A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The...

53
One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan Vandewalle and Daan Huybrechs K.U. Leuven, Division of Numerical and Applied Mathematics Isaac Newton Institute, Cambridge, Feb 15, 2007 Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Transcript of A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The...

Page 1: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

A Numerical Approach ToThe Steepest Descent Method

Stefan Vandewalle and Daan Huybrechs

K.U. Leuven, Division of Numerical and Applied Mathematics

Isaac Newton Institute, Cambridge, Feb 15, 2007

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 2: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Outline

1 One-dimensional oscillatory integralsIntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

2 The multi-dimensional caseMotivating examplesTheoryNumerical results

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 3: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

Outline

1 One-dimensional oscillatory integralsIntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

2 The multi-dimensional case

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 4: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

Introduction

The model problem

I :=

∫ b

af (x)e iωg(x) dx

with...

ω: frequency parameter; f : amplitude; g : oscillatorf , g : smooth real functions

classical quadrature deteriorates rapidly as ω increases

take fixed number of points per oscillationamount of operations scales linearly with ω

new oscillatory quadrature methods

asymptotic, Filon, Levin, numerical steepest descent

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 5: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

Introduction

What determines the value of the integral? Example: (10 − x2)ei ω x2

−2 −1 0 1 2

−10

−8

−6

−4

−2

0

2

4

6

8

10

−2 −1 0 1 2

−10

−8

−6

−4

−2

0

2

4

6

8

10

−2 −1 0 1 2

−10

−8

−6

−4

−2

0

2

4

6

8

10

regions where the oscillations do not cancel:⇒ boundary points

regions where the integrand is (locally) not oscillatory:⇒ stationary points: solutions to g′(x) = 0

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 6: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

Introduction

What is the size of the integral (asymptotically) ?

|I | = O(ω−1/(r+1))

with r : the largest order of any stationary point ξ in [a, b]g (j)(ξ) = 0, j = 1, . . . , r ; g (r+1)(ξ) 6= 0

Our goal: to find a decomposition of the integral∫ ba f (x)e iωg(x)dx = F (a) + F (b) +

∑i F (ξi )

with ξi ∈ [a, b] the stationary points

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 7: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The steepest descent approach

Basic idea: select a new integration path

assume f and g are analytic

Cauchy’s theorem: the value of I does not depend on thecomplex path taken

C

ba

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 8: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The steepest descent approach

The path of ”steepest descent”(Cauchy(1827), Riemann (1863))

eiωg(x) = e iω(<g(x)+i=g(x)) = e−ω=g(x)e iω<g(x)

1 The function e iωg(x) does not oscillate if <g(x) is fixed

2 The function e iωg(x) decays exponentially fast if =g(x) > 0

⇒ new path at point a: ha(p) such that

g(ha(p)) = g(a) + p i , p ≥ 0

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 9: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The steepest descent approach

Example 1: Fourier oscillator g(x) = x (f (x) = 10− x2)

g(ha(p)) = g(a) + pi⇒ ha(p) = a + pi

ha hb

��������

����

ba

C

−3−2

−10

12

3

−0.5

0

0.5

1

1.5

0

10

20

30

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 10: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The steepest descent approach

Decomposition: I =∫ ba f (x)e iωg(x) = F (a)− F (b)

F (a) =

∫ ∞

0f (ha(p))e iωg(ha(p))h′a(p)dp

= e iωg(a)

∫ ∞

0f (ha(p))e−ωph′a(p)dp

= e iωg(a)

∫ ∞

0f (a + pi)e−ωp idp

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 11: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

A new integration path

Example 2: Quadratic oscillator g(x) = x2 (f (x) = 10− x2)

g(ha(p)) = g(a) + pi⇒ ha(p) = ±√

a2 + pi

−1−0.8

−0.6−0.4

−0.20

0.20.4

0.60.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−50

−40

−30

−20

−10

0

10

20

30

40

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 12: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The steepest descent approach

Decomposition: I = F1(a)− F1(ξ) + F2(ξ)− F2(b)

