A case-based reasoning approach for non-traditional machining ...

13
311 Advances in Production Engineering & Management ISSN 18546250 Volume 11 | Number 4 | December 2016 | pp 311–323 Journal home: apem‐journal.org http://dx.doi.org/10.14743/apem2016.4.229 Original scientific paper A casebased reasoning approach for nontraditional machining processes selection Boral, S. a , Chakraborty, S. a,* a Department of Production Engineering, Jadavpur University, Kolkata, West Bengal, India ABSTRACT ARTICLE INFO To sustain in the modern era of rapid manufacturing development, it becomes necessary to generate complex shapes on materials which are highly tempera‐ ture and corrosion resistant, hard to machine, and have high strength‐to‐ weight ratio. Generation of complex shapes on those materials using conven‐ tional machining processes ultimately affects surface finish, material removal rate, accuracy, cost, safety etc. Non‐traditional machining (NTM) processes have the capability to machine those advanced engineering materials with satisfactory results. But, selection of the most appropriate NTM process for a particular machining application is often a complicated task. Case‐based rea‐ soning (CBR), a domain of artificial intelligence, is a paradigm for reasoning new problems from the past experience. In CBR, a memory model is assumed for representing, indexing and organizing past similar cases, and a process model is supposed for retrieving and modifying the past cases and assimilat‐ ing the new ones. This paper primarily focuses on the application of CBR approach for NTM process selection. Based on different process characteris‐ tics and process parameter values, the past similar cases are retrieved and reused to solve a current NTM process selection problem. For this, a software prototype is developed and three real time examples are cited to illustrate the application potentiality of CBR system. © 2016 PEI, University of Maribor. All rights reserved. Keywords: Non‐traditional machining processes Process selection Artificial intelligence Case‐based reasoning *Corresponding author: [email protected] (Chakraborty, S.) Article history: Received 7 June 2016 Revised 25 October 2016 Accepted 12 November 2016 1. Introduction With the development of newer materials having improved thermal, mechanical and chemical properties, it has now become quite difficult to machine those materials using conventional ma‐ chining processes. These processes, generally based on cutting and abrasion mechanism, incur higher machining cost while generating complex shape features on composites, ceramics and other advanced engineering materials. The achieved surface quality and dimensional accuracy of the machined components are also not satisfactory, and often fail to meet the desired target. In these machining processes, unwanted material from the parent workpiece is generally removed employing mechanical energy. This energy is supplied by means of a cutting tool kept in contact with the workpiece, causing shear deformation along the shear plane, leading to chip formation. New exotic work materials and complex geometrical shapes on those materials have been put‐ ting more pressure on the capabilities of the conventional machining processes. This leads to the development and deployment of a new set of machining processes, popularly known as non‐ traditional machining (NTM) processes. In these processes, unwanted material is removed from the parent workpiece using various forms of energy, like chemical, thermal, mechanical, electri‐ cal or combination of those energies. In an NTM process, there is no direct contact between the

Transcript of A case-based reasoning approach for non-traditional machining ...

Page 1: A case-based reasoning approach for non-traditional machining ...

 

 

 

   

311 

AdvancesinProductionEngineering&Management ISSN1854‐6250

Volume11|Number4|December2016|pp311–323 Journalhome:apem‐journal.org

http://dx.doi.org/10.14743/apem2016.4.229 Originalscientificpaper

  

A case‐based reasoning approach for non‐traditional machining processes selection  

Boral, S.a, Chakraborty, S.a,* aDepartment of Production Engineering, Jadavpur University, Kolkata, West Bengal, India 

  

A B S T R A C T   A R T I C L E   I N F O

Tosustaininthemoderneraofrapidmanufacturingdevelopment,itbecomesnecessarytogeneratecomplexshapesonmaterialswhicharehighlytempera‐ture and corrosion resistant, hard to machine, and have high strength‐to‐weightratio.Generationofcomplexshapesonthosematerialsusingconven‐tionalmachiningprocessesultimatelyaffectssurfacefinish,materialremovalrate, accuracy, cost, safety etc. Non‐traditional machining (NTM) processeshave the capability to machine those advanced engineering materials withsatisfactoryresults.But,selectionofthemostappropriateNTMprocessforaparticularmachiningapplicationisoftenacomplicatedtask.Case‐basedrea‐soning (CBR),adomainofartificial intelligence, isaparadigm for reasoningnewproblemsfromthepastexperience.InCBR,amemorymodelisassumedfor representing, indexing and organizing past similar cases, and a processmodelissupposedforretrievingandmodifyingthepastcasesandassimilat‐ing the new ones. This paper primarily focuses on the application of CBRapproachforNTMprocessselection.Basedondifferentprocesscharacteris‐tics and process parameter values, the past similar cases are retrieved andreusedtosolveacurrentNTMprocessselectionproblem.Forthis,asoftwareprototypeisdevelopedandthreerealtimeexamplesarecitedtoillustratetheapplicationpotentialityofCBRsystem.

©2016PEI,UniversityofMaribor.Allrightsreserved.

  Keywords:Non‐traditionalmachiningprocessesProcessselectionArtificialintelligenceCase‐basedreasoning

*Correspondingauthor:[email protected](Chakraborty,S.)

