive strength and tensile strength of

intact rocks The application of testing apparatus is modified from the loading

platens of the conventional point load (CPL) testing to the cylindrical shapes that

have the circular cross-section while they are half-spherical shapes in CPL

The modes of failure for the MPL specimens are governed by the ratio of

specimen diameter to loading platen diameter (Dd) and the ratio of specimen

thickness to loading platen diameter (td) This research involves using the MPL

results to estimate the triaxial compressive strength of specimens which various Dd

and td ratios and compare to the conventional compressive strength test

14 Research methodology

This research consists of six main tasks literature review sample collection

and preparation laboratory testing finite difference analysis comparison discussions

and conclusions The work plan is illustrated in the Figure 11

141 Literature review

Literature review is carried out to study the state-of-the-art of CPL and MPL

techniques including theories test procedure results analysis and applications The

sources of information are from journals technical reports and conference papers A

summary of literature review is given in this thesis Discussions have been also been

made on the advantages and disadvantages of the testing the validity of the test results

4

Preparation

Literature Review

Sample Collection and Preparation

Theoretical Study

Laboratory Ex

Figure 11 Research methodology

periments

MPL Tests Characterization Tests

Comparisons

Discussions

Laboratory Testing

Various Dd UCS Tests

Various td Brazilian Tension Tests

Triaxial Compressive Strength Tests

CPL Tests

Conclusions

5

when correlating with the uniaxial compressive strength of rocks and on the failure

mechanism the specimens

142 Sample collection and preparation

Rock samples are collected from the north pit-wall of Khao

Moh at Chatree gold mine Three rock types are tested with a minimum of 50

samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable Sample preparation is carried out in the laboratory at Suranaree

University of Technology

143 Theoretical study of the rock failure mechanism

The theoretical work primarily involves numerical analyses on

the MPL specimens under various shapes Failure mechanism of the modified point

load test specimens is analyzed in terms of stress distributions along loaded axis The

finite difference code FLAC is used in the simulation The mathematical solutions

are derived to correlate the MPL strengths of irregular-shaped samples with the

uniaxial and traiaxial compressive strengths tensile strength and elastic modulus of

rock specimens

144 Laboratory testing

Three prepared rock type samples are tested in laboratory

which are divided into two main groups as follows

1441 Characterization tests

The characterization tests include uniaxial compressive

strength tests (ASTM D7012-07) Brazilian tensile strength tests (ASTM D3967

1981) triaxial compressive strength tests (ASTM D7012-07) and conventional point

6

load index tests (ASTM D5731 1995) The characterization testing results are used

in verifications of the proposed MPL concept

1442 Modified point load tests

Three rock types of rock from the north pit-wall of

Khao Moh at Chatree gold mine are used as rock samples A minimum of 150 rock

samples of porphyritic andesite silicified-tuffaceous sandstone and tuffaceous

sandstone are used in the MPL testing The sample thickness-to-loading diameter

ratio (td) is varied from 2 to 3 and the sample diameter-to-loading diameter ratio

(Dd) from 5 to 10 The sample deformation and failure are used to calculate the

elastic modulus and strengths of rocks The MPL testing results are compared with

the standard tests and correlated the relations in terms of mathematic formulas

145 Analysis

Finite difference analysis is performed to obtain stress

distribution within the MPL samples under various shapes with different td and Dd

ratios The effect of the irregularity is quantitatively assessed Similarity and

discrepancy of the test results from the MPL method and from the conventional

method are examined Modification of the MPL calculation scheme may be made to

enhance its predictive capability for the mechanical properties of irregular shaped

specimens

146 Thesis writing and presentation

All aspects of the theoretical and experimental studies

mentioned are documented and incorporated into the thesis The thesis discusses the

validity and potential applications of the results

7

15 Scope and limitations

The scope and limitations of the research include as follows

1 Three rock types of rock from the pit wall of Chatree gold mine are

selected as a prime candidate for use in the experiment

2 The analytical and experimental work assumes linearly elastic

homogeneous and isotropic conditions

3 The effects of loading rate and temperature are not considered All tests

are conducted at room temperature

4 MPL tests are conducted on a minimum of 50 samples

5 The investigation of failure mode is on macroscopic scale Macroscopic

phenomena during failure are not considered

6 The finite difference analysis is made in axis symmetric and assumed

elastic homogeneous and isotropic conditions

7 Comparison of the results from MPL tests and conventional method is

made

16 Thesis contents

The first chapter includes six sections It introduces the thesis by briefly

describing the background and rationale and identifying the research objectives that

are describes in the first and second section The third section describes the proposed

concept of the new testing technique The fourth section describes the research

methodology The fifth section identifies the scope and limitation of the research and

the description of the overview of contents in this thesis are in the sixth section

CHAPTER II

LITERATURE REVIEW

21 Introduction

This chapter summarizes the results of literature review carried out to improve an

understanding of the applications of modified point load testing to predict the strengths and

elastic modulus of the intact rock The topics reviewed here include conventional point

load test modified point load test characterization tests and size effects

22 Conventional point load tests

Conventional point load (CPL) testing is intended as an index test for the strength

classification of rock material It has long been practiced to obtain an indicator of the

uniaxial compressive strength (UCS) of intact rocks The testing equipment (Figure 21)

is essentially a loading system comprising a loading flame hydraulic oil pump ram and

loading platens The geometry of the loading platen is standardized (Figure 22) having

60 degrees angle of the cone with 5 mm radius of curvature at the cone tip It is made of

hardened steel The CPL test method has been widely employed because the test

procedure and sample preparation are simple quick and inexpensive as compared with

conventional tests as the unconfined compressive strength test Starting with a simple

method to obtain a rock properties index the International Society for Rock Mechanics

(ISRM) commissions on testing methods have issued a recommended procedure for the

point load testing (ISRM 1985) the test has also been established as a standard test

method by the American Society for Testing and Materials in 1995 (ASTM 1995)

9

Although the point load test has been studied extensively (eg Broch and Franklin

1972 Bieniawski 1974 and 1975 Wijk 1980 Brook 1985) the theoretical solutions

for the test result remain rare Several attempts have been made to truly understand

the failure mechanism and the impact of the specimen size on the point load strength

results It is commonly agreed that tensile failure is induced along the axis between

loading points (Evans 1961 Hiramutsu 1976 Wijk 1978 1980) The most

commonly accepted formula relating the CPL index and the UCS is proposed by

Broch and Franklin (1972) The UCS (or σc) can be estimated as about 24 times of

the point load strength index (Is) of rock specimens with the diameter-to-length ratio

of 05 The IS value should also be corrected to a value equivalent to the specimen

diameter of 50 mm The factor of 24 can sometimes load to an error in the prediction

of the UCS Most previous studied have been done experimentally but rare

theoretical attempt has been made to study the validity of Broch and Franklin

formula

The CPL testing has been performed using a variety of sizes and shapes of

rock specimen (Wijk 1980 Foster 1983 Panek and Fannon 1992 Chau and Wong

1996 Butenuth 1997) This is to determine the most suitable specimen sizes These

investigations have proposed empirical relations between the IS and σc to be

universally applicable to various rock types However some uncertainly of these

relations remains

Panek and Fannon (1992) show the results of the CPL tests UCS tests and

Brazilian tension tests that are performed on three hard rocks (iron-formation

metadiabase and ophitic basalt) The CPL strength is analyzed in terms of the

10

Figure 21 Loading system of the conventional point load (CPL) (Tepnarong 2001)

Figure 22 Standard loading platen shape for the conventional point load testing

(ISRM suggested method and ASTM D5731-95)

11

size and shape effects More than 500 an irregular lumps were tested in the field

The shape effect exponents for compression have been found to be varied with rock

types The shape effect exponents in CPL tests are constant for the three rocks

Panek and Fannon (1992) recommended that the monitoring of the compressive and

tensile strengths should have various sizes and shapes of specimen to obtain the

certain properties

Chau and Wong (1996) study analytically the conversion factor relating

between σc and IS A wide range of the ratios of the uniaxial compressive strength to

the point load index has been observed among various rock types It has been found

that the uniaxial compressive strength of rocks can vary from 62 (Nevada test site

tuff) to 105 (Flaming Gorge shale) times the IS depending on rock type The

conversion factor relating σc to be Is depends on compressive and tensile strengths

the Poissonrsquos ratio and the length and diameter of specimen The conversion factor

of 24 (Broch and Franklin 1972) falls within this range but it is no by meaning

universal

23 Modified point load tests

Tepnarong (2001) proposed a modified point load testing method to correlate

the results with the uniaxial compressive strength (UCS) and tensile strength of intact

rocks The primary objective of the research is to develop the inexpensive and

reliable rock testing method for use in field and laboratory The test apparatus is

similar to the conventional point load (CPL) except that the loading points are cut

flat to have a circular cross-section area instead of using a half-spherical shape To

derive a new solution finite element analyses and laboratory experiments were

12

carried out The simulation results suggested that the applied stress required failing

the MPL specimen increased logarithmically as the specimen thickness or diameter

increased The MPL tests CPL tests UCS tests and Brazilian tension tests were

performed on Saraburi marble under a variety of sizes and shapes The UCS test

results indicated that the strengths decreased with increased the length-to-diameter

ratio The test results can be postulated that the MPL strength can be correlated with

the compressive strength when the MPL specimens are relatively thin and should be

an indicator of the tensile strength when the specimens are significantly larger than

the diameter of the loading points Predictive capability of the MPL and CPL

techniques were assessed Extrapolation of the test results suggested that the MPL

results predicted the UCS of the rock specimens better than the CPL testing The

tensile strength predicted by the MPL also agreed reasonably well with the Brazilian

tensile strength of the rock

Tepnarong (2006) proposed the modified point load testing technique to

determine the elastic modulus and triaxial compressive strength of intact rocks The

loading platens are made of harden steel and have diameter (d) varying from 5 10

15 20 25 to 30 mm The rock specimens tested were marble basalt sandstone

granite and rock salt Basic characterization tests were first performed to obtain

elastic and strength properties of the rock specimen under standard testing methods

(ASTM) The MPL specimens were prepared to have nominal diameters (D) ranging

from 38 mm to 100 mm with thickness varying from 18 mm to 63 mm Testing on

these circular disk specimens was a precursory step to the application on irregular-

shaped specimens The load was applied along the specimen axis while monitoring

the increased of the load and vertical displacement until failure Finite element

13

analyses were performed to determine the stress and deformation of the MPL

specimens under various Dd and td ratios The numerical results were also used to

develop the relationship between the load increases (∆P) and the rock deformation

(∆δ) between the loading platens The MPL testing predicts the intact rock elastic

modulus (Empl) by using an equation Empl = (tαE) (∆P∆δ) where t represents the

specimen thickness and αE is the displacement function derived from numerical

simulation The elastic modulus predicted by MPL testing agrees reasonably well

with those obtained from the standard uniaxial compressive tests The predicted Empl

values show significantly high standard deviation caused by high intrinsic variability

of the rock fabric This effect is enhanced by the small size of the loading area of the

MPL specimens as compared to the specimen size used in standard test methods

The results of the numerical simulation were used to determine the minimum

principal stress (σ3) at failure corresponding to the maximum applied principal stress

(σ1) A simple relation can therefore be developed between σ1 σ3 ratio Poissonrsquos ratio

(ν) and diameter ratio (Dd) to estimate the triaxial compressive strengths of the rock

specimens σ1 σ3 = 2[(ν(1-ν))(1-(dD)2)]-1 The MPL test results from specimens with

various Dd ratios can provide σ1 and σ3 at failure by assuming that ν = 025 and that

failure mode follows Coulomb criterion The MPL predicted triaxial strengths agree

very well with the triaxial strength obtained from the standard triaxial testing (ASTM)

The discrepancy is about 2-3 which may be due to the assumed Poissonrsquos ratio of 25

and due to the assumption used in the determination of σ3 at failure In summary even

through slight discrepancies remain in the application of MPL results to determine the

elastic modulus and triaxial compressive strength of intact rocks this approach of

14

predicting the rock properties shows a good potential and seems promising considering

the low cost of testing technique and ease of sample preparation

24 Characterization tests

241 Uniaxial compressive strength tests

The uniaxial compressive strength test is the most common laboratory

test undertaken for rock mechanics studies In 1972 the International Society of Rock

Mechanics (ISRM) published a suggested method for performing UCS tests (Brown

1981) Bieniawski and Bernede (1979) proposed the procedures in American Society

for Testing and Materials (ASTM) designation D2938

The tests are also the most used tests for estimating the elastic

modulus of rock (ASTM D7012) The axial strain can be measured with strain gages

mounted on the specimen or with the Linear Variable Differential Tranformers

(LVDTs) attached parallel to the length of the specimen The lateral strain can be

measured using strain gages around the circumference or using the LVDTs across

the specimen diameter

The UCS (σc) is expressed as the ratio of the peak load (P) to the

initial cross-section area (A)

σc= PA (21)

And the Youngrsquos modulus (E) can be calculated by

E= ΔσΔε (22)

Where Δσ is the change in stress and Δε is the change in strain

15

The ratio of lateral strain and axial strain magnitudes (εlatεax) determines the value of

Poissonrsquo ratio (ν)

ν = - (εlatεax) (23)

242 Triaxial compressive strength tests

Hoek and Brown (1980b) and Elliott and Brown (1986) used the

triaxaial compressive strength tests to gain an understanding of rock behavior under a

three-dimensions state of stress and to verify and even validate mathematical

expressions that have been derived to represent rock behavior in analytical and

numerical models

The common procedures are described in ASTM designation D7012 to

determine the triaxial strengths and D7012 to determine the elastic moduli and in

ISRM suggested methods (Brown 1981)

The axial strain can be measured with strain gages mounted on the

specimen or with the LVTDs attached parallel to the length of the specimen The

lateral strain can be measured using strain gages around the circumstance within the

jacket rubber

At the peak load the stress conditions are σ1 = PA σ3=p where P is

the maximum load parallel to the cylinder axis A is the initial cross-section area and

p is the pressure in the confining medium

The Youngrsquos modulus (E) and Poissonrsquos ratio (ν) can be calculated by

E = Δ(σ1-σ3)Δ εax (24)

and

16

ν = (slope of axial curve) (slope of lateral curve) (25)

where Δ(σ1-σ3) is the change in differential stress and Δ εax is the change in axial strain

243 Brazilian tensile strength tests

Caneiro (1974) and Akazawa (1953) proposed the Brazilian tensile

strength test of intact rocks Specifications of Brazilian tensile strength test have been

established by ASTM D3967 and suggested approach is provided by ISRM (Brown 1981)

Jaeger and Cook (1979) proposed the equation for calculate the

Brazilian tensile strength as

σB = (2P) ( πDt) (26)

where P is the failure load D is the disk diameter and t is the disk thickness

25 Size effects on compressive strength

The uniaxial compressive strength normally tested on cylindrical-shaped

specimens The length-to-diameter (LD) ratio of the specimen influences the

measured strength Typically the strength decreases with increasing the LD ratio

but it tends to become constant or ratios in the order of 21 to 31 (Hudson et al 1971

Obert and Duvall 1967) For higher ratios the specimen strength may be influenced

by bulking

The size of specimen may influence the strength of rock Weibull (1951)

proposed that a large specimen contains more flaws than a small one The large

specimen therefore also has flaws with critical orientation relative to the applied

shear stresses than the small specimen A large specimen with a given shape is

17

therefore likely to fail and exhibit lower strength than a small specimen with the same

shape (Bieniawski 1968 Jaeker and Cook 1979 Kaczynski 1986)

Tepnarong (2001) investigated the results of uniaxial compressive strength

test on Saraburi marble and found that the strengths decrease with increase the

length-to-diameter (LD) ratio And this relationship can be described by the power

law The size effects on uniaxial compressive strength are obscured by the intrinsic

variability of the marble The Brazilian tensile strengths also decreased as the

specimen diameter increased

CHAPTER III

SAMPLE COLLECTION AND PREAPATION

This chapter describes the sample collection and sample preparation

procedure to be used in the characterization and modified point load testing The

rock types to be used including porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone Locations of sample collection rock description are

described

31 Sample collection

Three rock types include porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone collected from Chatree Gold Mine Akara Mining Company

Limited Phichit Thailand are used in this research The rock samples are collected

from the north pit-wall of Khao Moh Three rock types are tested with a minimum of

50 samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable The collected location is shown in Figure 31

32 Rock descriptions

Three rock types are used in this research there are porphyritic andesite

silicified tuffaceous sandstone and tuffaceous sandstone Tuffaceous sandstone is

medium brownish grey the clasts are andesite rhyolite andesitic tuff and quartz

fragments and sub-rounded to sub-angular matrix sand andesitic tuff rock fragment

19

19

Figure 31 The location of rock samples collected area

lt 10 quartz 3 pyrite and litho-facies massive ungraded clast supported

moderately sorted Silicified tuffaceous sandstone is medium brown clasts are fine to

medium sand and silt sub-rounded shape quartz rich with siliceous matrix massive

non-graded well sorted moderately Silicified Porphyritic andesite is grayish green

medium-coarse euhedral evenly distributed phenocrysts are abundant most

conspicuous are hornblende phenocrysts fine-grained groundmass Those samples

are collected from Chatree Gold Mine Akara mining Co Ltd Phichit Thailand

20

33 Sample preparation

Sample preparation has been carried out to obtain different sizes and shapes

for testing It is conducted in the laboratory facility at Suranaree University of

Technology For characterization testing the process includes coring and grinding

Preparation of rock samples for characterization test follows the ASTM standard

(ASTM D4543-85) The nominal sizes of specimen that following the ASTM

standard practices for the characterization tests are shown in table 31 And grinding

surface at the top and bottom of specimens at the position of loading platens for

unsure that the loading platens are attach to the specimen surfaces and perpendicular

each others as shown in Figure 32 The shapes of specimens are irregularity-shaped

The ratio of specimen thickness to platen diameter (td) is around 20-30 and the

specimen diameter to platen diameter (Dd) varies from 5 to 10

Table 31 The nominal sizes of specimens following the ASTM standard practices

for the characterization tests

Testing Methods

LD Ratio

Nominal Diameter

(mm)

Nominal Length (mm)

Number of Specimens

1UniaxialCompressive Strength Test and Elastic Modulus Measurement (ASTM D7012)

25 54 135 10

2 Triaxial Compressive Strength Test (ASTM D7012) 20 54 108 10

3 Brazilian Tensile Strength Test (ASTM D3967) 05 54 27 10

4 Point Load Strength Index Test (ASTM D 5731) 10 54 54 10

21

Figure 32 Some prepared rock specimens of porphyritic andesite for MPL Tests

td asymp20 to 30

Figure 33 The concept of specimen preparation for MPL testing

CHAPTER IV

LABORATORY TESTS

Laboratory testing is divided into two main tasks including the

characterization tests and the modified point load tests Three rock types porphyritic

andesite silicified-tuffaceous sandstone and tuffaceous sandstone are used in this

research

41 Literature reviews

411 Displacement function

Tepnarong (2006) proposed a method to compute the vertical

displacement of the loading point as affected by the specimen diameter and thickness

(Dd and td ratios) by used the series of finite element analyses To accomplish this

a displacement function (αE) is introduced as (∆P∆δ)middot(tE) where ∆P is the change in

applied stress ∆δ is the change in vertical displacement of point load platens t is the

specimen thickness and E is elastic modulus of rock specimen The displacement

function is plotted as a function of Dd And found that the αE is dimensionless and

independent of rock elastic modulus αE trend to be independent of Dd when Dd is

beyond 15 The αE is sensitive to ν particularly when υ is between 025 and 05 This

agrees with the assumption that as the Poissonrsquos ratio increases the αE value will

increase because under higher ν the ∆δ will be reduced This is due to the large

confinement resulting from the higher Poissonrsquos ratio Nevertheless most rocks have

Poissonrsquos ratio within a range between 020 and 030 particularly for moderate to

23

hard rocks As a result the Poissonrsquos ratio of 025 will provide a reasonable

prediction of the value of αE values

Figure 51 plots αE or (∆P∆δ)middot(tE) as a function of td for the ratios of Dd ge

10 The displacement function increase as the td increases which can be expressed

by a power equation

αE = (∆P∆δ)middot(tE) = 150 (td)064 (51)

by using the least square fitting The curve fit gives good correlation (R2=0998)

These curves can be used to estimate the elastic modulus of rock from MPL results

By measuring the MPL specimen thickness t and the increment of applied stress (∆P)

and displacement (∆δ)

42 Basic characterization tests

The objectives of the basic characterization tests are to determine the

mechanical properties of each rock type to compare their results with those from the

modified point load tests (MPL) The basic characterization tests include uniaxial

compressive strength (UCS) tests with elastic modulus measurements triaxial

compressive strength tests Brazilian tensile strength tests and conventional point load

strength index tests

421 Uniaxial compressive strength tests and elastic modulus

measurements

The uniaxial compressive strength tests are conducted on the three

rock types Sample preparation and test procedure are followed the ASTM standards

(ASTM D7012) and the ISRM suggested methods (Brown 1981) The core size is

24

54 mm in diameter (NX size) and the ratio of the length to diameter is 25 A total of

10 specimens are tested for each rock type

A constant loading rate of 05 to 10 MPas is applied to the specimens

until failure occurs Tangent elastic modulus is measured at stress level equal to 50

of the uniaxial compressive strength Post-failure characteristics are observed

The uniaxial compressive strength (σc) is calculated by dividing the

maximum load by the original cross-section area of loading platen

σc= pf A (41)

where pf is the maximum failure load and A is the original cross-section area of

loading platen The tangent elastic modulus (Et) is calculated by the following

equation

Et = (Δσaxial) (Δε axial) (42)

And the axial strain can be calculated from

ε axial = ΔLL (43)

where the ΔL is the axial deformation and L is the original length of specimen

The average uniaxial compressive strength and tangent elastic

modulus of each rock types are shown in Tables 41 through 44

25

Figure 41 Pre-test samples of porphyritic andesite for UCS test

Figure 42 Pre-test samples of tuffaceous sandstone for UCS test

26

Figure 43 Pre-test samples of silicified tuffaceous sandstone for UCS test

Figure 44 Preparation of testing apparatus for UCS test

27

Figure 45 Post-test rock samples of porphyritic andesite from UCS test

Figure 46 Post-test rock samples of tuffaceous sandstone from UCS test

28

Figure 47 Post-test rock samples of silicified-tuffaceous sandstone from UCS

0

50

100

150

0 0001 0002 0003 0004 0005Axial Strain

Axi

al S

tres

s (M

Pa)

Andesite04

03

01

05

02

Andesite

Figure 48 Results of uniaxial compressive strength test and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted as

a function of axial strain

29

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Strain

Axi

al S

tres

s (M

Pa)

Pebbly Tuffacious Sandstone

04

03

05

01

02

Tuffaceous Sandstone

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Stain

Axi

al S

tres

s (M

Pa)

Silicified Tuffacious Sandstone

0103

05

0402

Silicified Tuffaceous Sandstone

Figure 49 Results of uniaxial compressive strength test and elastic modulus

measurements of tuffaceous sandstone (top) and silicified tuffaceous

sandstone (bottom) The axial stresses are plotted as a function of axial

strain

30

Table 41 Testing results of porphyritic andesite

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 5366 13486 282 1327 451 And-06-03-UCS-02 5366 13494 283 1106 397 And-02-01-UCS-03 5366 13485 280 1061 470 And-08-03-UCS-04 5366 13417 284 1282 392 And-04-04-UCS-05 5366 13564 285 973 438

Average 1150 plusmn 150 430 34 plusmn

Table 42 Testing results of tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 5366 13810 266 1017 538 TST-01-02-UCS-02 5366 13236 268 1238 545 TST-02-04-UCS-03 5366 13558 264 973 441 TST-06-09-UCS-04 5366 13515 267 1459 475 TST-02-02-UCS-05 5366 13745 263 884 566

Average 1114 plusmn 233 513 53 plusmn

Table 43 Testing results of silicified tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 5366 13309 271 1194 656 SST-07-01-UCS-02 5366 13547 267 930 632 SST-07-03-UCS-03 5366 13095 268 1194 503 SST-02-06-UCS-04 5366 13475 269 1614 661 SST-06-02-UCS-05 5366 13577 270 1106 713

Average 1207 plusmn 252 633 80 plusmn

31

Table 44 Uniaxial compressive strength and tangent elastic modulus measurement

results of three rock types

Rock Type

Number of Test

Samples

Uniaxial Compressive Strength σc (MPa)

Tangential Elastic Modulus

Et (GPa)

Porphyritic andesite 50 1150plusmn150 430plusmn34 Silicified-tuffaceous sandstone 50 1207plusmn252 633plusmn80

Tuffaceous sandstone 50 1114plusmn233 513plusmn53

422 Triaxial compressive strength tests

The objective of the triaxial compressive strength test is to determine

the compressive strength of rock specimens under various confining pressures The

sample preparation and test procedure are followed the ASTM standard (ASTM

D7012-07) and the ISRM suggested method (Brown 1981) A total of 16 rock

specimens are tested under various confining pressures 6 specimens of porphyritic

andesite 5 specimens of silicified-tuffaceous sandstone and 5 specimens of

tuffaceous sandstone The applied load onto the specimens is at constant rate until

failure occurred within 5 to 10 minutes of loading under each confining pressure

The constant confining pressures used in this experiment are ranged from 0345 067

138 276 and 414 MPa (50 100 200 400 and 600 psi) in andesite 0345 069

276 414 and 552 MPa (50 100 400 600 and 800 psi) in silicified-tuffaceous

sandstone and 0345 069 138 207 and 276 MPa (50 100 200 300 and 400 psi)

in pebbly tuffaceous sandstone Post-failure characteristics are observed

32

Figure 410 Pre-test samples for triaxial compressive strength test the top is

porphyritic andesite and the bottom is tuffaceous sandstone

33

Figure 411 Pre-test samples of silicified tuffaceous sandstone for triaxial

compressive strength test

Hook cell

Figure 412 Triaxial testing apparatus

34

Figure 413 Post-test rock samples from triaxial compressive strength tests The top

is porphyritic andesite and the bottom is tuffaceous sandstone

35

Figure 414 Post-test rock samples of silicified tuffaceous sandstone from triaxial

compressive strength test

Table 45 Triaxial compressive strength testing results of porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

And-04-02-TR-01 10803 5366 285 04 1459 And-06-04-TR-03 10806 5366 284 07 1526 And-06-02-TR-02 10806 5366 283 14 1636 And-08-01-TR-04 10665 5366 284 28 2034 And-08-02-TR-05 10948 5366 283 41 2520

Table 46 Triaxial compressive strength testing results of tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

TST-01-01-TR-04 10989 5366 266 04 1061 TST 02-01-TR-01 10852 5366 262 07 1238 TST-06-01-TR-02 10889 5366 264 138 1415 TST-06-03-TR-03 10755 5366 264 201 1813 TST-06-08-TR-05 11025 5366 267 28 2056

36

Table 47 Triaxial compressive strength testing results of silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

SST-05-01-TR-01 10875 5366 266 04 1305 SST-07-02-TR-02 10790 5366 266 14 1371 SST-01-04-TR-03 11022 5366 267 28 1592 SST-01-03-TR-04 10713 5366 267 41 1901 SST-01-01-TR-05 10530 5366 265 55 2255

The results of triaxial tests are shown in Table 42 Figures 413 and 414

show the shear failure by triaxial loading at various confining pressures (σ3) for the

three rock types The relationship between σ1 and σ3 can be represented by the

Coulomb criterion (Hoek 1990)

τ = c + σ tan φi (44)

where τ is the shear stress c is the cohesion σ is the normal stress and φi is the

internal friction angle The parameters c and φi are determined by Mohr-Coulomb

diagram as shown in Figures 415 through 417

37

φi =54˚ Andesite

Figure 415 Mohr-Coulomb diagram for andesite

φi = 55˚

Tuffaceous Sandstone

Figure 416 Mohr-Coulomb diagram for pebbly tuffaceous sandstone

38

Silicified tuffaceous sandstone

φi = 49˚

Figure 417 Mohr-Coulomb diagram for silicified tuffaceous sandstone

Table 48 Results of triaxial compressive strength tests on three rock types

Rock Type

Number of

Samples

Average Density (gcc)

Cohesion c (MPa)

Internal Friction Angle φi (degrees)

Porphyritic Andesite 5 283 33 54

Tuffaceous Sandstone 5 265 28 55 Silicified Tuffaceous Sandstone 5 267 36 49

423 Brazilian Tensile Strength Tests

The objectives of the Brazilian tensile strength test are to determine

the tensile strength of rock The Brazilian tensile strength tests are performed on all

rock types Sample preparation and test procedure are followed the ASTM standard

(ASTM D3967-81) and the

39

ISRM suggested method (Brown 1981) Ten specimens for each rock

type have been tested The specimens have the diameter of 55 mm with 25 mm thick

The Brazilian tensile strength of rock can be calculated by the following

equation (Jaeger and Cook 1979)

σB = (2pf) (πDt) (45)

where σB is the Brazilian tensile strength pf is the failure load D is the diameter

of disk specimen and t is the thickness of disk specimen All of specimens failed

along the loading diameter (Figure 420) The results of Brazilian tensile strengths

are shown in Table 49 The tensile strength trends to decrease as the specimen size

(diameter) increase and can be expressed by a power equation (Evans 1961)

σB = A (D)-B (46)

where A and B are constants depending upon the nature of rock

424 Conventional point load index (CPL) tests

The objectives of CPL tests are to determine the point load strength index for

use in the estimation of the compressive strength of the rocks The sample

preparation test procedure and calculation are followed the standard practices

(ASTM D 5731-02) and the ISRM suggested method (Brown 1981) Twenty

specimens of each rock types are tested The length-to-diameter (LD) ratio of the

specimen is constant at 10 The specimen diameter and thickness are maintained

constant at 54 mm (Figure 421) The core specimen is loaded along its axis as

shown in Figure 422 Each specimen is loaded to failure at a constant rate such that

40

(a)

(b)

(c)

Figure 418 Pre-test samples for Brazilian tensile strength test (a) porphyritic

andesite (b) tuffaceous sandstone and (c) silicified tuffaceous

sandstone

41

Figure 419 Brazilian tensile strength test arrangement

Table 49 Results of Brazilian tensile strength tests of three rock types

Rock Type

Average Diameter

(mm)

Average Length (mm)

Average Density (gcc)

Number of

Samples

Brazilian Tensile

Strength σB (MPa)

Porphyritic andesite 5366 2672 283 10 170plusmn16

Tuffaceous sandstone 5366 2737 265 10 131plusmn33

Silicified tuffaceous sandstone

5366 2670 267 10 191plusmn32

42

(a)