∫ 1

−1f (x)e iωx2

dx =

e iω

∫ ∞

0f (h−1,1(p))e−ωph′−1,1(p)dp −

∫ ∞

0f (h0,1(p))e−ωph′0,1(p)dp

+

∫ ∞

0f (h0,2(p))e−ωph′0,2(p)dp − e iω

∫ ∞

0f (h1,2(p))e−ωph′1,2(p)dp

Numerical singularity of the path: h′ξ(p) ∼ p−1/2, p → 0

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 13: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The steepest descent approach

Example 3: Cubic oscillator g(x) = x3

g(ha(p)) = g(a) + pi⇒ ha(p) = 3√

a3 + pi · e i2π/3k , k = 0, 1, 2

������ ����

��

−1 10

i

C

I = F1(a)− F1(ξ) + F2(ξ)− F2(b)

Numerical singularity of the path: h′ξ(p) ∼ p−2/3, p → 0

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 14: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The steepest descent approach

Example 3: Cubic oscillator g(x) = x3 (and f (x) = 10− x2)

−1.5

−1

−0.5

0

0.5

1

1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−40

−30

−20

−10

0

10

20

30

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 15: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The numerical steepest descent method

Implementation issue 1. How to evaluate Fj ?

Fj(x) = e iωg(x)

∫ ∞

0f (hx(p))h′x(p)e−ωpdp

=e iωg(x)

ω

∫ ∞

0f (hx(

q

ω))h′x(

q

ω)e−qdq

if exponential decay: Gauss-Laguerre (w(q) = e−q)

if singularity: generalized Gauss-Laguerre (w(q) = q−αe−q)

or, generalized Gauss-Hermite (w(q) = e−qn)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 16: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The numerical steepest descent method

Fj(x) ≈ QF [f , g , hx ] :=e iωg(x)

ω

n∑i=1

wi f (hx(xi/ω))h′x(xi/ω)

Fj(ξ) ≈ QrF [f , g , hξ,j ] :=

e iωg(ξ)

ω1/(r+1)

n∑i=1

wi f (hξ,j(xr+1i /ω)) h′ξ,j(x

r+1i /ω) x r

i

absolute error: O(ω(−2n−1)/(r+1))

relative error: O(ω−2n/(r+1))

Gaussian convergence rate 2n as a function of 1/ω (r = 0)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 17: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The numerical steepest descent method

Example:∫ 10

11+x e iωxdx

I ≈ QF [f , g , ha]− QF [f , g , hb]

ω \ n 1 2 3 4 510 1.0E − 3 3.1E − 5 1.9E − 6 1.7E − 7 2.1E − 820 1.2E − 4 1.1E − 6 2.3E − 8 7.5E − 10 3.2E − 1140 1.7E − 5 3.9E − 8 2.1E − 10 2.0E − 12 2.8E − 1480 2.0E − 6 1.2E − 9 1.7E − 12 4.2E − 15 1.6E − 17rate 3.1(3) 5.0(5) 6.9(7) 8.9(9) 10.8(11)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 18: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The numerical steepest descent method

Example:∫ 1−1

1x+2e iωx3

dx

I ≈ Q[f , g , ha]− Q2F [f , g , hξ,1] + Q2

F [f , g , hξ,2]− QF [f , g , hb]

ω \ n 1 2 3 4 540 1.5E − 4 2.4E − 6 1.3E − 8 6.9E − 11 7.6E − 1380 5.8E − 5 7.1E − 7 2.3E − 9 6.4E − 12 4.7E − 14160 2.3E − 5 2.1E − 7 4.2E − 10 6.1E − 13 3.1E − 15320 9.1E − 6 6.7E − 8 8.1E − 11 5.8E − 14 2.1E − 16rate 1.3 (3/3) 1.7 (5/3) 2.4 (7/3) 3.4 (9/3) 3.9 (11/3)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 19: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The numerical steepest descent method

Implementation issue 2. How to determine the path ?