Articlehistory:Received7June2016Revised25October2016Accepted12November2016 

  

1. Introduction 

With thedevelopmentofnewermaterialshaving improved thermal,mechanical and chemicalproperties,ithasnowbecomequitedifficulttomachinethosematerialsusingconventionalma‐chiningprocesses.Theseprocesses,generallybasedoncuttingandabrasionmechanism, incurhighermachining costwhile generating complex shape features on composites, ceramics andotheradvancedengineeringmaterials.Theachievedsurfacequalityanddimensionalaccuracyofthemachinedcomponentsarealsonotsatisfactory,andoftenfailtomeetthedesiredtarget.Inthesemachiningprocesses,unwantedmaterialfromtheparentworkpieceisgenerallyremovedemployingmechanicalenergy.Thisenergyissuppliedbymeansofacuttingtoolkeptincontactwiththeworkpiece,causingsheardeformationalongtheshearplane,leadingtochipformation.Newexoticworkmaterialsandcomplexgeometricalshapesonthosematerialshavebeenput‐tingmorepressureonthecapabilitiesoftheconventionalmachiningprocesses.Thisleadstothedevelopment and deployment of a new set ofmachining processes, popularly known as non‐traditionalmachining(NTM)processes.Intheseprocesses,unwantedmaterialisremovedfromtheparentworkpieceusingvariousformsofenergy,likechemical,thermal,mechanical,electri‐calorcombinationofthoseenergies.InanNTMprocess,thereisnodirectcontactbetweenthe

Page 2: A case-based reasoning approach for non-traditional machining ...

Boral, Chakraborty  

312  Advances in Production Engineering & Management 11(4) 2016

cuttingtoolandtheworkpiece.Inabrasivejetmachiningprocess,excessmaterialisremovedbymeans ofmicroscopic chips and in electrochemicalmachining process by electrolytic dissolu‐tion. In laserbeammachiningprocess, there is evennoneedofanycutting tool. It isalsonotnecessarythatthecuttingtoolshouldbeharderthantheworkpiecematerialinanNTMprocess.Now‐a‐days, ithasbecomeeasier togeneratecomplexshapesonmaterials, likesteel, carbide,titaniumanditsalloys,ceramics,superalloys(Inconel718,hastelloy)etc.employingNTMpro‐cesses[1,2].Tilldate,therehavebeenapproximately20NTMprocessesdevelopedandappliedinmodernmanufacturingindustries.SelectionofthebestsuitableNTMprocessforaparticularworkmaterialandshapefeaturecombinationisgenerallymadebyadomainexpertonthebasisofvariousfactors,suchasworkpiecematerial,shapefeaturetobegenerated,materialremovalrate,surfacefinish,surfacedamage,cornerradii,tolerance,cost,safety,powerrequirementetc.Thus,anexpertinthisdomainmusthaveavastandin‐depthknowledgeaboutthecharacteris‐ticsandcapabilitiesofdifferentavailableNTMprocesses.But,inthepresentmanufacturingsce‐nario,most of the process engineers lack the requisite domain knowledge and availability ofexpertsisalsosometimesconstrained.

Usually,adomainexpertacquiresknowledgefromthepastexperienceaswellasfromotherreliablesources.Takingthisconceptasaplinth,whenanexpertattemptstoselectanNTMpro‐cess foragivenmachiningapplication,he/she justrecalls thesimilarpastsituationsandtheirsolutions.Thus,basedonthesimilarpastproblemsandtheirsolutions,newNTMprocessselec‐tioncasesaresolved.Thisentirecognitiveprocessofadomainexpert’sthinkinghasgivenbirthtoanewbranchofartificial intelligence(AI) technique,knownascase‐basedreasoning(CBR)approach.ThisCBRapproachisappliedhereforNTMprocessselection.Inthispaper,inordertochoosethemostsuitableNTMprocessforaspecificmachiningapplication,anexhaustivecase‐basecontainingthemachiningcharacteristicsofvariousavailableNTMprocessesandtheirper‐tinentprocessparametersisfirstcreated.Thesemachiningcharacteristicsandprocessparame‐terdataarelaterusedtoselectthefeasibleNTMprocessesaccordingtotheendrequirements.Theselectionprocedureisbasedonretrievalofthebestmatchedcasefromthecase‐baseusingthenearestneighbourhoodtechnique,whilecalculatingthesimilarityscorebetweentwocases.Thebestmatchedcase,whichisretrievedfromthecase‐baseaccordingtothevaluesofdifferentprocesscharacteristicsassetbytheprocessengineer/enduser,hasthesimilarityscoregreaterthantheothercases.ToautomateandsimplifytheapplicationofCBRapproachinNTMprocessselection, a softwareprototypehaving a graphical user interface (GUI) is designed anddevel‐opedinVisualBasic6.0.Thedevelopedsystemsimultaneouslyconsidersboththeuserrequire‐ments(productcharacteristics)andtechnicalrequirements(processcharacteristics)foragivenNTMprocessselectionproblem.