(b)

(c)

Figure 420 Post-test specimens (a) porphyritic andesite (b) tuffaceous sandstone

and (c) silicified tuffaceous sandstone

43

Figure 421 Pre-test samples of porphyritic andesite for conventional point load

strength index test

Figure 422 Conventional point load strength index test arrangement

44

failures occur within 5-10 minutes Post-failure characteristics are observed

The point load strength index for axial loading (Is) is calculated by the

equation

Is = pf De2 (47)

where pf is the load at failure De is the equivalent core diameter (for axial loading

De2 = 4Aπ and A=WD) A is the minimum cross-sectional area of a plane through

the platen contact points W is the specimen width (thickness of core) and D is the

specimen diameter The post-test specimens are shown in Figure 423

The testing results of all three rock types are shown in Table 410 The

point load strength index of andesite pebbly tuffaceous sandstone and silicified

tuffaceous sandstone are average as 81 plusmn 12 102 plusmn 20 and 108 plusmn 22 MPa

Table 410 Results of conventional point load strength index tests of three rock types

Rock Types Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index

Is (MPa) Porphyritic Andesite 5493 5366 283 81plusmn12 Tuffaceous Sandstone 5545 5366 265 102plusmn20 Silicified Tuffaceous Sandstone 5491 5366 268 108plusmn22

45

Figure 423 Post-Test rock specimens from conventional point load strength index

tests (a) porphyritic andesite (b) tuffaceous sandstone and (c)

silicified tuffaceous sandstone

46

43 Modified point load (MPL) tests

The objectives of the modified point load (MPL) tests are to measure the

strength of rock between the loading points and to produce failure stress results for

various specimen sizes and shapes The results are complied and evaluated to

determine the mathematical relationship between the strengths and specimen

dimensions which are used to predict the elastic modulus and uniaxial and triaxial

compressive strengths and Brazilian tensile strength of the rocks

The testing apparatus for the proposed MPL testing are similar to those of the

conventional point load (CPL) test except that the loading points are cylindrical

shape and cut flat with the circular cross-sectional area instead of using half-spherical

shape (Tepnarong 2001) The loading platens used in this research are 7 10 and 15

mm in diameter and the thickness-to-loading point diameter ratio (td) of about 25

The specimen diameter-to-loading point diameter is varying from 5 to 100 The load

is applied at the rate of 200 Ns Fifty specimens are prepared and tested for each

rock type The vertical deformations (δ) are monitored One cycle of unloading and

reloading is made at about 40 failure load Then the load is increased to failure

The MPL strength (PMPL) is calculated by

PMPL = pf ((π4)(d2)) (48)

where pf is the applied load at failure and d is the diameter of loading point Figure

26 shows the example of post-test specimen shear cone are usually formed

underneath the loading points and two or three tension-induced cracks are commonly

found across the specimens

47

The MPL testing method is divided into 4 schemes based on its objective

elastic modulus uniaxial and triaxial compressive strengths and Brazilian tensile

strength determination

Figure 424 Conventional and modified loading points(Tepnarong 2006)

Figure 425 MPL testing arrangement

48

Tension-induced crack Shear cone

Shear cone

Tension-induced crack

Figure 426 Post-test specimen the tension-induced crack commonly found across

the specimen and shear cone usually formed underneath the loading

platens

49

Table 411 Results of modified point load tests on porphyritic andesite

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-01 246 543 280 125 159 And-MPL-02 351 632 370 180 471 And-MPL-03 236 634 150 170 191 And-MPL-04 266 960 250 234 319 And-MPL-05 284 903 370 369 471 And-MPL-06 245 793 280 182 357 And-MPL-07 263 874 260 234 331 And-MPL-08 261 980 210 171 268 And-MPL-09 280 777 270 056 344 And-MPL-10 244 569 280 124 159 And-MPL-11 251 613 650 138 368 And-MPL-12 226 631 600 189 340 And-MPL-13 233 1126 180 151 468 And-MPL-14 279 1203 220 165 572 And-MPL-15 239 503 400 011 227 And-MPL-16 281 474 300 012 170 And-MPL-17 305 861 390 021 497 And-MPL-18 233 653 500 008 283 And-MPL-19 294 1386 380 200 484 And-MPL-20 265 860 410 017 522 And-MPL-21 238 425 550 087 311 And-MPL-22 230 417 450 087 255 And-MPL-23 223 557 500 231 283 And-MPL-24 250 760 550 112 311 And-MPL-25 259 1243 180 585 468 And-MPL-26 303 560 310 143 395 And-MPL-27 273 1640 390 156 497 And-MPL-28 282 906 220 200 280 And-MPL-29 311 934 290 156 369 And-MPL-30 246 1314 250 650 650 And-MPL-31 262 982 200 175 255 And-MPL-32 260 1147 180 156 468 And-MPL-33 240 700 450 101 255 And-MPL-34 304 800 240 135 306 And-MPL-35 250 455 220 127 280 And-MPL-36 243 1697 120 292 312 And-MPL-37 333 1520 310 156 395 And-MPL-38 238 661 170 260 442

50

Table 411 Results of modified point load tests on porphyritic andesite (Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-39 318 347 130 186 338 And-MPL-40 245 551 150 260 390 And-MPL-41 207 561 150 325 390 And-MPL-42 223 425 500 231 283 And-MPL-43 207 561 150 346 390 And-MPL-44 324 340 310 234 395 And-MPL-45 275 426 240 169 306 And-MPL-46 302 397 130 175 166 And-MPL-47 255 314 100 170 127 And-MPL-48 257 220 250 094 142 And-MPL-49 256 214 130 057 74 And-MPL-50 243 166 180 078 102

51

Table 412 Results of modified point load tests on tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-01 270 546 220 212 293 TST -MPL-02 258 787 230 326 293 TST -MPL-03 275 730 200 143 255 TST -MPL-04 282 715 400 143 510 TST -MPL-05 254 1345 220 264 280 TST -MPL-06 292 893 200 143 255 TST -MPL-07 243 853 550 112 311 TST -MPL-08 287 1047 210 319 268 TST -MPL-09 230 787 370 212 471 TST -MPL-10 230 427 260 132 147 TST -MPL-11 282 1243 450 319 573 TST -MPL-12 254 604 200 127 255 TST -MPL-13 288 1180 290 159 369 TST -MPL-14 251 631 410 170 232 TST -MPL-15 214 1104 120 260 312 TST -MPL-16 229 486 380 102 215 TST -MPL-17 259 715 110 650 286 TST -MPL-18 243 285 180 073 102 TST -MPL-19 285 316 130 128 130 TST -MPL-20 241 295 180 170 102 TST -MPL-21 298 417 300 100 170 TST -MPL-22 265 642 300 088 170 TST -MPL-23 314 611 450 101 255 TST -MPL-24 303 481 650 124 368 TST -MPL-25 223 223 260 126 331 TST -MPL-26 273 652 260 178 331 TST -MPL-27 216 887 420 170 535 TST -MPL-28 319 718 290 164 369 TST -MPL-29 231 516 200 128 255 TST -MPL-30 260 641 380 280 484 TST -MPL-31 287 496 330 158 420 TST -MPL-32 264 368 230 170 293 TST -MPL-33 238 415 230 130 293 TST -MPL-34 271 824 140 260 364 TST -MPL-35 283 800 220 325 572 TST -MPL-36 242 1013 180 325 468 TST -MPL-37 254 715 90 217 234 TST -MPL-38 210 755 150 520 390

52

Table 412 Results of modified point load tests on tuffaceous sandstone

(Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-39 293 508 110 260 286 TST -MPL-40 273 410 100 347 260 TST -MPL-41 234 628 80 260 208 TST -MPL-42 259 433 130 260 338 TST -MPL-43 265 546 220 435 280 TST -MPL-44 255 829 260 222 147 TST -MPL-45 254 368 240 315 306 TST -MPL-46 293 695 370 222 210 TST -MPL-47 247 297 180 128 102 TST -MPL-48 310 611 300 237 170 TST -MPL-49 225 337 160 371 416 TST -MPL-50 259 410 120 394 312

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-01 300 782 170 280 442 SST-MPL-02 250 480 220 307 572 SST-MPL-03 314 424 340 356 433 SST-MPL-04 292 809 220 450 572 SST-MPL-05 275 1142 300 532 780 SST -MPL-06 308 490 190 273 494 SST -MPL-07 317 611 280 418 728 SST -MPL-08 233 684 240 414 624 SST -MPL-09 255 480 230 371 598 SST -MPL-10 217 772 120 958 312 SST -MPL-11 312 903 270 400 702 SST -MPL-12 255 1094 150 272 390 SST -MPL-13 286 742 400 408 510 SST -MPL-14 248 615 350 296 198 SST -MPL-15 253 805 210 282 546 SST -MPL-16 243 1094 150 260 390

53

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

(Continued)

Specimen Number td Dd Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-17 234 1090 250 416 650 SST -MPL-18 253 1371 240 473 624 SST -MPL-19 327 434 320 330 408 SST -MPL-20 270 310 390 278 497 SST -MPL-21 269 691 410 185 522 SST -MPL-22 312 504 380 182 484 SST -MPL-23 319 627 260 150 331 SST -MPL-24 281 689 330 295 420 SST -MPL-25 210 720 390 259 497 SST -MPL-26 303 775 370 221 471 SST -MPL-27 272 714 310 274 395 SST -MPL-28 292 855 600 209 764 SST -MPL-29 310 742 400 176 510 SST -MPL-30 284 847 410 158 522 SST -MPL-31 320 891 650 464 828 SST -MPL-32 261 256 400 178 226 SST -MPL-33 224 405 550 131 311 SST -MPL-34 231 379 450 215 255 SST -MPL-35 290 442 1050 190 594 SST -MPL-36 241 521 500 102 283 SST -MPL-37 275 605 600 067 340 SST -MPL-38 263 616 650 127 368 SST -MPL-39 227 615 350 229 198 SST -MPL-40 236 508 550 090 311 SST -MPL-41 318 1142 300 498 780 SST -MPL-42 303 809 210 392 546 SST -MPL-43 228 805 210 244 546 SST -MPL-44 283 1142 300 571 780 SST -MPL-45 277 772 120 780 312 SST -MPL-46 288 1206 280 411 728 SST -MPL-47 250 508 570 309 323 SST -MPL-48 275 442 1050 338 594 SST -MPL-49 272 605 650 254 368 SST -MPL-50 260 805 200 360 520

54

431 Modified point load tests for elastic modulus measurement

The MPL tests are carried out with the measurement of axial

deformation for use in elastic modulus estimation Fifty irregular specimens for each

rock type are tested The specimen thickness-to-loading diameter (td) is about 25

and the specimen diameter -to-loading diameter (Dd) is varied from 25 to 50 Cyclic

loading is performed while monitoring displacement (δ)

The testing apparatus used in this experiment includes the point load

tester model SBEL PLT-75 and the modified point load platens The displacement

digital gages with a precision up to 0001 mm are used to monitor the axial

deformation of rock between the loading points as loading decreases The cyclic

load is applied along the specimen axis and is performed by systematically increasing

and decreasing loads on the test specimen After unloading the axial load is

increased until the failure occurs Cyclic loading is performed on the specimens in

an attempt at determining the elastic deformation The ratio of change of stress to

displacement (∆P∆δ) is measured from unloading curve Post-failure characteristics

are observed and recorded Photographs are taken of the failed specimens

The results of the deformation measurement by MPL tests are shown

in Tables411 through 413 The stresses (P) are plotted as a function of axial

displacement (δ) and shown in Figures B1 through B150 (Appendix B) The results

of ∆P∆δ are used to estimate the elastic modulus of the specimen

The elastic modulus predictions from MPL results can be made by

using the value of αE plotted as a function of Ded for various td ratios as shown in

Figure 427 and the MPL elastic modulus can be expressed as

55

⎟⎠⎞

⎜⎝⎛

ΔΔ

⎟⎟⎠

⎞⎜⎜⎝

⎛=

δαPtE

Empl (Tepnarong 2006) (49)

where Empl is the elastic modulus predicted from MPL results αE is displacement

function value from numerical analysis and ∆P∆δ is the ratio of change of stress to

displacement which is measured from unloading curve of MPL tests and t is the

specimen thickness The value of αE used in the calculation is 260 for td ratio equal

to 25-30 (Tepnarong 2006) The results of elastic modulus predictions from MPL

tests are tabulated in Tables 414 through 416 Table 417 compares the elastic

modulus obtained from standard uniaxial compressive strength test (ASTM D3148-

96) with those predicted by MPL test

The values of Empl for each specimen with P-δ curve are shown in

Appendix B The MPL method under-estimates the elastic modulus of all tested

rocks This is the primarily because the actual loaded area may be smaller than that

used in the calculation due to the roughness of the specimen surfaces As a result the

contact area used to calculate PMPL is larger than the actual In addition the EMPL

tends to show a high intrinsic variation (high standard deviation) This is because the

loading areas of MPL specimens are small This phenomenon conforms by the test

results obtained by Fuenkajorn and Deamen (1992) They conclude that smaller test

specimens not only exhibit a higher strength than larger one (size effect) but also

show a high intrinsic variability due to the heterogeneity of rock fabric particularly at

small sizes This implied that to obtain a good prediction (accurate result) of the rock

elasticity a large amount of MPL specimens are desirable This drawback may be

compensated by the ease of testing and the low cost of sample preparation

56

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (MPa)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure 427 Example of P-δ curve for porphyritic andesite specimen The ratio of

∆P∆δ is used to predict the elastic modulus of MPL specimen (Empl)

57

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-01 246 543 125 260 1776 And-MPL-02 351 632 180 260 2430 And-MPL-03 236 634 170 260 1546 And-MPL-04 266 960 234 260 2390 And-MPL-05 284 903 369 260 4031 And-MPL-06 245 793 182 260 1712 And-MPL-07 263 874 234 260 2367 And-MPL-08 261 980 171 260 1717 And-MPL-09 280 777 056 260 603 And-MPL-10 244 569 124 260 1748 And-MPL-11 251 613 138 260 2001 And-MPL-12 226 631 189 260 2464 And-MPL-13 233 1126 151 260 947 And-MPL-14 279 1203 165 260 1239 And-MPL-15 239 503 011 260 151 And-MPL-16 281 474 012 260 195 And-MPL-17 305 861 021 260 247 And-MPL-18 233 653 008 260 108 And-MPL-19 294 1386 200 260 2263 And-MPL-20 265 860 017 260 173 And-MPL-21 238 425 087 260 1195 And-MPL-22 230 417 087 260 1154 And-MPL-23 223 557 231 260 2976 And-MPL-24 250 760 112 260 1615 And-MPL-25 259 1243 585 260 4073 And-MPL-26 303 560 143 260 1667 And-MPL-27 273 1640 156 260 1639 And-MPL-28 282 906 200 260 2172 And-MPL-29 311 934 156 260 1868 And-MPL-30 246 1314 650 260 4310 And-MPL-31 262 982 175 260 1766 And-MPL-32 260 1147 156 260 1093 And-MPL-33 240 700 101 260 1398 And-MPL-34 304 800 135 260 1576 And-MPL-35 250 455 127 260 1221 And-MPL-36 243 1697 292 260 1909 And-MPL-37 333 1520 156 260 2000 And-MPL-38 238 661 260 260 1665 And-MPL-39 318 347 186 260 1592 And-MPL-40 245 551 260 260 1712

58

And-MPL-41 207 561 325 260 1815

59

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-42 223 425 231 260 2976 And-MPL-43 207 561 346 260 1932 And-MPL-44 324 340 234 260 2912 And-MPL-45 275 426 169 260 1785 And-MPL-46 302 397 175 260 2033 And-MPL-47 255 314 170 260 1667 And-MPL-48 257 220 094 260 1393 And-MPL-49 256 214 057 260 843 And-MPL-50 243 166 078 260 1094 Average 1743 Standard Deviation 910

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-01 300 782 280 260 2262 SST -MPL-02 250 480 307 260 2066 SST -MPL-03 314 424 356 260 4302 SST -MPL-04 292 809 450 260 3533 SST -MPL-05 275 1142 532 260 3939 SST -MPL-06 308 490 273 260 2266 SST -MPL-07 317 611 418 260 3572 SST -MPL-08 233 684 414 260 2595 SST -MPL-09 255 480 371 260 2546 SST -MPL-10 217 772 958 260 5593 SST -MPL-11 312 903 400 260 3360 SST -MPL-12 255 1094 272 260 1864 SST -MPL-13 286 742 408 260 4435 SST -MPL-14 248 615 296 260 4235 SST -MPL-15 253 805 282 260 1918 SST -MPL-16 243 1094 260 260 1698 SST -MPL-17 234 1090 416 260 2621 SST -MPL-18 253 1371 473 260 3224 SST -MPL-19 327 434 330 260 4153 SST -MPL-20 270 310 278 260 2863

60

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-21 269 691 185 260 1914 SST -MPL-22 312 504 182 260 2183 SST -MPL-23 319 627 150 260 1839 SST -MPL-24 281 689 295 260 3193 SST -MPL-25 210 720 259 260 2090 SST -MPL-26 303 775 221 260 2577 SST -MPL-27 272 714 274 260 2862 SST -MPL-28 292 855 209 260 2350 SST -MPL-29 310 742 176 260 2097 SST -MPL-30 284 847 158 260 1728 SST -MPL-31 320 891 464 260 5707 SST -MPL-32 261 256 178 260 2678 SST -MPL-33 224 405 131 260 1690 SST -MPL-34 231 379 215 260 2863 SST -MPL-35 290 442 190 260 3174 SST -MPL-36 241 521 102 260 1416 SST -MPL-37 275 605 067 260 1064 SST -MPL-38 263 616 127 260 1926 SST -MPL-39 227 615 229 260 3005 SST -MPL-40 236 508 090 260 1226 SST -MPL-41 318 1142 498 260 4264 SST -MPL-42 303 809 392 260 3196 SST -MPL-43 228 805 244 260 1500 SST -MPL-44 283 1142 571 260 4348 SST -MPL-45 277 772 780 260 5826 SST -MPL-46 288 1206 411 260 3184 SST -MPL-47 250 508 309 260 4464 SST -MPL-48 275 442 338 260 5364 SST -MPL-49 272 605 254 260 3981 SST -MPL-50 260 805 360 260 2523 Average 2986 Standard Deviation 1190

61

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-01 270 546 212 260 2202 TST -MPL-02 258 787 326 260 3232 TST -MPL-03 275 730 143 260 1513 TST -MPL-04 282 715 143 260 1551 TST -MPL-05 254 1345 264 260 2579 TST -MPL-06 292 893 143 260 1606 TST -MPL-07 243 853 112 260 2273 TST -MPL-08 287 1047 319 260 3521 TST -MPL-09 230 787 212 260 1875 TST -MPL-10 230 427 132 260 1752 TST -MPL-11 282 1243 319 260 3455 TST -MPL-12 254 604 127 260 1241 TST -MPL-13 288 1180 159 260 1764 TST -MPL-14 251 631 170 260 2465 TST -MPL-15 214 1104 260 260 1500 TST -MPL-16 229 486 102 260 1345 TST -MPL-17 259 715 650 260 4530 TST -MPL-18 243 285 073 260 1025 TST -MPL-19 285 316 128 260 2105 TST -MPL-20 241 295 170 260 2360 TST -MPL-21 298 417 100 260 1722 TST -MPL-22 265 642 088 260 896 TST -MPL-23 314 611 101 260 1830 TST -MPL-24 303 481 124 260 2166 TST -MPL-25 223 223 126 260 1083 TST -MPL-26 273 652 178 260 1869 TST -MPL-27 216 887 170 260 2065 TST -MPL-28 319 718 164 260 2011 TST -MPL-29 310 742 128 260 1136 TST -MPL-30 260 641 280 260 2800 TST -MPL-31 287 496 158 260 1742 TST -MPL-32 264 368 170 260 1725 TST -MPL-33 238 415 130 260 1192 TST -MPL-34 271 824 260 260 1942 TST -MPL-35 283 800 325 260 2478 TST -MPL-36 242 1013 325 260 2115 TST -MPL-37 254 715 217 260 1484 TST -MPL-38 210 755 520 260 2944 TST -MPL-39 293 508 260 260 2052 TST -MPL-40 273 410 347 260 2552

62

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-41 234 628 260 260 1638 TST -MPL-42 259 433 260 260 1814 TST -MPL-43 265 546 435 260 4440 TST -MPL-44 255 829 222 260 3265 TST -MPL-45 254 368 315 260 3075 TST -MPL-46 293 695 222 260 2502 TST -MPL-47 247 297 128 260 1827 TST -MPL-48 310 611 237 260 4240 TST -MPL-49 225 337 371 260 2252 TST -MPL-50 259 410 394 260 2746 Average 2190 Standard Deviation 830

Table 417 Comparisons of elastic modulus results obtained from uniaxial

compressive strength tests and those from modified point load tests

Rock Type Tangential Elastic Modulus from UCS

tests Et (GPa)

Elastic Modulus from MPL tests

Empl (GPa) Porphyritic andesite 430plusmn34 174plusmn91

Silicified tuffaceous sandstone 633plusmn80 299plusmn119

tuffaceous sandstone 513plusmn53 219plusmn83

432 Modified point load tests predicting uniaxial compressive strength

The uniaxial compressive strength of MPL specimens can be predicted

by plotting Pmpl as a function of diameter ratio Ded as shown in Figures 428 through

430 At diameter ratio equal to unity the Pmpl represents the uniaxial compressive

strength of rock The uniaxial compressive strength predicted from MPL tests

compared with those from CPL test and UCS standard test is shown in Table 418

63

UCS PREDICTION OF PORPHYRITIC ANDESITE FROM MPL TESTS

Pmpl = 11844(Ded)05489

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ded Ratio

MPL

Stre

ngth

(MPa

)

Figure 428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests

64

UCS PREDICTION OF SILICIFIED TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 11463(Ded)07447

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ded Ratio

MPL

-Str

engt

h (M

Pa)

Figure 429 Uniaxial compressive strength predicted for silicified tuffaceous

sandstone from MPL tests

65

UCS PREDICTION OF TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 10222(Ded)05457

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ded Ratio

MPL

-Stre

ngth

(MPa

)

Figure 430 Uniaxial compressive strength predicted for tuffaceous sandstone from

MPL tests

Table 418 Comparison the test results between UCS CPL Brazilian tensile

strength and MPL tests

Uniaxial Compressive Strength (MPa)

Tensile Strength (MPa) Rock Type UCS

Testing CPL

Prediction MPL

PredictionBrazilian Testing

MPL Prediction

And 1150 1944 plusmn12 1005 170plusmn16 139plusmn43 TST 1114 2448plusmn20 1308 131plusmn33 121plusmn73 SST 1207 2592plusmn22 1022 191plusmn32 171plusmn126

433 Modified Point Load Tests for Tensile Strength Predictions

The MPL results determine the rock tensile strength by using the

relationship of the failure stresses (Pmpl) as a function of specimen thickness to

66

loading diameter ratio (td) The tensile strength from MPL prediction can be

expressed as an empirical equation (Tepnarong 2001)

σt mpl = Pmpl (αT ln (td)+βT) (410)

where αT = 133 ln (Ded)-756 and βT= -70 ln (Ded)+ 1952

The results of tensile strengths of all rock types are shown in Tables

419through 421 The predicted tensile strengths are compared with the Brazilian

tensile strengths for the three rock types in Table 418 A close agreement of the

results obtained between two methods The discrepancies of the results are less than

the standard deviation of the results

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa)

And-MPL-01 246 543 159 1495 767 750 And-MPL-02 351 632 471 1697 661 1688 And-MPL-03 236 634 191 1701 659 900 And-MPL-04 266 960 319 2252 369 1240 And-MPL-05 284 903 471 2170 412 1761 And-MPL-06 245 793 357 1999 502 1558 And-MPL-07 263 874 331 2127 435 1330 And-MPL-08 261 980 268 2279 355 1053 And-MPL-09 280 777 344 1971 517 1351 And-MPL-10 244 569 159 1557 734 746 And-MPL-11 251 613 368 1656 683 1666 And-MPL-12 226 631 340 1695 662 1662 And-MPL-13 233 1126 468 2464 257 2000 And-MPL-14 279 1203 572 2552 211 2022 And-MPL-15 239 503 227 1392 822 1114 And-MPL-16 281 474 170 1314 863 765 And-MPL-17 305 861 497 2108 445 1776 And-MPL-18 233 653 283 1740 638 1340 And-MPL-19 294 1386 484 2741 112 1577 And-MPL-20 265 860 522 2106 446 2091

67

And-MPL-21 238 425 311 1169 939 1595 And-MPL-22 230 417 255 1142 953 1338 And-MPL-23 223 557 283 1529 749 1431 And-MPL-24 250 760 311 1941 532 1347 And-MPL-25 259 1243 468 2596 188 1763 And-MPL-26 303 560 395 1535 746 1613

68

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) And-MPL-27 273 1640 497 2964 -006 1671 And-MPL-28 282 906 280 2252 369 1035 And-MPL-29 311 934 369 2216 388 1272 And-MPL-30 246 1314 650 2670 149 2543 And-MPL-31 262 982 255 2282 353 997 And-MPL-32 260 1147 468 2488 244 1783 And-MPL-33 240 700 255 1832 590 1161 And-MPL-34 304 800 306 2010 496 1121 And-MPL-35 250 455 280 1259 891 1370 And-MPL-36 243 1697 312 3010 -030 1181 And-MPL-37 333 1520 395 2863 047 1130 And-MPL-38 238 661 442 1755 630 2054 And-MPL-39 318 347 338 897 1082 1594 And-MPL-40 245 551 390 1513 758 1847 And-MPL-41 207 561 390 1537 745 2089 And-MPL-42 223 425 283 1169 939 1507 And-MPL-43 207 561 390 1537 745 2089 And-MPL-44 324 340 395 871 1096 1864 And-MPL-45 275 426 306 1172 937 1441 And-MPL-46 302 397 166 1079 986 760 And-MPL-47 255 314 127 766 1151 1159 And-MPL-48 257 220 142 291 1401 845 And-MPL-49 256 214 74 257 1419 443 And-MPL-50 243 166 102 -078 1595 928 Average 1427 Standard Deviation 44

69

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) SST -MPL-01 300 782 442 1336 851 2018 SST -MPL-02 250 480 572 1331 853 2759 SST -MPL-03 314 424 433 1196 924 1888 SST -MPL-04 292 809 572 2024 489 2155 SST -MPL-05 275 1142 780 2483 247 2827 SST -MPL-06 308 490 494 1357 840 2086 SST -MPL-07 317 611 728 1651 685 2808 SST -MPL-08 233 684 624 1800 606 2932 SST -MPL-09 255 480 598 1331 853 2849 SST -MPL-10 217 772 312 1962 522 1529 SST -MPL-11 312 903 702 2170 412 2436 SST -MPL-12 255 1094 390 2426 277 1533 SST -MPL-13 286 742 510 1910 549 2011 SST -MPL-14 248 615 198 1661 680 905 SST -MPL-15 253 805 546 2017 492 2312 SST -MPL-16 243 1094 390 2426 277 1607 SST -MPL-17 234 1090 650 2421 280 2780 SST -MPL-18 253 1371 624 2726 120 2354 SST -MPL-19 327 434 408 1196 924 1740 SST -MPL-20 270 310 497 748 1160 2618 SST -MPL-21 269 691 522 1816 599 2181 SST -MPL-22 312 504 484 1394 821 2012 SST -MPL-23 319 627 331 1686 667 1263 SST -MPL-24 281 689 420 1812 601 1699 SST -MPL-25 210 720 497 1869 570 2541 SST -MPL-26 303 775 471 1968 519 1745 SST -MPL-27 272 714 395 1859 576 1623 SST -MPL-28 292 855 764 2098 450 2830 SST -MPL-29 310 742 510 1910 549 1881 SST -MPL-30 284 847 522 2087 456 1981 SST -MPL-31 320 891 828 2153 421 2832 SST -MPL-32 261 256 226 492 1295 1282 SST -MPL-33 224 405 311 1106 972 1672 SST -MPL-34 231 379 255 1017 1019 1363 SST -MPL-35 290 442 594 1221 912 2690 SST -MPL-36 241 521 283 1439 797 1374 SST -MPL-37 275 605 340 1639 692 1445 SST -MPL-38 263 616 368 1661 680 1611

70

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded Pmpl (MPa)

αT βT σt mpl (MPa)

SST -MPL-39 227 615 198 1661 680 969 SST -MPL-40 236 508 311 1406 814 1540 SST -MPL-41 318 1142 780 2483 247 2500 SST -MPL-42 303 809 546 2024 489 1999 SST -MPL-43 228 805 546 2017 492 2530 SST -MPL-44 283 1142 780 2483 247 2757 SST -MPL-45 277 772 312 1962 522 1236 SST -MPL-46 288 1206 728 2555 209 2502 SST -MPL-47 250 508 323 1406 814 1533 SST -MPL-48 275 442 594 1221 912 2769 SST -MPL-49 272 605 368 1639 692 1580 SST -MPL-50 260 805 520 2017 492 2147 Average 2045 Standard Deviation 56

71

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-01 270 546 293 1502 763 1299 TST -MPL-02 258 787 293 1988 508 1226 TST -MPL-03 275 730 255 1888 560 1031 TST -MPL-04 282 715 510 1860 575 2035 TST -MPL-05 254 1345 280 2701 133 1058 TST -MPL-06 292 893 255 2156 420 933 TST -MPL-07 243 853 311 2095 451 1346 TST -MPL-08 287 1047 268 2279 355 970 TST -MPL-09 230 787 471 1988 508 2179 TST -MPL-10 230 427 147 1176 935 769 TST -MPL-11 282 1243 573 2596 188 1994 TST -MPL-12 254 604 255 1636 693 1149 TST -MPL-13 288 1180 369 2527 224 1274 TST -MPL-14 251 631 232 1695 662 1044 TST -MPL-15 214 1104 312 2438 271 1465 TST -MPL-16 229 486 215 1347 845 1098 TST -MPL-17 259 715 286 1861 575 1220 TST -MPL-18 243 285 102 637 1219 571 TST -MPL-19 285 316 130 776 1146 665 TST -MPL-20 241 295 102 685 1194 568 TST -MPL-21 298 417 170 1143 952 771 TST -MPL-22 265 642 170 1178 934 1059 TST -MPL-23 314 611 255 1652 685 989 TST -MPL-24 303 481 368 1423 805 1545 TST -MPL-25 223 223 331 313 1389 2018 TST -MPL-26 273 652 331 1738 640 1389 TST -MPL-27 216 887 535 2146 424 1850 TST -MPL-28 319 718 369 1866 572 1350 TST -MPL-29 231 516 255 1425 804 1276 TST -MPL-30 260 641 484 1715 651 2114 TST -MPL-31 287 496 420 1373 832 1846 TST -MPL-32 264 368 293 976 1041 1475 TST -MPL-33 238 415 293 1151 948 1504 TST -MPL-34 271 824 364 2049 476 1418 TST -MPL-35 283 800 572 2010 496 2210 TST -MPL-36 242 1013 468 2324 331 1965 TST -MPL-37 254 715 234 1861 575 1013 TST -MPL-38 210 755 390 1932 537 1976

