A relaxation scheme for the numerical modelling of phase transition.

32
A relaxation scheme for the numerical modelling of phase transition. Philippe Helluy , Université de Toulon, Projet SMASH, INRIA Sophia Antipolis. International Workshop on Multiphase and Complex Flow simulation for Industry, Cargese, October 20-24, 2003.

description

International Workshop on Multiphase and Complex Flow simulation for Industry, Cargese, October 20-24, 2003. A relaxation scheme for the numerical modelling of phase transition. Philippe Helluy , Université de Toulon , Projet SMASH, INRIA Sophia Antipolis. boiling. Introduction. Cavitation. - PowerPoint PPT Presentation

Transcript of A relaxation scheme for the numerical modelling of phase transition.

Page 1: A relaxation scheme for the numerical modelling of phase transition.

A relaxation scheme for the numerical modelling of phase

transition.

Philippe Helluy,

Université de Toulon,

Projet SMASH, INRIA Sophia Antipolis.

International Workshop on Multiphase and Complex Flow simulation for Industry, Cargese, October 20-24, 2003.

Page 2: A relaxation scheme for the numerical modelling of phase transition.

Cavitation

boiling

Introduction

Page 3: A relaxation scheme for the numerical modelling of phase transition.

Demonstration

Introduction

Page 4: A relaxation scheme for the numerical modelling of phase transition.

Plan

• Modelling of cavitation

• Non-uniqueness of the Riemann problem

• Relaxation and projection finite volume scheme

• Numerical results

Page 5: A relaxation scheme for the numerical modelling of phase transition.

Entropy and state law

: density : internal energy

But it is an incomplete law for thermal modelling (Menikoff, Plohr, 1989)

T : temperature

The Euler compressible model needs a pressure law of the form ( , )p p

The complete state law : s is the specific entropy (concave)1/ ( , )s s

Caloric law1s

T

Tds d pd

sp T

Pressure law

Modelling

Page 6: A relaxation scheme for the numerical modelling of phase transition.

Mixtures

ii i 1 2

energy fractionsiiz

ii iy

Entropy is an additive quantity : 1 2(1 )s ys y s

1 2

1 1( , , ) ( , ) (1 ) ( , )

1 1

z zs Y ys y s

y y y y

( , , )Y y z

1 2V V V

1 1 1y y z z

volume fractionsii

V

V

We consider 2 phases (with entropy functions s1 and s2) of a same simple body (liquid water and its vapor) mixed at a macroscopic scale.

mass fractionsiiy

1 2

1 2 1 2 1 21 1 1y y z z

Modelling

Page 7: A relaxation scheme for the numerical modelling of phase transition.

Equilibrium lawMass and energy must be conserved. The equilibrium is thus determined by

0 1( , , ) max ( , , )eq

Ys Y s Y

If the maximum is attained for 0<Y<1, we obtain

1 2

1 2

1 1 2 2

( ) 0

( ) 0

( / / ) 0

sp p

sT T

zs

T Ty

p Ts

Generally, the maximum is attained for Y=0 or Y=1. If 0<Yeq<1, we are on the saturation curve.

(chemical potential)

Modelling

Page 8: A relaxation scheme for the numerical modelling of phase transition.

Mixture law out of equilibrium

1 2

1 2

( (1 ) )p p

p TT T

Mixture pressure

1 2

1 1z z

T T T

Mixture temperature

If T1=T2, the mixture pressure law becomes

1 2(1 )p p p

(Chanteperdrix, Villedieu, Vila, 2000)

Modelling

Page 9: A relaxation scheme for the numerical modelling of phase transition.

Simple model (perfect gas laws)The entropy reads

1 2(1 ) ,

ln , 1.ii ii

s ys y s

s

Temperature equilibrium

1 2 1 2( (1 ) ).T y y

Pressure equilibrium:1 21 1 2

1 2

,

1, .

1

p T T

y y

The fractions and z can be eliminated

1 1

2 2

1 2

ln ln ln

(1 ) ln ln ,

(1 ) .

s y

y

y y

Riemann

Page 10: A relaxation scheme for the numerical modelling of phase transition.

Saturation curveOut of equilibrium, we have a perfect gas law

,

( 1) .

s pp

Tp

On the other side,

1 2

1 1 2 2

( ) ln

ln 1 ln 1 .

s

y

The saturation curve is thus a line in the (T,p) plane.

Riemann

Page 11: A relaxation scheme for the numerical modelling of phase transition.

Optimization with constraints

Phase 2 is the most stable Phase 1 is the most stable

Phases 1 and 2 are at equilibrium

Riemann

Page 12: A relaxation scheme for the numerical modelling of phase transition.

Equilibrium pressure law

Let

1 1 2

2

1

1

2

1 1 2 2

exp( 1) ,

/ , / .

A

A A

We suppose 1 2.

(fluid (2) is heavier than fluid (1))

2 2

2 1

1 1

if ,

( , ) if ,

if .

p A

Riemann

Page 13: A relaxation scheme for the numerical modelling of phase transition.

Shock curves

Shock:

( )j u Shock lagrangian velocity

wL is linked to wR by a 3-shock if there is a j>0 such that:

(Hugoniot curve)

if / ,( , )

if / .L

R

w x tw t x

w x t

2 ,

,

1( ) 0.

2 L R

pj

pj

u

p p

Riemann

Page 14: A relaxation scheme for the numerical modelling of phase transition.

Two entropy solutions

On the Hugoniot curve: 2 21.

2Tds d j

Menikof & Plohr, 1989 ; Jaouen 2001; …

Riemann

Page 15: A relaxation scheme for the numerical modelling of phase transition.