2. Literature review 

Usingtwomulti‐attributedecisionmaking(MADM)tools, i.e.analytichierarchyprocess(AHP)and technique for order preference by similarity to ideal solution (TOPSIS), Yurdakul andCçogun [3] attempted to simplify theNTMprocess selectionprocedure for themanufacturingpersonnel.AlistoffeasibleNTMprocessessatisfyingtheusers’requirementswasfirstgenerat‐edandthoseprocesseswerethenrankedbasedontheirsuitabilitytomeetthedesiredmachin‐ing operation. An expert systemwas developed by Chakraborty andDey [4] for selecting thebestNTMprocessunder constrainedmaterial andmachining conditions. Itwould rely on thepriorityvaluesofdifferentcriteriaandsub‐criteriaforaspecificNTMprocessselectionproblem,andtheNTMprocesswiththehighestacceptabilityindexwasfinallyidentified.ChakrabortyandDey[5]developedaquality functiondeployment(QFD)‐basedexpertsystemforNTMprocessselection.Anoverallscore foreachof theNTMprocesseswasestimatedusingtheweightsex‐tractedfromthehouseofqualitymatrixforvariousprocesscharacteristics.TheoverallscoresofsomeoftheNTMprocessessimultaneouslysatisfyingcertaincriticalcriteriarequirementswereagaincomparedandtheNTMprocesshavingthemaximumscorewasfinallyselectedastheop‐timalchoice.Aweb‐basedknowledgebasesystemwasproposedbyEdisonChandraseelanetal.[6]foridentifyingthemostsuitableNTMprocesstomeetsomeinputparametricrequirements,

Page 3: A case-based reasoning approach for non-traditional machining ...

A case‐based reasoning approach for non‐traditional machining processes selection 

Advances in Production Engineering & Management 11(4) 2016  313

liketypeoftheworkmaterial,shapeapplication,processeconomy,andotherprocesscapabili‐ties, likesurfacefinish,cornerradii,widthofcut,toleranceetc.SadhuandChakraborty[7]ap‐pliedaninputminimizedCharnes,CooperandRhodes(CCR)modelofdataenvelopmentanaly‐sisforNTMprocessselection.Employingweighted‐overallefficiencyrankingmethodofMADMtheory,theefficientNTMprocesseswereultimatelyrankedindescendingorderoftheirpriori‐ties.Temuçinetal.[8]designedafuzzydecisionsupportmodelforNTMprocessselectionwhileassessingthepotentialsofsomedistinctNTMprocesses.ChatterjeeandChakraborty[9]provedtheapplicationpotentialityofevaluationofmixeddata(EVAMIX)methodforsolvingNTMpro‐cess selection problems using three demonstrative examples. Roy et al. [10] integrated fuzzyAHPandQFDtechniquesforselectionofNTMprocessesbasedonsomepredefinedcustomers’perspectives. Temuçin et al. [11] solved theNTM process selection problem under fuzzy andcrisp environment, and proposed a decision supportmodel to guide the process engineers toexplorethepotentialsofsomedistinctNTMprocesses.Theapplicabilityoftheproposedmodelwasalsovalidated.KhandekarandChakraborty[12]applied fuzzyaxiomaticdesignprinciplesforselectionofNTMprocesses.Madićetal.[13]demonstratedtheapplicability,suitabilityandcomputational procedure of operational competitiveness ratings analysis (OCRA) method forsolvingNTMprocessselectionproblems.

Nowadays, CBR as a part of cognitive science, has been emerged out as an interesting re‐searchtopic.AmenandVomacka[14]employedCBRapproachasatoolforselectionofmaterialandheattreatmentprocessfromanexhaustivedatabasetosimplifythetaskofadesigner.Khe‐manietal.[15]appliedCBRapproachinfusedcastrefractorymanufacturingindustry.FangandWong[16]appliedahybridCBRapproachinagent‐basednegotiationforeffectivesupplychainmanagement.ArmaghanandRenaud[17]adoptedCBRapproachtoprovethecomplementarynatureofmulti‐criteriadecisionsandCBRapproach.Althoughthepastresearchersappliednu‐merousMADMmethodsanddevelopeddifferentdistinctdecisionaidsforselectionofNTMpro‐cessesforvaryingmachiningapplications,buttilldate,noattempthasbeenputforwardonse‐lectionofNTMprocessesusingCBRapproach.Thispaperthusproposesdevelopmentofadeci‐sionmakingmodelbasedonCBRapproachforselectingthebestsuitedNTMprocessforagivenmachiningapplication.It isobservedthatCBRis thecorrectandsimplestapproachinthisdo‐mainwhereavailabilityofexpertsissometimesconstrained.InCBRapproach,asetoffeasibleNTMprocessesisfirstretrievedfromthecase‐basesatisfyingtheworkmaterialandshapefea‐ture combination. Based on the user and technical requirements, it then identifies the bestmatchedNTMprocessfromthestoredsimilarcases.ThepastcasesarejustreusedhereforNTMprocessselectionforprovidingtheoptimalsolution.