72

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-39 293 508 286 1406 814 1229 TST -MPL-40 273 410 260 1124 963 1243 TST -MPL-41 234 628 208 1688 666 990 TST -MPL-42 259 433 338 1194 926 1639 TST -MPL-43 265 546 280 1502 763 1257 TST -MPL-44 255 829 147 2057 472 614 TST -MPL-45 254 368 306 976 1041 1568 TST -MPL-46 293 695 210 1822 595 1846 TST -MPL-47 247 297 102 691 1190 561 TST -MPL-48 310 611 170 1652 685 665 TST -MPL-49 225 337 416 1939 533 1972 TST -MPL-50 259 410 312 1120 965 1537 Average 1336 Standard Deviation 56

434 Modified point load tests for triaxial compressive strength predictions

The objective of this section is to predict the triaxial compressive strength

of intact rock specimens by using the MPL results (modified point load strength Pmpl) It

is speculated that increase of applied load (σ1) will invoke a confining pressure (σ3) on

the imaginary cylindrical profile between the two loading points This is due to the

effect of Poissonrsquos ratio (ν) which causing a potential expansion of rock in this cylinder

The greater the σ1 the greater the σ3 in addition Poissonrsquos ratios also affect the

magnitude of σ3 The magnitude of σ3 also depends on the specimen shape particularly

the Ded ratio In principle σ3 will equal zero for Ded ratio equal to unity But when

Ded ratio is very large approaching infinity σ3 will reach its maximum This maximum

value of σ3 will also depend on the rock Poissonrsquos ratio From computer simulation of

td =25 the variation of σ1 σ3 ratio can be simply expressed by Tepnarong (2006) as

73

(σ1 σ3) = 2 ((ν (1ndashν) (1-(dDe) 2)) (411)

where ν is the Poissonrsquos ratio of rock specimen d is the modified point load diameter

and De is the equivalent diameter of the specimen The Poissonrsquos ratio of rock

specimen used in equation 411 can be assumed to be 25 The σ1 σ3 ratio tends to be

independent of Ded for Ded greater than 10 This implies that when MPL specimen

diameter is more than 10 times of the loading point diameter the magnitude of σ3 is

approaching its maximum value (Tepnarong 2006)

It should be pointed out that approach used here to determine σ3

assumes that there is no shear stress (τrz) along the imagination cylinder As a result

the magnitude of σ3 determined here would be higher than the actual σ3 applied in the

true triaxial test specimen This mean that the σ1 σ3 ratios at failure obtained from

MPL tests will be lower than the actual failure stress ratio from the true triaxial tests

From the concept of σ1 σ3-Ded relation proposed the major and

minor principal stresses at failure (σ1 σ3) can be predicted from the measured MPL

failure stress Pmpl and Ded ratio The Poissonrsquos ratio used here is equal to 025

Comparison between the failure stress (σ1 σ3) obtained from the

standard triaxial compressive strength testing (ASTM D7012-07) and those predicted

from MPL test results are made graphically in Figures 431 through 433 for ν =025

The figures are plotted the maximum shear stress (frac12(σ1-σ3)) as a function of mean

shear stress (frac12(σ1+σ3)) indicating that the predicted failure stresses under-estimate

the value obtained from the standard testing This is because of the assumption of no

shear stresses developed on the surface of the imaginary cylinder The under

prediction may be due to the intrinsic variability of the rocks The predictions are

also sensitive to assumed Poissonrsquos ratio The Poissonrsquos ratio of the tested specimens

74

may be lower than the assumed value of 025 This comparison implies that the

triaxial strength predicted from MPL test will be more conservative than those from

the standard testing method

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests

Specimen Number

td Ded σ1

(MPa)σ3

(MPa)Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-01 246 543 159 2527 6663 9190 And-MPL-02 351 632 471 7583 19776 27358 And-MPL-03 236 634 191 3075 8017 11091 And-MPL-04 266 960 319 5198 13325 18522 And-MPL-05 284 903 471 7682 19726 27408 And-MPL-06 245 793 357 5792 14938 20730 And-MPL-07 263 874 331 5393 13864 19257 And-MPL-08 261 980 268 4368 11192 15560 And-MPL-09 280 777 344 5581 14407 19988 And-MPL-10 244 569 159 2535 6659 9194 And-MPL-11 251 613 368 5911 15445 21356 And-MPL-12 226 631 340 5465 14253 19717 And-MPL-13 233 1126 468 7660 19568 27228 And-MPL-14 279 1203 572 9372 23911 33283 And-MPL-15 239 503 227 3589 9529 13118 And-MPL-16 281 474 170 2678 7154 9831 And-MPL-17 305 861 497 8087 20797 28884 And-MPL-18 233 653 283 4561 11874 16435 And-MPL-19 294 1386 484 7946 20231 28177 And-MPL-20 265 860 522 8501 21864 30365 And-MPL-21 238 425 311 4854 13143 17997 And-MPL-22 230 417 255 3962 10758 14720 And-MPL-23 223 557 283 4521 11894 16415 And-MPL-24 250 760 311 5049 13045 18094 And-MPL-25 259 1243 468 7671 19562 27234 And-MPL-26 303 560 395 6308 16591 22899 And-MPL-27 273 1640 497 8167 20757 28924 And-MPL-28 282 906 280 4574 11726 16300 And-MPL-29 311 934 369 6026 15459 21484 And-MPL-30 246 1314 650 1066 27166 37828 And-MPL-31 262 982 255 4160 10659 14819 And-MPL-32 260 1147 468 7663 19567 27229

75

And-MPL-33 240 700 255 4118 10680 14798 And-MPL-34 304 800 306 4966 12804 17770

76

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-35 250 455 280 4401 11812 16213 And-MPL-36 243 1697 312 5130 13034 18163 And-MPL-37 333 1520 395 6488 16501 22989 And-MPL-38 238 661 442 7125 18535 25661 And-MPL-39 318 347 338 5112 14342 19455 And-MPL-40 245 551 390 6222 16387 22609 And-MPL-41 207 561 390 6230 16383 22613 And-MPL-42 223 425 283 4413 11948 16361 And-MPL-43 207 561 390 6230 16383 22613 And-MPL-44 324 340 395 5952 16769 22721 And-MPL-45 275 426 306 4767 12903 17670 And-MPL-46 302 397 166 2559 7001 9560 And-MPL-47 255 314 127 3211 9223 12433 And-MPL-48 257 220 142 1852 6151 8003 And-MPL-49 256 214 74 950 3205 4155 And-MPL-50 243 166 102 1493 6331 7823

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-01 300 782 442 7389 19703 27092 SST -MPL-02 250 480 572 9028 24083 33112 SST -MPL-03 314 424 433 6767 18273 25040 SST -MPL-04 292 809 572 9293 23951 33244 SST -MPL-05 275 1142 780 1277 32611 45382 SST -MPL-06 308 490 494 7811 20792 28603 SST -MPL-07 317 611 728 1169 30552 42241 SST -MPL-08 233 684 624 1008 26160 36235 SST -MPL-09 255 480 598 9439 25178 34617 SST -MPL-10 217 772 312 5061 13068 18129 SST -MPL-11 312 903 702 1144 29377 40817 SST -MPL-12 255 1094 390 6381 16308 22689 SST -MPL-13 286 742 510 8255 21350 29605 SST -MPL-14 248 615 198 3183 8316 11500

77

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-15 253 805 546 8869 22863 31732 SST -MPL-16 243 1094 390 6381 16308 22689 SST -MPL-17 234 1090 650 1063 27180 37814 SST -MPL-18 253 1371 624 1024 26077 36317 SST -MPL-19 327 434 408 6369 17198 23567 SST -MPL-20 270 310 497 7344 21169 28513 SST -MPL-21 269 691 522 8438 21896 30333 SST -MPL-22 312 504 484 7672 20368 28040 SST -MPL-23 319 627 331 5626 13897 19224 SST -MPL-24 281 689 420 6790 17624 24414 SST -MPL-25 210 720 497 8039 20821 28860 SST -MPL-26 303 775 471 7648 19743 27391 SST -MPL-27 272 714 395 6388 16551 22939 SST -MPL-28 292 855 764 1244 31997 44436 SST -MPL-29 310 742 510 8255 21350 29605 SST -MPL-30 284 847 522 8498 21866 30364 SST -MPL-31 320 891 828 1349 34656 48146 SST -MPL-32 261 256 226 3165 9741 12906 SST -MPL-33 224 405 311 4825 13157 17982 SST -MPL-34 231 379 255 3912 10783 14695 SST -MPL-35 290 442 594 9307 25071 34377 SST -MPL-36 241 521 283 4499 11905 16404 SST -MPL-37 275 605 340 5452 14259 19711 SST -MPL-38 263 616 368 5912 15445 21357 SST -MPL-39 227 615 198 3183 8316 11500 SST -MPL-40 236 508 311 4939 13100 18039 SST -MPL-41 318 1142 780 1277 32611 45382 SST -MPL-42 303 809 546 8870 22862 31733 SST -MPL-43 228 805 546 8869 22863 31732 SST -MPL-44 283 1142 780 1277 32611 45382 SST -MPL-45 277 772 312 5061 13068 18129 SST -MPL-46 288 1206 728 1193 30433 42361 SST -MPL-47 250 508 323 5119 13577 18695 SST -MPL-48 275 442 594 9307 25071 34377 SST -MPL-49 272 605 368 5906 15447 21354 SST -MPL-50 260 805 520 8447 21774 30221

78

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-01 270 546 293 4672 12313 16986 TST -MPL-02 258 787 293 4756 12272 17028 TST -MPL-03 275 730 255 4125 10676 14801 TST -MPL-04 282 715 510 8243 21356 29599 TST -MPL-05 254 1345 280 4599 11713 16312 TST -MPL-06 292 893 255 4151 10663 14814 TST -MPL-07 243 853 311 5067 13036 18103 TST -MPL-08 287 1047 268 4368 11192 15560 TST -MPL-09 230 787 471 7651 19741 27393 TST -MPL-10 230 427 147 2296 6212 8508 TST -MPL-11 282 1243 573 9397 23964 33361 TST -MPL-12 254 604 255 4089 10695 14783 TST -MPL-13 288 1180 369 6052 15445 21497 TST -MPL-14 251 631 232 3734 9739 13474 TST -MPL-15 214 1104 312 5105 13046 18151 TST -MPL-16 229 486 215 3400 9057 12457 TST -MPL-17 259 715 286 4626 11986 16612 TST -MPL-18 243 285 102 1474 4358 5833 TST -MPL-19 285 316 130 1934 5544 7478 TST -MPL-20 241 295 102 1489 4351 5840 TST -MPL-21 298 417 170 2641 7172 9813 TST -MPL-22 265 642 170 2650 7168 9817 TST -MPL-23 314 611 255 4091 10693 14784 TST -MPL-24 303 481 368 5843 15476 21322 TST -MPL-25 223 223 331 4370 14376 18745 TST -MPL-26 273 652 331 5336 13892 19229 TST -MPL-27 216 887 535 8716 22394 31109 TST -MPL-28 319 718 369 5977 15483 21460 TST -MPL-29 231 516 255 4046 10716 14762 TST -MPL-30 260 641 484 7793 20307 28100 TST -MPL-31 287 496 420 6654 17692 24346 TST -MPL-32 264 368 293 4477 12411 16888 TST -MPL-33 238 415 293 4560 12370 16930 TST -MPL-34 271 824 364 5917 15240 21157 TST -MPL-35 283 800 572 9290 23953 33242 TST -MPL-36 242 1013 468 7646 19575 27221 TST -MPL-37 254 715 234 3785 9806 13592 TST -MPL-38 210 755 390 6321 16338 22659

79

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-39 293 508 286 4536 12031 16567 TST -MPL-40 273 410 260 4036 10981 15017 TST -MPL-41 234 628 208 3345 8727 12071 TST -MPL-42 259 433 338 5279 14259 19538 TST -MPL-43 265 546 280 4469 11778 16247 TST -MPL-44 255 829 147 2394 6163 8557 TST -MPL-45 254 368 306 4671 12951 17622 TST -MPL-46 293 695 210 7616 19759 27375 TST -MPL-47 247 297 102 1491 4359 5841 TST -MPL-48 310 611 170 2728 7129 9870 TST -MPL-49 225 337 416 6744 17426 24170 TST -MPL-50 259 410 312 4841 13178 18019

ANDESITE

τm= 07103σm + 26

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=

((σ

1-σ

3)2

) (M

Pa)

MPL PredictionTriaxial Compressive

Figure 431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and MPL test

80

SILICIFIED TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=(

( σ1minus

σ3)

2)

(MPa

)MPL Prediction

Triaxial Compressive Strength test

Figure 432 Comparisons of triaxial compressive strength criterion of silicified

tuffaceous sandstone between the triaxial compressive strength test

and MPL test

81

TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stress σm=((σ1+σ3)2) (MPa)

Max

imum

shea

r st

res

τ m=(

( σ1-

σ3)

2)

(MPa

)

MPL Prediction

Triaxial Compressive Strength test

Figure 433 Comparisons of triaxial compressive strength criterion of tuffaceous

sandstone between the triaxial compressive strength test and MPL

test

Table 425 compares the triaxial test results in terms of the cohesion c

and internal friction angle φi by assuming the failure mode follows the Coulombrsquos

criterion The c and φi values are calculated from the test results and the predicted

results by the assumption of Coulombrsquos criterion (Jaeger and Cook 1978) Table

425 shows that the strengths predicted by MPL testing of all rock types under-

estimate those obtained from the standard triaxial testing This is probably the actual

Poissonrsquos ratio of the rock specimens are probably lower than those assumed in the

model simulation which is assumed the Poissonrsquos ratio as 025

82

Table 425 Comparisons of the internal friction angle and cohesion between MPL

predictions and triaxial compressive strength tests

Triaxial Compressive Strength Test

MPL Predictions (ν=025) Rock Type

c (MPa) φi (degrees) c (MPa) φi (degrees)

Porphyritic Andesite 12 69 4 45

Silicified Tuffaceous Sandstone 13 65 3 46

Tuffaceous Sandstone 7 73 2 46

CHAPTER V

FINITE DIFFERENCE ANALYSES

51 Objectives

The objective of the finite difference analyses is to verify that the equivalent

diameter of rock specimens used in the MPL strength prediction is appropriate The

finite difference analyses using FLAC software is made to determine the MPL

strength for various specimen diameters (D) with a constant cross-sectional area

52 Model characteristics

The analyses are made in axis symmetry Four specimen models with the

constant thickness of 318 cm are loaded with 10 cm diameter loading point The

diameter of the specimen (D) models is varied from 508 cm to 762 cm Each

specimen has a constant cross-sectional area of 1613 cm2 as shown in Figure 51

through 55 The load is applied to the specimens until failure occurs and then the

failure loads (P) are recorded

53 Results of finite difference analyses

The results of numerical simulation are shown in Table 51 The results

suggest that the MPL strength remains roughly constant when the same equivalent

diameter (De) is used It can be concluded that the equivalent diameter used in this

research is appropriate to predict the MPL strength

80

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm

81

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm

82

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm

Table 51 Summary of the results from numerical simulations

Model Number

Specimen Thickness

t (cm)

Specimen Diameter

D (cm)

Cross-Sectional

Are of Specimen

A (cm2)

Equivalent Diameter

De (cm)

Failure Load P

(kN)

1 318 508 1613 508 4485 2 318 572 1613 508 4630 3 318 635 1613 508 4614 4 318 698 1613 508 4627 5 318 762 1613 508 4590

CHAPTER VI

DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS

This chapter discusses various aspects of the proposed MPL testing technique

for determining the elastic modulus uniaxial and triaxial compressive strengths and

tensile strength of intact rock specimens The discussed issues include reliability of

the testing results validity scope and limitations of the proposed method of

calculations and accuracy of the predicted rock properties

61 Discussions

1) For selection of rock specimens for MPL testing in this research an

attempt has been made to select the specimens particularly in obtaining a high degree

of uniformity of rock matrix so as to reduce the intrinsic variability of the mechanical

test results and hence clearly reveals of the relation between the standard test results

with the MPL test results Nevertheless a high degree of intrinsic variability

remains as evidenced from the results of the characterization testing For all tested

rock types here the igneous rocks are normally heterogeneous The high intrinsic

variability is caused by the degree of weathering among specimens and the

distribution of rock fragments in the groundmass which promotes the different

orientations of cleavage planes and pore spaces to become a weak plane in rock

specimens Silicified tuffaceous sandstone the high standard deviation may be

caused by the silicified degree in rock specimens

84

2) For prediction of elastic modulus of rock specimens the effects of the

heterogeneity that cause the selective weak planes are enhanced during the MPL

testing This is because the applied loading areas are much smaller than those under

standard uniaxial compressive strength testing This load condition yields a high

degree of intrinsic variability of the MPL testing results The standard deviation of

the elastic modulus predicted from MPL results are in the range between 35-50

This means that in order to obtain the accurate prediction a large number of rock

specimens is necessary for each rock types and that the MPL testing is more

applicable in fine-grained rocks than coarse-grained rocks Another factor is the

uneven contacts between the loading platens and the rock surfaces which caused the

elastic modulus of all rock types that predicted from MPL testing to be lower

compared with those from the uniaxial compressive strength

3) Equivalent diameter used to define the rock specimen width (perpendicular

to the loading direction) seems adequate for use in MPL predictions of rock

compressive and tensile strengths

4) Determination of σ3 at failure for the MPL testing is the empirical In fact

results from the numerical simulation indicate that σ3 distribution along the imaginary

cylinder between the loading points is not uniform particularly for low td ratio

(lower than 25) Along this cylinder σ3 is tension near the loading point and

becomes compression in the mid-length of the MPL specimen There are also shear

stresses along the imaginary cylinder The induced stress states along the assume

cylinder in MPL specimen are therefore different from those the actual triaxial

strength testing specimen The MPL method can not satisfactorily predict the triaxial

compressive strength of all tested rock types primarily due to the heterogeneity of

85

rock specimens that is the different sizes of phenocrysts in igneous rock in lateral and

horizontal directions This promotes the different failure formations

62 Conclusions

The objective of this research is to determine the elastic modulus uniaxial

compressive strength tensile strength and triaxial compressive strength of rock

specimens by using the modified point load (MPL) test method Three rock types

used in this research are porphyritic andesite silicified tuffaceous sandstone and

tuffaceous sandstone Prior to performing the modified point load testing the

standard characterization testing is carried out on these rock types to obtain the data

basis for use to compare the results from MPL testing The MPL specimens are

irregular-shaped with the specimen thickness to loading platen diameter (td) varies

from 25-35 and the equivalent diameter of specimen to loading platen diameter

(Ded) varies from 15 to 20 Loading platen diameters used in this research are 7 10

and 15 mm Finite different analysis is used to verify the equivalent diameter that use

to calculate rock properties from MPL tests

The research results illustrate that the elastic modulus estimated from MPL tests

under-estimates those obtained from the ASTM standard test with the standard

deviation of 40 for porphyritic andesite 48 for silicified tuffaceous sandstone and

43 for tuffaceous sandstone The MPL test method can satisfactorily predict the

uniaxial compressive strength and tensile strength of all rock types tested here The

conventional point load test method over-predicts the actual strength results by much as

100 The MPL method however can not predict the triaxial compressive strengths

for three rock types tested here primarily due to heterogeneous and different

86

weathering degree of rock specimens and uneven surface of rock specimens This

suggests that the smooth and parallel contact surfaces on opposite side of the loading

points are important for determining the strength of rock specimens for MPL method

63 Recommendations

The assessment of predictive capability of the proposed MPL testing technique

has been limited to three rock types More testing is needed to confirm the applicability

and limitations of the proposed method Some obvious future research needs are

summarized as follows

1) More testing is required for elastic modulus and triaxial compressive strength

on different rock types Smooth and parallel of rock specimen surfaces in the opposite

sides should be prepared for all rock types The results may also reveal the impacts of

grain size on elasticity and strength of obtained under different loading areas And the

effects of size of the areas underneath the applied load should be further investigated

2) To truly confirm the validity of MPL predictions for the elastic modulus and

strength of rocks may be desirable to obtain the actual Poissonrsquos ratio of all rock types

The results could reveal the accuracy of the predicted elastic modulus under the assumed

Poissonrsquos ratio of 025 Comparison between the elastic modulus obtained from the

actual Poissonrsquos ratio may show the validity of assumption of the Poissonrsquos ratio posed

here

3) All tests made in this research are on dry specimens the results of pore

pressure and degree of saturation have not been investigated It is desirable to learn also

the proposed MPL testing technique can yield the intact rock properties under

different degree of saturation

88

REFERENCES

ASTM D2664-86 Standard test method for triaxial compressive strength of

undrained rock core specimens without pore pressure measurements In

Annual Book of ASTM Standards (Vol 0408) Philadelphia American

Society for Testing and Materials

ASTM D7012-07 Standard test method for compressive strength and elastic moduli

of intact rock core specimens under varying states of stress and

temperatures In Annual Book of ASTM Standards (Vol 0408) West

Conshohocken American Society for Testing and Materials

ASTM D3967-81 Standard test method for splitting tensile strength of intact rock

core specimens In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

ASTM D4543-85 Standard test method for preparing rock core specimens and

determining dimensional and shape tolerances In Annual Book of ASTM

Standards (Vol 0408) Philadelphia American Society for Testing and

Materials

ASTM D5731-95 Standard test method for determination of point load strength

index of rock In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

Bieniawski Z T (1974) Estimating of the strength of rock materials J Inst

Min Metall 7 123-137

Bieniawski Z T (1975) The point-load test in geotechnical practice Engng

Geol 9 1-11

89

Bieniawski Z T and Bernede M J (1979) Suggested methods for determining the

uniaxial compressive strength and deferability of rock material for ISRM

Commission on Standardization of Laboratory and Field test Int J Rock

Mech Min Sci 16 (2)xxxx (page no)

Bray J W (1987) Some applications of elastic theory In E T Brown (ed)

Analytical and Computational Methods in Engineering Rock

Mechanics (pp 32-94) Allen amp Unwin London

Broch E and Franklin J A (1972) The point-load test Int J Rock Mech Min

Sci 9 669-697

Book N (1977) The use of irregular specimens for rock strength tests Int J

Rock Mech Min Sci amp Geomech Abstr 14 193-202

Book N (1979) Estimating the triaxial strength of rocks Int J Rock Mech Min

Sci amp Geomech Abstr 16 261-264

Book N (1980) Size correction for point load testing Int J Rock Mech Min

Sci 17231-235 [Technical note]

Book N (1985) The equivalent core diameter method of size and shape correction

in point load testing Int J Rock Mech Min Sci amp Geomech Abstr

22 61-70

Brown E T (1981) Rock characterization Testing and Monitoring ISRM

Suggestion Methods New York International Society for Rock

Mechanics Pergamon Press

Butenuth C (1997) Comparison of tensile strength values of rocks determined by

point load and direct tensile tests Rock Mech Rock Engng 30 65-72

90

Cargill J S and Shakoor A (1992) Evaluation of empirical methods for measuring

the uniaxial compressive strength Int J Rock Mech Min Sci 27 495-503

Chau KT (1997) Youngrsquos modulus interpreted from compression tests with end

friction J Engng Mech January 1-7 plat Ann Inst Tech Trav Publics

58 967-971

Chau KT and Wei X X (1999) A new analytic solution for the diametral point

load strength test on finite solid circular cylinders Int J Solids and

Structures 38(9) 1459-1481

Chau KT and Wong R HC (1996) Uniaxial compressive strength and point

load strength Int J Rock Mech Min Sci 33183-188

Davis R O and Selvadurai APS (1996) Elasticity and Geomechanics New

York Cambridge University Press 198 p

Deere DU and Miller R P (1966) Engineering Classification and Index

Properties for Intact Rock US Air Force Weapons Lab Rep AFWL-

TR-65-116

Durelli A J and Parks V (1962) Relationship of size and stress gradient to brittle

failure stress In Proceeding of the 4th US National Cong Of Appl

Mech (pp 931-938)

Evans I (1961) The tensile strength of coal Colliery Eng 38 428-434

Fairhurst C (1961) Laboratory measurement of some physical properties of rock

In Proceeding of the 4th Symp Rock Mech (pp 105-118) Penn State

University

Farmer I (1983) Engineering Behavior of Rocks New York Chapman and Hall

208 p

91

Forster I R (1983) The influence of core sample geometry on axial load test Int

J Rock Mech Min Sci 20 291-295

Fuenkajorn K (2002) Modified point load test determining uniaxial compressive

strength of intact rock In Proceeding of 5th North American Rock

Mechanics Symposium and the 17th Tunneling Association of Canada

Conference (NARMS-TAC 2002) (pp ) Toronto

Fuenkajorn K and Daemen J J K (1986) Shape effect on ring test tensile

strength In Key to Energy Production Proceeding of the 27th US

Symposium on Rock Mechanics (pp 155-163) Tuscaloosa University of

Alabama

Fuenkajorn K and Daemen J J K (1991b) An empirical strength criterion for

heterogeneous welded tuff In ASME Applied Mechanics and

Biomechanics Summer Conference Columbus Ohio University

Fuenkajorn K and Daemen J J K (1992) An empirical strength criterion for

heterogeneous tuff Int J Engineering Geology 32 209-223

Fuenkajorn K and Tepnarong P (2001) Size and stress gradient effects on the

modified point load strength of Saraburi Marble In the 6th Mining

Metallurgical and Petroleum Engineering Conference Bangkok

Thailand(pp)

Ghosh A Fuenkajorn K and Daemen J J K (1995) Tensile strength of welded

Apache Leap tuff investigation for scale effects In Proceeding of the 35th

US Rock Mech Symposium (pp 459-646) University of Navada Reno

Goodman R E (1980) Methods of Geological Engineering in Discontinuous

Rock New York Wiley and Sons

92

Greminger M (1982) Experimental studies of the influence of rock anisotropy on

size and shape effects in point-load testing Int J Rock Mech Min Sci

19 241-246

Gunsallus K L and Kulhawy F H (1984) A comparative evaluation of rock

strength measures Int J Rock Mech Min Sci 21 233-248

Hassani F P Scoble M J and Whittaker B N (1980) Application of point load

index test to strength determination of rock and proposals for new size-

correction chart (pp 543-564) Rolla

Hiramatsu Y and Oka Y (1966) Determination of tensile strength of rock by a

compression test of irregular test piece Int J Rock Mech Min Sci 3

89-99

Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the

Hoek-Brown falure criterion-Technical note Int J Rock Mech Min Sci

amp Geomech Abstr 27 227-229

Hoek E and Brown E T (1980a) Empirical strength criterion for rock masses J

Geotech Eng Div 106 (GT9) 1013-1035

Hondros G (1959) The evaluation of Poissonrsquos ratio and modulus of material of a

low tensile resistance by the Brazilian (indirect tensile) test with particular

reference to concrete Aust J Appl Sci 10 243-264

Horii H and Nemat-Nasser S (1985) Compression-induced microcrack growth in

brittle solids axial splitting and shear failure J Geophts Res 90 3105-

3125

93

Hudson J A Brown E T and Fairhurst C (1971) Shape of the complete stress-

strain curve for rock In Proceeding of the 13th US Symp Rock Mech (pp

773-795) Urbana

ISRM (1985) Suggested method for determining point load strength Int J Rock

Mech Min Sci amp Geomech Abstr 22 53-60

ISRM (1985) Suggested methods for deformability determination using a flexible

dilatometer Int J Rock Mech Min Sci amp Geomech Abstr 24 123-134

Jaeger J C and Cook N G W (1979) Fundamentals of Rock Mechanics

London Chapman and Hall 593 p

Kaczynski R R (1986) Scale effect during compressive strength of rocks In

Proceeding of 5th Int Assoc Eng Geol Congr p 371-373

Lama R D and Vutukuri V S (1978) Testing techniques and results In

Handbook on Mechanical Properties of Rock Vol III No 2 Trans

Tech Publications (International Standard Book Number 0-87849-022-1

Clausthal Germany)

Lonborg N (1967) The strength-size relation of granite Int J Rock Mech Min

Sci 4 269-272

Miller R P (1965) Engineering Classification and Index Properties for Intact

Rock PhD Dissertation Univ Of Illinois Urbana III 92 p

Nimick F B (1988) Empirical relations between porosity and the mechanical

properties of tuff In Key Questions in Rock Mechanics (pp 741-742)

Balkema Rotterdam

Obert L and Stephenson D E (1965) Stress conditions under which core disking

occurs Trans Soc Min Eng AIME 232 227-235

94

Panek L A and Fannon T A (1992) Size and shape effects in point load tests

of irregular rock fragments J Rock Mechanics and Rock Engineering

25 109-140

Pells P J N (1975) The use of point load test in predicting the compressive

strength of rock material Aust Geotech (pp 54-56) G5(N1)

Reichmuth D R (1968) Point-load testing of brittle materials to determine the

tensile strength and relative brittleness In Proceeding of the 9th US Symp

Rock Mech (pp 134-159) University of Colorado

Sammis C G and Ashby M F (1986) The failure of brittle porous solid under

compressive stress state Acta Metall 34 511-526

Serata S and Fuenkajorn K (1992a) Finite element progam lsquoGEOrsquo for modeling

brittle-ductile deterioration of aging earth structures In SMRI Paper

Presented at the Solution Mining Research Institute Fall Meeting

October 19-22 Houston Texas 24p

Sheorey P R Biswas A K and Choubey V D (1989) An empirical failure

criterion of rocks and jointed rock masses Eng Geol 26 141-159

Stowe R L (1969) Strength and deformation properties of granite basalt

limestone and tuff US Army Corps of Engineers WES Misc Paper C-69-1

Taliercio A and Sacchi Landrianni G (1988) Failure criterion for layered rock

Int J Rock Mech Min Sci amp Geomech Abstr 25 299-305

Tepnarong P (2001) Theoretical and experimental studies to determine

compressive and tensile strengths of rocks using modified point load

testing M Eng Thesis Suranaree University of Technology Thailand

95

Tepnarong P (2006) Theoretical and experimental studies to determine elastic

modulus and triaxial compressive strength of intact rocks by modified

point load testing PhD Eng Thesis Suranaree University of

Technology Thailand

Tepnarong P and Fuenkajorn K (2004) Determining of elasticity and strengths

of intact rocks using modified point load test In Proceeding of the ISRM

International Symposium 3rd ASRM Vol 2 (pp 397-392)