if inverse of g is available: ha(p) = g−1(g(a) + pi)

otherwise...compute ha(xi/ω) and h′a(xi/ω) numerically

Apply Newton-Raphson iteration to g(ha(p))− g(a)− pi = 0

initial guess by truncated Taylor series of g

only very few iterations necessary

Derivative: g(ha(p))− g(a)− pi = 0 ⇒ g ′(ha(p))h′a(p)− i = 0

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 20: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The numerical steepest descent method

Example:∫ 10

11+x e iω(x2+x+1)1/3

dx

I ≈ QF [f , g , ha]− QF [f , g , hb] with 2nd order Taylor path

ω \ n 1 2 3 4 520 1.4E − 2 2.7E − 3 7.4E − 4 2.4E − 4 8.9E − 540 2.5E − 3 2.6E − 4 4.6E − 5 1.0E − 5 2.5E − 680 3.8E − 4 1.8E − 5 1.7E − 6 2.0E − 7 2.9E − 8160 5.2E − 5 1.1E − 6 4.0E − 8 2.1E − 9 1.5E − 10320 6.7E − 6 6.8E − 8 7.7E − 10 1.6E − 11 4.4E − 13rate 3.0 4.0 5.7 7.0 8.4

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 21: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The numerical steepest descent method

Example:∫ 10

11+x e iω(x2+x+1)1/3

dx

I ≈ QF [f , g , ha]−QF [f , g , hb] with 2nd order Taylor path, followedby 1 to 4 Newton iteration steps

ω \ n 1 2 3 4 520 1.1E − 2 2.4E − 3 7.4E − 4 2.5E − 4 7.5E − 540 2.1E − 3 2.4E − 4 4.4E − 5 1.0E − 5 2.4E − 680 3.3E − 4 1.5E − 5 1.2E − 6 1.5E − 7 2.3E − 8160 4.5E − 5 6.1E − 7 1.8E − 8 8.7E − 10 6.2E − 11320 5.9E − 6 2.1E − 8 1.8E − 10 2.7E − 12 6.2E − 14640 7.2E − 7 6.7E − 10 1.5E − 12 6.3E − 15 4.3E − 17rate 3.0 5.0 6.9 8.8 10.5

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 22: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

The numerical steepest descent method

Relation to Levin type methods

Levin method: write I = F (b)e iωg(b) − F (a)e iωg(a)

with F (x) the non-oscillatory solution to

F ′(x) + iωg ′(x)F (x) = f (x)

It can be verified that the exact solution is given by

F (x) = −∫ ∞

0f (hx(p))h′x(p)e−ωpdp

Numerical steepest descent: evaluate the analyticalsolution to the Levin ODE numerically !

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 23: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

A Filon type quadrature rule

The Generalized Filon’s method (Iserles and Nørsett)

Idea: approximate f globally on [a, b] by Hermite interpolation

Assume: f (x) ≈∑N

i=1 ciφi (x)

Then: I ≈∑N

i=1 wici with wi =∫ ba φi (x)e iωg(x)dx

Iserles and Nørsett: convergence O(ω−s−1/(r+1))

interpolate derivatives of order 0 . . . s − 1 at corner points

interpolate derivatives of order 0 . . . (s − 1)(r + 1) atstationary points

computation of moments, e.g., by numerical steepest descent

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 24: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

A Filon type quadrature rule

Localized Filon’s method

Idea: apply local Hermite (or Taylor) approximation of f for eachintegral contribution Fj

Define: Fj [f ](x) := e iωg(x)∫∞0 f (hx(p))h′x(p)e−ωpdp

From: f (z) ≈∑dj

i=0 f (i)(x) (z−x)i

i!

We have: Fj [f ](x) ≈∑dj

i=0 wi ,j f(i)(x)

with: wi ,j := Fj [(z−x)i

i! ](x)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 25: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

A Filon type quadrature rule

A “classical” quadrature rule

I ≈∑l

j=0

∑dj

i=0 wi ,j f(i)(xj)

Convergence result:

Let dj = s − 1 at a non-stationary point, and letdj = s(r + 1)− 1 at a stationary point then our rule hasan absolute error of O(ω−s−1/(r+1)) and a relative errorof O(ω−s), asymptotically for large ω.