3. CBR approach  

Intelligence,beingapartof cognitivescience, canbedefinedas theprocess involving rationalandabstractthinking.Itisoftengoalorientedandpurposeful.Itconsistsofknowledgeandfeats,bothconsciousandunconscious,whichareacquiredthroughcontinuousstudyandexperience.TheAIisactuallytheintelligenceinmachines.Intelligentsystemisthebasementofknowledgeengineering.Itinvolvesseveraltasks,likeknowledgeacquisition,creationofaknowledgebase,knowledge representation and use of the acquired knowledge. The represented knowledge isbasicallyusedforreasoningorinference.InAI,knowledgeisrepresentedusingsymbolsalongwithheuristicsorrulesofthumb.Whileusingtheseheuristics,oneshouldnothavetorethinkwhenasimilarproblemisencountered.Theexpertsystemcanbedefinedasanintelligentcom‐puterprogramthatusesknowledgeandinferenceprocedurestosolveproblemsthatarediffi‐cultenoughrequiringsignificanthumanexpertisefortheirsolution.Basicallyinexpertsystem,knowledgeisrepresentedusing‘if‐then’rules.

TheCBRapproachisapartofAItechniquethatutilizesinformationstoredintheknowledgebase, when similar past problems are encountered again. It provides solution to the presentproblemthatisalmostsimilartothepast.InCBRapproach,aproblemisrepresentedasaninputinthepresentsituation.Itjustretrievesthemostsimilarcasetothenewonefromitscase‐base while calculating the similarity score over the defined parameters.Itfirstsearchesthecasehistory

Page 4: A case-based reasoning approach for non-traditional machining ...

Boral, Chakraborty  

314  Advances in Production Engineering & Management 11(4) 2016

andchooses thatcasehavingtheclosestsimilarity to thecurrentproblem. InCBRsystem, thecase‐base iswell structured and documented. The case representationmay be flat, where allcases are represented at the same level, or it can be hierarchical, expressing relationship be‐tweencasesandsub‐cases.

TherearefourmajorstepsthatconstituteaCBRsystem,i.e.retrieve,reuse,reviseandretain.Thus,itisalsocalledas4‐RcycleorCBRcycle,asshowninFig.1.Whenaproblemoccursinthecurrentsituation,similarpastsituationsareretrievedfromthecase‐base.Reusingthepastcas‐es,apredictablesolutiontothecurrentproblemisthusprovided.Ifthereisaneedofanyrevi‐sion, theretrieveddataarerevisedandretainedasanewcase in thecase‐base for futureuse[18‐21].

Fig.1ACBRcycleor4‐Rcycle

Retrieving themostsimilarcasealongwith thesolution isbasedonsome logicalexpressions.The similaritybetween two cases is usuallymeasuredwith respect to eachparameter. It alsodependsonthetypeofparameter(beneficialornon‐beneficial)beingused.Thefollowingsarethemostcommonmethodsforcalculatingsimilaritybetweentwocases:

a Numeric:

Sim(a,b) |a–b|/Range (1)

whereRangeisthedifferencebetweentheupperandlowerboundariesofaset.

b Symbolic:

Sim(a,b)=1ifa=b

=0ifa≠b(2)

c Multi‐valued:

Sim ,∩∪

(3)

whereCardisthecardinality(size)ofaset.

d Taxonomy:

Sim ,common node ,min ,

(4)

wherehistheheight(numberoflevels)ofthespecifiedtaxonomytree.

TheproceduralstepsofaCBRapproacharepresentedasbelow:

a) Asolutionisfirstdefinedusingseveralparameters.Oneoftheparametersshouldbecho‐sencarefullysothatitwouldremainuniquethroughoutthedocumentationprocedure,e.g.casenumber.

b) Ahugesetofknownsolutions isput intothecase‐baseofCBRsystem.Anexistingdata‐basecanalsobeusedforthispurpose.

c) TheCBRsystemgenerallyreadsthedatabaseandorganizesacopyofitsown.

Page 5: A case-based reasoning approach for non-traditional machining ...

A case‐based reasoning approach for non‐traditional machining processes selection 

Advances in Production Engineering & Management 11(4) 2016  315

d)Theusergenerallyformulatesaqueryaccordingtotheendrequirements.Alltheavailablevariablesarefirstdisplayed.Theuserhastheoptiontochooseallorfewvariablesbasedontheproblemstatement.Thequeryincludesthosevariablesassetbytheuser.Theuseralsohastheoptiontoallocatedifferentpriorityweightstotheconsideredvariables.

e) Asaresultof theuser‐definedquery,CBRsystemmaydisplayanumberofcasesor thebestmatchedcase.Itmayalsobepossiblethatnoneofthecaseswouldmatchthequeryexactly.

FavouringCBR techniqueas themostefficient tool forNTMprocess selection is a challengingtask, as several other approaches have already been available for the same purpose. It is ob‐servedfromtheavailableliteraturethatnoneoftheMADMmethods,likeAHP,EVAMIX,TOPSISetc. canprovidecompletesolutionwhen thedomain is ill‐structuredandmurky.TheworkingprincipleofCBRisbasedonsomeavailablespecificexperiencesinsteadofabstractedrules.Itisconsideredasausefultooliftheutilizationofpriorexperienceismorevitalthantoproduceathoroughlyoptimized solution according to the specifications.TheCBRapproachhasnoopti‐mizingpotentiality,butitcanbeusedforsearching,notforcalculations.Itsefficiencyisdeter‐minedbyfastretrievalofthemostsimilarcasesfromthecase‐base.TheprincipleofCBRalsostatesthatitcanfindthesimilaritiesbetweencasesbutnotreasons.So,itisunabletojudgehowimportanttheencountereddeparturesarethatcanbedeterminedonlybyanexperienceduser.