Timoshenko S (1958) Strength of materials I Element Theory and Problems

(3rd ed) Princeton N J D Van Nostard

Timoshenko S and Goodier J N (1951) Theory of Elasticity (2nd ed) New

York McGraw-Hill

Truk N and Dearman W R (1985) Improvements in the determination of point

load strength Bull Int Assoc Eng Geol 31 137-142

Truk N and Dearman W R (1986) A correction equation on the influence of

length-to-diameter ratio on uniaxial compressive strength of rocks J Eng

Geol 22 293-300

Wei X X and Chau K T (2002) Analytic solution for finite transversely

isotropic circular cylinder under the axial point load test J Eng Mech

(pp 209-219)Vol

Wei X X and Chau K T and Wong R H C (1999) Analytic solution for

axial point load strength test on solid circular cylinders J Eng Mech (pp

1349-1357) Vol

96

Wijk G (1978) Some new theoretical aspects of indirect measurements of the

tensile strength of rocks Int J Rock Mech Min Sci amp Geomech

Abstr 15 149-160

Wijk G (1980) The point load test for the tensile strength of rock Geotech Test

ASTM 3 49-54

APPENDIX A

CHARACTERIZATION TEST RESULTS

97

Table A-1 Results of conventional point load strength index test on porphyritic

andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

And-06-05-CPL-01 5397 5366 284 52 And-06-05-CPL-02 5332 5366 283 78 And-08-04-CPL-03 5432 5366 284 90 And-08-04-CPL-04 5482 5366 286 87 And-06-01-CPL-05 5330 5366 285 76 And-06-01-CPL-06 5613 5366 284 76 And-04-04-CPL-07 5617 5366 281 75 And-04-05-CPL-08 5525 5366 282 75 And-03-02-CPL-09 5595 5366 280 85 And-03-02-CPL-10 5535 5366 283 85 And-06-06-CPL-11 5475 5366 283 75 And-09-01-CPL-12 5552 5366 286 90 And-09-01-CPL-13 5503 5366 283 90 And-02-04-CPL-14 5542 5366 282 85 And-09-03-CPL-15 5607 5366 282 85 And-09-03-CPL-16 5452 5366 285 96 And-01-03-CPL-17 5530 5366 283 87 And-01-03-CPL-18 5313 5366 283 90 And-01-04-CPL-19 5465 5366 284 56 And-01-04-CPL-20 5572 5366 283 97

Average 81plusmn12

98

Table A-2 Results of conventional point load strength index test on silicified

tuffaceous sand stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

SST-02-03-CPL-01 5373 5366 268 125 SST-06-04-CPL-02 5469 5366 268 70 SST-02-07-CPL-03 5505 5366 269 70 SST-02-06-CPL-04 5518 5366 267 130 SST-02-04-CPL-05 5626 5366 267 125 SST-02-03-CPL-06 5139 5366 270 132 SST-02-03-CPL-07 5483 5366 271 71 SST-02-05-CPL-08 5340 5366 266 125 SST-02-05-CPL-09 5399 5366 265 70 SST-07-05-CPL-10 5643 5366 263 99 SST-07-05-CPL-11 5381 5366 266 106 SST-05-02-CPL-12 5439 5366 274 104 SST-05-02-CPL-13 5491 5366 271 104 SST-03-04-CPL-14 5430 5366 263 113 SST-03-04-CPL-15 5556 5366 263 106 SST-09-03-CPL-16 5491 5366 272 125 SST-09-03-CPL-17 5703 5366 271 125 SST-01-01-CPL-18 5705 5366 267 132 SST-02-07-CPL-19 5596 5366 269 111 SST-02-07-CPL-20 5527 5366 271 118

Average 108plusmn22

99

Table A-3 Results of conventional point load strength index test on tuffaceous sand

stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

TST-06-05-CPL-01 5657 5366 263 125 TST-06-05-CPL-02 5781 5366 264 109 TST-02-05-CPL-03 5686 5366 263 106 TST-02-05-CPL-04 5747 5366 264 80 TST-08-03-CPL-05 5606 5366 268 115 TST-08-03-CPL-06 5574 5366 266 118 TST-08-01-CPL-07 5491 5366 268 111 TST-08-01-CPL-08 5478 5366 268 115 TST-04-02-CPL-09 5422 5366 263 103 TST-04-02-CPL-10 5387 5366 264 111 TST-08-04-CPL-11 5371 5366 267 115 TST-08-04-CPL-12 5463 5366 267 113 TST-06-07-CPL-13 5545 5366 267 108 TST-04-01-CPL-14 5729 5366 261 59 TST-06-06-CPL-15 5457 5366 261 99 TST-06-06-CPL-16 5469 5366 263 109 TST-06-06-CPL-17 5497 5366 266 122 TST-04-03-CPL-18 5550 5366 261 87 TST-04-03-CPL-19 5521 5366 262 52 TST-04-05-CPL-20 5477 5366 264 87

Average 102plusmn20

100

Table A-4 Results of uniaxial compressive strength tests and elastic modulus

measurements on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-5 Results of uniaxial compressive strength tests and elastic modulus

measurements on silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

Table A-6 Results of uniaxial compressive strength tests and elastic modulus

measurements on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

101

Table A-7 Results of Brazilian tensile strength tests on porphyritic andesite

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

And-04-03-BZ-01 2628 5366 281 395 178 And-04-03-BZ-02 2551 5366 279 350 163 And-04-03-BZ-03 2755 5366 285 380 164 And-04-03-BZ-04 2669 5366 279 415 184 And-04-06-BZ-05 2686 5366 280 320 141 And-04-06-BZ-06 2699 5366 286 415 182 And-04-06-BZ-07 2649 5366 282 395 177 And-04-06-BZ-08 2642 5366 286 340 153 And-06-01-BZ-09 2678 5366 286 435 193 And-06-01-BZ-10 2758 5366 285 385 166

Average 170plusmn16

Table A-8 Results of Brazilian tensile strength tests on silicified tuffaceous

sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

SST-02-02-BZ-01 2507 5366 265 450 213 SST-01-06-BZ-02 2664 5366 264 520 232 SST-01-02-BZ-03 2595 5366 262 400 183 SST-01-02-BZ-04 2593 5366 261 320 146 SST-01-02-BZ-05 2608 5366 266 500 228 SST-02-01-BZ-06 2710 5366 266 500 220 SST-02-01-BZ-07 2654 5366 262 450 201 SST-01-05-BZ-08 2778 5366 268 350 150 SST-01-05-BZ-09 2793 5366 266 400 170 SST-01-05-BZ-10 2795 5366 266 400 170

Average 191plusmn32

102

Table A-9 esults of Brazilian tensile strength tests on tuffaceous sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

TST-02-03-BZ-01 2811 5366 260 360 152 TST-02-03-BZ-02 2757 5366 260 255 110 TST-02-03-BZ-03 2739 5366 262 325 141 TST-02-03-BZ-04 2688 5366 263 175 77 TST-06-04-BZ-05 2765 5366 266 450 193 TST-06-04-BZ-06 2729 5366 264 280 122 TST-06-04-BZ-07 2730 5366 260 230 100 TST-06-02-BZ-08 2748 5366 264 285 123 TST-06-02-BZ-09 2743 5366 261 290 125 TST-06-02-BZ-10 2658 5366 265 370 165

Average 131plusmn33

Table A-10 esults of triaxial compressive strength tests on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-11 Results of triaxial compressive strength tests on silicified tuffaceous

sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

103

Table A-12 Results of triaxial compressive strength tests on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

APPENDIX B

MODIFIED POINT LOAD TEST RESULTS FOR ELASTIC

MODULUS PREDICTION

116

AND-MPL-01

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 125 GPamm

Figure B1 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-01

And-MPL-02

00500

100015002000250030003500400045005000

0 005 01 015 02 025 03 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 180 GPamm

Figure B2 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-02

117

And-MPL-03

00200400600800

100012001400160018002000

000 002 004 006 008 010 012 014

Diplacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B3 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-03

And-MPL-04

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B4 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-04

118

And-MPL-05

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 369 GPamm

Figure B5 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-05

And-MPL-06

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B6 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-06

119

And-MPL-07

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss (

MPa

)

ΔPΔδ = 234 GPamm

Figure B7 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-07

And-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 171 GPamm

Figure B8 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-08

120

And-MPL-09

00

500

1000

1500

2000

2500

3000

3500

000 020 040 060 080 100 120 140Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 056 GPamm

Figure B9 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-09

And-MPL-10

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 124 GPamm

Figure B10 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-10

121

And-MPL-11

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030 035 040Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 138 GPamm

Figure B11 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-11

And-MPL-12

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 189 GPamm

Figure B12 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-12

122

And-MPL-13

00500

100015002000250030003500400045005000

000 010 020 030 040 050 060

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 151 GPamm

Figure B13 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-13

And-MPL-14

00

1000

2000

3000

4000

5000

6000

7000

000 010 020 030 040 050 060Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 165 GPamm

Figure B14 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-14

123

And-MPL-15

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120 140 160Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 011 GPamm

Figure B15 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-15

And-MPL-16

00

200

400

600

800

1000

1200

1400

1600

1800

000 050 100 150 200Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 012 GPamm

Figure B16 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-16

124

And-MPL-17

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120

Displacement (mm)

Stre

ss P

(MPa

) ΔPΔδ = 021 GPamm

Figure B17 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-17

And-MPL-18

00

500

1000

1500

2000

2500

3000

000 050 100 150 200 250 300 350Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 008 GPamm

Figure B18 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-18

125

And-MPL-19

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B19 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-19

And-MPL-20

00

1000

2000

3000

4000

5000

6000

000 050 100 150 200 250 300

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 017 GPamm

Figure B20 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-20

126

And-MPL-21

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B21 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-21

And-MPL-22

00

500

1000

1500

2000

2500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B22 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-22

127

And-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B23 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-23

And-MPL-24

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =112 GPamm

Figure B24 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-24

128

And-MPL-25

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 585 GPamm

Figure B25 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-25

And-MPL-26

00500

10001500200025003000350040004500

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 143 GPamm

Figure B26 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-26

129

And-MPL-27

00500

10001500200025003000350040004500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B27 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-27

And-MPL-28

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B28 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-28

130

And-MPL-29

00500

1000150020002500300035004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B29 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-29

And-MPL-30

00

1000

2000

3000

4000

5000

6000

7000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B30 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-30

131

And-MPL-31

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B31 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-31

And-MPL-32

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B32 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-32

132

And-MPL-33

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 101 GPamm

Figure B33 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-33

And-MPL-34

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 135 GPamm

Figure B34 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-34

133

And-MPL-35

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 127 GPamm

Figure B35 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-35

And-MPL-36

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 292 GPamm

Figure B36 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-36

134

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B37 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-37

And-MPL-38

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B38 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-38

135

And-MPL-39

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 186 GPamm

Figure B39 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-39

And-MPL-40

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 20 GPamm

Figure B40 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-40

136

And-MPL-41

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B41 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-41

And-MPL-42

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B42 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-42

137

And-MPL-43

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 346 GPamm

Figure B43 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-43

And-MPL-44

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B44 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-44

138

And-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 169 GPamm

Figure B45 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-45

And-MPL-46

00

200

400

600

800

1000

1200

1400

1600

1800

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B46 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-46

139

And-MPL-47

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B47 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-47

And-MPL-48

00

200

400

600

800

1000

1200

1400

1600

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 094 GPamm

Figure B48 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-48

140

And-MPL-49

00

100

200

300

400

500

600

700

800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 057 GPamm

Figure B49 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-49

And-MPL-50

00

200

400

600

800

1000

1200

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 078 GPamm

Figure B50 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-50

141

SST-MPL-01

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 280 GPamm

Figure B51 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-01

SST-MPL-02

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 307 GPamm

Figure B52 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-02

142

SST-MPL-03

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 356 GPamm

Figure B53 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-03

SST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 450 GPamm

Figure B54 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-04

143

SST-MPL-05

00100020003000400050006000700080009000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 532 GPamm

Figure B55 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-05

SST-MPL-06

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 273 GPamm

Figure B56 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-06

144

SST-MPL-07

0010002000300040005000600070008000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 418 GPamm

Figure B57 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-07

SST-MPL-08

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 414 GPamm

Figure B58 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-08

145

SST-MPL-09

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B59 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-09

SST-MPL-10

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 958 GPamm

Figure B60 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-10

146

SST-MPL-11

00

10002000

300040005000

60007000

8000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 400 GPamm

Figure B61 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-11

SST-MPL-12

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 272 GPamm

Figure B62 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-12

147

SST-MPL-13

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 408 GPamm

Figure B63 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-13

SST-MPL-14

00

500

1000

1500

2000

2500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 296 GPamm

Figure B64 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-14

148

SST-MPL-15

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 282 GPamm

Figure B65 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-15

SST-MPL-16

00500

1000150020002500300035004000

000 005 010 015 020

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 26 GPamm

Figure B66 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-16

149

SST-MPL-17

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 416 GPamm

Figure B67 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-17

SST-MPL-18

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 473 GPamm

Figure B68 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-18

150

SST-MPL-19

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 330 GPamm

Figure B69 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-19

SST-MPL-20

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 278 GPamm

Figure B70 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-20

151

SST-MPL-21

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 185 GPamm

Figure B71 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-21

SST-MPL-22

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B72 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-22

152

SST-MPL-23

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 15 GPamm

Figure B73 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-23

SST-MPL-24

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 295 GPamm

Figure B74 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-24

153

SST-MPL-25

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 259 GPamm

Figure B75 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-25

SST-MPL-26

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 221 GPamm

Figure B76 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-26

154

SST-MPL-27

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 274 GPamm

Figure B77 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-27

SST-MPL-28

0010002000300040005000600070008000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 209 GPamm

Figure B78 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-28

155

SST-MPL-29

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 176 GPamm

Figure B79 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-29

SST-MPL-30

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B80 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-30

156

SST-MPL-31

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 464 GPamm

Figure B81 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-31

SST-MPL-32

00

500

1000

1500

2000

2500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 178 GPamm

Figure B82 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-32

157

SST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 131 GPamm

Figure B83 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-33

SST-MPL-34

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 215 GPamm

Figure B84 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-34

158

SST-MPL-35

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 190 GPamm

Figure B85 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-35

SST-MPL-36

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B86 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-36

159

SST-MPL-37

00500

1000150020002500300035004000

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 067 GPamm

Figure B87 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-37

AND-MPL-38

00

500

10001500

2000

2500

3000

35004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 127 GPamm

Figure B88 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-38

160

SST-MPL-39

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 229 GPamm

Figure B89 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-39

SST-MPL-40

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 090 GPamm

Figure B90 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-40

161

SST-MPL-41

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 498 GPamm

Figure B91 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-41

SST-MPL-42

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 392 GPamm

Figure B92 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-42

162

SST-MPL-43

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 244 GPamm

Figure B93 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-43

SST-MPL-44

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 571 GPamm

Figure B94 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-44

163

SST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 001 002 003 004 005 006 007 008

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 780 GPamm

Figure B95 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-45

SST-MPL-46

0010002000300040005000600070008000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 411 GPamm

Figure B96 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-46

164

SST-MPL-47

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 309 GPamm

Figure B97 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-47

SST-MPL-48

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 338 GPamm

Figure B98 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-48

165

SST-MPL-49

00500

1000150020002500300035004000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 254 GPamm

Figure B99 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-49

SST-MPL-50

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 360 GPamm

Figure B100 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-50

166

TST-MPL -01

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 212GPamm

Figure B101 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-01

TST-MPL-02

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=326 GPamm

Figure B102 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-02

167

TST-MPL-03

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacememt (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B103 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-03

TST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B104 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-04

168

TST-MPL-05

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 264 GPamm

Figure B105 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-05

TST-MPL-06

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacment (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B106 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-06

169

TST-MPL-07

00

500

1000

1500

2000

2500

3000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 162 GPamm

Figure B107 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-07

TST-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=319 GPamm

Figure B108 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-08

170

TST-MPL-09

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =212 GPamm

Figure B109 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-09

TST-MPL-10

00200400600800

1000120014001600

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 132GPamm

Figure B110 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-10

171

TST-MPL-11

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =319 GPamm

Figure B111 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-11

TST-MPL-12

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 127 GPamm

Figure B112 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-12

172

TST-MPL-13

00500

1000150020002500300035004000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 159 GPamm

Figure B113 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-13

TST-MPL-14

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =170 GPamm

Figure B114 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-14

173

TST-MPL-15

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 260 GPamm

Figure B115 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-15

TST-MPL-16

00500

100015002000250030003500400045005000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B116 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-16

174

TST-MPL-17

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B117 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-17

TST-MPL-18

00

200

400

600

800

1000

1200

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=073 GPamm

Figure B118 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-18

175

TST-MPL-19

00

200

400

600

800

1000

1200

1400

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B119 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-19

TST-MPL-20

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=170 GPamm

Figure B120 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-20

176

TST-MPL-21

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=100 GPamm

Figure B121 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-21

TST-MPL-22

00200400600800

10001200140016001800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 088 GPamm

Figure B122 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-22

177

TST-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 101 GPamm

Figure B123 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-23

TST-MPL-24

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 124 GPamm

Figure B124 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-24

178

TST-MPL-25

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 126 GPamm

Figure B125 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-25

TST-MPL-26

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 178 GPamm

Figure B126 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-26

179

TST-MPL-27

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B127 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-27

TST-MPL-28

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 164 GPamm

Figure B128 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-28

180

TST-MPL-29

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B129 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-29

TST-MPL-30

00500

100015002000250030003500400045005000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =280 GPamm

Figure B130 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-30

181

TST-MPL-31

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B131 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-31

TST-MPL-32

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B132 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-32

182

TST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 130 GPa mm

Figure B133 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-33

TST-MPL-34

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B134 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-34

183

TST-MPL-35

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B135 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-35

TST-MPL-36

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B136 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-36

184

TST-MPL-37

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 217 GPamm

Figure B137 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-37

TST-MPL-38

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 52 GPamm

Figure B138 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-38

185

TST-MPL-39

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B139 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-39

TST-MPL-40

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 347 GPamm

Figure B140 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-40

186

TST-MPL-41

00

500

1000

1500

2000

2500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B141 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-41

TST-MPL-42

00

500

1000

1500

2000

2500

3000

3500

4000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B142 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-42

187

TST-MPL -43

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 435 GPamm

Figure B143 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-43

TST-MPL-44

00

200

400

600

800

1000

1200

1400

1600

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B144 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-44

188

TST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 315 GPamm

Figure B145 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-45

TST-MPL-46

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B146 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-46

189

TST-MPL-47

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=128 GPamm

Figure B147 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-47

TST-MPL-48

00200400600800

10001200140016001800

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 237GPamm

Figure B148 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-48

190

TST-MPL-49

00

500

1000

1500

2000

2500

3000

3500

4000

4500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B149 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-49

TST-MPL-50

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 394 GPamm

Figure B150 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-50

BIOGRAPHY

Mr Chatchai Intaraprasit was born on July 30 1973 in Khon Kaen province

Thailand He received his Bachelorrsquos Degree in Science (Geotechnology) from Khon

Kaen University in 1996 He worked with the construction company for ten years

after graduated the Bachelorrsquos Degree For his post-graduate he continued to study

with a Masterrsquos Degree in the Geological Engineering Program Institute of

Engineering Suranaree University of Technology He has published a technical

papers related to rock mechanics as in 2009 ldquoModified point load testing of volcanic

rocks from Chatree gold minerdquo in the proceeding of the second Thailand symposium

on rock mechanics Chonburi Thailand For his work he is working as a

geotechnical engineer at Akara mining company limited Phichit province Thailand

  • cover
  • abstractpdf
  • CHAPTER I
  • CHAPTER II
  • CHAPTER III
  • CHAPTER IV
  • CHAPTER V
  • CHAPTER VI
  • REFERENCES
  • APPENDIX A
  • APPENDIX B
  • BIOGRAPHY
Page 11: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·

VIII

TABLE OF CONTENTS (Continued)

Page

411 Displacement Function 22

42 Basic Characterization Tests 23

421 Uniaxial Compressive Strength Tests

and Elastic Modulus Measurements 23

422 Triaxial Compressive Strength Tests 31

423 Brazilian Tensile Strength Tests 38

424 Conventional Point Load Index (CPL) Tests 39

43 Modified Point Load (MPL) Tests 46

431 Modified Point Load Tests for Elastic

Modulus Measurement 54

432 Modified Point Load Tests predicting

Uniaxial Compressive Strength 61

433 Modified Point Load Tests for Tensile

Strength Predictions 63

434 Modified Point Load Tests for Triaxial

Compressive Strength Predictions 69

V FINITE DIFFERENCE ANALYSIS 79

51 Objectives 79

52 Model Characteristics 79

53 Results of finite difference analyses 79

IX

TABLE OF CONTENTS (Continued)

Page

VI DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS 83

61 Discussions 83

62 Conclusions 85

63 Recommendations 86

REFERENCES 87

APPENDICES

APPENDIX A CHARACTERIZATION TEST RESULTS 96

APPENDIX B MODIFIED POINT LOAD TEST RESULTS FOR

ELASTIC MODULUS PREDICTION 104

BIOGRAPHY 180

LIST OF TABLES

Table Page

31 The nominal sizes of specimens following the ASTM standard

practices for the characterization tests 20

41 Testing results of porphyritic andesite 30

42 Testing results of tuffaceous sandstone 30

43 Testing results of silicified tuffaceous sandstone 30

44 Uniaxial compressive strength and tangent elastic modulus

measurement results of three rock types 31

45 Triaxial compressive strength testing results of porphyritic andesite 35

46 Triaxial compressive strength testing results of

tuffaceous sandstone 35

47 Triaxial compressive strength testing results of silicified

tuffaceous sandstone 36

48 Results of triaxial compressive strength tests on three rock types 38

49 The results of Brazilian tensile strength tests of three rock types 41

410 Results of conventional point load strength index tests of

three rock types 44

411 Results of modified point load tests on porphyritic andesite 49

412 Results of modified point load tests on tuffaceous sandstone 51

413 Results of modified point load tests on silicified tuffaceous sandstone 52

X

LIST OF TABLE (Continued)

Table Page

414 Results of elastic modulus calculation from MPL tests on porphyritic andesite57

415 Results of elastic modulus calculation from MPL tests on

silicified tuffaceous sandstone 58

416 Results of elastic modulus calculation from MPL tests on

tuffaceous sandstone 60

417 Comparisons of elastic modulus results obtained from

uniaxial compressive strength tests and those from modified

point load tests 61

418 Comparison the test results between UCS CPL Brazilian

tensile strength and MPL tests 63

419 Results of tensile strengths of porphyritic andesite predicted from MPL tests 64

420 Results of tensile strengths of silicified tuffaceous sandstone

predicted from MPL tests 66

421 Results of tensile strengths of tuffaceous sandstone

predicted from MPL tests 68

422 Results of triaxial strengths of porphyritic andesite predicted from MPL tests 71

423 Results of triaxial strengths of silicified tuffaceous sandstone

predicted from MPL tests 72

424 Results of triaxial strengths of tuffaceous sandstone

predicted from MPL tests 74

XI

LIST OF TABLE (Continued)

Table Page

425 Comparisons of the internal friction angle and cohesion

between MPL predictions and triaxial compressive strength tests 78

51 Summary of the results from numerical simulations 82

A1 Results of conventional point load strength index test on porphyritic andesite 97

A2 Results of conventional point load strength index test on

silicified tuffaceous sandstone 98

A3 Results of conventional point load strength index test on

tuffaceous sandstone 99

A4 Results of uniaxial compressive strength tests and elastic

modulus measurement on porphyritic andesite 100

A5 Results of uniaxial compressive strength tests and elastic

modulus measurement on silicified tuffaceous sandstone 100

A6 Results of uniaxial compressive strength tests and elastic

modulus measurement on tuffaceous sandstone 100

A7 Results of Brazilian tensile strength tests on porphyritic andesite 101

A8 Results of Brazilian tensile strength tests on silicified

tuffaceous sandstone 101

A9 Results of Brazilian tensile strength tests on

tuffaceous sandstone 102

A10 Results of triaxial compressive strength tests on porphyritic andesite 102

XII

LIST OF TABLE (Continued)

Table Page

A11 Results of triaxial compressive strength tests on

silicified tuffaceous Sandstone 102

A12 Results of Brazilian tensile strength tests on

tuffaceous sandstone 103

LIST OF FIGURES

Figure Page

11 Research plan 4

21 Loading system of the conventional point load (CPL) 10

22 Standard loading platen shape for the conventional point

load testing 10

31 The location of rock samples collected area 19

32 Some prepared rock specimens of porphyritic andesite for MPL Tests 21

33 The concept of specimen preparation for MPL testing 21

41 Pre-test samples of porphyritic andesite for UCS test 25

42 Pre-test samples of tuffaceous sandstone for UCS test 25

43 Pre-test samples of silicified tuffaceous sandstone for UCS test 26

44 Preparation of testing apparatus of porphyritic andesite for UCS test 26

45 Post-test rock samples of porphyritic andesite from UCS test 27

46 Post-test rock samples of tuffaceous sandstone

from UCS test 27

47 Post-test rock samples of tuffaceous sandstone from UCS 28

48 Results of uniaxial compressive strength tests and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted

as a function of axial strains 28

XIV

LIST OF FIGURES (Continued)

Figure Page

49 Results of uniaxial compressive strength tests and elastic

modulus measurements of tuffaceous sandstone (Top)

and silicified tuffaceous sandstone (Bottom) The axial

stresses are plotted as a function of axial strains 29

410 Pre-test samples for triaxial compressive strength test the

top is porphyritic andesite and the bottom is tuffaceous sandstone 32

411 Pre-test sample of silicified tuffaceous sandstone for triaxial

compressive strength test 33

412 Triaxial testing apparatus 33

413 Post-test rock samples from triaxial compressive strength tests

The top is porphyritic andesite and the bottom is tuffaceous sandstone 34

414 Post-test rock samples of silicified tuffaceous sandstone from

triaxial compressive strength test 35

415 Mohr-Coulomb diagram for porphyritic andesite 37

416 Mohr-Coulomb diagram for tuffaceous sandstone 37

417 Mohr-Coulomb diagram for silicified tuffaceous sandstone 38

418 Pre-test samples for Brazilian tensile strength test (a) porphyritic andesite

(b) tuffaceous sandstone and

(c) silicified tuffaceous sandstone 40

419 Brazilian tensile strength test arrangement 41

XV

LIST OF FIGURES (Continued)

Figure Page

420 Post-test specimens (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 42

421 Pre-test samples of porphyritic andesite for conventional point load

strength index test 43

422 Conventional point load strength index test arrangement 43

423 Post-test specimens from conventional point load

strength index tests (a) porphyritic andesite (b) tuffaceous

sandstone and (c) silicified tuffaceous sandstone 45

424 Conventional and modified loading points 47

425 MPL testing arrangement 47

426 Post-test specimen the tension-induced crack commonly

found across the specimen and shear cone usually formed

underneath the loading platens 48

427 Example of P-δ curve for porphyritic andesite specimen The ratio

of ∆P∆δ is used to predict the elastic modulus of MPL

specimen (Empl) 56

428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests 62

429 Uniaxial compressive strength predicted for silicified

tuffaceous sandstone from MPL tests 62

XVI

LIST OF FIGURES (Continued)

Figure Page

430 Uniaxial compressive strength predicted for tuffaceous

sandstone from MPL tests 63

431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and

modified point load test 75

432 Comparisons of triaxial compressive strength criterion of

silicified tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 76

433 Comparisons of triaxial compressive strength criterion of

tuffaceous sandstone between the triaxial compressive

strength test and modified point load test 77

51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm 80

52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm 80

53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm 81

54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm 81

55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm 82

LIST OF SYMBOLS AND ABBREVIATIONS

A = Original cross-section Area

c = cohesive strength

CP = Conventional Point Load

D = Diameter of Rock Specimen

D = Diameter of Loading Point

De = Equivalent Diameter

E = Youngrsquos Modulus

Empl = Elastic Modulus by MPL Test

Et = Tangent Elastic Modulus

IS = Point Load Strength Index

L = Original Specimen Length

LD = Length-to-Diameter Ratio

MPL = Modified Point Load

Pf = Failure Load

Pmpl = Modified Point Load Strength

t = Specimen Thickness

α = Coefficient of Stress

αE = Displacement Function

β = Coefficient of the Shape

∆L = Axial Deformation

XVIII

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

∆P = Change in Applied Stress

∆δ = Change in Vertical of Point Load Platens

εaxial = Axial Strain

ν = Poissonrsquos Ratio

ρ = Rock Density

σ = Normal Stress

σ1 = Maximum Principal Stress (Vertical Stress)

σ3 = Minimum Principal Stress (Horizontal Stress)

σB = Brazilian Tensile Stress

σc = Uniaxial Compressive Strength (UCS)

σm = Mean Stress

τ = Shear Stress

τoct = Octahedral Shear Stress

φi = angle of Internal friction

CHAPTER I

INTRODUCTION

11 Background and rationale

In geological exploration mechanical rock properties are one of the most

important parameters that will be used in the analysis and design of engineering

structures in rock mass To obtain these properties the rock from the site is extracted

normally by mean of core drilling and then transported the cores to the laboratory

where the mechanical testing can be conducted Laboratory testing machine is

normally huge and can not be transported to the site On site testing of the rocks may

be carried out by some techniques but only on a very limited scale This method is

called for point load strength Index testing However this test provides unreliable

results and lacks theoretical supports Its results may imply to other important

properties (eg compressive and tensile strength) but only based on an empirical

formula which usually poses a high degree of uncertainty

For nearly a decade modified point load (MPL) testing has been used to

estimate the compressive and tensile strength and elastic modulus of intact rock

specimens in the laboratory (Tepnarong 2001) This method was invented and

patented by Suranaree University of Technology The test apparatus and procedure

are intended to be in expensive and easy compared to the relevant conventional

methods of determining the mechanical properties of intact rock eg those given by

the International Society for Rock Mechanics (ISRM) and the American Society for

2

Testing and Materials (ASTM) In the past much of the MPL testing practices has

been concentrated on circular and disk specimens While it has been claimed that

MPL method is applicable to all rock shapes the test results from irregular lumps of

rock have been rare and hence are not sufficient to confirm that the MPL testing

technique is truly valid or even adequate to determine the basic rock mechanical

properties in the field where rock drilling and cutting devices are not available