A relaxation model for the cavitation

2

2 2

( ) 0,

( ) ( ) 0,

( / 2) ( / 2 ) 0,

( ), .

t x

t x

t x

t x eq

u

u u p

u u p u

Y uY Y Y

The last equation is compatible with the second principle because, by the concavity of s

( )

( )

( ( ) ( ))

0.

t x Y t x

Y eq

eq

s us s Y uY

s Y Y

s Y s Y

(Coquel, Perthame 1998)

Scheme

Page 16: A relaxation scheme for the numerical modelling of phase transition.

Relaxation-projection schemeWhen =0, the previous system can be written in the classical form

2

2 2

( ) 0,

( , , ( / 2), ) ,

( ) ( , , ( ( / 2) ) , )

t x

T T

T T

w f w

w u u Y

f w u u p u p u uY

Finite volumes scheme (relaxation of the pressure law)

1/ 21/ 2 1/ 2

1/ 2 1

( , ),

0,

( , ) Godunov flux (computable)

ni

n n n ni i i i

n n ni i i

w w n t i x

w w F F

t x

F F w w

Projection on the equilibrium pressure law1 1/ 2 1 1/ 2 1 1/ 2, ,n n n n n n

i i i i i iu u 1 1 1 1 1

0 1( , , ) max ( , , )n n n n n

i i i i iY

s Y s Y

Scheme

Page 17: A relaxation scheme for the numerical modelling of phase transition.

Numerical resultsScheme

Page 18: A relaxation scheme for the numerical modelling of phase transition.

Numerical resultsScheme

Page 19: A relaxation scheme for the numerical modelling of phase transition.

Numerical resultsScheme

Page 20: A relaxation scheme for the numerical modelling of phase transition.

Mixture of stiffened gases

1 0ln(( )i

ii i i i i is C Q s

Caloric and pressure laws( 1) ( )

i ii i i i

iii i i i i

C T Q

p Q

( 1) ii i i i ip C T

Setting

1 2

1 2

1 2

1 1 2 2

1 2

(1 )

(1 )

(1 )

(1 )

(1 )

C yC y C

Q yQ y Q

y C y C

yC y C

The mixture still satisfies a stiffened gas law

( 1)p CT

CT Q

Scheme

Barberon, 2002

Page 21: A relaxation scheme for the numerical modelling of phase transition.

Convergence and CFL Tests

0,08 mm

wall

0 mm

0,06 mm 0,015 mm

Ambient pressure (105 Pa)

High pressure(5.109 Pa)

0,005 mm

Ambient pressure (105 Pa)

200, 800, 1600, 3200 cells

Liquid

Scheme

Page 22: A relaxation scheme for the numerical modelling of phase transition.

Convergence Tests

• 200, 800, 1600, 3200 cells

• convergence of the scheme

Pressure Mass Fraction

Mixture density

Scheme

Page 23: A relaxation scheme for the numerical modelling of phase transition.

CFL Tests

• Jaouen (2001)

• CFL = 0.5, 0.7, 0.95

• No difference observed

Mass Fraction Pressure

Scheme

Page 24: A relaxation scheme for the numerical modelling of phase transition.

45 cells

12 mm

0.2 mm

10 cells35 cells

• Liquid area heated at the center by a laser pulse (Andreae, Ballmann, Müller, Voss, 2002).

• The laser pulse (10 MJ) increases the internal energy.

• Because of the growth of the internal energy, the phase transition from liquid into a vapor – liquid mixture occurs.

• Phase transition induces growth of pressure

• After a few nanoseconds,

the bubble collapses.

IV.1 Bubble appearance

Ambient liquid (1atm)

Heated liquid (1500 atm)

Results

Page 25: A relaxation scheme for the numerical modelling of phase transition.

Mixture Pressure (from 0 to 1ns)

IV.1 Bubble appearance : PressureResults

Page 26: A relaxation scheme for the numerical modelling of phase transition.

Volume Fraction of Vapor (from 0 to 60ns)

IV.1 Bubble appearance : Volume FractionResults

Page 27: A relaxation scheme for the numerical modelling of phase transition.

• Same example as previous test, with a rigid wall• Liquid area heated at the center by a laser pulse

IV.2 Bubble collapse near a rigid wall

Ambient liquid (1atm)

Heated liquid (1500 atm)

2.0 mm, 70 cells

2.4 mm, 70 cells

1.4 mm

0.15 mm 0.45 mm

Wall

Results

Page 28: A relaxation scheme for the numerical modelling of phase transition.

Mixture pressure (from 0 to 2ns)

IV.2 Bubble close to a rigid wallResults

Page 29: A relaxation scheme for the numerical modelling of phase transition.

Volume Fraction of Vapor (from 0 to 66ns)

IV.2 Bubble close to a rigid wallResults

Page 30: A relaxation scheme for the numerical modelling of phase transition.

Cavitation flow in 2DFast projectile (1000m/s) in water (Saurel,Cocchi, Butler, 1999)

p<0

3 cm

2 cm45°

15 cm, 90 cells

4 cm, 24 cells

Projectile

Pressure (pa)

final time :225 s

Results

Page 31: A relaxation scheme for the numerical modelling of phase transition.

Cavitation flow in 2DFast projectile (1000m/s) in water ; final time 225 s

p>0

Results

Page 32: A relaxation scheme for the numerical modelling of phase transition.

Conclusion

• Simple method based on physics• Entropic scheme by construction• Possible extensions : reacting flows, n phases, finite reaction rate, …

Perspectives

• More realistic laws• Critical point

Conclusion