AcomparisonbetweentheexistingsearchtechniquesandtheadoptedCBRapproachiselu‐cidatedinTable1.

Table1ComparisonbetweendifferentsearchtechniquesandCBRapproach

Method FlexibilityOperationalapproach

Computationaltime

Programmingcomplexity

Decisionmaker’sinvolvement

Typeofdata

Geneticalgorithm

Medium(lackoflearn‐ingability)

Populationbasedprobabilisticsearchandoptimizationtechnique

High(basedonthedesiredaccuracyandterminationcriterion)

High HighNumerical

Artificialneuralnetwork

HighMimicstheworkingprincipleofbiologicalneurons

High Medium Medium Numerical

Simulatedannealing

Medium

Coolingprocessofmoltenmetalismodeledartificiallytoconstructanoptimizationalgorithm

Medium(basedonthedesiredaccura‐cyandterminationcriterion)

High HighNumerical

Expertsystem

Medium

Exactmatchingofinputandstoreddataproducingseveral‘if‐then’rulesforinference

Medium Medium HighBothnumericalandtextual

CBR High

Notionofsimilaritybetweenpresentandpriorstoredcases

Low Low MediumBothnumericalandtextual

4. CBR‐based approach for NTM processes selection  

Although CBR approach has already been successfully applied in various fields ofmechanicalengineering, suchasmaterial selection,design selection,parts selection forautomobile indus‐triesetc.,noattempthasstillbeenmadeforitsapplicationinthedomainofNTMprocessselec‐tion.TheCBRapproachhasthepotential toprovidecomplete informationaboutacasewhereminimuminformationisavailabletotheuser.Ityieldsthebestresultswhentheuserprovidesdetailedqueryinformation.

Page 6: A case-based reasoning approach for non-traditional machining ...

Boral, Chakraborty  

316  Advances in Production Engineering & Management 11(4) 2016

While selecting themost suitable NTM process for a particularmachining application, theprocess engineer has to consider severalmachining characteristics of the availableNTMpro‐cesses. InthedevelopedCBRapproach‐baseddecisionmakingmodel,nineNTMprocesses, i.e.abrasivejetmachining(AJM),abrasivewaterjetmachining(AWJM),electricdischargemachin‐ing(EDM), laserbeammachining(LBM),ultrasonicmachining(USM),electrochemicalmachin‐ing(ECM),electrochemicaldischargemachining(ECDM),plasmaarcmachining(PAM)andwireelectricdischargemachining(WEDM)aretakenintoconsideration.Astheprocesscharacteris‐tics,typeoftheworkpiecematerial,shapefeaturetobegenerated,materialremovalrate(MRR)(inmg/min),surfaceroughness(SR)(inµm),surfacedamage(SD)(inµm),tolerance(Tol)(inmm),overcut(OC)(inmm),cornerradii(CR)(inmm),taper(TP)(inmm/mm),cost(C)(inrela‐tive(R)priorityscale),power(P)(inkW)andsafety(S)(inRscale)areconsidered.Forcost,theRscaleissetas1‐lowest,2‐verylow,3‐low,4‐medium,5‐high,6‐veryhighand7‐highest.Ontheotherhand, forsafety, theRscale issetas1‐highlysafe,2‐safeand3‐attentionre‐quired. Asworkmaterials, a) aluminium, b) aluminium alloys, c) ceramics, d) composites, e)glass,f)steel,g)superalloysandh)titaniumareconsideredinthismodel.Theabove‐mentionedNTMprocessescangeneratea)hole(precision)(0.03mm≤D<0.13mm),b)hole(standard)(L/D≤20), c) hole (standard) (L/D>20), d) through cut (shallow) (t/w≤2), e) through cut(deep)(t/w>2), f) throughcavity(standard)(t/w>10),g) throughcavity(precision)(t/w≤10),h)pocket(shallow)(t≤1mm),i)pocket(deep)(t>1mm)andj)surfaceofrevolutionfea‐tureontheworkmaterial(whereListhelengthofthehole,Disthediameterofthehole,tisthethicknessandw is thewidthof themachined feature).Therelevantmachiningcharacteristicsdata for different NTM processes are accumulated from experimentations, machining datahandbooks and other reliable resources to create the corresponding case‐base. The collecteddataarethenorganizedinastructuredmannerinMSAccess.Thestep‐wiseoperationalproce‐duresof thedevelopedCBRsystem for selecting thebest suitedNTMprocess for aparticularmachiningapplicationaredepictedasfollows:

Step1:WhenthedevelopedCBRsystemstartstorun,thefirstscreen,asshowninFig.2,appearstotheenduserwherethetypeoftheworkmaterialtobemachinedandtypeoftheshapefea‐turetobegeneratedcanbechosenfromthegivenoptionsastheprimaryinputstothesystem.