12 Research objectives

The objective of this research is to experimentally assess the performance of

the modified point load testing on rock samples with irregular shapes Three rock

types obtained from the north pit-wall of Khao Moh at Chatree gold mine are used as

rock samples A minimum of 150 rock samples of porphyritic andesite silicified-

tuffaceous sandstone and tuffaceous sandstone are collected from the site The

sample thickness-to-loading diameter ratio (td) is varied from 2 to 3 and the sample

diameter-to-loading diameter ratio (Dd) from 5 to 10 The sample deformation and

failure are used to calculate the elastic modulus and strengths of rocks Uniaxial and

triaxial compression tests Brazilian tension test and conventional point load test are

conducted on the three rock types to obtain data basis for comparing with those from

MPL testing Finite difference analysis is performed to obtain stress distribution

within the MPL samples under different td and Dd ratios The effect of the

irregularity is quantitatively assessed Similarity and discrepancy of the test results

from the MPL method and from the conventional method are examined

Modification of the MPL calculation scheme may be made to enhance its predictive

capability for the mechanical properties of irregular shaped specimens

3

13 Research concept

A modified point load (MPL) testing technique was proposed by Fuenkajorn

and Tepnarong (2001) and Fuenkajorn (2002) The objectives of this testing are to

determine the elastic modulus uniaxial compressive strength and tensile strength of

intact rocks The application of testing apparatus is modified from the loading

platens of the conventional point load (CPL) testing to the cylindrical shapes that

have the circular cross-section while they are half-spherical shapes in CPL

The modes of failure for the MPL specimens are governed by the ratio of

specimen diameter to loading platen diameter (Dd) and the ratio of specimen

thickness to loading platen diameter (td) This research involves using the MPL

results to estimate the triaxial compressive strength of specimens which various Dd

and td ratios and compare to the conventional compressive strength test

14 Research methodology

This research consists of six main tasks literature review sample collection

and preparation laboratory testing finite difference analysis comparison discussions

and conclusions The work plan is illustrated in the Figure 11

141 Literature review

Literature review is carried out to study the state-of-the-art of CPL and MPL

techniques including theories test procedure results analysis and applications The

sources of information are from journals technical reports and conference papers A

summary of literature review is given in this thesis Discussions have been also been

made on the advantages and disadvantages of the testing the validity of the test results

4

Preparation

Literature Review

Sample Collection and Preparation

Theoretical Study

Laboratory Ex

Figure 11 Research methodology

periments

MPL Tests Characterization Tests

Comparisons

Discussions

Laboratory Testing

Various Dd UCS Tests

Various td Brazilian Tension Tests

Triaxial Compressive Strength Tests

CPL Tests

Conclusions

5

when correlating with the uniaxial compressive strength of rocks and on the failure

mechanism the specimens

142 Sample collection and preparation

Rock samples are collected from the north pit-wall of Khao

Moh at Chatree gold mine Three rock types are tested with a minimum of 50

samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable Sample preparation is carried out in the laboratory at Suranaree

University of Technology

143 Theoretical study of the rock failure mechanism

The theoretical work primarily involves numerical analyses on

the MPL specimens under various shapes Failure mechanism of the modified point

load test specimens is analyzed in terms of stress distributions along loaded axis The

finite difference code FLAC is used in the simulation The mathematical solutions

are derived to correlate the MPL strengths of irregular-shaped samples with the

uniaxial and traiaxial compressive strengths tensile strength and elastic modulus of

rock specimens

144 Laboratory testing

Three prepared rock type samples are tested in laboratory

which are divided into two main groups as follows

1441 Characterization tests

The characterization tests include uniaxial compressive

strength tests (ASTM D7012-07) Brazilian tensile strength tests (ASTM D3967

1981) triaxial compressive strength tests (ASTM D7012-07) and conventional point

6

load index tests (ASTM D5731 1995) The characterization testing results are used

in verifications of the proposed MPL concept

1442 Modified point load tests

Three rock types of rock from the north pit-wall of

Khao Moh at Chatree gold mine are used as rock samples A minimum of 150 rock

samples of porphyritic andesite silicified-tuffaceous sandstone and tuffaceous

sandstone are used in the MPL testing The sample thickness-to-loading diameter

ratio (td) is varied from 2 to 3 and the sample diameter-to-loading diameter ratio

(Dd) from 5 to 10 The sample deformation and failure are used to calculate the

elastic modulus and strengths of rocks The MPL testing results are compared with

the standard tests and correlated the relations in terms of mathematic formulas

145 Analysis

Finite difference analysis is performed to obtain stress

distribution within the MPL samples under various shapes with different td and Dd

ratios The effect of the irregularity is quantitatively assessed Similarity and

discrepancy of the test results from the MPL method and from the conventional

method are examined Modification of the MPL calculation scheme may be made to

enhance its predictive capability for the mechanical properties of irregular shaped

specimens

146 Thesis writing and presentation

All aspects of the theoretical and experimental studies

mentioned are documented and incorporated into the thesis The thesis discusses the

validity and potential applications of the results

7

15 Scope and limitations

The scope and limitations of the research include as follows

1 Three rock types of rock from the pit wall of Chatree gold mine are

selected as a prime candidate for use in the experiment

2 The analytical and experimental work assumes linearly elastic

homogeneous and isotropic conditions

3 The effects of loading rate and temperature are not considered All tests

are conducted at room temperature

4 MPL tests are conducted on a minimum of 50 samples

5 The investigation of failure mode is on macroscopic scale Macroscopic

phenomena during failure are not considered

6 The finite difference analysis is made in axis symmetric and assumed

elastic homogeneous and isotropic conditions

7 Comparison of the results from MPL tests and conventional method is

made

16 Thesis contents

The first chapter includes six sections It introduces the thesis by briefly

describing the background and rationale and identifying the research objectives that

are describes in the first and second section The third section describes the proposed

concept of the new testing technique The fourth section describes the research

methodology The fifth section identifies the scope and limitation of the research and

the description of the overview of contents in this thesis are in the sixth section

CHAPTER II

LITERATURE REVIEW

21 Introduction

This chapter summarizes the results of literature review carried out to improve an

understanding of the applications of modified point load testing to predict the strengths and

elastic modulus of the intact rock The topics reviewed here include conventional point

load test modified point load test characterization tests and size effects

22 Conventional point load tests

Conventional point load (CPL) testing is intended as an index test for the strength

classification of rock material It has long been practiced to obtain an indicator of the

uniaxial compressive strength (UCS) of intact rocks The testing equipment (Figure 21)

is essentially a loading system comprising a loading flame hydraulic oil pump ram and

loading platens The geometry of the loading platen is standardized (Figure 22) having

60 degrees angle of the cone with 5 mm radius of curvature at the cone tip It is made of

hardened steel The CPL test method has been widely employed because the test

procedure and sample preparation are simple quick and inexpensive as compared with

conventional tests as the unconfined compressive strength test Starting with a simple

method to obtain a rock properties index the International Society for Rock Mechanics

(ISRM) commissions on testing methods have issued a recommended procedure for the

point load testing (ISRM 1985) the test has also been established as a standard test

method by the American Society for Testing and Materials in 1995 (ASTM 1995)

9

Although the point load test has been studied extensively (eg Broch and Franklin

1972 Bieniawski 1974 and 1975 Wijk 1980 Brook 1985) the theoretical solutions

for the test result remain rare Several attempts have been made to truly understand

the failure mechanism and the impact of the specimen size on the point load strength

results It is commonly agreed that tensile failure is induced along the axis between

loading points (Evans 1961 Hiramutsu 1976 Wijk 1978 1980) The most

commonly accepted formula relating the CPL index and the UCS is proposed by

Broch and Franklin (1972) The UCS (or σc) can be estimated as about 24 times of

the point load strength index (Is) of rock specimens with the diameter-to-length ratio

of 05 The IS value should also be corrected to a value equivalent to the specimen

diameter of 50 mm The factor of 24 can sometimes load to an error in the prediction

of the UCS Most previous studied have been done experimentally but rare

theoretical attempt has been made to study the validity of Broch and Franklin

formula

The CPL testing has been performed using a variety of sizes and shapes of

rock specimen (Wijk 1980 Foster 1983 Panek and Fannon 1992 Chau and Wong

1996 Butenuth 1997) This is to determine the most suitable specimen sizes These

investigations have proposed empirical relations between the IS and σc to be

universally applicable to various rock types However some uncertainly of these

relations remains

Panek and Fannon (1992) show the results of the CPL tests UCS tests and

Brazilian tension tests that are performed on three hard rocks (iron-formation

metadiabase and ophitic basalt) The CPL strength is analyzed in terms of the

10

Figure 21 Loading system of the conventional point load (CPL) (Tepnarong 2001)

Figure 22 Standard loading platen shape for the conventional point load testing

(ISRM suggested method and ASTM D5731-95)

11

size and shape effects More than 500 an irregular lumps were tested in the field

The shape effect exponents for compression have been found to be varied with rock

types The shape effect exponents in CPL tests are constant for the three rocks

Panek and Fannon (1992) recommended that the monitoring of the compressive and

tensile strengths should have various sizes and shapes of specimen to obtain the

certain properties

Chau and Wong (1996) study analytically the conversion factor relating

between σc and IS A wide range of the ratios of the uniaxial compressive strength to

the point load index has been observed among various rock types It has been found

that the uniaxial compressive strength of rocks can vary from 62 (Nevada test site

tuff) to 105 (Flaming Gorge shale) times the IS depending on rock type The

conversion factor relating σc to be Is depends on compressive and tensile strengths

the Poissonrsquos ratio and the length and diameter of specimen The conversion factor

of 24 (Broch and Franklin 1972) falls within this range but it is no by meaning

universal

23 Modified point load tests

Tepnarong (2001) proposed a modified point load testing method to correlate

the results with the uniaxial compressive strength (UCS) and tensile strength of intact

rocks The primary objective of the research is to develop the inexpensive and

reliable rock testing method for use in field and laboratory The test apparatus is

similar to the conventional point load (CPL) except that the loading points are cut

flat to have a circular cross-section area instead of using a half-spherical shape To

derive a new solution finite element analyses and laboratory experiments were

12

carried out The simulation results suggested that the applied stress required failing

the MPL specimen increased logarithmically as the specimen thickness or diameter

increased The MPL tests CPL tests UCS tests and Brazilian tension tests were

performed on Saraburi marble under a variety of sizes and shapes The UCS test

results indicated that the strengths decreased with increased the length-to-diameter

ratio The test results can be postulated that the MPL strength can be correlated with

the compressive strength when the MPL specimens are relatively thin and should be

an indicator of the tensile strength when the specimens are significantly larger than

the diameter of the loading points Predictive capability of the MPL and CPL

techniques were assessed Extrapolation of the test results suggested that the MPL

results predicted the UCS of the rock specimens better than the CPL testing The

tensile strength predicted by the MPL also agreed reasonably well with the Brazilian

tensile strength of the rock

Tepnarong (2006) proposed the modified point load testing technique to

determine the elastic modulus and triaxial compressive strength of intact rocks The

loading platens are made of harden steel and have diameter (d) varying from 5 10

15 20 25 to 30 mm The rock specimens tested were marble basalt sandstone

granite and rock salt Basic characterization tests were first performed to obtain

elastic and strength properties of the rock specimen under standard testing methods

(ASTM) The MPL specimens were prepared to have nominal diameters (D) ranging

from 38 mm to 100 mm with thickness varying from 18 mm to 63 mm Testing on

these circular disk specimens was a precursory step to the application on irregular-

shaped specimens The load was applied along the specimen axis while monitoring

the increased of the load and vertical displacement until failure Finite element

13

analyses were performed to determine the stress and deformation of the MPL

specimens under various Dd and td ratios The numerical results were also used to

develop the relationship between the load increases (∆P) and the rock deformation

(∆δ) between the loading platens The MPL testing predicts the intact rock elastic

modulus (Empl) by using an equation Empl = (tαE) (∆P∆δ) where t represents the

specimen thickness and αE is the displacement function derived from numerical

simulation The elastic modulus predicted by MPL testing agrees reasonably well

with those obtained from the standard uniaxial compressive tests The predicted Empl

values show significantly high standard deviation caused by high intrinsic variability

of the rock fabric This effect is enhanced by the small size of the loading area of the

MPL specimens as compared to the specimen size used in standard test methods

The results of the numerical simulation were used to determine the minimum

principal stress (σ3) at failure corresponding to the maximum applied principal stress

(σ1) A simple relation can therefore be developed between σ1 σ3 ratio Poissonrsquos ratio

(ν) and diameter ratio (Dd) to estimate the triaxial compressive strengths of the rock

specimens σ1 σ3 = 2[(ν(1-ν))(1-(dD)2)]-1 The MPL test results from specimens with

various Dd ratios can provide σ1 and σ3 at failure by assuming that ν = 025 and that

failure mode follows Coulomb criterion The MPL predicted triaxial strengths agree

very well with the triaxial strength obtained from the standard triaxial testing (ASTM)

The discrepancy is about 2-3 which may be due to the assumed Poissonrsquos ratio of 25

and due to the assumption used in the determination of σ3 at failure In summary even

through slight discrepancies remain in the application of MPL results to determine the

elastic modulus and triaxial compressive strength of intact rocks this approach of

14

predicting the rock properties shows a good potential and seems promising considering

the low cost of testing technique and ease of sample preparation

24 Characterization tests

241 Uniaxial compressive strength tests

The uniaxial compressive strength test is the most common laboratory

test undertaken for rock mechanics studies In 1972 the International Society of Rock

Mechanics (ISRM) published a suggested method for performing UCS tests (Brown

1981) Bieniawski and Bernede (1979) proposed the procedures in American Society

for Testing and Materials (ASTM) designation D2938

The tests are also the most used tests for estimating the elastic

modulus of rock (ASTM D7012) The axial strain can be measured with strain gages

mounted on the specimen or with the Linear Variable Differential Tranformers

(LVDTs) attached parallel to the length of the specimen The lateral strain can be

measured using strain gages around the circumference or using the LVDTs across

the specimen diameter

The UCS (σc) is expressed as the ratio of the peak load (P) to the

initial cross-section area (A)

σc= PA (21)

And the Youngrsquos modulus (E) can be calculated by

E= ΔσΔε (22)

Where Δσ is the change in stress and Δε is the change in strain

15

The ratio of lateral strain and axial strain magnitudes (εlatεax) determines the value of

Poissonrsquo ratio (ν)

ν = - (εlatεax) (23)

242 Triaxial compressive strength tests

Hoek and Brown (1980b) and Elliott and Brown (1986) used the

triaxaial compressive strength tests to gain an understanding of rock behavior under a

three-dimensions state of stress and to verify and even validate mathematical

expressions that have been derived to represent rock behavior in analytical and

numerical models

The common procedures are described in ASTM designation D7012 to

determine the triaxial strengths and D7012 to determine the elastic moduli and in

ISRM suggested methods (Brown 1981)

The axial strain can be measured with strain gages mounted on the

specimen or with the LVTDs attached parallel to the length of the specimen The

lateral strain can be measured using strain gages around the circumstance within the

jacket rubber

At the peak load the stress conditions are σ1 = PA σ3=p where P is

the maximum load parallel to the cylinder axis A is the initial cross-section area and

p is the pressure in the confining medium

The Youngrsquos modulus (E) and Poissonrsquos ratio (ν) can be calculated by

E = Δ(σ1-σ3)Δ εax (24)

and

16

ν = (slope of axial curve) (slope of lateral curve) (25)

where Δ(σ1-σ3) is the change in differential stress and Δ εax is the change in axial strain

243 Brazilian tensile strength tests

Caneiro (1974) and Akazawa (1953) proposed the Brazilian tensile

strength test of intact rocks Specifications of Brazilian tensile strength test have been

established by ASTM D3967 and suggested approach is provided by ISRM (Brown 1981)

Jaeger and Cook (1979) proposed the equation for calculate the

Brazilian tensile strength as

σB = (2P) ( πDt) (26)

where P is the failure load D is the disk diameter and t is the disk thickness

25 Size effects on compressive strength

The uniaxial compressive strength normally tested on cylindrical-shaped

specimens The length-to-diameter (LD) ratio of the specimen influences the

measured strength Typically the strength decreases with increasing the LD ratio

but it tends to become constant or ratios in the order of 21 to 31 (Hudson et al 1971

Obert and Duvall 1967) For higher ratios the specimen strength may be influenced

by bulking

The size of specimen may influence the strength of rock Weibull (1951)

proposed that a large specimen contains more flaws than a small one The large

specimen therefore also has flaws with critical orientation relative to the applied

shear stresses than the small specimen A large specimen with a given shape is

17

therefore likely to fail and exhibit lower strength than a small specimen with the same

shape (Bieniawski 1968 Jaeker and Cook 1979 Kaczynski 1986)

Tepnarong (2001) investigated the results of uniaxial compressive strength

test on Saraburi marble and found that the strengths decrease with increase the

length-to-diameter (LD) ratio And this relationship can be described by the power

law The size effects on uniaxial compressive strength are obscured by the intrinsic

variability of the marble The Brazilian tensile strengths also decreased as the

specimen diameter increased

CHAPTER III

SAMPLE COLLECTION AND PREAPATION

This chapter describes the sample collection and sample preparation

procedure to be used in the characterization and modified point load testing The

rock types to be used including porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone Locations of sample collection rock description are

described

31 Sample collection

Three rock types include porphyritic andesite silicified-tuffaceous sandstone

and tuffaceous sandstone collected from Chatree Gold Mine Akara Mining Company

Limited Phichit Thailand are used in this research The rock samples are collected

from the north pit-wall of Khao Moh Three rock types are tested with a minimum of

50 samples for each rock type The selection criteria are that the rock should be

homogeneous as much as possible and that sample collection should be convenient

and repeatable The collected location is shown in Figure 31

32 Rock descriptions

Three rock types are used in this research there are porphyritic andesite

silicified tuffaceous sandstone and tuffaceous sandstone Tuffaceous sandstone is

medium brownish grey the clasts are andesite rhyolite andesitic tuff and quartz

fragments and sub-rounded to sub-angular matrix sand andesitic tuff rock fragment

19

19

Figure 31 The location of rock samples collected area

lt 10 quartz 3 pyrite and litho-facies massive ungraded clast supported

moderately sorted Silicified tuffaceous sandstone is medium brown clasts are fine to

medium sand and silt sub-rounded shape quartz rich with siliceous matrix massive

non-graded well sorted moderately Silicified Porphyritic andesite is grayish green

medium-coarse euhedral evenly distributed phenocrysts are abundant most

conspicuous are hornblende phenocrysts fine-grained groundmass Those samples

are collected from Chatree Gold Mine Akara mining Co Ltd Phichit Thailand

20

33 Sample preparation

Sample preparation has been carried out to obtain different sizes and shapes

for testing It is conducted in the laboratory facility at Suranaree University of

Technology For characterization testing the process includes coring and grinding

Preparation of rock samples for characterization test follows the ASTM standard

(ASTM D4543-85) The nominal sizes of specimen that following the ASTM

standard practices for the characterization tests are shown in table 31 And grinding

surface at the top and bottom of specimens at the position of loading platens for

unsure that the loading platens are attach to the specimen surfaces and perpendicular

each others as shown in Figure 32 The shapes of specimens are irregularity-shaped

The ratio of specimen thickness to platen diameter (td) is around 20-30 and the

specimen diameter to platen diameter (Dd) varies from 5 to 10

Table 31 The nominal sizes of specimens following the ASTM standard practices

for the characterization tests

Testing Methods

LD Ratio

Nominal Diameter

(mm)

Nominal Length (mm)

Number of Specimens

1UniaxialCompressive Strength Test and Elastic Modulus Measurement (ASTM D7012)

25 54 135 10

2 Triaxial Compressive Strength Test (ASTM D7012) 20 54 108 10

3 Brazilian Tensile Strength Test (ASTM D3967) 05 54 27 10

4 Point Load Strength Index Test (ASTM D 5731) 10 54 54 10

21

Figure 32 Some prepared rock specimens of porphyritic andesite for MPL Tests

td asymp20 to 30

Figure 33 The concept of specimen preparation for MPL testing

CHAPTER IV

LABORATORY TESTS

Laboratory testing is divided into two main tasks including the

characterization tests and the modified point load tests Three rock types porphyritic

andesite silicified-tuffaceous sandstone and tuffaceous sandstone are used in this

research

41 Literature reviews

411 Displacement function

Tepnarong (2006) proposed a method to compute the vertical

displacement of the loading point as affected by the specimen diameter and thickness

(Dd and td ratios) by used the series of finite element analyses To accomplish this

a displacement function (αE) is introduced as (∆P∆δ)middot(tE) where ∆P is the change in

applied stress ∆δ is the change in vertical displacement of point load platens t is the

specimen thickness and E is elastic modulus of rock specimen The displacement

function is plotted as a function of Dd And found that the αE is dimensionless and

independent of rock elastic modulus αE trend to be independent of Dd when Dd is

beyond 15 The αE is sensitive to ν particularly when υ is between 025 and 05 This

agrees with the assumption that as the Poissonrsquos ratio increases the αE value will

increase because under higher ν the ∆δ will be reduced This is due to the large

confinement resulting from the higher Poissonrsquos ratio Nevertheless most rocks have

Poissonrsquos ratio within a range between 020 and 030 particularly for moderate to

23

hard rocks As a result the Poissonrsquos ratio of 025 will provide a reasonable

prediction of the value of αE values

Figure 51 plots αE or (∆P∆δ)middot(tE) as a function of td for the ratios of Dd ge

10 The displacement function increase as the td increases which can be expressed

by a power equation

αE = (∆P∆δ)middot(tE) = 150 (td)064 (51)

by using the least square fitting The curve fit gives good correlation (R2=0998)

These curves can be used to estimate the elastic modulus of rock from MPL results

By measuring the MPL specimen thickness t and the increment of applied stress (∆P)

and displacement (∆δ)

42 Basic characterization tests

The objectives of the basic characterization tests are to determine the

mechanical properties of each rock type to compare their results with those from the

modified point load tests (MPL) The basic characterization tests include uniaxial

compressive strength (UCS) tests with elastic modulus measurements triaxial

compressive strength tests Brazilian tensile strength tests and conventional point load

strength index tests

421 Uniaxial compressive strength tests and elastic modulus

measurements

The uniaxial compressive strength tests are conducted on the three

rock types Sample preparation and test procedure are followed the ASTM standards

(ASTM D7012) and the ISRM suggested methods (Brown 1981) The core size is

24

54 mm in diameter (NX size) and the ratio of the length to diameter is 25 A total of

10 specimens are tested for each rock type

A constant loading rate of 05 to 10 MPas is applied to the specimens

until failure occurs Tangent elastic modulus is measured at stress level equal to 50

of the uniaxial compressive strength Post-failure characteristics are observed

The uniaxial compressive strength (σc) is calculated by dividing the

maximum load by the original cross-section area of loading platen

σc= pf A (41)

where pf is the maximum failure load and A is the original cross-section area of

loading platen The tangent elastic modulus (Et) is calculated by the following

equation

Et = (Δσaxial) (Δε axial) (42)

And the axial strain can be calculated from

ε axial = ΔLL (43)

where the ΔL is the axial deformation and L is the original length of specimen

The average uniaxial compressive strength and tangent elastic

modulus of each rock types are shown in Tables 41 through 44

25

Figure 41 Pre-test samples of porphyritic andesite for UCS test

Figure 42 Pre-test samples of tuffaceous sandstone for UCS test

26

Figure 43 Pre-test samples of silicified tuffaceous sandstone for UCS test

Figure 44 Preparation of testing apparatus for UCS test

27

Figure 45 Post-test rock samples of porphyritic andesite from UCS test

Figure 46 Post-test rock samples of tuffaceous sandstone from UCS test

28

Figure 47 Post-test rock samples of silicified-tuffaceous sandstone from UCS

0

50

100

150

0 0001 0002 0003 0004 0005Axial Strain

Axi

al S

tres

s (M

Pa)

Andesite04

03

01

05

02

Andesite

Figure 48 Results of uniaxial compressive strength test and elastic modulus

measurements of porphyritic andesite The axial stresses are plotted as

a function of axial strain

29

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Strain

Axi

al S

tres

s (M

Pa)

Pebbly Tuffacious Sandstone

04

03

05

01

02

Tuffaceous Sandstone

0

50

100

150

0 0001 0002 0003 0004 0005

Axial Stain

Axi

al S

tres

s (M

Pa)

Silicified Tuffacious Sandstone

0103

05

0402

Silicified Tuffaceous Sandstone

Figure 49 Results of uniaxial compressive strength test and elastic modulus

measurements of tuffaceous sandstone (top) and silicified tuffaceous

sandstone (bottom) The axial stresses are plotted as a function of axial

strain

30

Table 41 Testing results of porphyritic andesite

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 5366 13486 282 1327 451 And-06-03-UCS-02 5366 13494 283 1106 397 And-02-01-UCS-03 5366 13485 280 1061 470 And-08-03-UCS-04 5366 13417 284 1282 392 And-04-04-UCS-05 5366 13564 285 973 438

Average 1150 plusmn 150 430 34 plusmn

Table 42 Testing results of tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 5366 13810 266 1017 538 TST-01-02-UCS-02 5366 13236 268 1238 545 TST-02-04-UCS-03 5366 13558 264 973 441 TST-06-09-UCS-04 5366 13515 267 1459 475 TST-02-02-UCS-05 5366 13745 263 884 566

Average 1114 plusmn 233 513 53 plusmn

Table 43 Testing results of silicified tuffaceous sandstone

Sample No Diameter (mm)

Length (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 5366 13309 271 1194 656 SST-07-01-UCS-02 5366 13547 267 930 632 SST-07-03-UCS-03 5366 13095 268 1194 503 SST-02-06-UCS-04 5366 13475 269 1614 661 SST-06-02-UCS-05 5366 13577 270 1106 713

Average 1207 plusmn 252 633 80 plusmn

31

Table 44 Uniaxial compressive strength and tangent elastic modulus measurement

results of three rock types

Rock Type

Number of Test

Samples

Uniaxial Compressive Strength σc (MPa)

Tangential Elastic Modulus

Et (GPa)

Porphyritic andesite 50 1150plusmn150 430plusmn34 Silicified-tuffaceous sandstone 50 1207plusmn252 633plusmn80

Tuffaceous sandstone 50 1114plusmn233 513plusmn53

422 Triaxial compressive strength tests

The objective of the triaxial compressive strength test is to determine

the compressive strength of rock specimens under various confining pressures The

sample preparation and test procedure are followed the ASTM standard (ASTM

D7012-07) and the ISRM suggested method (Brown 1981) A total of 16 rock

specimens are tested under various confining pressures 6 specimens of porphyritic

andesite 5 specimens of silicified-tuffaceous sandstone and 5 specimens of

tuffaceous sandstone The applied load onto the specimens is at constant rate until

failure occurred within 5 to 10 minutes of loading under each confining pressure

The constant confining pressures used in this experiment are ranged from 0345 067

138 276 and 414 MPa (50 100 200 400 and 600 psi) in andesite 0345 069

276 414 and 552 MPa (50 100 400 600 and 800 psi) in silicified-tuffaceous

sandstone and 0345 069 138 207 and 276 MPa (50 100 200 300 and 400 psi)

in pebbly tuffaceous sandstone Post-failure characteristics are observed

32

Figure 410 Pre-test samples for triaxial compressive strength test the top is

porphyritic andesite and the bottom is tuffaceous sandstone

33

Figure 411 Pre-test samples of silicified tuffaceous sandstone for triaxial

compressive strength test

Hook cell

Figure 412 Triaxial testing apparatus

34

Figure 413 Post-test rock samples from triaxial compressive strength tests The top

is porphyritic andesite and the bottom is tuffaceous sandstone

35

Figure 414 Post-test rock samples of silicified tuffaceous sandstone from triaxial

compressive strength test

Table 45 Triaxial compressive strength testing results of porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

And-04-02-TR-01 10803 5366 285 04 1459 And-06-04-TR-03 10806 5366 284 07 1526 And-06-02-TR-02 10806 5366 283 14 1636 And-08-01-TR-04 10665 5366 284 28 2034 And-08-02-TR-05 10948 5366 283 41 2520

Table 46 Triaxial compressive strength testing results of tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

TST-01-01-TR-04 10989 5366 266 04 1061 TST 02-01-TR-01 10852 5366 262 07 1238 TST-06-01-TR-02 10889 5366 264 138 1415 TST-06-03-TR-03 10755 5366 264 201 1813 TST-06-08-TR-05 11025 5366 267 28 2056

36

Table 47 Triaxial compressive strength testing results of silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa)

SST-05-01-TR-01 10875 5366 266 04 1305 SST-07-02-TR-02 10790 5366 266 14 1371 SST-01-04-TR-03 11022 5366 267 28 1592 SST-01-03-TR-04 10713 5366 267 41 1901 SST-01-01-TR-05 10530 5366 265 55 2255

The results of triaxial tests are shown in Table 42 Figures 413 and 414

show the shear failure by triaxial loading at various confining pressures (σ3) for the

three rock types The relationship between σ1 and σ3 can be represented by the

Coulomb criterion (Hoek 1990)

τ = c + σ tan φi (44)

where τ is the shear stress c is the cohesion σ is the normal stress and φi is the

internal friction angle The parameters c and φi are determined by Mohr-Coulomb

diagram as shown in Figures 415 through 417

37

φi =54˚ Andesite

Figure 415 Mohr-Coulomb diagram for andesite

φi = 55˚

Tuffaceous Sandstone

Figure 416 Mohr-Coulomb diagram for pebbly tuffaceous sandstone

38

Silicified tuffaceous sandstone

φi = 49˚

Figure 417 Mohr-Coulomb diagram for silicified tuffaceous sandstone

Table 48 Results of triaxial compressive strength tests on three rock types

Rock Type

Number of

Samples

Average Density (gcc)

Cohesion c (MPa)

Internal Friction Angle φi (degrees)

Porphyritic Andesite 5 283 33 54

Tuffaceous Sandstone 5 265 28 55 Silicified Tuffaceous Sandstone 5 267 36 49

423 Brazilian Tensile Strength Tests

The objectives of the Brazilian tensile strength test are to determine

the tensile strength of rock The Brazilian tensile strength tests are performed on all

rock types Sample preparation and test procedure are followed the ASTM standard

(ASTM D3967-81) and the

39

ISRM suggested method (Brown 1981) Ten specimens for each rock

type have been tested The specimens have the diameter of 55 mm with 25 mm thick

The Brazilian tensile strength of rock can be calculated by the following

equation (Jaeger and Cook 1979)