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 26: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

Two more examples

Example 1:∫ 10

11+x2 e

iω(x−1/2)2dx

101

102

103

104

10−10

10−8

10−6

10−4

10−2

100

ω

Filon−type 3 weightslocalized Filon−typenumerical steepest descentFilon−type 5 weights

Filon (3 evals): O(ω−3/2)

Local Filon (3 evals): O(ω−3/2)

NSD (4 evals): O(ω−5/2)

Filon (5 evals): O(ω−2)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 27: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

Two more examples

Example 2: The Hankel oscillator

IH [f ] :=

∫ b

af (x)H(1)

ν (ωg1(x))e iωg2(x)dx ,

For large arguments

H(1)ν (z) ∼

√2

πze i(z− 1

2νπ−1/4π),−π < argz < 2π, |z | → ∞.

Approximate oscillator: g(x) = g1(x) + g2(x)

Quadrature rule: IH [f ] ≈ QH [f ] :=∑L

l=0

∑dlj=0 wH

l ,j f(j)(xl).

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 28: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

IntroductionThe steepest descent approachThe numerical steepest descent methodA Filon type quadrature ruleTwo more examples

Two more examples

∫ 10 cos(x − 1)H

(1)0 (ωx)e iω(x2+x3−x)dx .

Two quadrature points:x = 0: a singularity and a stationary point of order 1x = 1: a regular endpoint

ω \ (d0, d1) (0, 0) (1, 0) (2, 0) (3, 1)100 1.2E − 3 2.8E − 5 1.3E − 6 2.6E − 8200 5.1E − 4 8.6E − 6 2.9E − 7 4.1E − 9400 2.2E − 4 2.6E − 6 6.4E − 8 6.2E − 10800 9.3E − 5 7.8.1E − 7 1.4E − 8 9.7E − 11rate 1.23 (1.25) 1.73 (1.75) 2.20 (2.25) 2.68 (2.75)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 29: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Outline

1 One-dimensional oscillatory integrals

2 The multi-dimensional caseMotivating examplesTheoryNumerical results

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 30: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Multivariate oscillatory integrals

Model form

In :=

∫S

f (x)e iωg(x) dx

Contributing points?

corner points

critical points: ∇g = 0

resonance points: ∇g ⊥ ∂S

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 31: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Multivariate oscillatory integrals

Main approach: repeated one-dimensional integration

deform onto path of steepest descent for inner variable

I1(x) :=

∫ b(x)

a(x)f (x, y)e iωg(x,y) dy

= F (x, a(x))− F (x, b(x))

the function F is evaluated only in points on the boundary

F (x, a(x)) = e iωg(x,a(x))

∫ ∞

0f (x, u(x, p))

∂u(x, p)

∂pe−ωpdp

oscillator of F (x, a(x)) is exactly known: g(x, a(x)) !

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 32: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 1

Rectangular domain in two dimensions

I :=

∫ b

a

∫ d

cf (x , y)e iω(x+y) dy dx

Step 1: deform onto path of steepest descent for y

I :=

∫ b

aG (x , c)e iω(x+c) − G (x , d)e iω(x+d)dx

Smooth function G is given by

G (x , y) =

∫ ∞

0f (x , y + ip)ie−ωp dp

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 33: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 1 (continued)

Rectangular domain in two dimensions∫ b

aG (x , c)e iω(x+c) = G̃ (a, c)e iω(a+c) − G̃ (b, c)e iω(b+c)

Total decomposition

I := F (a, c)− F (b, c)− F (a, d) + F (b, d)

Contributions are given by non-oscillatory double integralswith exponential decay in both variables

F (x , y) = e iω(x+y)

∫ ∞

0

∫ ∞

0f (x + ip, y + iq)i2e−ω(p+q) dq dp

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 34: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 1 (continued)

Rectangular domain in two dimensions

I :=

∫ b

a

∫ d

cf (x , y)e iω(x+y) dy dx

(a,d) (b,d)