Step2: After clicking ‘OK’ button, a list of feasibleNTMprocess(es) capable of generating thedesiredshapeonthespecifiedworkmaterialisdisplayed.Forthis,Eqn.(2)isutilizedforfilter‐ingandretrievingthedata.

Step3:Whentheuserpresses ‘Next’button,anotherscreen,asshowninFig.3, isdisplayedtoidentifythemostsuitableNTMprocessfromthelistoffeasibleprocesseswhilesatisfyingthesetmachiningrequirements.

Step4: In thisscreen, theenduserhas tochoose thedesiredprocesscharacteristicsbasedonwhichthefinalNTMprocessselectionismade.

Step5:When‘Enterrange’functionalkeyisclicked,therequirednumberofemptycellsareau‐tomaticallygeneratedwheretheinputrangesfortheselectedNTMprocesscharacteristicscanbeprovided.

Step6:Afterinputtingthedesiredrangesofvalues,pressingof‘BestNTMprocess’buttonidenti‐fiesthemostsuitableNTMprocessforthespecifiedmachiningapplicationwhilesatisfyingthesetcriteriavalues.ForretrievingthebestNTMprocessinthisstep,Eqn.(1)isemployed.

Step7:TheactualretrievedvaluesofallthetechnicalcharacteristicsforthebestmatchedNTMprocessarealsodisplayed.

Step8:When‘BestNTMprocess’buttonisclicked,thetechnicaldetails(tentativesettingsoftheassociatedprocessparameters)ofthebestmatchedNTMprocessarealsoavailable,asshowninFig.4. 

Page 7: A case-based reasoning approach for non-traditional machining ...

A case‐based reasoning approach for non‐traditional machining processes selection 

Advances in Production Engineering & Management 11(4) 2016  317

Althoughinstep5,thereisanoptionforenteringrangesofprocesscharacteristicvalues,butifthe developed CBR system does not find any datawithin those ranges from the case‐base, itwouldretrievethepossibledatanearesttothequeryset.ForaparticularNTMprocessselectionproblem,MRRisthesolebeneficialattributewhereitsvalueisalwaysrequiredtobemaximized.Ontheotherhand,SR,SD,Tol,TP,OC,CR,C,PandSarenon‐beneficialattributesrequiringtheirminimumvalues.Thebestmatchedcaseshouldhavethehighestsimilarityscore,whichiscalcu‐lated with respect to each of the process characteristics. After summing up these similarityscoresforthesetprocesscharacteristicsforeachcase,theNTMprocesshavingthehighestsimi‐larityscoreischosenasthemostsuitableoption.

5. Illustrative examples 

5.1 Example 1: Standard hole on composite material  

Inthisexample,standardholesaretobegeneratedonacompositematerial.Afterprovidingtheinputsofcompositeastheworkmaterialandhole(standard)astheshapefeatureoptionsintheprimary selectionwindowofFig. 2, a setof feasibleNTMprocesses consistingofAJM,AWJM,ECDM,ECM,EDM,LBMandUSMisdisplayed,when‘OK’buttonisclicked.Alltheprocessescangeneratestandardholesoncompositematerials.InthenextwindowofFig.3,MRR,SR,Tol,OC,CRandCareoptedasthemostimportantprocesscharacteristicsbasedonwhichthefinalNTMprocessselectionistobemade.Inthisexample,thedesiredinputrangesforthoseprocesschar‐acteristicsaresetasMRR100‐1000mg/min,SR2‐12µm,Tol0‐0.5mm,OC0‐0.05mm,CR0‐0.5mmandC1‐4(inRscale).Now,when‘BestNTMprocess’functionalbuttonisclicked,LBMpro‐cessisidentifiedasthebestmatchedcase,capableofmeetingthesetprocesscharacteristicval‐ues.Itisinterestingtoobservethatapartfromthesetprocesscharacteristics,valuesoftheoth‐erprocesscharacteristicsarealsoavailableforthebestmatchedNTMprocess.Inthisexample,theselectedLBMprocesscanachievevaluesofMRRas286.08mg/min,SRas2.63µm,SDas102µm,Tolas0.02mm,OCas0.001mm,CRas0.5mm,TPas0.05mm/mm,Cas1(inRscale),Pas0.23kWandSas3(inRscale).

InFig.4,theprocessengineercanalsohaveanideaaboutthesettingsofdifferentmachiningparametersofLBMprocess.Thesearethetentativeprocessparametricsettingsandforachiev‐ingthemaximummachiningperformance,fine‐tuningofthesesettingsisoftennecessary.ArealtimephotographofLBMprocessisalsoavailableinFig.4.

Fig.2PrimaryselectionwindowforExample1

Page 8: A case-based reasoning approach for non-traditional machining ...

Boral, Chakraborty  

318  Advances in Production Engineering & Management 11(4) 2016

Fig.3BestNTMprocessforExample1

Fig.4DetailsofLBMprocess

5.2 Example 2: Standard through cavity on ceramics 

Here,theprocessengineerwantstogenerateastandardthroughcavityonaceramicworkma‐terial. In theprimary selectionwindow, as shown inFig. 5, thedevelopedCBRapproach firstextractsfiveNTMprocesses,i.e.AJM,AWJM,EDM,USMandWEDMasthefeasibleoptionssatis‐fyingthesaidworkmaterialandshapefeaturecombinationrequirement.