σB = (2pf) (πDt) (45)

where σB is the Brazilian tensile strength pf is the failure load D is the diameter

of disk specimen and t is the thickness of disk specimen All of specimens failed

along the loading diameter (Figure 420) The results of Brazilian tensile strengths

are shown in Table 49 The tensile strength trends to decrease as the specimen size

(diameter) increase and can be expressed by a power equation (Evans 1961)

σB = A (D)-B (46)

where A and B are constants depending upon the nature of rock

424 Conventional point load index (CPL) tests

The objectives of CPL tests are to determine the point load strength index for

use in the estimation of the compressive strength of the rocks The sample

preparation test procedure and calculation are followed the standard practices

(ASTM D 5731-02) and the ISRM suggested method (Brown 1981) Twenty

specimens of each rock types are tested The length-to-diameter (LD) ratio of the

specimen is constant at 10 The specimen diameter and thickness are maintained

constant at 54 mm (Figure 421) The core specimen is loaded along its axis as

shown in Figure 422 Each specimen is loaded to failure at a constant rate such that

40

(a)

(b)

(c)

Figure 418 Pre-test samples for Brazilian tensile strength test (a) porphyritic

andesite (b) tuffaceous sandstone and (c) silicified tuffaceous

sandstone

41

Figure 419 Brazilian tensile strength test arrangement

Table 49 Results of Brazilian tensile strength tests of three rock types

Rock Type

Average Diameter

(mm)

Average Length (mm)

Average Density (gcc)

Number of

Samples

Brazilian Tensile

Strength σB (MPa)

Porphyritic andesite 5366 2672 283 10 170plusmn16

Tuffaceous sandstone 5366 2737 265 10 131plusmn33

Silicified tuffaceous sandstone

5366 2670 267 10 191plusmn32

42

(a)

(b)

(c)

Figure 420 Post-test specimens (a) porphyritic andesite (b) tuffaceous sandstone

and (c) silicified tuffaceous sandstone

43

Figure 421 Pre-test samples of porphyritic andesite for conventional point load

strength index test

Figure 422 Conventional point load strength index test arrangement

44

failures occur within 5-10 minutes Post-failure characteristics are observed

The point load strength index for axial loading (Is) is calculated by the

equation

Is = pf De2 (47)

where pf is the load at failure De is the equivalent core diameter (for axial loading

De2 = 4Aπ and A=WD) A is the minimum cross-sectional area of a plane through

the platen contact points W is the specimen width (thickness of core) and D is the

specimen diameter The post-test specimens are shown in Figure 423

The testing results of all three rock types are shown in Table 410 The

point load strength index of andesite pebbly tuffaceous sandstone and silicified

tuffaceous sandstone are average as 81 plusmn 12 102 plusmn 20 and 108 plusmn 22 MPa

Table 410 Results of conventional point load strength index tests of three rock types

Rock Types Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index

Is (MPa) Porphyritic Andesite 5493 5366 283 81plusmn12 Tuffaceous Sandstone 5545 5366 265 102plusmn20 Silicified Tuffaceous Sandstone 5491 5366 268 108plusmn22

45

Figure 423 Post-Test rock specimens from conventional point load strength index

tests (a) porphyritic andesite (b) tuffaceous sandstone and (c)

silicified tuffaceous sandstone

46

43 Modified point load (MPL) tests

The objectives of the modified point load (MPL) tests are to measure the

strength of rock between the loading points and to produce failure stress results for

various specimen sizes and shapes The results are complied and evaluated to

determine the mathematical relationship between the strengths and specimen

dimensions which are used to predict the elastic modulus and uniaxial and triaxial

compressive strengths and Brazilian tensile strength of the rocks

The testing apparatus for the proposed MPL testing are similar to those of the

conventional point load (CPL) test except that the loading points are cylindrical

shape and cut flat with the circular cross-sectional area instead of using half-spherical

shape (Tepnarong 2001) The loading platens used in this research are 7 10 and 15

mm in diameter and the thickness-to-loading point diameter ratio (td) of about 25

The specimen diameter-to-loading point diameter is varying from 5 to 100 The load

is applied at the rate of 200 Ns Fifty specimens are prepared and tested for each

rock type The vertical deformations (δ) are monitored One cycle of unloading and

reloading is made at about 40 failure load Then the load is increased to failure

The MPL strength (PMPL) is calculated by

PMPL = pf ((π4)(d2)) (48)

where pf is the applied load at failure and d is the diameter of loading point Figure

26 shows the example of post-test specimen shear cone are usually formed

underneath the loading points and two or three tension-induced cracks are commonly

found across the specimens

47

The MPL testing method is divided into 4 schemes based on its objective

elastic modulus uniaxial and triaxial compressive strengths and Brazilian tensile

strength determination

Figure 424 Conventional and modified loading points(Tepnarong 2006)

Figure 425 MPL testing arrangement

48

Tension-induced crack Shear cone

Shear cone

Tension-induced crack

Figure 426 Post-test specimen the tension-induced crack commonly found across

the specimen and shear cone usually formed underneath the loading

platens

49

Table 411 Results of modified point load tests on porphyritic andesite

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-01 246 543 280 125 159 And-MPL-02 351 632 370 180 471 And-MPL-03 236 634 150 170 191 And-MPL-04 266 960 250 234 319 And-MPL-05 284 903 370 369 471 And-MPL-06 245 793 280 182 357 And-MPL-07 263 874 260 234 331 And-MPL-08 261 980 210 171 268 And-MPL-09 280 777 270 056 344 And-MPL-10 244 569 280 124 159 And-MPL-11 251 613 650 138 368 And-MPL-12 226 631 600 189 340 And-MPL-13 233 1126 180 151 468 And-MPL-14 279 1203 220 165 572 And-MPL-15 239 503 400 011 227 And-MPL-16 281 474 300 012 170 And-MPL-17 305 861 390 021 497 And-MPL-18 233 653 500 008 283 And-MPL-19 294 1386 380 200 484 And-MPL-20 265 860 410 017 522 And-MPL-21 238 425 550 087 311 And-MPL-22 230 417 450 087 255 And-MPL-23 223 557 500 231 283 And-MPL-24 250 760 550 112 311 And-MPL-25 259 1243 180 585 468 And-MPL-26 303 560 310 143 395 And-MPL-27 273 1640 390 156 497 And-MPL-28 282 906 220 200 280 And-MPL-29 311 934 290 156 369 And-MPL-30 246 1314 250 650 650 And-MPL-31 262 982 200 175 255 And-MPL-32 260 1147 180 156 468 And-MPL-33 240 700 450 101 255 And-MPL-34 304 800 240 135 306 And-MPL-35 250 455 220 127 280 And-MPL-36 243 1697 120 292 312 And-MPL-37 333 1520 310 156 395 And-MPL-38 238 661 170 260 442

50

Table 411 Results of modified point load tests on porphyritic andesite (Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

And-MPL-39 318 347 130 186 338 And-MPL-40 245 551 150 260 390 And-MPL-41 207 561 150 325 390 And-MPL-42 223 425 500 231 283 And-MPL-43 207 561 150 346 390 And-MPL-44 324 340 310 234 395 And-MPL-45 275 426 240 169 306 And-MPL-46 302 397 130 175 166 And-MPL-47 255 314 100 170 127 And-MPL-48 257 220 250 094 142 And-MPL-49 256 214 130 057 74 And-MPL-50 243 166 180 078 102

51

Table 412 Results of modified point load tests on tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-01 270 546 220 212 293 TST -MPL-02 258 787 230 326 293 TST -MPL-03 275 730 200 143 255 TST -MPL-04 282 715 400 143 510 TST -MPL-05 254 1345 220 264 280 TST -MPL-06 292 893 200 143 255 TST -MPL-07 243 853 550 112 311 TST -MPL-08 287 1047 210 319 268 TST -MPL-09 230 787 370 212 471 TST -MPL-10 230 427 260 132 147 TST -MPL-11 282 1243 450 319 573 TST -MPL-12 254 604 200 127 255 TST -MPL-13 288 1180 290 159 369 TST -MPL-14 251 631 410 170 232 TST -MPL-15 214 1104 120 260 312 TST -MPL-16 229 486 380 102 215 TST -MPL-17 259 715 110 650 286 TST -MPL-18 243 285 180 073 102 TST -MPL-19 285 316 130 128 130 TST -MPL-20 241 295 180 170 102 TST -MPL-21 298 417 300 100 170 TST -MPL-22 265 642 300 088 170 TST -MPL-23 314 611 450 101 255 TST -MPL-24 303 481 650 124 368 TST -MPL-25 223 223 260 126 331 TST -MPL-26 273 652 260 178 331 TST -MPL-27 216 887 420 170 535 TST -MPL-28 319 718 290 164 369 TST -MPL-29 231 516 200 128 255 TST -MPL-30 260 641 380 280 484 TST -MPL-31 287 496 330 158 420 TST -MPL-32 264 368 230 170 293 TST -MPL-33 238 415 230 130 293 TST -MPL-34 271 824 140 260 364 TST -MPL-35 283 800 220 325 572 TST -MPL-36 242 1013 180 325 468 TST -MPL-37 254 715 90 217 234 TST -MPL-38 210 755 150 520 390

52

Table 412 Results of modified point load tests on tuffaceous sandstone

(Continued)

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

TST -MPL-39 293 508 110 260 286 TST -MPL-40 273 410 100 347 260 TST -MPL-41 234 628 80 260 208 TST -MPL-42 259 433 130 260 338 TST -MPL-43 265 546 220 435 280 TST -MPL-44 255 829 260 222 147 TST -MPL-45 254 368 240 315 306 TST -MPL-46 293 695 370 222 210 TST -MPL-47 247 297 180 128 102 TST -MPL-48 310 611 300 237 170 TST -MPL-49 225 337 160 371 416 TST -MPL-50 259 410 120 394 312

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

Specimen Number td Ded Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-01 300 782 170 280 442 SST-MPL-02 250 480 220 307 572 SST-MPL-03 314 424 340 356 433 SST-MPL-04 292 809 220 450 572 SST-MPL-05 275 1142 300 532 780 SST -MPL-06 308 490 190 273 494 SST -MPL-07 317 611 280 418 728 SST -MPL-08 233 684 240 414 624 SST -MPL-09 255 480 230 371 598 SST -MPL-10 217 772 120 958 312 SST -MPL-11 312 903 270 400 702 SST -MPL-12 255 1094 150 272 390 SST -MPL-13 286 742 400 408 510 SST -MPL-14 248 615 350 296 198 SST -MPL-15 253 805 210 282 546 SST -MPL-16 243 1094 150 260 390

53

Table 413 Results of modified point load tests on silicified tuffaceous sandstone

(Continued)

Specimen Number td Dd Failure Load pf

(kN)

∆P∆δ (GPamm)

Pmpl (MPa)

SST-MPL-17 234 1090 250 416 650 SST -MPL-18 253 1371 240 473 624 SST -MPL-19 327 434 320 330 408 SST -MPL-20 270 310 390 278 497 SST -MPL-21 269 691 410 185 522 SST -MPL-22 312 504 380 182 484 SST -MPL-23 319 627 260 150 331 SST -MPL-24 281 689 330 295 420 SST -MPL-25 210 720 390 259 497 SST -MPL-26 303 775 370 221 471 SST -MPL-27 272 714 310 274 395 SST -MPL-28 292 855 600 209 764 SST -MPL-29 310 742 400 176 510 SST -MPL-30 284 847 410 158 522 SST -MPL-31 320 891 650 464 828 SST -MPL-32 261 256 400 178 226 SST -MPL-33 224 405 550 131 311 SST -MPL-34 231 379 450 215 255 SST -MPL-35 290 442 1050 190 594 SST -MPL-36 241 521 500 102 283 SST -MPL-37 275 605 600 067 340 SST -MPL-38 263 616 650 127 368 SST -MPL-39 227 615 350 229 198 SST -MPL-40 236 508 550 090 311 SST -MPL-41 318 1142 300 498 780 SST -MPL-42 303 809 210 392 546 SST -MPL-43 228 805 210 244 546 SST -MPL-44 283 1142 300 571 780 SST -MPL-45 277 772 120 780 312 SST -MPL-46 288 1206 280 411 728 SST -MPL-47 250 508 570 309 323 SST -MPL-48 275 442 1050 338 594 SST -MPL-49 272 605 650 254 368 SST -MPL-50 260 805 200 360 520

54

431 Modified point load tests for elastic modulus measurement

The MPL tests are carried out with the measurement of axial

deformation for use in elastic modulus estimation Fifty irregular specimens for each

rock type are tested The specimen thickness-to-loading diameter (td) is about 25

and the specimen diameter -to-loading diameter (Dd) is varied from 25 to 50 Cyclic

loading is performed while monitoring displacement (δ)

The testing apparatus used in this experiment includes the point load

tester model SBEL PLT-75 and the modified point load platens The displacement

digital gages with a precision up to 0001 mm are used to monitor the axial

deformation of rock between the loading points as loading decreases The cyclic

load is applied along the specimen axis and is performed by systematically increasing

and decreasing loads on the test specimen After unloading the axial load is

increased until the failure occurs Cyclic loading is performed on the specimens in

an attempt at determining the elastic deformation The ratio of change of stress to

displacement (∆P∆δ) is measured from unloading curve Post-failure characteristics

are observed and recorded Photographs are taken of the failed specimens

The results of the deformation measurement by MPL tests are shown

in Tables411 through 413 The stresses (P) are plotted as a function of axial

displacement (δ) and shown in Figures B1 through B150 (Appendix B) The results

of ∆P∆δ are used to estimate the elastic modulus of the specimen

The elastic modulus predictions from MPL results can be made by

using the value of αE plotted as a function of Ded for various td ratios as shown in

Figure 427 and the MPL elastic modulus can be expressed as

55

⎟⎠⎞

⎜⎝⎛

ΔΔ

⎟⎟⎠

⎞⎜⎜⎝

⎛=

δαPtE

Empl (Tepnarong 2006) (49)

where Empl is the elastic modulus predicted from MPL results αE is displacement

function value from numerical analysis and ∆P∆δ is the ratio of change of stress to

displacement which is measured from unloading curve of MPL tests and t is the

specimen thickness The value of αE used in the calculation is 260 for td ratio equal

to 25-30 (Tepnarong 2006) The results of elastic modulus predictions from MPL

tests are tabulated in Tables 414 through 416 Table 417 compares the elastic

modulus obtained from standard uniaxial compressive strength test (ASTM D3148-

96) with those predicted by MPL test

The values of Empl for each specimen with P-δ curve are shown in

Appendix B The MPL method under-estimates the elastic modulus of all tested

rocks This is the primarily because the actual loaded area may be smaller than that

used in the calculation due to the roughness of the specimen surfaces As a result the

contact area used to calculate PMPL is larger than the actual In addition the EMPL

tends to show a high intrinsic variation (high standard deviation) This is because the

loading areas of MPL specimens are small This phenomenon conforms by the test

results obtained by Fuenkajorn and Deamen (1992) They conclude that smaller test

specimens not only exhibit a higher strength than larger one (size effect) but also

show a high intrinsic variability due to the heterogeneity of rock fabric particularly at

small sizes This implied that to obtain a good prediction (accurate result) of the rock

elasticity a large amount of MPL specimens are desirable This drawback may be

compensated by the ease of testing and the low cost of sample preparation

56

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (MPa)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure 427 Example of P-δ curve for porphyritic andesite specimen The ratio of

∆P∆δ is used to predict the elastic modulus of MPL specimen (Empl)

57

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-01 246 543 125 260 1776 And-MPL-02 351 632 180 260 2430 And-MPL-03 236 634 170 260 1546 And-MPL-04 266 960 234 260 2390 And-MPL-05 284 903 369 260 4031 And-MPL-06 245 793 182 260 1712 And-MPL-07 263 874 234 260 2367 And-MPL-08 261 980 171 260 1717 And-MPL-09 280 777 056 260 603 And-MPL-10 244 569 124 260 1748 And-MPL-11 251 613 138 260 2001 And-MPL-12 226 631 189 260 2464 And-MPL-13 233 1126 151 260 947 And-MPL-14 279 1203 165 260 1239 And-MPL-15 239 503 011 260 151 And-MPL-16 281 474 012 260 195 And-MPL-17 305 861 021 260 247 And-MPL-18 233 653 008 260 108 And-MPL-19 294 1386 200 260 2263 And-MPL-20 265 860 017 260 173 And-MPL-21 238 425 087 260 1195 And-MPL-22 230 417 087 260 1154 And-MPL-23 223 557 231 260 2976 And-MPL-24 250 760 112 260 1615 And-MPL-25 259 1243 585 260 4073 And-MPL-26 303 560 143 260 1667 And-MPL-27 273 1640 156 260 1639 And-MPL-28 282 906 200 260 2172 And-MPL-29 311 934 156 260 1868 And-MPL-30 246 1314 650 260 4310 And-MPL-31 262 982 175 260 1766 And-MPL-32 260 1147 156 260 1093 And-MPL-33 240 700 101 260 1398 And-MPL-34 304 800 135 260 1576 And-MPL-35 250 455 127 260 1221 And-MPL-36 243 1697 292 260 1909 And-MPL-37 333 1520 156 260 2000 And-MPL-38 238 661 260 260 1665 And-MPL-39 318 347 186 260 1592 And-MPL-40 245 551 260 260 1712

58

And-MPL-41 207 561 325 260 1815

59

Table 414 Results of elastic modulus calculation from MPL tests on porphyritic

andesite (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

And-MPL-42 223 425 231 260 2976 And-MPL-43 207 561 346 260 1932 And-MPL-44 324 340 234 260 2912 And-MPL-45 275 426 169 260 1785 And-MPL-46 302 397 175 260 2033 And-MPL-47 255 314 170 260 1667 And-MPL-48 257 220 094 260 1393 And-MPL-49 256 214 057 260 843 And-MPL-50 243 166 078 260 1094 Average 1743 Standard Deviation 910

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-01 300 782 280 260 2262 SST -MPL-02 250 480 307 260 2066 SST -MPL-03 314 424 356 260 4302 SST -MPL-04 292 809 450 260 3533 SST -MPL-05 275 1142 532 260 3939 SST -MPL-06 308 490 273 260 2266 SST -MPL-07 317 611 418 260 3572 SST -MPL-08 233 684 414 260 2595 SST -MPL-09 255 480 371 260 2546 SST -MPL-10 217 772 958 260 5593 SST -MPL-11 312 903 400 260 3360 SST -MPL-12 255 1094 272 260 1864 SST -MPL-13 286 742 408 260 4435 SST -MPL-14 248 615 296 260 4235 SST -MPL-15 253 805 282 260 1918 SST -MPL-16 243 1094 260 260 1698 SST -MPL-17 234 1090 416 260 2621 SST -MPL-18 253 1371 473 260 3224 SST -MPL-19 327 434 330 260 4153 SST -MPL-20 270 310 278 260 2863

60

Table 415 Results of elastic modulus calculation from MPL tests on silicified

tuffaceous sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

SST -MPL-21 269 691 185 260 1914 SST -MPL-22 312 504 182 260 2183 SST -MPL-23 319 627 150 260 1839 SST -MPL-24 281 689 295 260 3193 SST -MPL-25 210 720 259 260 2090 SST -MPL-26 303 775 221 260 2577 SST -MPL-27 272 714 274 260 2862 SST -MPL-28 292 855 209 260 2350 SST -MPL-29 310 742 176 260 2097 SST -MPL-30 284 847 158 260 1728 SST -MPL-31 320 891 464 260 5707 SST -MPL-32 261 256 178 260 2678 SST -MPL-33 224 405 131 260 1690 SST -MPL-34 231 379 215 260 2863 SST -MPL-35 290 442 190 260 3174 SST -MPL-36 241 521 102 260 1416 SST -MPL-37 275 605 067 260 1064 SST -MPL-38 263 616 127 260 1926 SST -MPL-39 227 615 229 260 3005 SST -MPL-40 236 508 090 260 1226 SST -MPL-41 318 1142 498 260 4264 SST -MPL-42 303 809 392 260 3196 SST -MPL-43 228 805 244 260 1500 SST -MPL-44 283 1142 571 260 4348 SST -MPL-45 277 772 780 260 5826 SST -MPL-46 288 1206 411 260 3184 SST -MPL-47 250 508 309 260 4464 SST -MPL-48 275 442 338 260 5364 SST -MPL-49 272 605 254 260 3981 SST -MPL-50 260 805 360 260 2523 Average 2986 Standard Deviation 1190

61

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-01 270 546 212 260 2202 TST -MPL-02 258 787 326 260 3232 TST -MPL-03 275 730 143 260 1513 TST -MPL-04 282 715 143 260 1551 TST -MPL-05 254 1345 264 260 2579 TST -MPL-06 292 893 143 260 1606 TST -MPL-07 243 853 112 260 2273 TST -MPL-08 287 1047 319 260 3521 TST -MPL-09 230 787 212 260 1875 TST -MPL-10 230 427 132 260 1752 TST -MPL-11 282 1243 319 260 3455 TST -MPL-12 254 604 127 260 1241 TST -MPL-13 288 1180 159 260 1764 TST -MPL-14 251 631 170 260 2465 TST -MPL-15 214 1104 260 260 1500 TST -MPL-16 229 486 102 260 1345 TST -MPL-17 259 715 650 260 4530 TST -MPL-18 243 285 073 260 1025 TST -MPL-19 285 316 128 260 2105 TST -MPL-20 241 295 170 260 2360 TST -MPL-21 298 417 100 260 1722 TST -MPL-22 265 642 088 260 896 TST -MPL-23 314 611 101 260 1830 TST -MPL-24 303 481 124 260 2166 TST -MPL-25 223 223 126 260 1083 TST -MPL-26 273 652 178 260 1869 TST -MPL-27 216 887 170 260 2065 TST -MPL-28 319 718 164 260 2011 TST -MPL-29 310 742 128 260 1136 TST -MPL-30 260 641 280 260 2800 TST -MPL-31 287 496 158 260 1742 TST -MPL-32 264 368 170 260 1725 TST -MPL-33 238 415 130 260 1192 TST -MPL-34 271 824 260 260 1942 TST -MPL-35 283 800 325 260 2478 TST -MPL-36 242 1013 325 260 2115 TST -MPL-37 254 715 217 260 1484 TST -MPL-38 210 755 520 260 2944 TST -MPL-39 293 508 260 260 2052 TST -MPL-40 273 410 347 260 2552

62

Table 416 Results of elastic modulus calculation from MPL tests on tuffaceous

sandstone (continued)

Specimen Number td Ded ∆P∆δ (GPamm) αE Empl (GPa)

TST -MPL-41 234 628 260 260 1638 TST -MPL-42 259 433 260 260 1814 TST -MPL-43 265 546 435 260 4440 TST -MPL-44 255 829 222 260 3265 TST -MPL-45 254 368 315 260 3075 TST -MPL-46 293 695 222 260 2502 TST -MPL-47 247 297 128 260 1827 TST -MPL-48 310 611 237 260 4240 TST -MPL-49 225 337 371 260 2252 TST -MPL-50 259 410 394 260 2746 Average 2190 Standard Deviation 830

Table 417 Comparisons of elastic modulus results obtained from uniaxial

compressive strength tests and those from modified point load tests

Rock Type Tangential Elastic Modulus from UCS

tests Et (GPa)

Elastic Modulus from MPL tests

Empl (GPa) Porphyritic andesite 430plusmn34 174plusmn91

Silicified tuffaceous sandstone 633plusmn80 299plusmn119

tuffaceous sandstone 513plusmn53 219plusmn83

432 Modified point load tests predicting uniaxial compressive strength

The uniaxial compressive strength of MPL specimens can be predicted

by plotting Pmpl as a function of diameter ratio Ded as shown in Figures 428 through

430 At diameter ratio equal to unity the Pmpl represents the uniaxial compressive

strength of rock The uniaxial compressive strength predicted from MPL tests

compared with those from CPL test and UCS standard test is shown in Table 418

63

UCS PREDICTION OF PORPHYRITIC ANDESITE FROM MPL TESTS

Pmpl = 11844(Ded)05489

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ded Ratio

MPL

Stre

ngth

(MPa

)

Figure 428 Uniaxial compressive strength predicted for porphyritic andesite from

MPL tests

64

UCS PREDICTION OF SILICIFIED TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 11463(Ded)07447

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ded Ratio

MPL

-Str

engt

h (M

Pa)

Figure 429 Uniaxial compressive strength predicted for silicified tuffaceous

sandstone from MPL tests

65

UCS PREDICTION OF TUFFACEOUS SANDSTONE FROM MPL TESTS

Pmpl = 10222(Ded)05457

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ded Ratio

MPL

-Stre

ngth

(MPa

)

Figure 430 Uniaxial compressive strength predicted for tuffaceous sandstone from

MPL tests

Table 418 Comparison the test results between UCS CPL Brazilian tensile

strength and MPL tests

Uniaxial Compressive Strength (MPa)

Tensile Strength (MPa) Rock Type UCS

Testing CPL

Prediction MPL

PredictionBrazilian Testing

MPL Prediction

And 1150 1944 plusmn12 1005 170plusmn16 139plusmn43 TST 1114 2448plusmn20 1308 131plusmn33 121plusmn73 SST 1207 2592plusmn22 1022 191plusmn32 171plusmn126

433 Modified Point Load Tests for Tensile Strength Predictions

The MPL results determine the rock tensile strength by using the

relationship of the failure stresses (Pmpl) as a function of specimen thickness to

66

loading diameter ratio (td) The tensile strength from MPL prediction can be

expressed as an empirical equation (Tepnarong 2001)

σt mpl = Pmpl (αT ln (td)+βT) (410)

where αT = 133 ln (Ded)-756 and βT= -70 ln (Ded)+ 1952

The results of tensile strengths of all rock types are shown in Tables

419through 421 The predicted tensile strengths are compared with the Brazilian

tensile strengths for the three rock types in Table 418 A close agreement of the

results obtained between two methods The discrepancies of the results are less than

the standard deviation of the results

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa)

And-MPL-01 246 543 159 1495 767 750 And-MPL-02 351 632 471 1697 661 1688 And-MPL-03 236 634 191 1701 659 900 And-MPL-04 266 960 319 2252 369 1240 And-MPL-05 284 903 471 2170 412 1761 And-MPL-06 245 793 357 1999 502 1558 And-MPL-07 263 874 331 2127 435 1330 And-MPL-08 261 980 268 2279 355 1053 And-MPL-09 280 777 344 1971 517 1351 And-MPL-10 244 569 159 1557 734 746 And-MPL-11 251 613 368 1656 683 1666 And-MPL-12 226 631 340 1695 662 1662 And-MPL-13 233 1126 468 2464 257 2000 And-MPL-14 279 1203 572 2552 211 2022 And-MPL-15 239 503 227 1392 822 1114 And-MPL-16 281 474 170 1314 863 765 And-MPL-17 305 861 497 2108 445 1776 And-MPL-18 233 653 283 1740 638 1340 And-MPL-19 294 1386 484 2741 112 1577 And-MPL-20 265 860 522 2106 446 2091

67

And-MPL-21 238 425 311 1169 939 1595 And-MPL-22 230 417 255 1142 953 1338 And-MPL-23 223 557 283 1529 749 1431 And-MPL-24 250 760 311 1941 532 1347 And-MPL-25 259 1243 468 2596 188 1763 And-MPL-26 303 560 395 1535 746 1613

68

Table 419 Results of tensile strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) And-MPL-27 273 1640 497 2964 -006 1671 And-MPL-28 282 906 280 2252 369 1035 And-MPL-29 311 934 369 2216 388 1272 And-MPL-30 246 1314 650 2670 149 2543 And-MPL-31 262 982 255 2282 353 997 And-MPL-32 260 1147 468 2488 244 1783 And-MPL-33 240 700 255 1832 590 1161 And-MPL-34 304 800 306 2010 496 1121 And-MPL-35 250 455 280 1259 891 1370 And-MPL-36 243 1697 312 3010 -030 1181 And-MPL-37 333 1520 395 2863 047 1130 And-MPL-38 238 661 442 1755 630 2054 And-MPL-39 318 347 338 897 1082 1594 And-MPL-40 245 551 390 1513 758 1847 And-MPL-41 207 561 390 1537 745 2089 And-MPL-42 223 425 283 1169 939 1507 And-MPL-43 207 561 390 1537 745 2089 And-MPL-44 324 340 395 871 1096 1864 And-MPL-45 275 426 306 1172 937 1441 And-MPL-46 302 397 166 1079 986 760 And-MPL-47 255 314 127 766 1151 1159 And-MPL-48 257 220 142 291 1401 845 And-MPL-49 256 214 74 257 1419 443 And-MPL-50 243 166 102 -078 1595 928 Average 1427 Standard Deviation 44

69

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) SST -MPL-01 300 782 442 1336 851 2018 SST -MPL-02 250 480 572 1331 853 2759 SST -MPL-03 314 424 433 1196 924 1888 SST -MPL-04 292 809 572 2024 489 2155 SST -MPL-05 275 1142 780 2483 247 2827 SST -MPL-06 308 490 494 1357 840 2086 SST -MPL-07 317 611 728 1651 685 2808 SST -MPL-08 233 684 624 1800 606 2932 SST -MPL-09 255 480 598 1331 853 2849 SST -MPL-10 217 772 312 1962 522 1529 SST -MPL-11 312 903 702 2170 412 2436 SST -MPL-12 255 1094 390 2426 277 1533 SST -MPL-13 286 742 510 1910 549 2011 SST -MPL-14 248 615 198 1661 680 905 SST -MPL-15 253 805 546 2017 492 2312 SST -MPL-16 243 1094 390 2426 277 1607 SST -MPL-17 234 1090 650 2421 280 2780 SST -MPL-18 253 1371 624 2726 120 2354 SST -MPL-19 327 434 408 1196 924 1740 SST -MPL-20 270 310 497 748 1160 2618 SST -MPL-21 269 691 522 1816 599 2181 SST -MPL-22 312 504 484 1394 821 2012 SST -MPL-23 319 627 331 1686 667 1263 SST -MPL-24 281 689 420 1812 601 1699 SST -MPL-25 210 720 497 1869 570 2541 SST -MPL-26 303 775 471 1968 519 1745 SST -MPL-27 272 714 395 1859 576 1623 SST -MPL-28 292 855 764 2098 450 2830 SST -MPL-29 310 742 510 1910 549 1881 SST -MPL-30 284 847 522 2087 456 1981 SST -MPL-31 320 891 828 2153 421 2832 SST -MPL-32 261 256 226 492 1295 1282 SST -MPL-33 224 405 311 1106 972 1672 SST -MPL-34 231 379 255 1017 1019 1363 SST -MPL-35 290 442 594 1221 912 2690 SST -MPL-36 241 521 283 1439 797 1374 SST -MPL-37 275 605 340 1639 692 1445 SST -MPL-38 263 616 368 1661 680 1611