(b,c)(a,c)

I := F (a, c)− F (b, c)− F (a, d) + F (b, d)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 35: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 2: smooth boundaries

1. A two-dimensional simplex

I :=

∫ b

a

∫ x

af (x , y)e iω(x+y) dy dx

Step 1: deform onto path of steepest descent for y

I :=

∫ b

aG (x , a)e iω(x+a) − G (x , x)e iω(x+x)dx

oscillators are different

Result: contributions of the three corner points

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 36: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 2: smooth boundaries (continued)

2. More general boundaries

I :=

∫ b

a

∫ d(x)

c(x)f (x , y)e iω(x+y) dy dx

=

∫ b

aG (x , c(x))e iω(x+c(x)) − G (x , d(x))e iω(x+d(x))dx

new oscillator x + c(x) may have stationary points!

resonance points: stationary point of oscillator g(x , c(x))evaluated along the boundary

happens when ∇g ⊥ ∂S

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 37: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 2: smooth boundaries (continued)

Fourier integral on a circle

I :=

∫ 1

−1

∫ √1−x2

−√

1−x2

f (x , y)e iω(x+y) dy dx

= F

(−√

2

2,−√

2

2

)− F

(√2

2,

√2

2

)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 38: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 3: critical points

A rectangular domain with a critical point

I :=

∫ b

a

∫ d

cf (x , y)e iω(x2−xy−y2) dy dx

g(x , y) = x2 − xy − y2

∇g(0, 0) = 0∂g∂x (x , y) = 0 ⇐⇒ x = y/2

∂g∂y (x , y) = 0 ⇐⇒ y = −x/2

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 39: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 3: critical points (continued)

A rectangular domain with a critical point

(a,d) (d/2,d) (b,d)

(b,−b/2)

(b,c)

(0,0)

(c/2,c)(a,c)

(a,−a/2)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 40: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 3: critical points (continued)

A rectangular domain with a critical point

Step 1: deform onto path of steepest descent for y

I :=

∫ b

aG1(x , c)e iωg(x ,c)

− G1(x ,−x/2)e iωg(x ,−x/2)

+ G2(x ,−x/2)e iωg(x ,−x/2)

− G2(x , d)e iωg(x ,d)dx

g11(x) := g(x , c) = x2 − cx − c2

g12(x) := g(x ,−x/2) = 54x2

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 41: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 3: critical points (continued)

A rectangular domain with a critical point

Step 2: deform onto path of steepest descent for x

I = F111(a, c)− F111(c/2, c) + F112(c/2, c)− F112(b, c)

− F121(a,−a/2) + F121(0, 0)− F122(0, 0) + F122(b,−b/2)

+ F211(a,−a/2)− F211(0, 0) + F212(0, 0)− F212(b,−b/2)

− F221(a, d) + F221(d/2, d)− F222(d/2, d) + F222(b, d).

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 42: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

What can be proved

Theorem 4.2 (Huybrechs and Vandewalle, 2006)

In :=

∫S

f (x)e iωg(x) dx =∑

size(λ)=2n

sλFλ′(xλ) + O(e−ωd0),

Conditions are:

analyticity of f , g in a ’complex neighbourhood’ of S

piecewise analytic parameterisation of S

stationary points may be degenerate

two additional conditions exclude special cases

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 43: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Additional conditions

1. Exclude curves of resonance points and critical points

If for some λ we have

∂gλ

∂y(x, y) ≡ 0,

then the integral in y is not oscillatory.