InFig.6,MRR,SR,Tol,OC,CR,CandSarechosenasthemostimportantprocesscharacteris‐ticsbasedonwhichthefinalNTMprocessneedstobeselected.Basedontherangesofvaluesfortheseprocesscharacteristics,USMprocessisidentifiedasthebestmatchedcaseforthismachin‐ing application. For USM process, the attainable process characteristics are MRR as 131.96mg/min,SRas0.66µm,SDas25µm,Tolas0.014mm,OCas0.15mm,CRas0.08mm,TPas0.005mm/mm,Cas5(inRscale),Pas0.4kWandSas1(inRscale).

Page 9: A case-based reasoning approach for non-traditional machining ...

A case‐based reasoning approach for non‐traditional machining processes selection 

Advances in Production Engineering & Management 11(4) 2016  319

Fig.5PrimaryselectionwindowforExample2

InFig.7,thetentativeparametricsettingsandthetechnicalspecificationsofUSMprocessalongwithitsactualphotographaredisplayedtoguidetheprocessengineertoachievethebestma‐chiningperformance.

Fig.6BestNTMprocessforExample2

Page 10: A case-based reasoning approach for non-traditional machining ...

Boral, Chakraborty  

320  Advances in Production Engineering & Management 11(4) 2016

Fig.7DetailsofUSMprocess

5.3 Example 3: Shallow through cutting on steel 

Inthisexample,ashallowthroughcuttingoperationneedstobeperformedonastandardsteelplate. For thisworkmaterial and shape feature combination, the CBR system first recognizesAJM, AWJM, ECM, EDM, LBM and PAM as the six feasible NTM processes, as shown in Fig. 8.Then,inFig.9,sevenprocesscharacteristics,i.e.MRR,SR,SD,Tol,OC,CRandCareidentifiedbytheprocessengineer forthefinalselectionof themostsuitedNTMprocess fortheconsideredmachiningapplication.Inthiswindow,therangesofvaluesofthesetprocesscharacteristicsarealsoprovided.

Fig.8PrimaryselectionwindowforExample3

Page 11: A case-based reasoning approach for non-traditional machining ...

A case‐based reasoning approach for non‐traditional machining processes selection 

Advances in Production Engineering & Management 11(4) 2016  321

Fig.9BestNTMprocessforExample3

Fig.10DetailsofAJMprocess

ThedevelopedCBRsystemidentifiesAJMasthemostappropriateNTMprocessforgeneratingashallowthroughcutonsteelmaterial.InFig.9,valuesofvariousprocesscharacteristicsofAJMprocessareprovidedasMRR‐99.76mg/min,SR‐1.9µm,SD‐2.5µm,Tol‐0.03mm,OC‐0.001mm,CR‐0.1mm,TP‐0.005mm/mm,C‐4(inRscale),P‐0.22kWandS‐2(inRscale).InFig.10,thisCBRsystemalsoguidestheprocessengineerinsettingthemostdesiredvaluesofvari‐ousAJMprocessparametersforachievingtheoptimalmachiningperformance.But,dependingontheendrequirementsandavailabilityofthemachiningsetup,thoseAJMprocessparametersneedtobeaccuratelyadjusted.

In CBR approach, all the cases, along with the relevant parameters, are well-structured in the case-base. They are collected from real time experiments, machining handbooks and expert’s opinions. Hence, when a case is retrieved by CBR system, it is likely to be closely matched with the expert’s opinion. Moreover, CBR is a technique that can provide the closest solution to the input problem. In all these three examples, the final results provided by CBR system are well validated by the experts who have a vast capability of understanding and years of experience.

Page 12: A case-based reasoning approach for non-traditional machining ...

Boral, Chakraborty

In CBR approach, as the selection procedure is entirely based on similarity score calculation over several process characteristics for an efficient case retrieval, there is almost negligible probability that two cases have exactly the same similarity score. Moreover, in the developed CBR approach-based software prototype, the data type for the similarity score is considered as 'double'. Thus, two NTM processes may be apparently same from the logical as well as application point of view, but they are always slightly different based on the calculated similarity scores over several process characteristics by CBR system.

6. Conclusion In this paper, based on CBR approach, a decision making model is developed for selecting the most appropriate NTM process for a given work material and shape feature combination. The functional mechanism of CBR approach is based on retrieving and reusing the past similar cases from the case-base. In the case-base, numerous cases are stored from the real time experimental data which are later utilized to extract the case nearest to the given query set. It is observed that the CBR system can provide a reasonable solution to a given machining problem where there is a lack of expert knowledge. The developed model can be a pathway towards new research in the direction of NTM process selection. Its potentiality and solution accuracy are validated using three real time demonstrative examples. It can also guide a process engineer in setting various NTM process parameters for a specific machining operation, although fine-tuning of those par-ametric settings may sometimes be required. Its accuracy can further be increased while devel-oping a hybrid CBR system, incorporating more cases in the case-base or providing more options with respect to work material and shape feature choices. A validation of the results derived us-ing the CBR approach against the existing search mechanisms, like genetic algorithm, simulated annealing, artificial neural network etc. may be the future scope of this research paper.