70

Table 420 Results of tensile strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded Pmpl (MPa)

αT βT σt mpl (MPa)

SST -MPL-39 227 615 198 1661 680 969 SST -MPL-40 236 508 311 1406 814 1540 SST -MPL-41 318 1142 780 2483 247 2500 SST -MPL-42 303 809 546 2024 489 1999 SST -MPL-43 228 805 546 2017 492 2530 SST -MPL-44 283 1142 780 2483 247 2757 SST -MPL-45 277 772 312 1962 522 1236 SST -MPL-46 288 1206 728 2555 209 2502 SST -MPL-47 250 508 323 1406 814 1533 SST -MPL-48 275 442 594 1221 912 2769 SST -MPL-49 272 605 368 1639 692 1580 SST -MPL-50 260 805 520 2017 492 2147 Average 2045 Standard Deviation 56

71

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-01 270 546 293 1502 763 1299 TST -MPL-02 258 787 293 1988 508 1226 TST -MPL-03 275 730 255 1888 560 1031 TST -MPL-04 282 715 510 1860 575 2035 TST -MPL-05 254 1345 280 2701 133 1058 TST -MPL-06 292 893 255 2156 420 933 TST -MPL-07 243 853 311 2095 451 1346 TST -MPL-08 287 1047 268 2279 355 970 TST -MPL-09 230 787 471 1988 508 2179 TST -MPL-10 230 427 147 1176 935 769 TST -MPL-11 282 1243 573 2596 188 1994 TST -MPL-12 254 604 255 1636 693 1149 TST -MPL-13 288 1180 369 2527 224 1274 TST -MPL-14 251 631 232 1695 662 1044 TST -MPL-15 214 1104 312 2438 271 1465 TST -MPL-16 229 486 215 1347 845 1098 TST -MPL-17 259 715 286 1861 575 1220 TST -MPL-18 243 285 102 637 1219 571 TST -MPL-19 285 316 130 776 1146 665 TST -MPL-20 241 295 102 685 1194 568 TST -MPL-21 298 417 170 1143 952 771 TST -MPL-22 265 642 170 1178 934 1059 TST -MPL-23 314 611 255 1652 685 989 TST -MPL-24 303 481 368 1423 805 1545 TST -MPL-25 223 223 331 313 1389 2018 TST -MPL-26 273 652 331 1738 640 1389 TST -MPL-27 216 887 535 2146 424 1850 TST -MPL-28 319 718 369 1866 572 1350 TST -MPL-29 231 516 255 1425 804 1276 TST -MPL-30 260 641 484 1715 651 2114 TST -MPL-31 287 496 420 1373 832 1846 TST -MPL-32 264 368 293 976 1041 1475 TST -MPL-33 238 415 293 1151 948 1504 TST -MPL-34 271 824 364 2049 476 1418 TST -MPL-35 283 800 572 2010 496 2210 TST -MPL-36 242 1013 468 2324 331 1965 TST -MPL-37 254 715 234 1861 575 1013 TST -MPL-38 210 755 390 1932 537 1976

72

Table 421 Results of tensile strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded Pmpl (MPa) αT βT σt mpl

(MPa) TST -MPL-39 293 508 286 1406 814 1229 TST -MPL-40 273 410 260 1124 963 1243 TST -MPL-41 234 628 208 1688 666 990 TST -MPL-42 259 433 338 1194 926 1639 TST -MPL-43 265 546 280 1502 763 1257 TST -MPL-44 255 829 147 2057 472 614 TST -MPL-45 254 368 306 976 1041 1568 TST -MPL-46 293 695 210 1822 595 1846 TST -MPL-47 247 297 102 691 1190 561 TST -MPL-48 310 611 170 1652 685 665 TST -MPL-49 225 337 416 1939 533 1972 TST -MPL-50 259 410 312 1120 965 1537 Average 1336 Standard Deviation 56

434 Modified point load tests for triaxial compressive strength predictions

The objective of this section is to predict the triaxial compressive strength

of intact rock specimens by using the MPL results (modified point load strength Pmpl) It

is speculated that increase of applied load (σ1) will invoke a confining pressure (σ3) on

the imaginary cylindrical profile between the two loading points This is due to the

effect of Poissonrsquos ratio (ν) which causing a potential expansion of rock in this cylinder

The greater the σ1 the greater the σ3 in addition Poissonrsquos ratios also affect the

magnitude of σ3 The magnitude of σ3 also depends on the specimen shape particularly

the Ded ratio In principle σ3 will equal zero for Ded ratio equal to unity But when

Ded ratio is very large approaching infinity σ3 will reach its maximum This maximum

value of σ3 will also depend on the rock Poissonrsquos ratio From computer simulation of

td =25 the variation of σ1 σ3 ratio can be simply expressed by Tepnarong (2006) as

73

(σ1 σ3) = 2 ((ν (1ndashν) (1-(dDe) 2)) (411)

where ν is the Poissonrsquos ratio of rock specimen d is the modified point load diameter

and De is the equivalent diameter of the specimen The Poissonrsquos ratio of rock

specimen used in equation 411 can be assumed to be 25 The σ1 σ3 ratio tends to be

independent of Ded for Ded greater than 10 This implies that when MPL specimen

diameter is more than 10 times of the loading point diameter the magnitude of σ3 is

approaching its maximum value (Tepnarong 2006)

It should be pointed out that approach used here to determine σ3

assumes that there is no shear stress (τrz) along the imagination cylinder As a result

the magnitude of σ3 determined here would be higher than the actual σ3 applied in the

true triaxial test specimen This mean that the σ1 σ3 ratios at failure obtained from

MPL tests will be lower than the actual failure stress ratio from the true triaxial tests

From the concept of σ1 σ3-Ded relation proposed the major and

minor principal stresses at failure (σ1 σ3) can be predicted from the measured MPL

failure stress Pmpl and Ded ratio The Poissonrsquos ratio used here is equal to 025

Comparison between the failure stress (σ1 σ3) obtained from the

standard triaxial compressive strength testing (ASTM D7012-07) and those predicted

from MPL test results are made graphically in Figures 431 through 433 for ν =025

The figures are plotted the maximum shear stress (frac12(σ1-σ3)) as a function of mean

shear stress (frac12(σ1+σ3)) indicating that the predicted failure stresses under-estimate

the value obtained from the standard testing This is because of the assumption of no

shear stresses developed on the surface of the imaginary cylinder The under

prediction may be due to the intrinsic variability of the rocks The predictions are

also sensitive to assumed Poissonrsquos ratio The Poissonrsquos ratio of the tested specimens

74

may be lower than the assumed value of 025 This comparison implies that the

triaxial strength predicted from MPL test will be more conservative than those from

the standard testing method

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests

Specimen Number

td Ded σ1

(MPa)σ3

(MPa)Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-01 246 543 159 2527 6663 9190 And-MPL-02 351 632 471 7583 19776 27358 And-MPL-03 236 634 191 3075 8017 11091 And-MPL-04 266 960 319 5198 13325 18522 And-MPL-05 284 903 471 7682 19726 27408 And-MPL-06 245 793 357 5792 14938 20730 And-MPL-07 263 874 331 5393 13864 19257 And-MPL-08 261 980 268 4368 11192 15560 And-MPL-09 280 777 344 5581 14407 19988 And-MPL-10 244 569 159 2535 6659 9194 And-MPL-11 251 613 368 5911 15445 21356 And-MPL-12 226 631 340 5465 14253 19717 And-MPL-13 233 1126 468 7660 19568 27228 And-MPL-14 279 1203 572 9372 23911 33283 And-MPL-15 239 503 227 3589 9529 13118 And-MPL-16 281 474 170 2678 7154 9831 And-MPL-17 305 861 497 8087 20797 28884 And-MPL-18 233 653 283 4561 11874 16435 And-MPL-19 294 1386 484 7946 20231 28177 And-MPL-20 265 860 522 8501 21864 30365 And-MPL-21 238 425 311 4854 13143 17997 And-MPL-22 230 417 255 3962 10758 14720 And-MPL-23 223 557 283 4521 11894 16415 And-MPL-24 250 760 311 5049 13045 18094 And-MPL-25 259 1243 468 7671 19562 27234 And-MPL-26 303 560 395 6308 16591 22899 And-MPL-27 273 1640 497 8167 20757 28924 And-MPL-28 282 906 280 4574 11726 16300 And-MPL-29 311 934 369 6026 15459 21484 And-MPL-30 246 1314 650 1066 27166 37828 And-MPL-31 262 982 255 4160 10659 14819 And-MPL-32 260 1147 468 7663 19567 27229

75

And-MPL-33 240 700 255 4118 10680 14798 And-MPL-34 304 800 306 4966 12804 17770

76

Table 422 Results of triaxial strengths of porphyritic andesite predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

And-MPL-35 250 455 280 4401 11812 16213 And-MPL-36 243 1697 312 5130 13034 18163 And-MPL-37 333 1520 395 6488 16501 22989 And-MPL-38 238 661 442 7125 18535 25661 And-MPL-39 318 347 338 5112 14342 19455 And-MPL-40 245 551 390 6222 16387 22609 And-MPL-41 207 561 390 6230 16383 22613 And-MPL-42 223 425 283 4413 11948 16361 And-MPL-43 207 561 390 6230 16383 22613 And-MPL-44 324 340 395 5952 16769 22721 And-MPL-45 275 426 306 4767 12903 17670 And-MPL-46 302 397 166 2559 7001 9560 And-MPL-47 255 314 127 3211 9223 12433 And-MPL-48 257 220 142 1852 6151 8003 And-MPL-49 256 214 74 950 3205 4155 And-MPL-50 243 166 102 1493 6331 7823

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-01 300 782 442 7389 19703 27092 SST -MPL-02 250 480 572 9028 24083 33112 SST -MPL-03 314 424 433 6767 18273 25040 SST -MPL-04 292 809 572 9293 23951 33244 SST -MPL-05 275 1142 780 1277 32611 45382 SST -MPL-06 308 490 494 7811 20792 28603 SST -MPL-07 317 611 728 1169 30552 42241 SST -MPL-08 233 684 624 1008 26160 36235 SST -MPL-09 255 480 598 9439 25178 34617 SST -MPL-10 217 772 312 5061 13068 18129 SST -MPL-11 312 903 702 1144 29377 40817 SST -MPL-12 255 1094 390 6381 16308 22689 SST -MPL-13 286 742 510 8255 21350 29605 SST -MPL-14 248 615 198 3183 8316 11500

77

Table 423 Results of triaxial strengths of silicified tuffaceous sandstone predicted

from MPL tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

SST -MPL-15 253 805 546 8869 22863 31732 SST -MPL-16 243 1094 390 6381 16308 22689 SST -MPL-17 234 1090 650 1063 27180 37814 SST -MPL-18 253 1371 624 1024 26077 36317 SST -MPL-19 327 434 408 6369 17198 23567 SST -MPL-20 270 310 497 7344 21169 28513 SST -MPL-21 269 691 522 8438 21896 30333 SST -MPL-22 312 504 484 7672 20368 28040 SST -MPL-23 319 627 331 5626 13897 19224 SST -MPL-24 281 689 420 6790 17624 24414 SST -MPL-25 210 720 497 8039 20821 28860 SST -MPL-26 303 775 471 7648 19743 27391 SST -MPL-27 272 714 395 6388 16551 22939 SST -MPL-28 292 855 764 1244 31997 44436 SST -MPL-29 310 742 510 8255 21350 29605 SST -MPL-30 284 847 522 8498 21866 30364 SST -MPL-31 320 891 828 1349 34656 48146 SST -MPL-32 261 256 226 3165 9741 12906 SST -MPL-33 224 405 311 4825 13157 17982 SST -MPL-34 231 379 255 3912 10783 14695 SST -MPL-35 290 442 594 9307 25071 34377 SST -MPL-36 241 521 283 4499 11905 16404 SST -MPL-37 275 605 340 5452 14259 19711 SST -MPL-38 263 616 368 5912 15445 21357 SST -MPL-39 227 615 198 3183 8316 11500 SST -MPL-40 236 508 311 4939 13100 18039 SST -MPL-41 318 1142 780 1277 32611 45382 SST -MPL-42 303 809 546 8870 22862 31733 SST -MPL-43 228 805 546 8869 22863 31732 SST -MPL-44 283 1142 780 1277 32611 45382 SST -MPL-45 277 772 312 5061 13068 18129 SST -MPL-46 288 1206 728 1193 30433 42361 SST -MPL-47 250 508 323 5119 13577 18695 SST -MPL-48 275 442 594 9307 25071 34377 SST -MPL-49 272 605 368 5906 15447 21354 SST -MPL-50 260 805 520 8447 21774 30221

78

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-01 270 546 293 4672 12313 16986 TST -MPL-02 258 787 293 4756 12272 17028 TST -MPL-03 275 730 255 4125 10676 14801 TST -MPL-04 282 715 510 8243 21356 29599 TST -MPL-05 254 1345 280 4599 11713 16312 TST -MPL-06 292 893 255 4151 10663 14814 TST -MPL-07 243 853 311 5067 13036 18103 TST -MPL-08 287 1047 268 4368 11192 15560 TST -MPL-09 230 787 471 7651 19741 27393 TST -MPL-10 230 427 147 2296 6212 8508 TST -MPL-11 282 1243 573 9397 23964 33361 TST -MPL-12 254 604 255 4089 10695 14783 TST -MPL-13 288 1180 369 6052 15445 21497 TST -MPL-14 251 631 232 3734 9739 13474 TST -MPL-15 214 1104 312 5105 13046 18151 TST -MPL-16 229 486 215 3400 9057 12457 TST -MPL-17 259 715 286 4626 11986 16612 TST -MPL-18 243 285 102 1474 4358 5833 TST -MPL-19 285 316 130 1934 5544 7478 TST -MPL-20 241 295 102 1489 4351 5840 TST -MPL-21 298 417 170 2641 7172 9813 TST -MPL-22 265 642 170 2650 7168 9817 TST -MPL-23 314 611 255 4091 10693 14784 TST -MPL-24 303 481 368 5843 15476 21322 TST -MPL-25 223 223 331 4370 14376 18745 TST -MPL-26 273 652 331 5336 13892 19229 TST -MPL-27 216 887 535 8716 22394 31109 TST -MPL-28 319 718 369 5977 15483 21460 TST -MPL-29 231 516 255 4046 10716 14762 TST -MPL-30 260 641 484 7793 20307 28100 TST -MPL-31 287 496 420 6654 17692 24346 TST -MPL-32 264 368 293 4477 12411 16888 TST -MPL-33 238 415 293 4560 12370 16930 TST -MPL-34 271 824 364 5917 15240 21157 TST -MPL-35 283 800 572 9290 23953 33242 TST -MPL-36 242 1013 468 7646 19575 27221 TST -MPL-37 254 715 234 3785 9806 13592 TST -MPL-38 210 755 390 6321 16338 22659

79

Table 424 Results of triaxial strengths of tuffaceous sandstone predicted from MPL

tests (continued)

Specimen Number td Ded σ1

(MPa)σ3

(MPa)

Maximum shear stress

(MPa)

Mean stress(MPa)

TST -MPL-39 293 508 286 4536 12031 16567 TST -MPL-40 273 410 260 4036 10981 15017 TST -MPL-41 234 628 208 3345 8727 12071 TST -MPL-42 259 433 338 5279 14259 19538 TST -MPL-43 265 546 280 4469 11778 16247 TST -MPL-44 255 829 147 2394 6163 8557 TST -MPL-45 254 368 306 4671 12951 17622 TST -MPL-46 293 695 210 7616 19759 27375 TST -MPL-47 247 297 102 1491 4359 5841 TST -MPL-48 310 611 170 2728 7129 9870 TST -MPL-49 225 337 416 6744 17426 24170 TST -MPL-50 259 410 312 4841 13178 18019

ANDESITE

τm= 07103σm + 26

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=

((σ

1-σ

3)2

) (M

Pa)

MPL PredictionTriaxial Compressive

Figure 431 Comparisons of triaxial compressive strength criterion of porphyritic

andesite between the triaxial compressive strength test and MPL test

80

SILICIFIED TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Mean stressσm= ((σ1+σ3)2) (MPa)

Max

imum

shea

r stre

ss

τm=(

( σ1minus

σ3)

2)

(MPa

)MPL Prediction

Triaxial Compressive Strength test

Figure 432 Comparisons of triaxial compressive strength criterion of silicified

tuffaceous sandstone between the triaxial compressive strength test

and MPL test

81

TUFFACEOUS SANDSTONE

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Mean stress σm=((σ1+σ3)2) (MPa)

Max

imum

shea

r st

res

τ m=(

( σ1-

σ3)

2)

(MPa

)

MPL Prediction

Triaxial Compressive Strength test

Figure 433 Comparisons of triaxial compressive strength criterion of tuffaceous

sandstone between the triaxial compressive strength test and MPL

test

Table 425 compares the triaxial test results in terms of the cohesion c

and internal friction angle φi by assuming the failure mode follows the Coulombrsquos

criterion The c and φi values are calculated from the test results and the predicted

results by the assumption of Coulombrsquos criterion (Jaeger and Cook 1978) Table

425 shows that the strengths predicted by MPL testing of all rock types under-

estimate those obtained from the standard triaxial testing This is probably the actual

Poissonrsquos ratio of the rock specimens are probably lower than those assumed in the

model simulation which is assumed the Poissonrsquos ratio as 025

82

Table 425 Comparisons of the internal friction angle and cohesion between MPL

predictions and triaxial compressive strength tests

Triaxial Compressive Strength Test

MPL Predictions (ν=025) Rock Type

c (MPa) φi (degrees) c (MPa) φi (degrees)

Porphyritic Andesite 12 69 4 45

Silicified Tuffaceous Sandstone 13 65 3 46

Tuffaceous Sandstone 7 73 2 46

CHAPTER V

FINITE DIFFERENCE ANALYSES

51 Objectives

The objective of the finite difference analyses is to verify that the equivalent

diameter of rock specimens used in the MPL strength prediction is appropriate The

finite difference analyses using FLAC software is made to determine the MPL

strength for various specimen diameters (D) with a constant cross-sectional area

52 Model characteristics

The analyses are made in axis symmetry Four specimen models with the

constant thickness of 318 cm are loaded with 10 cm diameter loading point The

diameter of the specimen (D) models is varied from 508 cm to 762 cm Each

specimen has a constant cross-sectional area of 1613 cm2 as shown in Figure 51

through 55 The load is applied to the specimens until failure occurs and then the

failure loads (P) are recorded

53 Results of finite difference analyses

The results of numerical simulation are shown in Table 51 The results

suggest that the MPL strength remains roughly constant when the same equivalent

diameter (De) is used It can be concluded that the equivalent diameter used in this

research is appropriate to predict the MPL strength

80

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 51 Simulation model No1 t= 318 cm D= 508 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 52 Simulation model No2 t= 318 cm D= 572 cm d=10 mm

81

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 53 Simulation model No3 t= 318 cm D= 635 cm d=10 mm

CL

Point Load Platen

D2

318

cm

d2

P (Load)

Figure 54 Simulation model No4 t= 318 cm D= 698 cm d=10 mm

82

P (Load)

d2

318

cm

D2

Point Load Platen

LC

Figure 55 Simulation model No5 t= 318 cm D= 762 cm d=10 mm

Table 51 Summary of the results from numerical simulations

Model Number

Specimen Thickness

t (cm)

Specimen Diameter

D (cm)

Cross-Sectional

Are of Specimen

A (cm2)

Equivalent Diameter

De (cm)

Failure Load P

(kN)

1 318 508 1613 508 4485 2 318 572 1613 508 4630 3 318 635 1613 508 4614 4 318 698 1613 508 4627 5 318 762 1613 508 4590

CHAPTER VI

DISCUSSIONS CONCLUSIONS AND

RECOMMENDATIONS

This chapter discusses various aspects of the proposed MPL testing technique

for determining the elastic modulus uniaxial and triaxial compressive strengths and

tensile strength of intact rock specimens The discussed issues include reliability of

the testing results validity scope and limitations of the proposed method of

calculations and accuracy of the predicted rock properties

61 Discussions

1) For selection of rock specimens for MPL testing in this research an

attempt has been made to select the specimens particularly in obtaining a high degree

of uniformity of rock matrix so as to reduce the intrinsic variability of the mechanical

test results and hence clearly reveals of the relation between the standard test results

with the MPL test results Nevertheless a high degree of intrinsic variability

remains as evidenced from the results of the characterization testing For all tested

rock types here the igneous rocks are normally heterogeneous The high intrinsic

variability is caused by the degree of weathering among specimens and the

distribution of rock fragments in the groundmass which promotes the different

orientations of cleavage planes and pore spaces to become a weak plane in rock

specimens Silicified tuffaceous sandstone the high standard deviation may be

caused by the silicified degree in rock specimens

84

2) For prediction of elastic modulus of rock specimens the effects of the

heterogeneity that cause the selective weak planes are enhanced during the MPL

testing This is because the applied loading areas are much smaller than those under

standard uniaxial compressive strength testing This load condition yields a high

degree of intrinsic variability of the MPL testing results The standard deviation of

the elastic modulus predicted from MPL results are in the range between 35-50

This means that in order to obtain the accurate prediction a large number of rock

specimens is necessary for each rock types and that the MPL testing is more

applicable in fine-grained rocks than coarse-grained rocks Another factor is the

uneven contacts between the loading platens and the rock surfaces which caused the

elastic modulus of all rock types that predicted from MPL testing to be lower

compared with those from the uniaxial compressive strength

3) Equivalent diameter used to define the rock specimen width (perpendicular

to the loading direction) seems adequate for use in MPL predictions of rock

compressive and tensile strengths

4) Determination of σ3 at failure for the MPL testing is the empirical In fact

results from the numerical simulation indicate that σ3 distribution along the imaginary

cylinder between the loading points is not uniform particularly for low td ratio

(lower than 25) Along this cylinder σ3 is tension near the loading point and

becomes compression in the mid-length of the MPL specimen There are also shear

stresses along the imaginary cylinder The induced stress states along the assume

cylinder in MPL specimen are therefore different from those the actual triaxial

strength testing specimen The MPL method can not satisfactorily predict the triaxial

compressive strength of all tested rock types primarily due to the heterogeneity of

85

rock specimens that is the different sizes of phenocrysts in igneous rock in lateral and

horizontal directions This promotes the different failure formations

62 Conclusions

The objective of this research is to determine the elastic modulus uniaxial

compressive strength tensile strength and triaxial compressive strength of rock

specimens by using the modified point load (MPL) test method Three rock types

used in this research are porphyritic andesite silicified tuffaceous sandstone and

tuffaceous sandstone Prior to performing the modified point load testing the

standard characterization testing is carried out on these rock types to obtain the data

basis for use to compare the results from MPL testing The MPL specimens are

irregular-shaped with the specimen thickness to loading platen diameter (td) varies

from 25-35 and the equivalent diameter of specimen to loading platen diameter

(Ded) varies from 15 to 20 Loading platen diameters used in this research are 7 10

and 15 mm Finite different analysis is used to verify the equivalent diameter that use

to calculate rock properties from MPL tests

The research results illustrate that the elastic modulus estimated from MPL tests

under-estimates those obtained from the ASTM standard test with the standard

deviation of 40 for porphyritic andesite 48 for silicified tuffaceous sandstone and

43 for tuffaceous sandstone The MPL test method can satisfactorily predict the

uniaxial compressive strength and tensile strength of all rock types tested here The

conventional point load test method over-predicts the actual strength results by much as

100 The MPL method however can not predict the triaxial compressive strengths

for three rock types tested here primarily due to heterogeneous and different

86

weathering degree of rock specimens and uneven surface of rock specimens This

suggests that the smooth and parallel contact surfaces on opposite side of the loading

points are important for determining the strength of rock specimens for MPL method

63 Recommendations

The assessment of predictive capability of the proposed MPL testing technique

has been limited to three rock types More testing is needed to confirm the applicability

and limitations of the proposed method Some obvious future research needs are

summarized as follows

1) More testing is required for elastic modulus and triaxial compressive strength

on different rock types Smooth and parallel of rock specimen surfaces in the opposite

sides should be prepared for all rock types The results may also reveal the impacts of

grain size on elasticity and strength of obtained under different loading areas And the

effects of size of the areas underneath the applied load should be further investigated

2) To truly confirm the validity of MPL predictions for the elastic modulus and

strength of rocks may be desirable to obtain the actual Poissonrsquos ratio of all rock types

The results could reveal the accuracy of the predicted elastic modulus under the assumed

Poissonrsquos ratio of 025 Comparison between the elastic modulus obtained from the

actual Poissonrsquos ratio may show the validity of assumption of the Poissonrsquos ratio posed

here

3) All tests made in this research are on dry specimens the results of pore

pressure and degree of saturation have not been investigated It is desirable to learn also

the proposed MPL testing technique can yield the intact rock properties under

different degree of saturation

88

REFERENCES

ASTM D2664-86 Standard test method for triaxial compressive strength of

undrained rock core specimens without pore pressure measurements In

Annual Book of ASTM Standards (Vol 0408) Philadelphia American

Society for Testing and Materials

ASTM D7012-07 Standard test method for compressive strength and elastic moduli

of intact rock core specimens under varying states of stress and

temperatures In Annual Book of ASTM Standards (Vol 0408) West

Conshohocken American Society for Testing and Materials

ASTM D3967-81 Standard test method for splitting tensile strength of intact rock

core specimens In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

ASTM D4543-85 Standard test method for preparing rock core specimens and

determining dimensional and shape tolerances In Annual Book of ASTM

Standards (Vol 0408) Philadelphia American Society for Testing and

Materials

ASTM D5731-95 Standard test method for determination of point load strength

index of rock In Annual Book of ASTM Standards (Vol 0408)

Philadelphia American Society for Testing and Materials

Bieniawski Z T (1974) Estimating of the strength of rock materials J Inst

Min Metall 7 123-137

Bieniawski Z T (1975) The point-load test in geotechnical practice Engng

Geol 9 1-11

89

Bieniawski Z T and Bernede M J (1979) Suggested methods for determining the

uniaxial compressive strength and deferability of rock material for ISRM

Commission on Standardization of Laboratory and Field test Int J Rock

Mech Min Sci 16 (2)xxxx (page no)

Bray J W (1987) Some applications of elastic theory In E T Brown (ed)

Analytical and Computational Methods in Engineering Rock

Mechanics (pp 32-94) Allen amp Unwin London

Broch E and Franklin J A (1972) The point-load test Int J Rock Mech Min

Sci 9 669-697

Book N (1977) The use of irregular specimens for rock strength tests Int J

Rock Mech Min Sci amp Geomech Abstr 14 193-202

Book N (1979) Estimating the triaxial strength of rocks Int J Rock Mech Min

Sci amp Geomech Abstr 16 261-264

Book N (1980) Size correction for point load testing Int J Rock Mech Min

Sci 17231-235 [Technical note]

Book N (1985) The equivalent core diameter method of size and shape correction

in point load testing Int J Rock Mech Min Sci amp Geomech Abstr

22 61-70

Brown E T (1981) Rock characterization Testing and Monitoring ISRM

Suggestion Methods New York International Society for Rock

Mechanics Pergamon Press

Butenuth C (1997) Comparison of tensile strength values of rocks determined by

point load and direct tensile tests Rock Mech Rock Engng 30 65-72

90

Cargill J S and Shakoor A (1992) Evaluation of empirical methods for measuring

the uniaxial compressive strength Int J Rock Mech Min Sci 27 495-503

Chau KT (1997) Youngrsquos modulus interpreted from compression tests with end

friction J Engng Mech January 1-7 plat Ann Inst Tech Trav Publics

58 967-971

Chau KT and Wei X X (1999) A new analytic solution for the diametral point

load strength test on finite solid circular cylinders Int J Solids and

Structures 38(9) 1459-1481

Chau KT and Wong R HC (1996) Uniaxial compressive strength and point

load strength Int J Rock Mech Min Sci 33183-188

Davis R O and Selvadurai APS (1996) Elasticity and Geomechanics New

York Cambridge University Press 198 p

Deere DU and Miller R P (1966) Engineering Classification and Index

Properties for Intact Rock US Air Force Weapons Lab Rep AFWL-

TR-65-116

Durelli A J and Parks V (1962) Relationship of size and stress gradient to brittle

failure stress In Proceeding of the 4th US National Cong Of Appl

Mech (pp 931-938)

Evans I (1961) The tensile strength of coal Colliery Eng 38 428-434

Fairhurst C (1961) Laboratory measurement of some physical properties of rock

In Proceeding of the 4th Symp Rock Mech (pp 105-118) Penn State

University

Farmer I (1983) Engineering Behavior of Rocks New York Chapman and Hall

208 p

91

Forster I R (1983) The influence of core sample geometry on axial load test Int

J Rock Mech Min Sci 20 291-295

Fuenkajorn K (2002) Modified point load test determining uniaxial compressive

strength of intact rock In Proceeding of 5th North American Rock

Mechanics Symposium and the 17th Tunneling Association of Canada

Conference (NARMS-TAC 2002) (pp ) Toronto

Fuenkajorn K and Daemen J J K (1986) Shape effect on ring test tensile

strength In Key to Energy Production Proceeding of the 27th US

Symposium on Rock Mechanics (pp 155-163) Tuscaloosa University of

Alabama

Fuenkajorn K and Daemen J J K (1991b) An empirical strength criterion for

heterogeneous welded tuff In ASME Applied Mechanics and

Biomechanics Summer Conference Columbus Ohio University

Fuenkajorn K and Daemen J J K (1992) An empirical strength criterion for

heterogeneous tuff Int J Engineering Geology 32 209-223

Fuenkajorn K and Tepnarong P (2001) Size and stress gradient effects on the

modified point load strength of Saraburi Marble In the 6th Mining

Metallurgical and Petroleum Engineering Conference Bangkok

Thailand(pp)