Solution: integration in y can be performed numerically onthe real line

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 44: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Additional conditions (continued)

Example curve of resonance points on circular boundary

Example:∫x2+y2<=1 f (x , y)e iω(x2+y2)dV

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 45: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Additional conditions (continued)

2. Each lower-dimensional integral in x is either:

an integral along a curve of stationary points (of the sameorder) in y

an integral along a curve that has no stationary point in y

In particular: this excludes critical points on the boundary

Reason: existence of complex stationary points in y that may (ormay not) be arbitrarily close to the real line

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 46: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Additional conditions (continued)

Example: integral on the part in the upper right halfplane

(a,d) (d/2,d) (b,d)

(b,−b/2)

(b,c)

(0,0)

(c/2,c)(a,c)

(a,−a/2)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 47: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 1: 3D balls and ellipsoids

Sphere with Fourier oscillatorNo stationary points, two boundary points

I3 =

Z 1

−1

Z q1−x2

1

−q

1−x21

Z q1−x2

1−x2

2

−q

1−x21−x2

2

ex1+x22 x3 (3x3 + cos(x2))e iω(x1+x2+x3)

dx3 dx2 dx1.

Contributing points: ∇g ⊥ ∂S

(−√

3/3,−√

3/3,−√

3/3) and (√

3/3,√

3/3,√

3/3)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 48: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 1: 3D balls and ellipsoids

Cubature rule

I3 ≈2∑

i=1

∑j

∑k

∑l

wi ,j ,k,l∂j+k+l f

∂x j1∂xk

2 ∂x l3

(xi )

Convergence

ω \ d 0 1 2

100 2.6e − 5 2.4e − 6 1.2e − 7200 3.2e − 6 3.6e − 7 8.0e − 9400 3.9e − 7 5.2e − 8 5.5e − 10800 5.0e − 8 3.8e − 9 2.7e − 111600 6.3e − 9 5.2e − 10 1.7e − 12

rate 3.0 (2.5) 2.9 (3.0) 4.0 (3.5)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 49: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 1: 3D balls and ellipsoids

Generalisation to an ellipsoid

I3 :=

∫E

1

4πk2(n(x)2 − 1)e iω a·x dx3 dx2 dx1.

length scales R1, R2, R3 along X , Y and Z axis

oscillator: a · x = a1x1 + a2x2 + a3x3

two resonance points

application: scattering of light due to propagation in an objectwith refractive index n(x) (Sigal Trattner)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 50: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 1: an ellipsoid (continued)

Absolute errors

R1 = 1, R2 = 2, R3 = 1

tensor-product Gauss-Laguerre with m points per dimension

ω \m (4m3) 1 (4) 2 (32) 3 (108) 4 (256)

1 2.2e − 2 4.9e − 3 3.8e − 3 1.7e − 22 6.1e − 3 7.5e − 5 7.8e − 5 6.7e − 44 1.1e − 3 6.0e − 7 5.9e − 7 5.9e − 78 6.7e − 6 3.8e − 8 6.6e − 11 3.5e − 1316 1.6e − 6 2.4e − 9 1.1e − 12 1.5e − 14

rate 2.0 4.0 6.0 4.6

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 51: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 2: a degenerate stationary point

A rectangular domain with a degenerate stationary point

I2 :=

∫ 1

−1

∫ 1

−1

1

3 + x + ye iω(x3+y3) dy dx ,

(a,d) (b,d)

(b,c)(a,c)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 52: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Example 2 (continued)

Localised Filon-type quadrature rule

nine quadrature points

use d function values and derivatives at each point

ω \ d 0 1 2

50 5.3e − 03 2.5e − 04 2.9e − 05100 2.7e − 03 9.9e − 05 9.0e − 06200 1.3e − 03 3.9e − 05 2.8e − 06400 6.7e − 04 1.6e − 05 8.9e − 07800 3.4e − 04 6.1e − 06 2.9e − 07

rate 0.98 (1.0) 1.34 (1.33) 1.63 (1.66)

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method

Page 53: A Numerical Approach To The Steepest Descent Method · One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan

One-dimensional oscillatory integralsThe multi-dimensional case

Motivating examplesTheoryNumerical results

Concluding remarks

1 One-dimensional integrals

two types of points: stationary points and endpointsintegration along the path of steepest descentconstruction of Filon-type quadrature rules

2 Multi-dimensional integrals

three types of points: corners, critical points, resonance pointsintegration on a manifold of steepest descentconstruction of Filon-type cubature rules

3 Problems not treated here

functions with complex poles or stationary pointsoscillatory integral equations

Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method