References [1] El-Hofy, H. (2005). Advanced machining processes: Nontraditional and hybrid machining processes, The

McGraw-Hill Companies, New York, USA. [2] Pandey, P.C., Shan, H.S. (1981). Modern machining processes, Tata McGraw-Hill Publishing Com. Ltd., New Delhi. [3] Yurdakul, M., Cçogun, C. (2003). Development of a multi-attribute selection procedure for non- traditional ma-

chining processes, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufac-ture, Vol. 217, No. 7, 993-1009.

[4] Chakraborty, S., Dey, S. (2006). Design of an analytic-hierarchy-process-based expert system for non-traditional machining process selection, The International Journal of Advanced Manufacturing Technology, Vol. 31, No. 5, 490-500, doi: 10.1007/s00170-005-0216-5.

[5] Chakraborty, S., Dey, S. (2007). QFD-based expert system for non-traditional machining processes selection, Expert Systems with Applications, Vol. 32, No. 4, 1208-1217, doi: 10.1016/j.eswa.2006.02.010.

[6] Edison Chandrasselan, R., Jehadeesan, R., Raajenthiren, M. (2008), Web-based knowledge base system for selec-tion of non-traditional machining processes, Malaysian Journal of Computer Science, Vol. 21, No. 1, 45-56.

[7] Sadhu, A., Chakraborty, S. (2011). Non-traditional machining processes selection using data envelopment analy-sis (DEA), Expert Systems with Applications, Vol. 38, No. 7, 8770-8781, doi: 10.1016/j.eswa.2011.01.088.

[8] Temuçin, T., Tozan, H., Vayvay, Ö., Harničárová, M., Valíček, J. (2014). A fuzzy based decision model for nontradi-tional machining process selection, The International Journal of Advanced Manufacturing Technology, Vol. 70, No. 9, 2275-2282, doi: 10.1007/s00170-013-5474-z.

[9] Chatterjee, P., Chakraborty, S. (2013). Nontraditional machining processes selection using evaluation of mixed data method, The International Journal of Advanced Manufacturing Technology, Vol. 68, No. 5, 1613-1626, doi: 10.1007/s00170-013-4958-1.

[10] Roy, M.S., Ray, A., Pradhan, B.B. (2014). Non-traditional machining process selection using integrated fuzzy AHP and QFD techniques: A customer perspective, Production & Manufacturing Research, Vol. 2, No. 1, 530-549.

[11] Temuçin, T., Tozan, H., Valíček, J., Harničárová, M. (2013). A fuzzy based decision support model for non-traditional machining process selection, Tehnički vjesnik – Technical Gazette, Vol. 20, No. 5, 787-793.

[12] Khandekar, A.V., Chakraborty, S. (2016). Application of fuzzy axiomatic design principles for selection of non-traditional machining processes, The International Journal of Advanced Manufacturing Technology, Vol. 83, No. 1, 529-543. doi: 10.1007/s00170-015-7608-y.

[13] Madić, M., Petković, D., Radovanović, M. (2015). Selection of non-conventional machining processes using the OCRA method, Serbian Journal of Management, Vol. 10, No. 1, 61-73, doi: 10.5937/sjm10-6802.

322 Advances in Production Engineering & Management 11(4) 2016

Page 13: A case-based reasoning approach for non-traditional machining ...

A case-based reasoning approach for non-traditional machining processes selection

[14] Amen, R., Vomacka, P. (2001). Case-based reasoning as a tool for materials selection, Materials & Design, Vol. 22, No. 5, 353-358, doi: 10.1016/S0261-3069(00)00105-9.

[15] Khemani, D., Selvamani, R.B., Dhar, A.R., Michael, S.M. (2002). InfoFrax : CBR in fused cast refractory manufac-ture, Advances in Case-Based Reasoning, 2416, 560-574, doi: 10.1007/3-540-46119-1_41.

[16] Fang, F., Wong, T.N. (2010). Applying hybrid case-based reasoning in agent-based negotiations for supply chain management, Expert Systems with Applications, Vol. 37, No. 12, 8322-8332, doi: 10.1016/j.eswa.2010.05.052.

[17] Armaghan, N., Renaud, J. (2012). An application of multi-criteria decision aids models for case-based reasoning, Information Sciences, Vol. 210, 55-66, doi: 10.1016/j.ins.2012.04.033.

[18] Slade, S. (1991). Case-based reasoning: A research paradigm, AI Magazine, Vol. 12, No. 1, 42-55. [19] Kolodner, J.L. (1992). An introduction to case-based reasoning, Artificial Intelligence Review, Vol. 6, No. 1, 3-34,

doi: 10.1007/BF00155578. [20] Aamodt, A., Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological variations, and system

approaches, AI Communications, Vol. 7, No. 1, 39-59. [21] Watson, I. (1999). Case-based reasoning is a methodology not a technology, Knowledge-Based Systems, Vol. 12,

No. 5-6, 303-308, doi: 10.1016/S0950-7051(99)00020-9.

Advances in Production Engineering & Management 11(4) 2016 323