Ghosh A Fuenkajorn K and Daemen J J K (1995) Tensile strength of welded

Apache Leap tuff investigation for scale effects In Proceeding of the 35th

US Rock Mech Symposium (pp 459-646) University of Navada Reno

Goodman R E (1980) Methods of Geological Engineering in Discontinuous

Rock New York Wiley and Sons

92

Greminger M (1982) Experimental studies of the influence of rock anisotropy on

size and shape effects in point-load testing Int J Rock Mech Min Sci

19 241-246

Gunsallus K L and Kulhawy F H (1984) A comparative evaluation of rock

strength measures Int J Rock Mech Min Sci 21 233-248

Hassani F P Scoble M J and Whittaker B N (1980) Application of point load

index test to strength determination of rock and proposals for new size-

correction chart (pp 543-564) Rolla

Hiramatsu Y and Oka Y (1966) Determination of tensile strength of rock by a

compression test of irregular test piece Int J Rock Mech Min Sci 3

89-99

Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the

Hoek-Brown falure criterion-Technical note Int J Rock Mech Min Sci

amp Geomech Abstr 27 227-229

Hoek E and Brown E T (1980a) Empirical strength criterion for rock masses J

Geotech Eng Div 106 (GT9) 1013-1035

Hondros G (1959) The evaluation of Poissonrsquos ratio and modulus of material of a

low tensile resistance by the Brazilian (indirect tensile) test with particular

reference to concrete Aust J Appl Sci 10 243-264

Horii H and Nemat-Nasser S (1985) Compression-induced microcrack growth in

brittle solids axial splitting and shear failure J Geophts Res 90 3105-

3125

93

Hudson J A Brown E T and Fairhurst C (1971) Shape of the complete stress-

strain curve for rock In Proceeding of the 13th US Symp Rock Mech (pp

773-795) Urbana

ISRM (1985) Suggested method for determining point load strength Int J Rock

Mech Min Sci amp Geomech Abstr 22 53-60

ISRM (1985) Suggested methods for deformability determination using a flexible

dilatometer Int J Rock Mech Min Sci amp Geomech Abstr 24 123-134

Jaeger J C and Cook N G W (1979) Fundamentals of Rock Mechanics

London Chapman and Hall 593 p

Kaczynski R R (1986) Scale effect during compressive strength of rocks In

Proceeding of 5th Int Assoc Eng Geol Congr p 371-373

Lama R D and Vutukuri V S (1978) Testing techniques and results In

Handbook on Mechanical Properties of Rock Vol III No 2 Trans

Tech Publications (International Standard Book Number 0-87849-022-1

Clausthal Germany)

Lonborg N (1967) The strength-size relation of granite Int J Rock Mech Min

Sci 4 269-272

Miller R P (1965) Engineering Classification and Index Properties for Intact

Rock PhD Dissertation Univ Of Illinois Urbana III 92 p

Nimick F B (1988) Empirical relations between porosity and the mechanical

properties of tuff In Key Questions in Rock Mechanics (pp 741-742)

Balkema Rotterdam

Obert L and Stephenson D E (1965) Stress conditions under which core disking

occurs Trans Soc Min Eng AIME 232 227-235

94

Panek L A and Fannon T A (1992) Size and shape effects in point load tests

of irregular rock fragments J Rock Mechanics and Rock Engineering

25 109-140

Pells P J N (1975) The use of point load test in predicting the compressive

strength of rock material Aust Geotech (pp 54-56) G5(N1)

Reichmuth D R (1968) Point-load testing of brittle materials to determine the

tensile strength and relative brittleness In Proceeding of the 9th US Symp

Rock Mech (pp 134-159) University of Colorado

Sammis C G and Ashby M F (1986) The failure of brittle porous solid under

compressive stress state Acta Metall 34 511-526

Serata S and Fuenkajorn K (1992a) Finite element progam lsquoGEOrsquo for modeling

brittle-ductile deterioration of aging earth structures In SMRI Paper

Presented at the Solution Mining Research Institute Fall Meeting

October 19-22 Houston Texas 24p

Sheorey P R Biswas A K and Choubey V D (1989) An empirical failure

criterion of rocks and jointed rock masses Eng Geol 26 141-159

Stowe R L (1969) Strength and deformation properties of granite basalt

limestone and tuff US Army Corps of Engineers WES Misc Paper C-69-1

Taliercio A and Sacchi Landrianni G (1988) Failure criterion for layered rock

Int J Rock Mech Min Sci amp Geomech Abstr 25 299-305

Tepnarong P (2001) Theoretical and experimental studies to determine

compressive and tensile strengths of rocks using modified point load

testing M Eng Thesis Suranaree University of Technology Thailand

95

Tepnarong P (2006) Theoretical and experimental studies to determine elastic

modulus and triaxial compressive strength of intact rocks by modified

point load testing PhD Eng Thesis Suranaree University of

Technology Thailand

Tepnarong P and Fuenkajorn K (2004) Determining of elasticity and strengths

of intact rocks using modified point load test In Proceeding of the ISRM

International Symposium 3rd ASRM Vol 2 (pp 397-392)

Timoshenko S (1958) Strength of materials I Element Theory and Problems

(3rd ed) Princeton N J D Van Nostard

Timoshenko S and Goodier J N (1951) Theory of Elasticity (2nd ed) New

York McGraw-Hill

Truk N and Dearman W R (1985) Improvements in the determination of point

load strength Bull Int Assoc Eng Geol 31 137-142

Truk N and Dearman W R (1986) A correction equation on the influence of

length-to-diameter ratio on uniaxial compressive strength of rocks J Eng

Geol 22 293-300

Wei X X and Chau K T (2002) Analytic solution for finite transversely

isotropic circular cylinder under the axial point load test J Eng Mech

(pp 209-219)Vol

Wei X X and Chau K T and Wong R H C (1999) Analytic solution for

axial point load strength test on solid circular cylinders J Eng Mech (pp

1349-1357) Vol

96

Wijk G (1978) Some new theoretical aspects of indirect measurements of the

tensile strength of rocks Int J Rock Mech Min Sci amp Geomech

Abstr 15 149-160

Wijk G (1980) The point load test for the tensile strength of rock Geotech Test

ASTM 3 49-54

APPENDIX A

CHARACTERIZATION TEST RESULTS

97

Table A-1 Results of conventional point load strength index test on porphyritic

andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

And-06-05-CPL-01 5397 5366 284 52 And-06-05-CPL-02 5332 5366 283 78 And-08-04-CPL-03 5432 5366 284 90 And-08-04-CPL-04 5482 5366 286 87 And-06-01-CPL-05 5330 5366 285 76 And-06-01-CPL-06 5613 5366 284 76 And-04-04-CPL-07 5617 5366 281 75 And-04-05-CPL-08 5525 5366 282 75 And-03-02-CPL-09 5595 5366 280 85 And-03-02-CPL-10 5535 5366 283 85 And-06-06-CPL-11 5475 5366 283 75 And-09-01-CPL-12 5552 5366 286 90 And-09-01-CPL-13 5503 5366 283 90 And-02-04-CPL-14 5542 5366 282 85 And-09-03-CPL-15 5607 5366 282 85 And-09-03-CPL-16 5452 5366 285 96 And-01-03-CPL-17 5530 5366 283 87 And-01-03-CPL-18 5313 5366 283 90 And-01-04-CPL-19 5465 5366 284 56 And-01-04-CPL-20 5572 5366 283 97

Average 81plusmn12

98

Table A-2 Results of conventional point load strength index test on silicified

tuffaceous sand stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

SST-02-03-CPL-01 5373 5366 268 125 SST-06-04-CPL-02 5469 5366 268 70 SST-02-07-CPL-03 5505 5366 269 70 SST-02-06-CPL-04 5518 5366 267 130 SST-02-04-CPL-05 5626 5366 267 125 SST-02-03-CPL-06 5139 5366 270 132 SST-02-03-CPL-07 5483 5366 271 71 SST-02-05-CPL-08 5340 5366 266 125 SST-02-05-CPL-09 5399 5366 265 70 SST-07-05-CPL-10 5643 5366 263 99 SST-07-05-CPL-11 5381 5366 266 106 SST-05-02-CPL-12 5439 5366 274 104 SST-05-02-CPL-13 5491 5366 271 104 SST-03-04-CPL-14 5430 5366 263 113 SST-03-04-CPL-15 5556 5366 263 106 SST-09-03-CPL-16 5491 5366 272 125 SST-09-03-CPL-17 5703 5366 271 125 SST-01-01-CPL-18 5705 5366 267 132 SST-02-07-CPL-19 5596 5366 269 111 SST-02-07-CPL-20 5527 5366 271 118

Average 108plusmn22

99

Table A-3 Results of conventional point load strength index test on tuffaceous sand

stone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

Point Load Strength Index Test Is (MPa)

TST-06-05-CPL-01 5657 5366 263 125 TST-06-05-CPL-02 5781 5366 264 109 TST-02-05-CPL-03 5686 5366 263 106 TST-02-05-CPL-04 5747 5366 264 80 TST-08-03-CPL-05 5606 5366 268 115 TST-08-03-CPL-06 5574 5366 266 118 TST-08-01-CPL-07 5491 5366 268 111 TST-08-01-CPL-08 5478 5366 268 115 TST-04-02-CPL-09 5422 5366 263 103 TST-04-02-CPL-10 5387 5366 264 111 TST-08-04-CPL-11 5371 5366 267 115 TST-08-04-CPL-12 5463 5366 267 113 TST-06-07-CPL-13 5545 5366 267 108 TST-04-01-CPL-14 5729 5366 261 59 TST-06-06-CPL-15 5457 5366 261 99 TST-06-06-CPL-16 5469 5366 263 109 TST-06-06-CPL-17 5497 5366 266 122 TST-04-03-CPL-18 5550 5366 261 87 TST-04-03-CPL-19 5521 5366 262 52 TST-04-05-CPL-20 5477 5366 264 87

Average 102plusmn20

100

Table A-4 Results of uniaxial compressive strength tests and elastic modulus

measurements on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-5 Results of uniaxial compressive strength tests and elastic modulus

measurements on silicified tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

Table A-6 Results of uniaxial compressive strength tests and elastic modulus

measurements on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σc (MPa)

E (GPa)

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

101

Table A-7 Results of Brazilian tensile strength tests on porphyritic andesite

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

And-04-03-BZ-01 2628 5366 281 395 178 And-04-03-BZ-02 2551 5366 279 350 163 And-04-03-BZ-03 2755 5366 285 380 164 And-04-03-BZ-04 2669 5366 279 415 184 And-04-06-BZ-05 2686 5366 280 320 141 And-04-06-BZ-06 2699 5366 286 415 182 And-04-06-BZ-07 2649 5366 282 395 177 And-04-06-BZ-08 2642 5366 286 340 153 And-06-01-BZ-09 2678 5366 286 435 193 And-06-01-BZ-10 2758 5366 285 385 166

Average 170plusmn16

Table A-8 Results of Brazilian tensile strength tests on silicified tuffaceous

sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

SST-02-02-BZ-01 2507 5366 265 450 213 SST-01-06-BZ-02 2664 5366 264 520 232 SST-01-02-BZ-03 2595 5366 262 400 183 SST-01-02-BZ-04 2593 5366 261 320 146 SST-01-02-BZ-05 2608 5366 266 500 228 SST-02-01-BZ-06 2710 5366 266 500 220 SST-02-01-BZ-07 2654 5366 262 450 201 SST-01-05-BZ-08 2778 5366 268 350 150 SST-01-05-BZ-09 2793 5366 266 400 170 SST-01-05-BZ-10 2795 5366 266 400 170

Average 191plusmn32

102

Table A-9 esults of Brazilian tensile strength tests on tuffaceous sandstone

Sample No Thickness (mm)

Diameter (mm)

Density (gcc)

Failure Load (kN)

σB (MPa)

TST-02-03-BZ-01 2811 5366 260 360 152 TST-02-03-BZ-02 2757 5366 260 255 110 TST-02-03-BZ-03 2739 5366 262 325 141 TST-02-03-BZ-04 2688 5366 263 175 77 TST-06-04-BZ-05 2765 5366 266 450 193 TST-06-04-BZ-06 2729 5366 264 280 122 TST-06-04-BZ-07 2730 5366 260 230 100 TST-06-02-BZ-08 2748 5366 264 285 123 TST-06-02-BZ-09 2743 5366 261 290 125 TST-06-02-BZ-10 2658 5366 265 370 165

Average 131plusmn33

Table A-10 esults of triaxial compressive strength tests on porphyritic andesite

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

And-02-02-UCS-01 13486 5366 282 1327 451 And -06-03-UCS-02 13494 5366 283 1106 397 And -02-01-UCS-03 13485 5366 280 1061 470 And -08-03-UCS-04 13417 5366 284 1282 392 And -04-04-UCS-05 13464 5366 285 973 438

Average 115plusmn150 430plusmn34

Table A-11 Results of triaxial compressive strength tests on silicified tuffaceous

sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

SST-02-01-UCS-01 13309 5366 271 1194 6569 SST-07-01-UCS-02 13547 5366 267 930 632 SST-07-03-UCS-03 13095 5366 268 1194 503 SST-02-06-UCS-04 13475 5366 269 1614 661 SST-06-02-UCS-05 13577 5366 270 1106 713

Average 1207plusmn252 633plusmn80

103

Table A-12 Results of triaxial compressive strength tests on tuffaceous sandstone

Sample No Length (mm)

Diameter (mm)

Density (gcc)

σ3 (MPa)

σ1 (MPa

TST-08-02-UCS-01 13810 5366 266 1017 538 TST-01-02-UCS-02 13236 5366 268 1238 545 TST-02-04-UCS-03 13558 5366 264 973 441 TST-06-09-UCS-04 13515 5366 267 1459 475 TST-02-02-UCS-05 13745 5366 263 884 566

Average 1114plusmn233 513plusmn53

APPENDIX B

MODIFIED POINT LOAD TEST RESULTS FOR ELASTIC

MODULUS PREDICTION

116

AND-MPL-01

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 125 GPamm

Figure B1 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-01

And-MPL-02

00500

100015002000250030003500400045005000

0 005 01 015 02 025 03 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 180 GPamm

Figure B2 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-02

117

And-MPL-03

00200400600800

100012001400160018002000

000 002 004 006 008 010 012 014

Diplacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B3 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-03

And-MPL-04

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B4 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-04

118

And-MPL-05

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 369 GPamm

Figure B5 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-05

And-MPL-06

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B6 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-06

119

And-MPL-07

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss (

MPa

)

ΔPΔδ = 234 GPamm

Figure B7 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-07

And-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 171 GPamm

Figure B8 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-08

120

And-MPL-09

00

500

1000

1500

2000

2500

3000

3500

000 020 040 060 080 100 120 140Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 056 GPamm

Figure B9 Applied stress (P) as a function of displacement (δ) for specimen no And-

MPL-09

And-MPL-10

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 124 GPamm

Figure B10 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-10

121

And-MPL-11

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030 035 040Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 138 GPamm

Figure B11 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-11

And-MPL-12

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 189 GPamm

Figure B12 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-12

122

And-MPL-13

00500

100015002000250030003500400045005000

000 010 020 030 040 050 060

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 151 GPamm

Figure B13 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-13

And-MPL-14

00

1000

2000

3000

4000

5000

6000

7000

000 010 020 030 040 050 060Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 165 GPamm

Figure B14 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-14

123

And-MPL-15

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120 140 160Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 011 GPamm

Figure B15 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-15

And-MPL-16

00

200

400

600

800

1000

1200

1400

1600

1800

000 050 100 150 200Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 012 GPamm

Figure B16 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-16

124

And-MPL-17

00

500

1000

1500

2000

2500

000 020 040 060 080 100 120

Displacement (mm)

Stre

ss P

(MPa

) ΔPΔδ = 021 GPamm

Figure B17 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-17

And-MPL-18

00

500

1000

1500

2000

2500

3000

000 050 100 150 200 250 300 350Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 008 GPamm

Figure B18 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-18

125

And-MPL-19

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B19 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-19

And-MPL-20

00

1000

2000

3000

4000

5000

6000

000 050 100 150 200 250 300

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 017 GPamm

Figure B20 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-20

126

And-MPL-21

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B21 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-21

And-MPL-22

00

500

1000

1500

2000

2500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 087 GPamm

Figure B22 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-22

127

And-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B23 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-23

And-MPL-24

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =112 GPamm

Figure B24 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-24

128

And-MPL-25

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 585 GPamm

Figure B25 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-25

And-MPL-26

00500

10001500200025003000350040004500

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 143 GPamm

Figure B26 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-26

129

And-MPL-27

00500

10001500200025003000350040004500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B27 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-27

And-MPL-28

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 200 GPamm

Figure B28 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-28

130

And-MPL-29

00500

1000150020002500300035004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B29 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-29

And-MPL-30

00

1000

2000

3000

4000

5000

6000

7000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B30 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-30

131

And-MPL-31

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B31 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-31

And-MPL-32

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B32 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-32

132

And-MPL-33

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 101 GPamm

Figure B33 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-33

And-MPL-34

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 135 GPamm

Figure B34 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-34

133

And-MPL-35

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 127 GPamm

Figure B35 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-35

And-MPL-36

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 292 GPamm

Figure B36 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-36

134

And-MPL-37

050

100150200250300350400450

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 156 GPamm

Figure B37 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-37

And-MPL-38

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B38 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-38

135

And-MPL-39

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 186 GPamm

Figure B39 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-39

And-MPL-40

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 20 GPamm

Figure B40 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-40

136

And-MPL-41

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B41 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-41

And-MPL-42

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ =231 GPamm

Figure B42 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-42

137

And-MPL-43

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 346 GPamm

Figure B43 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-43

And-MPL-44

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 234 GPamm

Figure B44 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-44

138

And-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 169 GPamm

Figure B45 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-45

And-MPL-46

00

200

400

600

800

1000

1200

1400

1600

1800

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 175 GPamm

Figure B46 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-46

139

And-MPL-47

00

200

400

600

800

1000

1200

1400

1600

1800

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B47 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-47

And-MPL-48

00

200

400

600

800

1000

1200

1400

1600

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 094 GPamm

Figure B48 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-48

140

And-MPL-49

00

100

200

300

400

500

600

700

800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 057 GPamm

Figure B49 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-49

And-MPL-50

00

200

400

600

800

1000

1200

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 078 GPamm

Figure B50 Applied stress (P) as a function of displacement (δ) for specimen no

And-MPL-50

141

SST-MPL-01

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 280 GPamm

Figure B51 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-01

SST-MPL-02

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 307 GPamm

Figure B52 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-02

142

SST-MPL-03

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 356 GPamm

Figure B53 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-03

SST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 450 GPamm

Figure B54 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-04

143

SST-MPL-05

00100020003000400050006000700080009000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 532 GPamm

Figure B55 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-05

SST-MPL-06

00500

100015002000250030003500400045005000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 273 GPamm

Figure B56 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-06

144

SST-MPL-07

0010002000300040005000600070008000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 418 GPamm

Figure B57 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-07

SST-MPL-08

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 414 GPamm

Figure B58 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-08

145

SST-MPL-09

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B59 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-09

SST-MPL-10

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 958 GPamm

Figure B60 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-10

146

SST-MPL-11

00

10002000

300040005000

60007000

8000

000 005 010 015 020 025 030Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 400 GPamm

Figure B61 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-11

SST-MPL-12

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 272 GPamm

Figure B62 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-12

147

SST-MPL-13

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 408 GPamm

Figure B63 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-13

SST-MPL-14

00

500

1000

1500

2000

2500

000 002 004 006 008 010Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 296 GPamm

Figure B64 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-14

148

SST-MPL-15

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 282 GPamm

Figure B65 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-15

SST-MPL-16

00500

1000150020002500300035004000

000 005 010 015 020

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 26 GPamm

Figure B66 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-16

149

SST-MPL-17

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 416 GPamm

Figure B67 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-17

SST-MPL-18

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 473 GPamm

Figure B68 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-18

150

SST-MPL-19

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ngth

P (M

Pa)

ΔPΔδ = 330 GPamm

Figure B69 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-19

SST-MPL-20

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 278 GPamm

Figure B70 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-20

151

SST-MPL-21

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 185 GPamm

Figure B71 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-21

SST-MPL-22

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 182 GPamm

Figure B72 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-22

152

SST-MPL-23

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 15 GPamm

Figure B73 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-23

SST-MPL-24

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 295 GPamm

Figure B74 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-24

153

SST-MPL-25

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 259 GPamm

Figure B75 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-25

SST-MPL-26

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030 035 040

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 221 GPamm

Figure B76 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-26

154

SST-MPL-27

00500

10001500200025003000350040004500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 274 GPamm

Figure B77 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-27

SST-MPL-28

0010002000300040005000600070008000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 209 GPamm

Figure B78 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-28

155

SST-MPL-29

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 176 GPamm

Figure B79 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-29

SST-MPL-30

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B80 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-30

156

SST-MPL-31

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 464 GPamm

Figure B81 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-31

SST-MPL-32

00

500

1000

1500

2000

2500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 178 GPamm

Figure B82 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-32

157

SST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 131 GPamm

Figure B83 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-33

SST-MPL-34

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 215 GPamm

Figure B84 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-34

158

SST-MPL-35

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 190 GPamm

Figure B85 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-35

SST-MPL-36

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B86 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-36

159

SST-MPL-37

00500

1000150020002500300035004000

000 010 020 030 040 050

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 067 GPamm

Figure B87 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-37

AND-MPL-38

00

500

10001500

2000

2500

3000

35004000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ssP

(MPa

)

ΔPΔδ = 127 GPamm

Figure B88 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-38

160

SST-MPL-39

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 229 GPamm

Figure B89 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-39

SST-MPL-40

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 090 GPamm

Figure B90 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-40

161

SST-MPL-41

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 498 GPamm

Figure B91 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-41

SST-MPL-42

00

1000

2000

3000

4000

5000

6000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 392 GPamm

Figure B92 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-42

162

SST-MPL-43

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 244 GPamm

Figure B93 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-43

SST-MPL-44

00100020003000400050006000700080009000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 571 GPamm

Figure B94 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-44

163

SST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 001 002 003 004 005 006 007 008

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 780 GPamm

Figure B95 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-45

SST-MPL-46

0010002000300040005000600070008000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 411 GPamm

Figure B96 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-46

164

SST-MPL-47

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 309 GPamm

Figure B97 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-47

SST-MPL-48

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 338 GPamm

Figure B98 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-48

165

SST-MPL-49

00500

1000150020002500300035004000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 254 GPamm

Figure B99 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-49

SST-MPL-50

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 360 GPamm

Figure B100 Applied stress (P) as a function of displacement (δ) for specimen no

SST-MPL-50

166

TST-MPL -01

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 212GPamm

Figure B101 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-01

TST-MPL-02

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=326 GPamm

Figure B102 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-02

167

TST-MPL-03

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacememt (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B103 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-03

TST-MPL-04

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B104 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-04

168

TST-MPL-05

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 264 GPamm

Figure B105 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-05

TST-MPL-06

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025

Displacment (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 143 GPamm

Figure B106 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-06

169

TST-MPL-07

00

500

1000

1500

2000

2500

3000

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 162 GPamm

Figure B107 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-07

TST-MPL-08

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=319 GPamm

Figure B108 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-08

170

TST-MPL-09

00500

100015002000250030003500400045005000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =212 GPamm

Figure B109 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-09

TST-MPL-10

00200400600800

1000120014001600

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 132GPamm

Figure B110 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-10

171

TST-MPL-11

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =319 GPamm

Figure B111 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-11

TST-MPL-12

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 127 GPamm

Figure B112 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-12

172

TST-MPL-13

00500

1000150020002500300035004000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 159 GPamm

Figure B113 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-13

TST-MPL-14

00

500

1000

1500

2000

2500

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =170 GPamm

Figure B114 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-14

173

TST-MPL-15

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 260 GPamm

Figure B115 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-15

TST-MPL-16

00500

100015002000250030003500400045005000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 102 GPamm

Figure B116 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-16

174

TST-MPL-17

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 650 GPamm

Figure B117 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-17

TST-MPL-18

00

200

400

600

800

1000

1200

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=073 GPamm

Figure B118 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-18

175

TST-MPL-19

00

200

400

600

800

1000

1200

1400

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B119 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-19

TST-MPL-20

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=170 GPamm

Figure B120 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-20

176

TST-MPL-21

00200400600800

10001200140016001800

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=100 GPamm

Figure B121 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-21

TST-MPL-22

00200400600800

10001200140016001800

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 088 GPamm

Figure B122 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-22

177

TST-MPL-23

00

500

1000

1500

2000

2500

3000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 101 GPamm

Figure B123 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-23

TST-MPL-24

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 124 GPamm

Figure B124 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-24

178

TST-MPL-25

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 126 GPamm

Figure B125 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-25

TST-MPL-26

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 178 GPamm

Figure B126 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-26

179

TST-MPL-27

00

1000

2000

3000

4000

5000

6000

000 005 010 015 020 025 030 035

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B127 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-27

TST-MPL-28

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020 025 030

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 164 GPamm

Figure B128 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-28

180

TST-MPL-29

00

500

1000

1500

2000

2500

3000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 128 GPamm

Figure B129 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-29

TST-MPL-30

00500

100015002000250030003500400045005000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔP Δδ =280 GPamm

Figure B130 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-30

181

TST-MPL-31

00500

10001500200025003000350040004500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 158 GPamm

Figure B131 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-31

TST-MPL-32

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 170 GPamm

Figure B132 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-32

182

TST-MPL-33

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 130 GPa mm

Figure B133 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-33

TST-MPL-34

00

500

1000

1500

2000

2500

3000

3500

4000

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B134 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-34

183

TST-MPL-35

00

1000

2000

3000

4000

5000

6000

7000

000 005 010 015 020 025

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B135 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-35

TST-MPL-36

00500

100015002000250030003500400045005000

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 325 GPamm

Figure B136 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-36

184

TST-MPL-37

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014 016

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 217 GPamm

Figure B137 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-37

TST-MPL-38

00500

10001500200025003000350040004500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 52 GPamm

Figure B138 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-38

185

TST-MPL-39

00

500

1000

1500

2000

2500

3000

3500

000 005 010 015 020

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B139 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-39

TST-MPL-40

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 347 GPamm

Figure B140 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-40

186

TST-MPL-41

00

500

1000

1500

2000

2500

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B141 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-41

TST-MPL-42

00

500

1000

1500

2000

2500

3000

3500

4000

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 260 GPamm

Figure B142 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-42

187

TST-MPL -43

00

500

1000

1500

2000

2500

3000

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 435 GPamm

Figure B143 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-43

TST-MPL-44

00

200

400

600

800

1000

1200

1400

1600

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B144 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-44

188

TST-MPL-45

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 315 GPamm

Figure B145 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-45

TST-MPL-46

00

500

1000

1500

2000

2500

000 002 004 006 008 010 012 014Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 222 GPamm

Figure B146 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-46

189

TST-MPL-47

00

200

400

600

800

1000

1200

000 005 010 015 020Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ=128 GPamm

Figure B147 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-47

TST-MPL-48

00200400600800

10001200140016001800

000 002 004 006 008 010

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ= 237GPamm

Figure B148 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-48

190

TST-MPL-49

00

500

1000

1500

2000

2500

3000

3500

4000

4500

000 002 004 006 008 010 012 014 016Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 371 GPamm

Figure B149 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-49

TST-MPL-50

00

500

1000

1500

2000

2500

3000

3500

000 002 004 006 008 010 012 014

Displacement (mm)

Stre

ss P

(MPa

)

ΔPΔδ = 394 GPamm

Figure B150 Applied stress (P) as a function of displacement (δ) for specimen no

TST-MPL-50

BIOGRAPHY

Mr Chatchai Intaraprasit was born on July 30 1973 in Khon Kaen province

Thailand He received his Bachelorrsquos Degree in Science (Geotechnology) from Khon

Kaen University in 1996 He worked with the construction company for ten years

after graduated the Bachelorrsquos Degree For his post-graduate he continued to study

with a Masterrsquos Degree in the Geological Engineering Program Institute of

Engineering Suranaree University of Technology He has published a technical

papers related to rock mechanics as in 2009 ldquoModified point load testing of volcanic

rocks from Chatree gold minerdquo in the proceeding of the second Thailand symposium

on rock mechanics Chonburi Thailand For his work he is working as a

geotechnical engineer at Akara mining company limited Phichit province Thailand

  • cover
  • abstractpdf
  • CHAPTER I
  • CHAPTER II
  • CHAPTER III
  • CHAPTER IV
  • CHAPTER V
  • CHAPTER VI
  • REFERENCES
  • APPENDIX A
  • APPENDIX B
  • BIOGRAPHY
Page 12: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 13: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 14: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 15: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 16: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 17: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 18: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 19: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 20: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 21: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 22: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 23: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 24: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 25: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 26: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 27: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 28: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 29: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 30: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 31: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 32: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 33: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 34: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 35: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 36: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 37: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 38: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 39: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 40: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 41: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 42: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 43: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 44: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 45: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 46: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 47: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 48: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 49: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 50: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 51: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 52: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 53: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 54: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 55: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 56: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 57: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 58: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 59: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 60: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 61: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 62: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 63: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 64: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 65: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 66: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 67: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 68: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 69: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 70: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 71: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 72: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 73: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 74: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 75: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 76: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 77: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 78: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 79: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 80: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 81: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 82: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 83: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 84: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 85: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 86: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 87: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 88: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 89: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 90: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 91: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 92: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 93: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 94: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 95: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 96: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 97: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 98: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 99: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 100: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 101: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 102: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 103: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 104: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 105: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 106: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 107: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 108: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 109: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 110: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 111: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 112: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 113: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 114: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 115: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 116: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 117: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 118: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 119: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 120: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 121: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 122: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 123: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 124: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 125: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 126: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 127: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 128: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 129: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 130: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 131: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 132: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 133: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 134: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 135: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 136: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 137: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 138: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 139: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 140: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 141: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 142: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 143: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 144: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 145: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 146: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 147: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 148: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 149: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 150: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 151: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 152: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 153: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 154: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 155: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 156: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 157: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 158: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 159: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 160: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 161: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 162: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 163: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 164: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 165: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 166: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 167: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 168: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 169: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 170: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 171: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 172: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 173: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 174: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 175: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 176: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 177: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 178: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 179: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 180: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 181: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 182: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 183: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 184: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 185: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 186: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 187: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 188: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 189: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 190: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 191: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 192: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 193: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 194: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 195: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 196: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 197: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 198: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 199: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 200: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 201: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 202: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 203: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 204: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 205: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 206: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·
Page 207: นายชาติชาย นายเดโช นทรประสิ์ ิทธ อิ เผือกภูมิsutir.sut.ac.th:8080/sutir/bitstream/123456789/3458/2/fulltext.pdf ·